Root Ideotype Influences Nitrogen Transport and Assimilation in Maize

Maize ( , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide....

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 9; p. 531
Main Authors Dechorgnat, Julie, Francis, Karen L., Dhugga, Kanwarpal S., Rafalski, J. A., Tyerman, Stephen D., Kaiser, Brent N.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 24.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Maize ( , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
AbstractList Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
Maize ( , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
Maize ( Zea mays , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.
Author Kaiser, Brent N.
Dhugga, Kanwarpal S.
Tyerman, Stephen D.
Dechorgnat, Julie
Rafalski, J. A.
Francis, Karen L.
AuthorAffiliation 4 Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station , Wilmington, DE , United States
3 Pioneer Hi-Bred International, Inc. , Johnston, IA , United States
2 School of Agriculture, Food and Wine, The University of Adelaide , Urrbrae, SA , Australia
1 Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney , Camden, NSW , Australia
AuthorAffiliation_xml – name: 4 Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station , Wilmington, DE , United States
– name: 1 Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney , Camden, NSW , Australia
– name: 2 School of Agriculture, Food and Wine, The University of Adelaide , Urrbrae, SA , Australia
– name: 3 Pioneer Hi-Bred International, Inc. , Johnston, IA , United States
Author_xml – sequence: 1
  givenname: Julie
  surname: Dechorgnat
  fullname: Dechorgnat, Julie
– sequence: 2
  givenname: Karen L.
  surname: Francis
  fullname: Francis, Karen L.
– sequence: 3
  givenname: Kanwarpal S.
  surname: Dhugga
  fullname: Dhugga, Kanwarpal S.
– sequence: 4
  givenname: J. A.
  surname: Rafalski
  fullname: Rafalski, J. A.
– sequence: 5
  givenname: Stephen D.
  surname: Tyerman
  fullname: Tyerman, Stephen D.
– sequence: 6
  givenname: Brent N.
  surname: Kaiser
  fullname: Kaiser, Brent N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29740466$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rVDEUxYNUbK1du5O3dDPTfLzkJRuhlKoDVUEquAt5yc2Y8iZ5Jhmh_vVmZlppBbNJuDnnd-Cel-gopggIvSZ4yZhU536eypJiIpcYc0aeoRMiRL_oBf1-9Oh9jM5KucXtcIyVGl6gY6qGHvdCnKCrrynVbuUg1bsZulX00xaihdJ9DjWnNcTuJptY5pRrZ6LrLkoJmzCZGlLsQuw-mfAbXqHn3kwFzu7vU_Tt_dXN5cfF9ZcPq8uL64XtuaoLgx0ZHBssxZI4ZainZJReMo4BgNNx4ByEUNIQS1STsDYknjWHx45hdopWB65L5lbPOWxMvtPJBL0fpLzWJtdgJ9CEGVDWOqwk73tBjJSjUH4QTlk1wtBY7w6seTtuwFmINZvpCfTpTww_9Dr90lxRyQVtgLf3gJx-bqFUvQnFwjSZCGlbNMVMDFL0WDXpm8dZf0MeemgCfhDYnErJ4LUNdb_jFh0mTbDeVa53letd5XpfefOd_-N7QP_P8Qf60K7X
CitedBy_id crossref_primary_10_1007_s10725_021_00698_5
crossref_primary_10_1080_07352689_2022_2109866
crossref_primary_10_1016_j_ecolind_2021_107723
crossref_primary_10_3389_fagro_2022_763974
crossref_primary_10_1186_s12870_019_1768_0
crossref_primary_10_1007_s11104_024_06561_6
crossref_primary_10_1016_j_apradiso_2020_109127
crossref_primary_10_1016_j_pbi_2018_07_006
crossref_primary_10_1111_ppl_14249
crossref_primary_10_1007_s11033_019_04878_5
crossref_primary_10_3389_fpls_2022_926214
crossref_primary_10_2166_ws_2021_338
crossref_primary_10_1002_ecs2_3028
crossref_primary_10_1101_pdb_top108436
crossref_primary_10_1007_s00374_022_01681_6
crossref_primary_10_1016_j_envexpbot_2021_104732
crossref_primary_10_1093_jxb_erac387
crossref_primary_10_1016_j_jplph_2022_153781
crossref_primary_10_1007_s00344_025_11713_8
crossref_primary_10_3389_fpls_2018_00973
crossref_primary_10_3934_agrfood_2024046
crossref_primary_10_1007_s11105_020_01206_1
crossref_primary_10_3390_agronomy12112671
crossref_primary_10_3389_fpls_2020_587610
crossref_primary_10_1016_j_geoderma_2024_116924
Cites_doi 10.1016/j.pbi.2012.03.009
10.1093/oxfordjournals.pcp.a029506
10.1093/jexbot/53.370.979
10.1104/pp.66.6.1179
10.1111/j.1399-3054.1993.tb05222.x
10.1104/pp.66.6.1184
10.1016/j.plantsci.2008.08.004
10.2135/cropsci2012.07.0429
10.3389/fpls.2012.00162
10.1073/pnas.1305372110
10.1534/genetics.106.060699
10.1104/pp.110.165076
10.1111/pbr.12051
10.1104/pp.107.108944
10.1093/jexbot/53.370.855
10.1104/pp.105.074385
10.1111/j.1467-7652.2012.00700.x
10.1104/pp.114.245225
10.1534/genetics.104.032987
10.1111/jipb.12214
10.1093/jxb/eru245
10.1093/pcp/pct099
10.1093/jxb/eru227
10.1016/j.tibtech.2014.09.008
10.1104/pp.99.3.996
10.1111/j.1469-8137.1975.tb01409.x
10.1016/j.tplants.2012.04.006
10.1126/science.279.5349.407
10.1104/pp.54.4.550
10.1093/genetics/165.4.2117
10.1111/nph.12166
10.1104/pp.113.232603
10.1105/tpc.16.00724
10.1073/pnas.1312801111
10.1105/tpc.106.042689
10.1093/jxb/erq409
10.1111/j.1365-313X.2005.02591.x
10.1093/oxfordjournals.pcp.a078823
10.1111/1365-3040.ep11616228
10.1146/annurev-arplant-042811-105532
10.1016/S0014-5793(01)02096-8
10.1006/anbo.1997.0540
10.1104/pp.113.233916
10.1105/tpc.11.5.865
10.1006/niox.2000.0319
10.1007/s11120-004-3478-0
10.1093/jxb/erv074
10.1093/aob/mch056
10.1016/j.pbi.2015.03.002
10.1105/tpc.8.12.2183
10.1093/jxb/eru001
10.1073/pnas.1032999100
10.1007/BF00029015
10.1111/j.1365-3040.2009.02011.x
10.1016/j.copbio.2014.11.015
10.1016/j.gfs.2012.07.001
10.1007/s00122-017-2900-x
10.1016/S1369-5266(03)00035-9
10.1371/journal.pone.0015289
10.1007/s10533-013-9923-4
10.1007/s004250050310
10.1046/j.1365-3040.2000.00568.x
10.1002/wsbm.87
10.1139/B07-019
10.1104/pp.97.1.227
10.1105/tpc.107.052134
10.1105/tpc.104.029694
10.3389/fpls.2016.01657
10.1093/jxb/erv007
10.1111/j.1467-7652.2010.00524.x
10.1111/j.1365-3040.2011.02409.x
10.3389/fpls.2015.00936
ContentType Journal Article
Copyright Copyright © 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser. 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser
Copyright_xml – notice: Copyright © 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser. 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2018.00531
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_13ae9ccd09854461a88b69f76d9c9be7
PMC5928562
29740466
10_3389_fpls_2018_00531
Genre Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: LP110200878
– fundername: Pioneer Hi-Bred
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-a0d17d37c2081d9a2f21b8f8350eee52b755e6698a1c1981d3e521f337cf0d303
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:28:01 EDT 2025
Thu Aug 21 17:48:59 EDT 2025
Fri Jul 11 14:42:29 EDT 2025
Wed Feb 19 02:43:12 EST 2025
Tue Jul 01 00:52:26 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Zea mays
transport
root system architecture
nitrogen
gene expression
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-a0d17d37c2081d9a2f21b8f8350eee52b755e6698a1c1981d3e521f337cf0d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Zeno Varanini, University of Verona, Italy; Lachlan James Palmer, Flinders University, Australia
Edited by: James Stangoulis, Flinders University, Australia
This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science
Present address: Kanwarpal S. Dhugga, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2018.00531
PMID 29740466
PQID 2036786409
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_13ae9ccd09854461a88b69f76d9c9be7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5928562
proquest_miscellaneous_2036786409
pubmed_primary_29740466
crossref_citationtrail_10_3389_fpls_2018_00531
crossref_primary_10_3389_fpls_2018_00531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-24
PublicationDateYYYYMMDD 2018-04-24
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-24
  day: 24
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Simons (B57) 2014; 65
Gu (B24) 2013; 54
Postma (B48) 2014; 166
Sebilo (B56) 2013; 110
York (B71) 2015; 66
Garnett (B17) 2009; 32
Wray (B69) 1993; 89
Miflin (B43) 2002; 53
Garnett (B18) 2013; 198
Baki (B4) 2000; 23
Andrews (B2) 1986; 9
Marschner (B38) 2011
Todd (B62) 2008; 175
Haegele (B25) 2013; 53
Suzuki (B61) 2005; 83
Miranda (B44) 2001; 5
Drew (B12) 1975; 75
Plett (B47) 2010; 5
Trucillo Silva (B63) 2017; 130
Giehl (B21) 2014; 166
Lohaus (B35) 1998; 205
DeBruin (B9) 2013; 132
Kant (B28) 2012; 3
Kong (B29) 2014; 32
Rogers (B52) 2015; 32
Cañas (B6) 2010; 8
Winter (B68) 1992; 99
López-Bucio (B36) 2003; 6
Makino (B37) 2011; 155
Xu (B70) 2012; 63
McAllister (B40) 2012; 10
Pii (B46) 2016; 7
Zhang (B75) 1998; 279
Doussan (B11) 1998; 81
Li (B32) 1993; 23
Liu (B33) 2003; 165
Miflin (B42) 1974; 54
Wen (B67) 2017; 29
Okamoto (B45) 2006; 140
Reed (B49); 66
Sinclair (B58) 2012; 1
Dechorgnat (B10) 2011; 62
Wang (B66) 2012; 17
Stupar (B60) 2006; 173
Riens (B51) 1991; 97
Saengwilai (B53) 2014; 166
Cren (B8) 1999; 40
Glass (B22) 2002; 53
Lassaletta (B31) 2014; 118
Vidal (B64) 2010; 2
Wang (B65) 2007; 145
Good (B23) 2007; 85
Fischer (B15) 2005; 17
Hochholdinger (B26) 2004; 93
Flint-Garcia (B16) 2005; 44
Effland (B13) 2006
Gaudin (B20) 2011; 34
Bloom (B5) 2015; 25
Alvarez (B1) 2012; 15
Filleur (B14) 2001; 489
Zamboni (B73) 2014; 56
Martin (B39) 2006; 18
Sakakibara (B55) 1992; 33
Auger (B3) 2005; 169
Huang (B27) 1996; 8
Liu (B34) 1999; 11
Song (B59) 2003; 100
Reed (B50); 66
Zhan (B74) 2015; 66
Yuan (B72) 2007; 19
Chiasson (B7) 2014; 111
Medici (B41) 2014; 65
Garnett (B19) 2015; 6
Krapp (B30) 2014; 65
Sakakibara (B54) 1995; 36
20890965 - Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec;2(6):683-93
28444412 - Theor Appl Genet. 2017 Jul;130(7):1453-1466
22607381 - Plant Biotechnol J. 2012 Dec;10(9):1011-25
11912240 - J Exp Bot. 2002 Apr;53(370):979-87
8989878 - Plant Cell. 1996 Dec;8(12):2183-91
21193579 - J Exp Bot. 2011 Feb;62(4):1349-59
23832511 - Plant Cell Physiol. 2013 Sep;54(9):1515-24
28887406 - Plant Cell. 2017 Oct;29(10 ):2581-2596
24805158 - J Integr Plant Biol. 2014 Nov;56(11):1080-94
12753979 - Curr Opin Plant Biol. 2003 Jun;6(3):280-7
19558408 - Plant Cell Environ. 2009 Sep;32(9):1272-83
25082891 - Plant Physiol. 2014 Oct;166(2):509-17
11178938 - Nitric Oxide. 2001 Feb;5(1):62-71
16658926 - Plant Physiol. 1974 Oct;54(4):550-5
12853580 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9055-60
25795737 - J Exp Bot. 2015 Apr;66(8):2347-58
16359397 - Plant J. 2005 Dec;44(6):1054-64
16143852 - Photosynth Res. 2005;83(2):191-217
27877183 - Front Plant Sci. 2016 Nov 08;7:1657
11912228 - J Exp Bot. 2002 Apr;53(370):855-64
16415212 - Plant Physiol. 2006 Mar;140(3):1036-46
7551585 - Plant Cell Physiol. 1995 Jul;36(5):789-97
16661599 - Plant Physiol. 1980 Dec;66(6):1179-83
15489529 - Genetics. 2005 Jan;169(1):389-97
22658680 - Trends Plant Sci. 2012 Aug;17(8):458-67
22224450 - Annu Rev Plant Biol. 2012;63:153-82
24532451 - J Exp Bot. 2014 Mar;65(3):789-98
21848860 - Plant Cell Environ. 2011 Dec;34(12):2122-37
25680794 - J Exp Bot. 2015 Apr;66(7):2055-65
25448235 - Curr Opin Biotechnol. 2015 Apr;32:93-98
24942915 - J Exp Bot. 2014 Oct;65(19):5567-76
15772287 - Plant Cell. 2005 Apr;17(4):1167-79
24707045 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4814-9
8106013 - Plant Mol Biol. 1993 Oct;23(2):401-7
20444205 - Plant Biotechnol J. 2010 Dec;8(9):966-78
17951451 - Plant Physiol. 2007 Dec;145(4):1735-45
25899331 - Curr Opin Plant Biol. 2015 Jun;25:10-6
14980975 - Ann Bot. 2004 Apr;93(4):359-68
24863438 - J Exp Bot. 2014 Oct;65(19):5657-71
17693533 - Plant Cell. 2007 Aug;19(8):2636-52
16669030 - Plant Physiol. 1992 Jul;99(3):996-1004
14704191 - Genetics. 2003 Dec;165(4):2117-28
22833749 - Front Plant Sci. 2012 Jul 19;3:162
25450041 - Trends Biotechnol. 2014 Dec;32(12):597-8
17138698 - Plant Cell. 2006 Nov;18(11):3252-74
16702414 - Genetics. 2006 Aug;173(4):2199-210
26617612 - Front Plant Sci. 2015 Nov 09;6:936
23398565 - New Phytol. 2013 Apr;198(1):82-94
11165253 - FEBS Lett. 2001 Feb 2;489(2-3):220-4
24706553 - Plant Physiol. 2014 Oct;166(2):581-9
22480431 - Curr Opin Plant Biol. 2012 Apr;15(2):185-91
21151904 - PLoS One. 2010 Dec 06;5(12):e15289
10330471 - Plant Cell. 1999 May;11(5):865-74
16661600 - Plant Physiol. 1980 Dec;66(6):1184-9
24145428 - Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18185-9
9430595 - Science. 1998 Jan 16;279(5349):407-9
24850860 - Plant Physiol. 2014 Oct;166(2):590-602
20959423 - Plant Physiol. 2011 Jan;155(1):125-9
16668375 - Plant Physiol. 1991 Sep;97(1):227-33
References_xml – volume: 15
  start-page: 185
  year: 2012
  ident: B1
  article-title: Integration of local and systemic signaling pathways for plant N responses.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2012.03.009
– volume: 40
  start-page: 1187
  year: 1999
  ident: B8
  article-title: Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a029506
– volume: 53
  start-page: 979
  year: 2002
  ident: B43
  article-title: The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.370.979
– volume: 66
  start-page: 1179
  ident: B49
  article-title: Relationship between nitrate uptake, flux, and reduction and the accumulation of reduced nitrogen in maize (Zea mays L.): I. GENOTYPIC VARIATION.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.66.6.1179
– volume: 89
  start-page: 607
  year: 1993
  ident: B69
  article-title: Molecular biology, genetics and regulation of nitrite reduction in higher plants.
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1993.tb05222.x
– volume: 66
  start-page: 1184
  ident: B50
  article-title: Relationship between nitrate uptake, flux, and reduction and the accumulation of reduced nitrogen in maize (Zea mays L.): II. EFFECT OF NUTRIENT NITRATE CONCENTRATION.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.66.6.1184
– volume: 175
  start-page: 799
  year: 2008
  ident: B62
  article-title: Identification and characterization of four distinct asparagine synthetase (AsnS) genes in maize (Zea mays L.).
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2008.08.004
– volume: 53
  start-page: 1256
  year: 2013
  ident: B25
  article-title: Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2012.07.0429
– volume: 3
  year: 2012
  ident: B28
  article-title: Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00162
– volume: 110
  start-page: 18185
  year: 2013
  ident: B56
  article-title: Long-term fate of nitrate fertilizer in agricultural soils.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1305372110
– volume: 173
  start-page: 2199
  year: 2006
  ident: B60
  article-title: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.
  publication-title: Genetics
  doi: 10.1534/genetics.106.060699
– volume: 155
  start-page: 125
  year: 2011
  ident: B37
  article-title: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.165076
– volume: 132
  start-page: 500
  year: 2013
  ident: B9
  article-title: N distribution in maize plant as a marker for grain yield and limits on its remobilization after flowering.
  publication-title: Plant Breed.
  doi: 10.1111/pbr.12051
– volume: 145
  start-page: 1735
  year: 2007
  ident: B65
  article-title: Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.108944
– volume: 53
  start-page: 1
  year: 2002
  ident: B22
  article-title: The regulation of nitrate and ammonium transport systems in plants.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.370.855
– volume: 140
  start-page: 1036
  year: 2006
  ident: B45
  article-title: High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.074385
– volume: 10
  start-page: 1011
  year: 2012
  ident: B40
  article-title: Engineering nitrogen use efficient crop plants: the current status.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2012.00700.x
– volume: 166
  start-page: 509
  year: 2014
  ident: B21
  article-title: Root nutrient foraging.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.245225
– volume: 169
  start-page: 389
  year: 2005
  ident: B3
  article-title: Nonadditive gene expression in diploid and triploid hybrids of maize.
  publication-title: Genetics
  doi: 10.1534/genetics.104.032987
– volume: 56
  start-page: 1080
  year: 2014
  ident: B73
  article-title: Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line.
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12214
– volume: 65
  start-page: 5567
  year: 2014
  ident: B41
  article-title: The primary nitrate response: a multifaceted signalling pathway.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru245
– volume: 54
  start-page: 1515
  year: 2013
  ident: B24
  article-title: Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.).
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct099
– volume: 65
  start-page: 5657
  year: 2014
  ident: B57
  article-title: Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru227
– volume: 32
  start-page: 597
  year: 2014
  ident: B29
  article-title: Designer crops: optimal root system architecture for nutrient acquisition.
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.09.008
– volume: 99
  start-page: 996
  year: 1992
  ident: B68
  article-title: Phloem transport of amino acids in relation to their cytosolic levels in barley leaves.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.99.3.996
– volume: 75
  start-page: 479
  year: 1975
  ident: B12
  article-title: Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1975.tb01409.x
– volume: 17
  start-page: 458
  year: 2012
  ident: B66
  article-title: Uptake, allocation and signaling of nitrate.
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.04.006
– volume: 279
  start-page: 407
  year: 1998
  ident: B75
  article-title: An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture.
  publication-title: Science
  doi: 10.1126/science.279.5349.407
– volume: 54
  start-page: 550
  year: 1974
  ident: B42
  article-title: The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.54.4.550
– volume: 165
  start-page: 2117
  year: 2003
  ident: B33
  article-title: Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites.
  publication-title: Genetics
  doi: 10.1093/genetics/165.4.2117
– volume: 198
  start-page: 82
  year: 2013
  ident: B18
  article-title: The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle.
  publication-title: New Phytol.
  doi: 10.1111/nph.12166
– volume: 166
  start-page: 581
  year: 2014
  ident: B53
  article-title: Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.232603
– volume: 29
  start-page: 2581
  year: 2017
  ident: B67
  article-title: Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride.
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00724
– volume: 111
  start-page: 4814
  year: 2014
  ident: B7
  article-title: Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1312801111
– volume: 18
  start-page: 3252
  year: 2006
  ident: B39
  article-title: Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production.
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.042689
– volume: 62
  start-page: 1349
  year: 2011
  ident: B10
  article-title: From the soil to the seeds: the long journey of nitrate in plants.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq409
– volume: 44
  start-page: 1054
  year: 2005
  ident: B16
  article-title: Maize association population: a high-resolution platform for quantitative trait locus dissection.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02591.x
– volume: 36
  start-page: 789
  year: 1995
  ident: B54
  article-title: Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a078823
– volume: 9
  start-page: 511
  year: 1986
  ident: B2
  article-title: The partitioning of nitrate assimilation between root and shoot of higher plants.
  publication-title: Plant Cell Environ.
  doi: 10.1111/1365-3040.ep11616228
– volume: 63
  start-page: 153
  year: 2012
  ident: B70
  article-title: Plant nitrogen assimilation and use efficiency.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042811-105532
– year: 2011
  ident: B38
  publication-title: Marschner’s Mineral Nutrition of Higher Plants.
– volume: 489
  start-page: 220
  year: 2001
  ident: B14
  article-title: An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake.
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(01)02096-8
– volume: 81
  start-page: 213
  year: 1998
  ident: B11
  article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description.
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.1997.0540
– volume: 166
  start-page: 590
  year: 2014
  ident: B48
  article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.233916
– volume: 11
  start-page: 865
  year: 1999
  ident: B34
  article-title: CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake.
  publication-title: Plant Cell
  doi: 10.1105/tpc.11.5.865
– volume: 5
  start-page: 62
  year: 2001
  ident: B44
  article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite.
  publication-title: Nitric Oxide
  doi: 10.1006/niox.2000.0319
– volume: 83
  start-page: 191
  year: 2005
  ident: B61
  article-title: Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism.
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-004-3478-0
– volume: 66
  start-page: 2347
  year: 2015
  ident: B71
  article-title: Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv074
– year: 2006
  ident: B13
  publication-title: A Digital Collection of Selected Historical Publications on Soil Survey and Soil Classification in the United States of America.
– volume: 93
  start-page: 359
  year: 2004
  ident: B26
  article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mch056
– volume: 25
  start-page: 10
  year: 2015
  ident: B5
  article-title: The increasing importance of distinguishing among plant nitrogen sources.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.03.002
– volume: 8
  start-page: 2183
  year: 1996
  ident: B27
  article-title: CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots.
  publication-title: Plant Cell
  doi: 10.1105/tpc.8.12.2183
– volume: 65
  start-page: 789
  year: 2014
  ident: B30
  article-title: Nitrate transport and signalling in Arabidopsis.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru001
– volume: 100
  start-page: 9055
  year: 2003
  ident: B59
  article-title: Gene expression of a gene family in maize based on noncollinear haplotypes.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1032999100
– volume: 23
  start-page: 401
  year: 1993
  ident: B32
  article-title: Differential expression of six glutamine synthetase genes in Zea mays.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00029015
– volume: 32
  start-page: 1272
  year: 2009
  ident: B17
  article-title: Root based approaches to improving nitrogen use efficiency in plants.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02011.x
– volume: 33
  start-page: 49
  year: 1992
  ident: B55
  article-title: Molecular cloning of the family of glutamine synthetase genes from maize: expression of genes for glutamine synthetase and ferredoxin-dependent glutamate synthase in photosynthetic and non-photosynthetic tissues.
  publication-title: Plant Cell Physiol.
– volume: 32
  start-page: 93
  year: 2015
  ident: B52
  article-title: Regulation of plant root system architecture: implications for crop advancement.
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2014.11.015
– volume: 1
  start-page: 94
  year: 2012
  ident: B58
  article-title: Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics.
  publication-title: Glob. Food Sec.
  doi: 10.1016/j.gfs.2012.07.001
– volume: 130
  start-page: 1453
  year: 2017
  ident: B63
  article-title: Biochemical and genetic analyses of N metabolism in maize testcross seedlings: 1. Leaves.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-017-2900-x
– volume: 6
  start-page: 280
  year: 2003
  ident: B36
  article-title: The role of nutrient availability in regulating root architecture.
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/S1369-5266(03)00035-9
– volume: 5
  year: 2010
  ident: B47
  article-title: Dichotomy in the NRT gene families of dicots and grass species.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015289
– volume: 118
  start-page: 225
  year: 2014
  ident: B31
  article-title: Food and feed trade as a driver in the global nitrogen cycle: 50-year trends.
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-013-9923-4
– volume: 205
  start-page: 181
  year: 1998
  ident: B35
  article-title: Transport of amino acids with special emphasis on the synthesis and transport of asparagine in the Illinois Low Protein and Illinois High Protein strains of maize.
  publication-title: Planta
  doi: 10.1007/s004250050310
– volume: 23
  start-page: 515
  year: 2000
  ident: B4
  article-title: Nitrate reductase in Zea mays L. under salinity.
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2000.00568.x
– volume: 2
  start-page: 683
  year: 2010
  ident: B64
  article-title: Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana.
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.87
– volume: 85
  start-page: 252
  year: 2007
  ident: B23
  article-title: Engineering nitrogen use efficiency with alanine aminotransferase.
  publication-title: Botany
  doi: 10.1139/B07-019
– volume: 97
  start-page: 227
  year: 1991
  ident: B51
  article-title: Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.97.1.227
– volume: 19
  start-page: 2636
  year: 2007
  ident: B72
  article-title: The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.052134
– volume: 17
  start-page: 1167
  year: 2005
  ident: B15
  article-title: Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site.
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.029694
– volume: 7
  year: 2016
  ident: B46
  article-title: Time-resolved investigation of molecular components involved in the induction of NO3– high affinity transport system in maize roots.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01657
– volume: 66
  start-page: 2055
  year: 2015
  ident: B74
  article-title: Reduced frequency of lateral root branching improves N capture from low-N soils in maize.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv007
– volume: 8
  start-page: 966
  year: 2010
  ident: B6
  article-title: Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs.
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2010.00524.x
– volume: 34
  start-page: 2122
  year: 2011
  ident: B20
  article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02409.x
– volume: 6
  year: 2015
  ident: B19
  article-title: Variation for N uptake system in maize: genotypic response to N supply.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00936
– reference: 26617612 - Front Plant Sci. 2015 Nov 09;6:936
– reference: 24707045 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4814-9
– reference: 11165253 - FEBS Lett. 2001 Feb 2;489(2-3):220-4
– reference: 21193579 - J Exp Bot. 2011 Feb;62(4):1349-59
– reference: 10330471 - Plant Cell. 1999 May;11(5):865-74
– reference: 14704191 - Genetics. 2003 Dec;165(4):2117-28
– reference: 22607381 - Plant Biotechnol J. 2012 Dec;10(9):1011-25
– reference: 11912228 - J Exp Bot. 2002 Apr;53(370):855-64
– reference: 20444205 - Plant Biotechnol J. 2010 Dec;8(9):966-78
– reference: 7551585 - Plant Cell Physiol. 1995 Jul;36(5):789-97
– reference: 24850860 - Plant Physiol. 2014 Oct;166(2):590-602
– reference: 25899331 - Curr Opin Plant Biol. 2015 Jun;25:10-6
– reference: 25680794 - J Exp Bot. 2015 Apr;66(7):2055-65
– reference: 8989878 - Plant Cell. 1996 Dec;8(12):2183-91
– reference: 17138698 - Plant Cell. 2006 Nov;18(11):3252-74
– reference: 15489529 - Genetics. 2005 Jan;169(1):389-97
– reference: 14980975 - Ann Bot. 2004 Apr;93(4):359-68
– reference: 25448235 - Curr Opin Biotechnol. 2015 Apr;32:93-98
– reference: 17693533 - Plant Cell. 2007 Aug;19(8):2636-52
– reference: 22480431 - Curr Opin Plant Biol. 2012 Apr;15(2):185-91
– reference: 23398565 - New Phytol. 2013 Apr;198(1):82-94
– reference: 11178938 - Nitric Oxide. 2001 Feb;5(1):62-71
– reference: 22658680 - Trends Plant Sci. 2012 Aug;17(8):458-67
– reference: 24532451 - J Exp Bot. 2014 Mar;65(3):789-98
– reference: 11912240 - J Exp Bot. 2002 Apr;53(370):979-87
– reference: 28444412 - Theor Appl Genet. 2017 Jul;130(7):1453-1466
– reference: 16658926 - Plant Physiol. 1974 Oct;54(4):550-5
– reference: 24942915 - J Exp Bot. 2014 Oct;65(19):5567-76
– reference: 24863438 - J Exp Bot. 2014 Oct;65(19):5657-71
– reference: 16415212 - Plant Physiol. 2006 Mar;140(3):1036-46
– reference: 25795737 - J Exp Bot. 2015 Apr;66(8):2347-58
– reference: 20959423 - Plant Physiol. 2011 Jan;155(1):125-9
– reference: 22833749 - Front Plant Sci. 2012 Jul 19;3:162
– reference: 8106013 - Plant Mol Biol. 1993 Oct;23(2):401-7
– reference: 19558408 - Plant Cell Environ. 2009 Sep;32(9):1272-83
– reference: 27877183 - Front Plant Sci. 2016 Nov 08;7:1657
– reference: 28887406 - Plant Cell. 2017 Oct;29(10 ):2581-2596
– reference: 24706553 - Plant Physiol. 2014 Oct;166(2):581-9
– reference: 22224450 - Annu Rev Plant Biol. 2012;63:153-82
– reference: 21151904 - PLoS One. 2010 Dec 06;5(12):e15289
– reference: 24145428 - Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18185-9
– reference: 15772287 - Plant Cell. 2005 Apr;17(4):1167-79
– reference: 16669030 - Plant Physiol. 1992 Jul;99(3):996-1004
– reference: 16668375 - Plant Physiol. 1991 Sep;97(1):227-33
– reference: 21848860 - Plant Cell Environ. 2011 Dec;34(12):2122-37
– reference: 16143852 - Photosynth Res. 2005;83(2):191-217
– reference: 25450041 - Trends Biotechnol. 2014 Dec;32(12):597-8
– reference: 23832511 - Plant Cell Physiol. 2013 Sep;54(9):1515-24
– reference: 12853580 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9055-60
– reference: 16661599 - Plant Physiol. 1980 Dec;66(6):1179-83
– reference: 24805158 - J Integr Plant Biol. 2014 Nov;56(11):1080-94
– reference: 25082891 - Plant Physiol. 2014 Oct;166(2):509-17
– reference: 12753979 - Curr Opin Plant Biol. 2003 Jun;6(3):280-7
– reference: 16702414 - Genetics. 2006 Aug;173(4):2199-210
– reference: 9430595 - Science. 1998 Jan 16;279(5349):407-9
– reference: 17951451 - Plant Physiol. 2007 Dec;145(4):1735-45
– reference: 16661600 - Plant Physiol. 1980 Dec;66(6):1184-9
– reference: 20890965 - Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec;2(6):683-93
– reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64
SSID ssj0000500997
Score 2.3246524
Snippet Maize ( , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have...
Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can...
Maize ( Zea mays , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 531
SubjectTerms gene expression
nitrogen
Plant Science
root system architecture
transport
Zea mays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxIFLBZSWlA8ZqYdeUuL4-wgItItUDlWRuEWOPRaRIEE0HODXM052V7sVFZdeE1t23kw0b-LJG0K-CQmgpVA5x_CfCw1FXiMLyX30LkJtXB2HKt8rNbkWlzfyZqnVV6oJG-WBR-COGXdgvQ-FNRJTF-aMqZWNWgXrbQ3Df-QY85aSqVHVO1EfPWr5YBZmj-PDXVLnZql0UnK2EoYGtf63KObflZJLoedik3yccUZ6Mu51i3yAdpusn3bI654_kfNfXdfTaYAufU6l03nXkT_0qukfO3QQulAwp64NFC3S3DdjDRxtWvrTNS-wQ64vzn-fTfJZc4TcC2n73BWB6cC1LzGoB-vKWLLaRCRUBQDIstZSglLWOOaZxSEcL7LIcUYsAgauz2St7VrYJZQJmWpjjDQKBDJEKwJnzpaBl1YHKTPyY45V5WfK4amBxV2FGUQCt0rgVgncagA3I98XEx5G0Yx_Dz1N4C-GJbXr4QL6QDXzgeo9H8jI0dx0Fb4d6cjDtdA9pYU4RmOFSWxGvoymXCyFDycKoVRG9IqRV_ayeqdtbgcFbmlLg8Tx6__Y_B7ZSHCkE6pS7JO1_vEJDpDo9PXh4NOvksf7Ug
  priority: 102
  providerName: Directory of Open Access Journals
Title Root Ideotype Influences Nitrogen Transport and Assimilation in Maize
URI https://www.ncbi.nlm.nih.gov/pubmed/29740466
https://www.proquest.com/docview/2036786409
https://pubmed.ncbi.nlm.nih.gov/PMC5928562
https://doaj.org/article/13ae9ccd09854461a88b69f76d9c9be7
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQ4cAF8SYUKiNx4JISO34eEKKopUVqD4iV9hY5ftBIS1K2qdTy65lJsguLFolLpDh2HM_Ymm_syTeEvBYyRi2Fyksw_7nQschrQCG5T96lWBtXpyHK90wdz8TnuZz_Tgc0CfByq2uH-aRmy8X-9Y-b97Dg36HHCfb2bbpYIPE2w6hIif9U3wazpDGdwemE9Ueib0RDQ7IVpUQuFJ-PVD_b3rFhpQYy_20I9O9Ayj8s09F9cm-ClPTDOAcekFuxfUjuHHQA-24ekcMvXdfTkxA73G2lJ6ukJJf0rOmXHcwfuiY4p64NFBTWfG_GEDnatPTUNT_jYzI7Ovz68TifcifkXkjb564ITIdSew42P1jHE2e1SYC3ihij5LWWMipljWOeWahSQiFLJbRIRQC79oTstF0bnxHKhMTQGSONigIApBWhZM7yUHKrg5QZ2V_JqvITsTjmt1hU4GCgcCsUboXCrQbhZuTNusHFyKnx76oHKPx1NSTDHgq65bdqWlsVK1203ofCGgneLXPG1MomrYL1to46I69Wqqtg8eCJiGtjd4UdlWCsFfi4GXk6qnLdFQxOFEKpjOgNJW98y-aTtjkfCLql5QZw5fP_H-cuuYs3eEzFxQuy0y-v4ktAO329N-wSwPXTnO0NM_oXdRz9Tw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+Ideotype+Influences+Nitrogen+Transport+and+Assimilation+in+Maize&rft.jtitle=Frontiers+in+plant+science&rft.au=Dechorgnat%2C+Julie&rft.au=Francis%2C+Karen+L.&rft.au=Dhugga%2C+Kanwarpal+S.&rft.au=Rafalski%2C+J.+A.&rft.date=2018-04-24&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=9&rft_id=info:doi/10.3389%2Ffpls.2018.00531&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2018_00531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon