Root Ideotype Influences Nitrogen Transport and Assimilation in Maize
Maize ( , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide....
Saved in:
Published in | Frontiers in plant science Vol. 9; p. 531 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
24.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maize (
, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program. |
---|---|
AbstractList | Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program. Maize ( , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program. Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program.Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program. Maize ( Zea mays , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have detrimental ecological consequences through increased nitrogen pollution of water and the release of the potent greenhouse gas, nitrous oxide. To improve yield and overall nitrogen use efficiency (NUE), a deeper understanding of nitrogen uptake and utilization is required. This study examines the performance of two contrasting maize inbred lines, B73 and F44. F44 was selected in Florida on predominantly sandy acidic soils subject to nitrate leaching while B73 was selected in Iowa on rich mollisol soils. Transcriptional, enzymatic and nitrogen transport analytical tools were used to identify differences in their N absorption and utilization capabilities. Our results show that B73 and F44 differ significantly in their genetic, enzymatic, and biochemical root nitrogen transport and assimilatory pathways. The phenotypes show a strong genetic relationship linked to nitrogen form, where B73 showed a greater capacity for ammonium transport and assimilation whereas F44 preferred nitrate. The contrasting phenotypes are typified by differences in root system architecture (RSA) developed in the presence of both nitrate and ammonium. F44 crown roots were longer, had a higher surface area and volume with a greater lateral root number and density than B73. In contrast, B73 roots (primary, seminal, and crown) were more abundant but lacked the defining features of the F44 crown roots. An F1 hybrid between B73 and F44 mirrored the B73 nitrogen specificity and root architecture phenotypes, indicating complete dominance of the B73 inbred. This study highlights the important link between RSA and nitrogen management and why both variables need to be tested together when defining NUE improvements in any selection program. |
Author | Kaiser, Brent N. Dhugga, Kanwarpal S. Tyerman, Stephen D. Dechorgnat, Julie Rafalski, J. A. Francis, Karen L. |
AuthorAffiliation | 4 Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station , Wilmington, DE , United States 3 Pioneer Hi-Bred International, Inc. , Johnston, IA , United States 2 School of Agriculture, Food and Wine, The University of Adelaide , Urrbrae, SA , Australia 1 Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney , Camden, NSW , Australia |
AuthorAffiliation_xml | – name: 4 Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station , Wilmington, DE , United States – name: 1 Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney , Camden, NSW , Australia – name: 2 School of Agriculture, Food and Wine, The University of Adelaide , Urrbrae, SA , Australia – name: 3 Pioneer Hi-Bred International, Inc. , Johnston, IA , United States |
Author_xml | – sequence: 1 givenname: Julie surname: Dechorgnat fullname: Dechorgnat, Julie – sequence: 2 givenname: Karen L. surname: Francis fullname: Francis, Karen L. – sequence: 3 givenname: Kanwarpal S. surname: Dhugga fullname: Dhugga, Kanwarpal S. – sequence: 4 givenname: J. A. surname: Rafalski fullname: Rafalski, J. A. – sequence: 5 givenname: Stephen D. surname: Tyerman fullname: Tyerman, Stephen D. – sequence: 6 givenname: Brent N. surname: Kaiser fullname: Kaiser, Brent N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29740466$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rVDEUxYNUbK1du5O3dDPTfLzkJRuhlKoDVUEquAt5yc2Y8iZ5Jhmh_vVmZlppBbNJuDnnd-Cel-gopggIvSZ4yZhU536eypJiIpcYc0aeoRMiRL_oBf1-9Oh9jM5KucXtcIyVGl6gY6qGHvdCnKCrrynVbuUg1bsZulX00xaihdJ9DjWnNcTuJptY5pRrZ6LrLkoJmzCZGlLsQuw-mfAbXqHn3kwFzu7vU_Tt_dXN5cfF9ZcPq8uL64XtuaoLgx0ZHBssxZI4ZainZJReMo4BgNNx4ByEUNIQS1STsDYknjWHx45hdopWB65L5lbPOWxMvtPJBL0fpLzWJtdgJ9CEGVDWOqwk73tBjJSjUH4QTlk1wtBY7w6seTtuwFmINZvpCfTpTww_9Dr90lxRyQVtgLf3gJx-bqFUvQnFwjSZCGlbNMVMDFL0WDXpm8dZf0MeemgCfhDYnErJ4LUNdb_jFh0mTbDeVa53letd5XpfefOd_-N7QP_P8Qf60K7X |
CitedBy_id | crossref_primary_10_1007_s10725_021_00698_5 crossref_primary_10_1080_07352689_2022_2109866 crossref_primary_10_1016_j_ecolind_2021_107723 crossref_primary_10_3389_fagro_2022_763974 crossref_primary_10_1186_s12870_019_1768_0 crossref_primary_10_1007_s11104_024_06561_6 crossref_primary_10_1016_j_apradiso_2020_109127 crossref_primary_10_1016_j_pbi_2018_07_006 crossref_primary_10_1111_ppl_14249 crossref_primary_10_1007_s11033_019_04878_5 crossref_primary_10_3389_fpls_2022_926214 crossref_primary_10_2166_ws_2021_338 crossref_primary_10_1002_ecs2_3028 crossref_primary_10_1101_pdb_top108436 crossref_primary_10_1007_s00374_022_01681_6 crossref_primary_10_1016_j_envexpbot_2021_104732 crossref_primary_10_1093_jxb_erac387 crossref_primary_10_1016_j_jplph_2022_153781 crossref_primary_10_1007_s00344_025_11713_8 crossref_primary_10_3389_fpls_2018_00973 crossref_primary_10_3934_agrfood_2024046 crossref_primary_10_1007_s11105_020_01206_1 crossref_primary_10_3390_agronomy12112671 crossref_primary_10_3389_fpls_2020_587610 crossref_primary_10_1016_j_geoderma_2024_116924 |
Cites_doi | 10.1016/j.pbi.2012.03.009 10.1093/oxfordjournals.pcp.a029506 10.1093/jexbot/53.370.979 10.1104/pp.66.6.1179 10.1111/j.1399-3054.1993.tb05222.x 10.1104/pp.66.6.1184 10.1016/j.plantsci.2008.08.004 10.2135/cropsci2012.07.0429 10.3389/fpls.2012.00162 10.1073/pnas.1305372110 10.1534/genetics.106.060699 10.1104/pp.110.165076 10.1111/pbr.12051 10.1104/pp.107.108944 10.1093/jexbot/53.370.855 10.1104/pp.105.074385 10.1111/j.1467-7652.2012.00700.x 10.1104/pp.114.245225 10.1534/genetics.104.032987 10.1111/jipb.12214 10.1093/jxb/eru245 10.1093/pcp/pct099 10.1093/jxb/eru227 10.1016/j.tibtech.2014.09.008 10.1104/pp.99.3.996 10.1111/j.1469-8137.1975.tb01409.x 10.1016/j.tplants.2012.04.006 10.1126/science.279.5349.407 10.1104/pp.54.4.550 10.1093/genetics/165.4.2117 10.1111/nph.12166 10.1104/pp.113.232603 10.1105/tpc.16.00724 10.1073/pnas.1312801111 10.1105/tpc.106.042689 10.1093/jxb/erq409 10.1111/j.1365-313X.2005.02591.x 10.1093/oxfordjournals.pcp.a078823 10.1111/1365-3040.ep11616228 10.1146/annurev-arplant-042811-105532 10.1016/S0014-5793(01)02096-8 10.1006/anbo.1997.0540 10.1104/pp.113.233916 10.1105/tpc.11.5.865 10.1006/niox.2000.0319 10.1007/s11120-004-3478-0 10.1093/jxb/erv074 10.1093/aob/mch056 10.1016/j.pbi.2015.03.002 10.1105/tpc.8.12.2183 10.1093/jxb/eru001 10.1073/pnas.1032999100 10.1007/BF00029015 10.1111/j.1365-3040.2009.02011.x 10.1016/j.copbio.2014.11.015 10.1016/j.gfs.2012.07.001 10.1007/s00122-017-2900-x 10.1016/S1369-5266(03)00035-9 10.1371/journal.pone.0015289 10.1007/s10533-013-9923-4 10.1007/s004250050310 10.1046/j.1365-3040.2000.00568.x 10.1002/wsbm.87 10.1139/B07-019 10.1104/pp.97.1.227 10.1105/tpc.107.052134 10.1105/tpc.104.029694 10.3389/fpls.2016.01657 10.1093/jxb/erv007 10.1111/j.1467-7652.2010.00524.x 10.1111/j.1365-3040.2011.02409.x 10.3389/fpls.2015.00936 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser. 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser |
Copyright_xml | – notice: Copyright © 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser. 2018 Dechorgnat, Francis, Dhugga, Rafalski, Tyerman and Kaiser |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2018.00531 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_13ae9ccd09854461a88b69f76d9c9be7 PMC5928562 29740466 10_3389_fpls_2018_00531 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Australian Research Council grantid: LP110200878 – fundername: Pioneer Hi-Bred |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-a0d17d37c2081d9a2f21b8f8350eee52b755e6698a1c1981d3e521f337cf0d303 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:28:01 EDT 2025 Thu Aug 21 17:48:59 EDT 2025 Fri Jul 11 14:42:29 EDT 2025 Wed Feb 19 02:43:12 EST 2025 Tue Jul 01 00:52:26 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Zea mays transport root system architecture nitrogen gene expression |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-a0d17d37c2081d9a2f21b8f8350eee52b755e6698a1c1981d3e521f337cf0d303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Zeno Varanini, University of Verona, Italy; Lachlan James Palmer, Flinders University, Australia Edited by: James Stangoulis, Flinders University, Australia This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science Present address: Kanwarpal S. Dhugga, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2018.00531 |
PMID | 29740466 |
PQID | 2036786409 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_13ae9ccd09854461a88b69f76d9c9be7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5928562 proquest_miscellaneous_2036786409 pubmed_primary_29740466 crossref_citationtrail_10_3389_fpls_2018_00531 crossref_primary_10_3389_fpls_2018_00531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-24 |
PublicationDateYYYYMMDD | 2018-04-24 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Simons (B57) 2014; 65 Gu (B24) 2013; 54 Postma (B48) 2014; 166 Sebilo (B56) 2013; 110 York (B71) 2015; 66 Garnett (B17) 2009; 32 Wray (B69) 1993; 89 Miflin (B43) 2002; 53 Garnett (B18) 2013; 198 Baki (B4) 2000; 23 Andrews (B2) 1986; 9 Marschner (B38) 2011 Todd (B62) 2008; 175 Haegele (B25) 2013; 53 Suzuki (B61) 2005; 83 Miranda (B44) 2001; 5 Drew (B12) 1975; 75 Plett (B47) 2010; 5 Trucillo Silva (B63) 2017; 130 Giehl (B21) 2014; 166 Lohaus (B35) 1998; 205 DeBruin (B9) 2013; 132 Kant (B28) 2012; 3 Kong (B29) 2014; 32 Rogers (B52) 2015; 32 Cañas (B6) 2010; 8 Winter (B68) 1992; 99 López-Bucio (B36) 2003; 6 Makino (B37) 2011; 155 Xu (B70) 2012; 63 McAllister (B40) 2012; 10 Pii (B46) 2016; 7 Zhang (B75) 1998; 279 Doussan (B11) 1998; 81 Li (B32) 1993; 23 Liu (B33) 2003; 165 Miflin (B42) 1974; 54 Wen (B67) 2017; 29 Okamoto (B45) 2006; 140 Reed (B49); 66 Sinclair (B58) 2012; 1 Dechorgnat (B10) 2011; 62 Wang (B66) 2012; 17 Stupar (B60) 2006; 173 Riens (B51) 1991; 97 Saengwilai (B53) 2014; 166 Cren (B8) 1999; 40 Glass (B22) 2002; 53 Lassaletta (B31) 2014; 118 Vidal (B64) 2010; 2 Wang (B65) 2007; 145 Good (B23) 2007; 85 Fischer (B15) 2005; 17 Hochholdinger (B26) 2004; 93 Flint-Garcia (B16) 2005; 44 Effland (B13) 2006 Gaudin (B20) 2011; 34 Bloom (B5) 2015; 25 Alvarez (B1) 2012; 15 Filleur (B14) 2001; 489 Zamboni (B73) 2014; 56 Martin (B39) 2006; 18 Sakakibara (B55) 1992; 33 Auger (B3) 2005; 169 Huang (B27) 1996; 8 Liu (B34) 1999; 11 Song (B59) 2003; 100 Reed (B50); 66 Zhan (B74) 2015; 66 Yuan (B72) 2007; 19 Chiasson (B7) 2014; 111 Medici (B41) 2014; 65 Garnett (B19) 2015; 6 Krapp (B30) 2014; 65 Sakakibara (B54) 1995; 36 20890965 - Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec;2(6):683-93 28444412 - Theor Appl Genet. 2017 Jul;130(7):1453-1466 22607381 - Plant Biotechnol J. 2012 Dec;10(9):1011-25 11912240 - J Exp Bot. 2002 Apr;53(370):979-87 8989878 - Plant Cell. 1996 Dec;8(12):2183-91 21193579 - J Exp Bot. 2011 Feb;62(4):1349-59 23832511 - Plant Cell Physiol. 2013 Sep;54(9):1515-24 28887406 - Plant Cell. 2017 Oct;29(10 ):2581-2596 24805158 - J Integr Plant Biol. 2014 Nov;56(11):1080-94 12753979 - Curr Opin Plant Biol. 2003 Jun;6(3):280-7 19558408 - Plant Cell Environ. 2009 Sep;32(9):1272-83 25082891 - Plant Physiol. 2014 Oct;166(2):509-17 11178938 - Nitric Oxide. 2001 Feb;5(1):62-71 16658926 - Plant Physiol. 1974 Oct;54(4):550-5 12853580 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9055-60 25795737 - J Exp Bot. 2015 Apr;66(8):2347-58 16359397 - Plant J. 2005 Dec;44(6):1054-64 16143852 - Photosynth Res. 2005;83(2):191-217 27877183 - Front Plant Sci. 2016 Nov 08;7:1657 11912228 - J Exp Bot. 2002 Apr;53(370):855-64 16415212 - Plant Physiol. 2006 Mar;140(3):1036-46 7551585 - Plant Cell Physiol. 1995 Jul;36(5):789-97 16661599 - Plant Physiol. 1980 Dec;66(6):1179-83 15489529 - Genetics. 2005 Jan;169(1):389-97 22658680 - Trends Plant Sci. 2012 Aug;17(8):458-67 22224450 - Annu Rev Plant Biol. 2012;63:153-82 24532451 - J Exp Bot. 2014 Mar;65(3):789-98 21848860 - Plant Cell Environ. 2011 Dec;34(12):2122-37 25680794 - J Exp Bot. 2015 Apr;66(7):2055-65 25448235 - Curr Opin Biotechnol. 2015 Apr;32:93-98 24942915 - J Exp Bot. 2014 Oct;65(19):5567-76 15772287 - Plant Cell. 2005 Apr;17(4):1167-79 24707045 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4814-9 8106013 - Plant Mol Biol. 1993 Oct;23(2):401-7 20444205 - Plant Biotechnol J. 2010 Dec;8(9):966-78 17951451 - Plant Physiol. 2007 Dec;145(4):1735-45 25899331 - Curr Opin Plant Biol. 2015 Jun;25:10-6 14980975 - Ann Bot. 2004 Apr;93(4):359-68 24863438 - J Exp Bot. 2014 Oct;65(19):5657-71 17693533 - Plant Cell. 2007 Aug;19(8):2636-52 16669030 - Plant Physiol. 1992 Jul;99(3):996-1004 14704191 - Genetics. 2003 Dec;165(4):2117-28 22833749 - Front Plant Sci. 2012 Jul 19;3:162 25450041 - Trends Biotechnol. 2014 Dec;32(12):597-8 17138698 - Plant Cell. 2006 Nov;18(11):3252-74 16702414 - Genetics. 2006 Aug;173(4):2199-210 26617612 - Front Plant Sci. 2015 Nov 09;6:936 23398565 - New Phytol. 2013 Apr;198(1):82-94 11165253 - FEBS Lett. 2001 Feb 2;489(2-3):220-4 24706553 - Plant Physiol. 2014 Oct;166(2):581-9 22480431 - Curr Opin Plant Biol. 2012 Apr;15(2):185-91 21151904 - PLoS One. 2010 Dec 06;5(12):e15289 10330471 - Plant Cell. 1999 May;11(5):865-74 16661600 - Plant Physiol. 1980 Dec;66(6):1184-9 24145428 - Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18185-9 9430595 - Science. 1998 Jan 16;279(5349):407-9 24850860 - Plant Physiol. 2014 Oct;166(2):590-602 20959423 - Plant Physiol. 2011 Jan;155(1):125-9 16668375 - Plant Physiol. 1991 Sep;97(1):227-33 |
References_xml | – volume: 15 start-page: 185 year: 2012 ident: B1 article-title: Integration of local and systemic signaling pathways for plant N responses. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2012.03.009 – volume: 40 start-page: 1187 year: 1999 ident: B8 article-title: Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell. publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a029506 – volume: 53 start-page: 979 year: 2002 ident: B43 article-title: The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.370.979 – volume: 66 start-page: 1179 ident: B49 article-title: Relationship between nitrate uptake, flux, and reduction and the accumulation of reduced nitrogen in maize (Zea mays L.): I. GENOTYPIC VARIATION. publication-title: Plant Physiol. doi: 10.1104/pp.66.6.1179 – volume: 89 start-page: 607 year: 1993 ident: B69 article-title: Molecular biology, genetics and regulation of nitrite reduction in higher plants. publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1993.tb05222.x – volume: 66 start-page: 1184 ident: B50 article-title: Relationship between nitrate uptake, flux, and reduction and the accumulation of reduced nitrogen in maize (Zea mays L.): II. EFFECT OF NUTRIENT NITRATE CONCENTRATION. publication-title: Plant Physiol. doi: 10.1104/pp.66.6.1184 – volume: 175 start-page: 799 year: 2008 ident: B62 article-title: Identification and characterization of four distinct asparagine synthetase (AsnS) genes in maize (Zea mays L.). publication-title: Plant Sci. doi: 10.1016/j.plantsci.2008.08.004 – volume: 53 start-page: 1256 year: 2013 ident: B25 article-title: Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. publication-title: Crop Sci. doi: 10.2135/cropsci2012.07.0429 – volume: 3 year: 2012 ident: B28 article-title: Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2012.00162 – volume: 110 start-page: 18185 year: 2013 ident: B56 article-title: Long-term fate of nitrate fertilizer in agricultural soils. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1305372110 – volume: 173 start-page: 2199 year: 2006 ident: B60 article-title: Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. publication-title: Genetics doi: 10.1534/genetics.106.060699 – volume: 155 start-page: 125 year: 2011 ident: B37 article-title: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. publication-title: Plant Physiol. doi: 10.1104/pp.110.165076 – volume: 132 start-page: 500 year: 2013 ident: B9 article-title: N distribution in maize plant as a marker for grain yield and limits on its remobilization after flowering. publication-title: Plant Breed. doi: 10.1111/pbr.12051 – volume: 145 start-page: 1735 year: 2007 ident: B65 article-title: Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. publication-title: Plant Physiol. doi: 10.1104/pp.107.108944 – volume: 53 start-page: 1 year: 2002 ident: B22 article-title: The regulation of nitrate and ammonium transport systems in plants. publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.370.855 – volume: 140 start-page: 1036 year: 2006 ident: B45 article-title: High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. publication-title: Plant Physiol. doi: 10.1104/pp.105.074385 – volume: 10 start-page: 1011 year: 2012 ident: B40 article-title: Engineering nitrogen use efficient crop plants: the current status. publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2012.00700.x – volume: 166 start-page: 509 year: 2014 ident: B21 article-title: Root nutrient foraging. publication-title: Plant Physiol. doi: 10.1104/pp.114.245225 – volume: 169 start-page: 389 year: 2005 ident: B3 article-title: Nonadditive gene expression in diploid and triploid hybrids of maize. publication-title: Genetics doi: 10.1534/genetics.104.032987 – volume: 56 start-page: 1080 year: 2014 ident: B73 article-title: Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line. publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12214 – volume: 65 start-page: 5567 year: 2014 ident: B41 article-title: The primary nitrate response: a multifaceted signalling pathway. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru245 – volume: 54 start-page: 1515 year: 2013 ident: B24 article-title: Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct099 – volume: 65 start-page: 5657 year: 2014 ident: B57 article-title: Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru227 – volume: 32 start-page: 597 year: 2014 ident: B29 article-title: Designer crops: optimal root system architecture for nutrient acquisition. publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.09.008 – volume: 99 start-page: 996 year: 1992 ident: B68 article-title: Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. publication-title: Plant Physiol. doi: 10.1104/pp.99.3.996 – volume: 75 start-page: 479 year: 1975 ident: B12 article-title: Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. publication-title: New Phytol. doi: 10.1111/j.1469-8137.1975.tb01409.x – volume: 17 start-page: 458 year: 2012 ident: B66 article-title: Uptake, allocation and signaling of nitrate. publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.04.006 – volume: 279 start-page: 407 year: 1998 ident: B75 article-title: An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. publication-title: Science doi: 10.1126/science.279.5349.407 – volume: 54 start-page: 550 year: 1974 ident: B42 article-title: The location of nitrite reductase and other enzymes related to amino acid biosynthesis in the plastids of root and leaves. publication-title: Plant Physiol. doi: 10.1104/pp.54.4.550 – volume: 165 start-page: 2117 year: 2003 ident: B33 article-title: Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. publication-title: Genetics doi: 10.1093/genetics/165.4.2117 – volume: 198 start-page: 82 year: 2013 ident: B18 article-title: The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. publication-title: New Phytol. doi: 10.1111/nph.12166 – volume: 166 start-page: 581 year: 2014 ident: B53 article-title: Low crown root number enhances nitrogen acquisition from low-nitrogen soils in maize. publication-title: Plant Physiol. doi: 10.1104/pp.113.232603 – volume: 29 start-page: 2581 year: 2017 ident: B67 article-title: Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. publication-title: Plant Cell doi: 10.1105/tpc.16.00724 – volume: 111 start-page: 4814 year: 2014 ident: B7 article-title: Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1312801111 – volume: 18 start-page: 3252 year: 2006 ident: B39 article-title: Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. publication-title: Plant Cell doi: 10.1105/tpc.106.042689 – volume: 62 start-page: 1349 year: 2011 ident: B10 article-title: From the soil to the seeds: the long journey of nitrate in plants. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq409 – volume: 44 start-page: 1054 year: 2005 ident: B16 article-title: Maize association population: a high-resolution platform for quantitative trait locus dissection. publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02591.x – volume: 36 start-page: 789 year: 1995 ident: B54 article-title: Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a078823 – volume: 9 start-page: 511 year: 1986 ident: B2 article-title: The partitioning of nitrate assimilation between root and shoot of higher plants. publication-title: Plant Cell Environ. doi: 10.1111/1365-3040.ep11616228 – volume: 63 start-page: 153 year: 2012 ident: B70 article-title: Plant nitrogen assimilation and use efficiency. publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042811-105532 – year: 2011 ident: B38 publication-title: Marschner’s Mineral Nutrition of Higher Plants. – volume: 489 start-page: 220 year: 2001 ident: B14 article-title: An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)02096-8 – volume: 81 start-page: 213 year: 1998 ident: B11 article-title: Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description. publication-title: Ann. Bot. doi: 10.1006/anbo.1997.0540 – volume: 166 start-page: 590 year: 2014 ident: B48 article-title: The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. publication-title: Plant Physiol. doi: 10.1104/pp.113.233916 – volume: 11 start-page: 865 year: 1999 ident: B34 article-title: CHL1 is a dual-affinity nitrate transporter of arabidopsis involved in multiple phases of nitrate uptake. publication-title: Plant Cell doi: 10.1105/tpc.11.5.865 – volume: 5 start-page: 62 year: 2001 ident: B44 article-title: A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. publication-title: Nitric Oxide doi: 10.1006/niox.2000.0319 – volume: 83 start-page: 191 year: 2005 ident: B61 article-title: Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. publication-title: Photosynth. Res. doi: 10.1007/s11120-004-3478-0 – volume: 66 start-page: 2347 year: 2015 ident: B71 article-title: Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv074 – year: 2006 ident: B13 publication-title: A Digital Collection of Selected Historical Publications on Soil Survey and Soil Classification in the United States of America. – volume: 93 start-page: 359 year: 2004 ident: B26 article-title: Genetic dissection of root formation in maize (Zea mays) reveals root-type specific developmental programmes. publication-title: Ann. Bot. doi: 10.1093/aob/mch056 – volume: 25 start-page: 10 year: 2015 ident: B5 article-title: The increasing importance of distinguishing among plant nitrogen sources. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.03.002 – volume: 8 start-page: 2183 year: 1996 ident: B27 article-title: CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. publication-title: Plant Cell doi: 10.1105/tpc.8.12.2183 – volume: 65 start-page: 789 year: 2014 ident: B30 article-title: Nitrate transport and signalling in Arabidopsis. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru001 – volume: 100 start-page: 9055 year: 2003 ident: B59 article-title: Gene expression of a gene family in maize based on noncollinear haplotypes. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1032999100 – volume: 23 start-page: 401 year: 1993 ident: B32 article-title: Differential expression of six glutamine synthetase genes in Zea mays. publication-title: Plant Mol. Biol. doi: 10.1007/BF00029015 – volume: 32 start-page: 1272 year: 2009 ident: B17 article-title: Root based approaches to improving nitrogen use efficiency in plants. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02011.x – volume: 33 start-page: 49 year: 1992 ident: B55 article-title: Molecular cloning of the family of glutamine synthetase genes from maize: expression of genes for glutamine synthetase and ferredoxin-dependent glutamate synthase in photosynthetic and non-photosynthetic tissues. publication-title: Plant Cell Physiol. – volume: 32 start-page: 93 year: 2015 ident: B52 article-title: Regulation of plant root system architecture: implications for crop advancement. publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2014.11.015 – volume: 1 start-page: 94 year: 2012 ident: B58 article-title: Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. publication-title: Glob. Food Sec. doi: 10.1016/j.gfs.2012.07.001 – volume: 130 start-page: 1453 year: 2017 ident: B63 article-title: Biochemical and genetic analyses of N metabolism in maize testcross seedlings: 1. Leaves. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-017-2900-x – volume: 6 start-page: 280 year: 2003 ident: B36 article-title: The role of nutrient availability in regulating root architecture. publication-title: Curr. Opin. Plant Biol. doi: 10.1016/S1369-5266(03)00035-9 – volume: 5 year: 2010 ident: B47 article-title: Dichotomy in the NRT gene families of dicots and grass species. publication-title: PLoS One doi: 10.1371/journal.pone.0015289 – volume: 118 start-page: 225 year: 2014 ident: B31 article-title: Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. publication-title: Biogeochemistry doi: 10.1007/s10533-013-9923-4 – volume: 205 start-page: 181 year: 1998 ident: B35 article-title: Transport of amino acids with special emphasis on the synthesis and transport of asparagine in the Illinois Low Protein and Illinois High Protein strains of maize. publication-title: Planta doi: 10.1007/s004250050310 – volume: 23 start-page: 515 year: 2000 ident: B4 article-title: Nitrate reductase in Zea mays L. under salinity. publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2000.00568.x – volume: 2 start-page: 683 year: 2010 ident: B64 article-title: Gene networks for nitrogen sensing, signaling, and response in Arabidopsis thaliana. publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med. doi: 10.1002/wsbm.87 – volume: 85 start-page: 252 year: 2007 ident: B23 article-title: Engineering nitrogen use efficiency with alanine aminotransferase. publication-title: Botany doi: 10.1139/B07-019 – volume: 97 start-page: 227 year: 1991 ident: B51 article-title: Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves. publication-title: Plant Physiol. doi: 10.1104/pp.97.1.227 – volume: 19 start-page: 2636 year: 2007 ident: B72 article-title: The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. publication-title: Plant Cell doi: 10.1105/tpc.107.052134 – volume: 17 start-page: 1167 year: 2005 ident: B15 article-title: Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. publication-title: Plant Cell doi: 10.1105/tpc.104.029694 – volume: 7 year: 2016 ident: B46 article-title: Time-resolved investigation of molecular components involved in the induction of NO3– high affinity transport system in maize roots. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01657 – volume: 66 start-page: 2055 year: 2015 ident: B74 article-title: Reduced frequency of lateral root branching improves N capture from low-N soils in maize. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv007 – volume: 8 start-page: 966 year: 2010 ident: B6 article-title: Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs. publication-title: Plant Biotechnol. J. doi: 10.1111/j.1467-7652.2010.00524.x – volume: 34 start-page: 2122 year: 2011 ident: B20 article-title: Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02409.x – volume: 6 year: 2015 ident: B19 article-title: Variation for N uptake system in maize: genotypic response to N supply. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00936 – reference: 26617612 - Front Plant Sci. 2015 Nov 09;6:936 – reference: 24707045 - Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4814-9 – reference: 11165253 - FEBS Lett. 2001 Feb 2;489(2-3):220-4 – reference: 21193579 - J Exp Bot. 2011 Feb;62(4):1349-59 – reference: 10330471 - Plant Cell. 1999 May;11(5):865-74 – reference: 14704191 - Genetics. 2003 Dec;165(4):2117-28 – reference: 22607381 - Plant Biotechnol J. 2012 Dec;10(9):1011-25 – reference: 11912228 - J Exp Bot. 2002 Apr;53(370):855-64 – reference: 20444205 - Plant Biotechnol J. 2010 Dec;8(9):966-78 – reference: 7551585 - Plant Cell Physiol. 1995 Jul;36(5):789-97 – reference: 24850860 - Plant Physiol. 2014 Oct;166(2):590-602 – reference: 25899331 - Curr Opin Plant Biol. 2015 Jun;25:10-6 – reference: 25680794 - J Exp Bot. 2015 Apr;66(7):2055-65 – reference: 8989878 - Plant Cell. 1996 Dec;8(12):2183-91 – reference: 17138698 - Plant Cell. 2006 Nov;18(11):3252-74 – reference: 15489529 - Genetics. 2005 Jan;169(1):389-97 – reference: 14980975 - Ann Bot. 2004 Apr;93(4):359-68 – reference: 25448235 - Curr Opin Biotechnol. 2015 Apr;32:93-98 – reference: 17693533 - Plant Cell. 2007 Aug;19(8):2636-52 – reference: 22480431 - Curr Opin Plant Biol. 2012 Apr;15(2):185-91 – reference: 23398565 - New Phytol. 2013 Apr;198(1):82-94 – reference: 11178938 - Nitric Oxide. 2001 Feb;5(1):62-71 – reference: 22658680 - Trends Plant Sci. 2012 Aug;17(8):458-67 – reference: 24532451 - J Exp Bot. 2014 Mar;65(3):789-98 – reference: 11912240 - J Exp Bot. 2002 Apr;53(370):979-87 – reference: 28444412 - Theor Appl Genet. 2017 Jul;130(7):1453-1466 – reference: 16658926 - Plant Physiol. 1974 Oct;54(4):550-5 – reference: 24942915 - J Exp Bot. 2014 Oct;65(19):5567-76 – reference: 24863438 - J Exp Bot. 2014 Oct;65(19):5657-71 – reference: 16415212 - Plant Physiol. 2006 Mar;140(3):1036-46 – reference: 25795737 - J Exp Bot. 2015 Apr;66(8):2347-58 – reference: 20959423 - Plant Physiol. 2011 Jan;155(1):125-9 – reference: 22833749 - Front Plant Sci. 2012 Jul 19;3:162 – reference: 8106013 - Plant Mol Biol. 1993 Oct;23(2):401-7 – reference: 19558408 - Plant Cell Environ. 2009 Sep;32(9):1272-83 – reference: 27877183 - Front Plant Sci. 2016 Nov 08;7:1657 – reference: 28887406 - Plant Cell. 2017 Oct;29(10 ):2581-2596 – reference: 24706553 - Plant Physiol. 2014 Oct;166(2):581-9 – reference: 22224450 - Annu Rev Plant Biol. 2012;63:153-82 – reference: 21151904 - PLoS One. 2010 Dec 06;5(12):e15289 – reference: 24145428 - Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18185-9 – reference: 15772287 - Plant Cell. 2005 Apr;17(4):1167-79 – reference: 16669030 - Plant Physiol. 1992 Jul;99(3):996-1004 – reference: 16668375 - Plant Physiol. 1991 Sep;97(1):227-33 – reference: 21848860 - Plant Cell Environ. 2011 Dec;34(12):2122-37 – reference: 16143852 - Photosynth Res. 2005;83(2):191-217 – reference: 25450041 - Trends Biotechnol. 2014 Dec;32(12):597-8 – reference: 23832511 - Plant Cell Physiol. 2013 Sep;54(9):1515-24 – reference: 12853580 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):9055-60 – reference: 16661599 - Plant Physiol. 1980 Dec;66(6):1179-83 – reference: 24805158 - J Integr Plant Biol. 2014 Nov;56(11):1080-94 – reference: 25082891 - Plant Physiol. 2014 Oct;166(2):509-17 – reference: 12753979 - Curr Opin Plant Biol. 2003 Jun;6(3):280-7 – reference: 16702414 - Genetics. 2006 Aug;173(4):2199-210 – reference: 9430595 - Science. 1998 Jan 16;279(5349):407-9 – reference: 17951451 - Plant Physiol. 2007 Dec;145(4):1735-45 – reference: 16661600 - Plant Physiol. 1980 Dec;66(6):1184-9 – reference: 20890965 - Wiley Interdiscip Rev Syst Biol Med. 2010 Nov-Dec;2(6):683-93 – reference: 16359397 - Plant J. 2005 Dec;44(6):1054-64 |
SSID | ssj0000500997 |
Score | 2.3246524 |
Snippet | Maize (
, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can have... Maize (Zea mays, L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers can... Maize ( Zea mays , L.) yield is strongly influenced by external nitrogen inputs and their availability in the soil solution. Overuse of nitrogen-fertilizers... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 531 |
SubjectTerms | gene expression nitrogen Plant Science root system architecture transport Zea mays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqxIFLBZSWlA8ZqYdeUuL4-wgItItUDlWRuEWOPRaRIEE0HODXM052V7sVFZdeE1t23kw0b-LJG0K-CQmgpVA5x_CfCw1FXiMLyX30LkJtXB2HKt8rNbkWlzfyZqnVV6oJG-WBR-COGXdgvQ-FNRJTF-aMqZWNWgXrbQ3Df-QY85aSqVHVO1EfPWr5YBZmj-PDXVLnZql0UnK2EoYGtf63KObflZJLoedik3yccUZ6Mu51i3yAdpusn3bI654_kfNfXdfTaYAufU6l03nXkT_0qukfO3QQulAwp64NFC3S3DdjDRxtWvrTNS-wQ64vzn-fTfJZc4TcC2n73BWB6cC1LzGoB-vKWLLaRCRUBQDIstZSglLWOOaZxSEcL7LIcUYsAgauz2St7VrYJZQJmWpjjDQKBDJEKwJnzpaBl1YHKTPyY45V5WfK4amBxV2FGUQCt0rgVgncagA3I98XEx5G0Yx_Dz1N4C-GJbXr4QL6QDXzgeo9H8jI0dx0Fb4d6cjDtdA9pYU4RmOFSWxGvoymXCyFDycKoVRG9IqRV_ayeqdtbgcFbmlLg8Tx6__Y_B7ZSHCkE6pS7JO1_vEJDpDo9PXh4NOvksf7Ug priority: 102 providerName: Directory of Open Access Journals |
Title | Root Ideotype Influences Nitrogen Transport and Assimilation in Maize |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29740466 https://www.proquest.com/docview/2036786409 https://pubmed.ncbi.nlm.nih.gov/PMC5928562 https://doaj.org/article/13ae9ccd09854461a88b69f76d9c9be7 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQ4cAF8SYUKiNx4JISO34eEKKopUVqD4iV9hY5ftBIS1K2qdTy65lJsguLFolLpDh2HM_Ymm_syTeEvBYyRi2Fyksw_7nQschrQCG5T96lWBtXpyHK90wdz8TnuZz_Tgc0CfByq2uH-aRmy8X-9Y-b97Dg36HHCfb2bbpYIPE2w6hIif9U3wazpDGdwemE9Ueib0RDQ7IVpUQuFJ-PVD_b3rFhpQYy_20I9O9Ayj8s09F9cm-ClPTDOAcekFuxfUjuHHQA-24ekcMvXdfTkxA73G2lJ6ukJJf0rOmXHcwfuiY4p64NFBTWfG_GEDnatPTUNT_jYzI7Ovz68TifcifkXkjb564ITIdSew42P1jHE2e1SYC3ihij5LWWMipljWOeWahSQiFLJbRIRQC79oTstF0bnxHKhMTQGSONigIApBWhZM7yUHKrg5QZ2V_JqvITsTjmt1hU4GCgcCsUboXCrQbhZuTNusHFyKnx76oHKPx1NSTDHgq65bdqWlsVK1203ofCGgneLXPG1MomrYL1to46I69Wqqtg8eCJiGtjd4UdlWCsFfi4GXk6qnLdFQxOFEKpjOgNJW98y-aTtjkfCLql5QZw5fP_H-cuuYs3eEzFxQuy0y-v4ktAO329N-wSwPXTnO0NM_oXdRz9Tw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+Ideotype+Influences+Nitrogen+Transport+and+Assimilation+in+Maize&rft.jtitle=Frontiers+in+plant+science&rft.au=Dechorgnat%2C+Julie&rft.au=Francis%2C+Karen+L.&rft.au=Dhugga%2C+Kanwarpal+S.&rft.au=Rafalski%2C+J.+A.&rft.date=2018-04-24&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=9&rft_id=info:doi/10.3389%2Ffpls.2018.00531&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2018_00531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |