New waves: Rhythmic electrical field stimulation systematically alters spontaneous slow dynamics across mouse neocortex
The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 174; pp. 328 - 339 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral – posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrains and alters ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes.
•Voltage-sensitive dye (VSD) imaging of spontaneous slow-wave activity in mouse cortex shows repeating activity motifs.•Cycle by cycle, spontaneous motifs have two main patterns, but initiation and termination zones can be variable.•Rhythmic electrical field stimulation entrains cortical VSD activity across distributed regions.•Electric field stimulation alters and stereotypes entrained activity motifs and propagation.•Propagation under electric field stimulation shows a consistent pattern and termination zone in the somatosensory cortex. |
---|---|
AbstractList | The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral - posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrains and alters ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes.The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral - posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrains and alters ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes. The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral – posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrains and alters ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes. The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of activity and silence at the single cell and network levels. On each wave, the SO originates at a unique location and propagates across the neocortex. Attempts to manipulate SO activity using electrical fields have been shown to entrain cortical networks and enhance memory performance. However, neural activity during this manipulation has remained elusive due to methodological issues in typical electrical recordings. Here we took advantage of voltage-sensitive dye (VSD) imaging in a bilateral cortical preparation of urethane-anesthetized mice to track SO cortical activity and its modulation by sinusoidal electrical field stimulation applied to frontal regions. We show that under spontaneous conditions, the SO propagates in two main opposing directional patterns along an anterior lateral – posterior medial axis, displaying a rich variety of possible trajectories on any given wave. Under rhythmic field stimulation, new propagation patterns emerge, which are not observed under spontaneous conditions, reflecting stimulus-entrained activity with distributed and varied anterior initiation zones and a consistent termination zone in the posterior somatosensory cortex. Furthermore, stimulus-induced activity patterns tend to repeat cycle after cycle, showing higher stereotypy than during spontaneous activity. Our results show that slow electrical field stimulation robustly entrains and alters ongoing slow cortical dynamics during sleep-like states, suggesting a mechanism for targeting specific cortical representations to manipulate memory processes. •Voltage-sensitive dye (VSD) imaging of spontaneous slow-wave activity in mouse cortex shows repeating activity motifs.•Cycle by cycle, spontaneous motifs have two main patterns, but initiation and termination zones can be variable.•Rhythmic electrical field stimulation entrains cortical VSD activity across distributed regions.•Electric field stimulation alters and stereotypes entrained activity motifs and propagation.•Propagation under electric field stimulation shows a consistent pattern and termination zone in the somatosensory cortex. |
Author | Dickson, Clayton T. Greenberg, Anastasia Mohajerani, Majid H. Abadchi, Javad Karimi |
Author_xml | – sequence: 1 givenname: Anastasia surname: Greenberg fullname: Greenberg, Anastasia organization: Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada – sequence: 2 givenname: Javad Karimi surname: Abadchi fullname: Abadchi, Javad Karimi organization: Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada – sequence: 3 givenname: Clayton T. surname: Dickson fullname: Dickson, Clayton T. email: clayton.dickson@ualberta.ca organization: Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada – sequence: 4 givenname: Majid H. surname: Mohajerani fullname: Mohajerani, Majid H. email: mohajerani@uleth.ca organization: Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29535027$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URP_AV0CWuHBJsB07jjkgoKIFqQIJwdnyOhPqxYkX2-mSb4-32wppT3vySPOb55n3ztHJFCZACFNSU0LbN-t6gjkGN5pfUDNCu5o0NaHqCTqjRIlKCclOdrVoqo5SdYrOU1oTQhTl3TN0ypRoBGHyDG2_whZvzR2kt_j77ZJvR2cxeLA5Oms8Hhz4Hqfsxtmb7MKE05IyjKUubb9g4zPEhNMmTNlMEOZS-7DF_TKZopWwsTGkhMfSAVwAG2KGv8_R08H4BC8e3gv08-rTj8vP1c236y-XH24qy4XKlbIDyH7FmerLlQRWVnEmGJcCBOukhR5g1VrBjWysbDkRg2oZZ2A4MbI3zQV6vdfdxPBnhpT16JIF7_e76mJeI7u24bSgrw7QdZjjVLYrVNNKzjvVFOrlAzWvRuj1JpYU4qIfLS3Auz1wf3eEQVuX763L0TivKdG7DPVa_89wt0anSaNLhkWgOxB4_OOI0Y_7USiW3jmIOlkHU7HJxRKp7oM7RuT9gYj1btrF_RuW4yT-AVTr1eU |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2023_120484 crossref_primary_10_1093_cercor_bhab064 crossref_primary_10_1073_pnas_2021252118 crossref_primary_10_1093_cercor_bhac231 crossref_primary_10_2139_ssrn_3924635 crossref_primary_10_7554_eLife_51972 crossref_primary_10_1016_j_celrep_2021_110081 crossref_primary_10_1016_j_crmeth_2023_100681 crossref_primary_10_1038_s42003_023_04580_0 crossref_primary_10_1093_sleep_zsz095 crossref_primary_10_1016_j_isci_2022_103918 crossref_primary_10_1093_cercor_bhae083 crossref_primary_10_3390_mps3010014 crossref_primary_10_1038_s41467_018_07233_7 crossref_primary_10_1162_netn_a_00152 crossref_primary_10_1371_journal_pcbi_1008963 crossref_primary_10_1016_j_conb_2022_102606 crossref_primary_10_1016_j_neuroimage_2020_117415 crossref_primary_10_1016_j_cophys_2020_01_007 crossref_primary_10_1016_j_cub_2020_04_090 crossref_primary_10_1038_s41598_019_47383_2 |
Cites_doi | 10.1038/nn.3306 10.1152/jn.1995.74.5.2220 10.1523/JNEUROSCI.13-08-03266.1993 10.1016/j.neuron.2006.10.023 10.1523/JNEUROSCI.5594-05.2006 10.1152/jn.91157.2008 10.1152/jn.01178.2006 10.1523/JNEUROSCI.22-24-10941.2002 10.1016/j.neures.2012.10.007 10.1038/nn.3203 10.1523/JNEUROSCI.3175-06.2006 10.1038/nn1825 10.1371/journal.pone.0016905 10.1016/j.bbr.2010.04.002 10.1523/JNEUROSCI.13-08-03252.1993 10.1093/sleep/zsw059 10.1073/pnas.1103612108 10.1523/JNEUROSCI.3560-16.2017 10.1002/1098-1063(2000)10:4<380::AID-HIPO4>3.0.CO;2-0 10.1073/pnas.0437938100 10.1523/JNEUROSCI.1318-04.2004 10.1016/j.neuron.2013.01.031 10.1016/j.neuron.2011.02.043 10.1016/j.neuroscience.2005.10.029 10.1016/j.neuroimage.2016.02.070 10.1523/JNEUROSCI.15-01-00604.1995 10.1371/journal.pone.0002004 10.1523/JNEUROSCI.0279-06.2006 10.1101/lm.73504 10.1111/j.1469-7793.1997.153bf.x 10.1016/j.nlm.2011.12.004 10.1073/pnas.2235811100 10.1523/JNEUROSCI.6437-09.2010 10.1016/j.neuroimage.2013.07.034 10.1101/lm.726008 10.1016/j.brs.2014.03.001 10.1038/nrn1536 10.1523/JNEUROSCI.2705-04.2004 10.1016/j.neuron.2013.03.006 10.1152/physrev.00032.2012 10.1523/JNEUROSCI.15-06-04658.1995 10.1016/j.conb.2014.09.010 10.1038/ncomms8738 10.1016/j.resp.2013.05.035 10.1038/nature05278 10.1016/j.neuron.2013.10.002 10.1073/pnas.0702495104 10.1016/S0896-6273(00)81027-2 10.1038/35094500 10.3389/fnsys.2014.00208 10.1152/jn.00811.2010 10.1038/nn.3499 10.1523/JNEUROSCI.1498-11.2011 10.1523/JNEUROSCI.5252-09.2010 10.1117/1.NPh.4.3.031217 10.1046/j.1365-2869.7.s1.3.x 10.1038/nrn2733 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jul 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jul 1, 2018 |
DBID | AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
DOI | 10.1016/j.neuroimage.2018.03.019 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 339 |
ExternalDocumentID | 29535027 10_1016_j_neuroimage_2018_03_019 S1053811918302234 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT 0SF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c459t-9cfe7db429d0180ebc94252475e5287cedeeb6c54a73c76405f96242ea40a7da3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 11:02:11 EDT 2025 Wed Aug 13 07:38:55 EDT 2025 Wed Feb 19 02:36:21 EST 2025 Tue Jul 01 03:01:56 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Fri Feb 23 02:47:32 EST 2024 Tue Aug 26 20:08:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Memory consolidation Voltage-sensitive dye Slow-wave sleep Propagation Alternating current |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-9cfe7db429d0180ebc94252475e5287cedeeb6c54a73c76405f96242ea40a7da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29535027 |
PQID | 2036744893 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2013786341 proquest_journals_2036744893 pubmed_primary_29535027 crossref_citationtrail_10_1016_j_neuroimage_2018_03_019 crossref_primary_10_1016_j_neuroimage_2018_03_019 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_03_019 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_03_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Stroh, Adelsberger, Groh, Ruhlmann, Fischer, Schierloh, Deisseroth, Konnerth (bib53) 2013; 77 Grinvald, Hildesheim (bib23) 2004; 5 Eschenko, Molle, Born, Sara (bib17) 2006; 26 Sirota, Csicsvari, Buhl, Buzsaki (bib49) 2003; 100 Greenberg, Dickson (bib21) 2013; 83C Wolansky, Clement, Peters, Palczak, Dickson (bib60) 2006; 26 Fucke, Suchanek, Nawrot, Seamari, Heck, Aertsen, Boucsein (bib20) 2012; 106 Mohajerani, Chan, Mohsenvand, LeDue, Liu, McVea, Boyd, Wang, Reimers, Murphy (bib34) 2013; 16 Buzsáki (bib10) 2006 Bellesi, Riedner, Garcia-Molina, Cirelli, Tononi (bib3) 2014; 8 Eschenko, Ramadan, Molle, Born, Sara (bib18) 2008; 15 Mölle, Marshall, Gais, Born (bib36) 2002; 22 Bendor, Wilson (bib5) 2012; 15 Binder, Baier, Molle, Inostroza, Born, Marshall (bib7) 2012; 97 Ozen, Sirota, Belluscio, Anastassiou, Stark, Koch, Buzsáki (bib40) 2010; 30 Kuki, Ohshiro, Ito, Ji, Fukazawa, Matsuzaka, Yawo, Mushiake (bib29) 2013; 75 Marshall, Kirov, Brade, Molle, Born (bib31) 2011; 6 Nir, Staba, Andrillon, Vyazovskiy, Cirelli, Fried, Tononi (bib39) 2011; 70 Nagai, de Vivo, Bellesi, Ghilardi, Tononi, Cirelli (bib37) 2017; 40 Beltramo, D'Urso, Dal Maschio, Farisello, Bovetti, Clovis, Lassi, Tucci, De Pietri Tonelli, Fellin (bib4) 2013; 16 Buzsáki, Draguhn (bib11) 2004 Vann, Aggleton, Maguire (bib56) 2009; 10 Frostig, Chen-Bee, Johnson, Jacobs (bib19) 2017; 4 Wilson, McNaughton (bib59) 1994 Greenberg, Whitten, Dickson (bib22) 2016; 133 Vyazovskiy, Faraguna, Cirelli, Tononi (bib58) 2009; 101 Steriade, Nunez, Amzica (bib51) 1993; 13 Buzsaki, Logothetis, Singer (bib12) 2013; 80 Peyrache, Battaglia, Destexhe (bib43) 2011; 108 Vanni, Chan, Balbi, Silasi, Murphy (bib55) 2017; 37 Massimini, Ferrarelli, Esser, Riedner, Huber, Murphy, Peterson, Tononi (bib32) 2007; 104 Zagha, McCormick (bib61) 2014; 29 Contreras, Steriade (bib14) 1995; 15 Rasch, Buchel, Gais, Born (bib45) 2007 Gusnard, Raichle (bib24) 2001; 2 Petersen, Hahn, Mehta, Grinvald, Sakmann (bib42) 2003; 100 Rolls (bib46) 2000; 10 Hangya, Tihanyi, Entz, Fabo, Eross, Wittner, Jakus, Varga, Freund, Ulbert (bib25) 2011; 31 Marshall, Helgadottir, Molle, Born (bib30) 2006; 444 Binder, Berg, Gasca, Lafon, Parra, Born, Marshall (bib8) 2014; 7 Chan, Mohajerani, LeDue, Wang, Murphy (bib13) 2015; 6 Massimini, Huber, Ferrarelli, Hill, Tononi (bib33) 2004; 24 Steriade, Nunez, Amzica (bib52) 1993; 13 Buzsáki (bib9) 1998; 7 Ji, Wilson (bib28) 2007; 10 Mohajerani, McVea, Fingas, Murphy (bib35) 2010; 30 Schwindt, Crill (bib47) 1995; 74 Timofeev, Steriade (bib54) 1997; 504 Pagliardini, Funk, Dickson (bib41) 2013; 188 Shoham, Glaser, Arieli, Kenet, Wijnbergen, Toledo, Hildesheim, Grinvald (bib48) 1999; 24 Amzica, Steriade (bib1) 1995; 15 Clement, Richard, Thwaites, Ailon, Peters, Dickson (bib15) 2008; 3 Dickson (bib16) 2010; 214 Volgushev, Chauvette, Mukovski, Timofeev (bib57) 2006; 26 Steriade (bib50) 2006; 137 Battaglia, Sutherland, McNaughton (bib2) 2004; 11 Isomura, Sirota, Ozen, Montgomery, Mizuseki, Henze, Buzsáki (bib27) 2006; 52 Berger, Borgdorff, Crochet, Neubauer, Lefort, Fauvet, Ferezou, Carleton, Luscher, Petersen (bib6) 2007; 97 Rasch, Born (bib44) 2013; 93 Huang, Troy, Yang, Ma, Laing, Schiff, Wu (bib26) 2004; 24 Ngo, Martinetz, Born, Molle (bib38) 2013; 78 Schwindt (10.1016/j.neuroimage.2018.03.019_bib47) 1995; 74 Timofeev (10.1016/j.neuroimage.2018.03.019_bib54) 1997; 504 Binder (10.1016/j.neuroimage.2018.03.019_bib8) 2014; 7 Massimini (10.1016/j.neuroimage.2018.03.019_bib32) 2007; 104 Sirota (10.1016/j.neuroimage.2018.03.019_bib49) 2003; 100 Kuki (10.1016/j.neuroimage.2018.03.019_bib29) 2013; 75 Bellesi (10.1016/j.neuroimage.2018.03.019_bib3) 2014; 8 Eschenko (10.1016/j.neuroimage.2018.03.019_bib18) 2008; 15 Ozen (10.1016/j.neuroimage.2018.03.019_bib40) 2010; 30 Berger (10.1016/j.neuroimage.2018.03.019_bib6) 2007; 97 Marshall (10.1016/j.neuroimage.2018.03.019_bib30) 2006; 444 Volgushev (10.1016/j.neuroimage.2018.03.019_bib57) 2006; 26 Huang (10.1016/j.neuroimage.2018.03.019_bib26) 2004; 24 Rasch (10.1016/j.neuroimage.2018.03.019_bib45) 2007 Wolansky (10.1016/j.neuroimage.2018.03.019_bib60) 2006; 26 Nagai (10.1016/j.neuroimage.2018.03.019_bib37) 2017; 40 Zagha (10.1016/j.neuroimage.2018.03.019_bib61) 2014; 29 Hangya (10.1016/j.neuroimage.2018.03.019_bib25) 2011; 31 Shoham (10.1016/j.neuroimage.2018.03.019_bib48) 1999; 24 Buzsáki (10.1016/j.neuroimage.2018.03.019_bib11) 2004 Amzica (10.1016/j.neuroimage.2018.03.019_bib1) 1995; 15 Buzsaki (10.1016/j.neuroimage.2018.03.019_bib12) 2013; 80 Clement (10.1016/j.neuroimage.2018.03.019_bib15) 2008; 3 Steriade (10.1016/j.neuroimage.2018.03.019_bib50) 2006; 137 Greenberg (10.1016/j.neuroimage.2018.03.019_bib22) 2016; 133 Grinvald (10.1016/j.neuroimage.2018.03.019_bib23) 2004; 5 Greenberg (10.1016/j.neuroimage.2018.03.019_bib21) 2013; 83C Massimini (10.1016/j.neuroimage.2018.03.019_bib33) 2004; 24 Vann (10.1016/j.neuroimage.2018.03.019_bib56) 2009; 10 Fucke (10.1016/j.neuroimage.2018.03.019_bib20) 2012; 106 Stroh (10.1016/j.neuroimage.2018.03.019_bib53) 2013; 77 Steriade (10.1016/j.neuroimage.2018.03.019_bib51) 1993; 13 Wilson (10.1016/j.neuroimage.2018.03.019_bib59) 1994 Mohajerani (10.1016/j.neuroimage.2018.03.019_bib34) 2013; 16 Ngo (10.1016/j.neuroimage.2018.03.019_bib38) 2013; 78 Beltramo (10.1016/j.neuroimage.2018.03.019_bib4) 2013; 16 Buzsáki (10.1016/j.neuroimage.2018.03.019_bib10) 2006 Gusnard (10.1016/j.neuroimage.2018.03.019_bib24) 2001; 2 Peyrache (10.1016/j.neuroimage.2018.03.019_bib43) 2011; 108 Bendor (10.1016/j.neuroimage.2018.03.019_bib5) 2012; 15 Contreras (10.1016/j.neuroimage.2018.03.019_bib14) 1995; 15 Binder (10.1016/j.neuroimage.2018.03.019_bib7) 2012; 97 Pagliardini (10.1016/j.neuroimage.2018.03.019_bib41) 2013; 188 Nir (10.1016/j.neuroimage.2018.03.019_bib39) 2011; 70 Dickson (10.1016/j.neuroimage.2018.03.019_bib16) 2010; 214 Ji (10.1016/j.neuroimage.2018.03.019_bib28) 2007; 10 Eschenko (10.1016/j.neuroimage.2018.03.019_bib17) 2006; 26 Frostig (10.1016/j.neuroimage.2018.03.019_bib19) 2017; 4 Petersen (10.1016/j.neuroimage.2018.03.019_bib42) 2003; 100 Rasch (10.1016/j.neuroimage.2018.03.019_bib44) 2013; 93 Buzsáki (10.1016/j.neuroimage.2018.03.019_bib9) 1998; 7 Battaglia (10.1016/j.neuroimage.2018.03.019_bib2) 2004; 11 Mölle (10.1016/j.neuroimage.2018.03.019_bib36) 2002; 22 Vyazovskiy (10.1016/j.neuroimage.2018.03.019_bib58) 2009; 101 Chan (10.1016/j.neuroimage.2018.03.019_bib13) 2015; 6 Rolls (10.1016/j.neuroimage.2018.03.019_bib46) 2000; 10 Steriade (10.1016/j.neuroimage.2018.03.019_bib52) 1993; 13 Marshall (10.1016/j.neuroimage.2018.03.019_bib31) 2011; 6 Vanni (10.1016/j.neuroimage.2018.03.019_bib55) 2017; 37 Isomura (10.1016/j.neuroimage.2018.03.019_bib27) 2006; 52 Mohajerani (10.1016/j.neuroimage.2018.03.019_bib35) 2010; 30 |
References_xml | – volume: 6 start-page: 7738 year: 2015 ident: bib13 article-title: Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs publication-title: Nat. Commun. – volume: 83C start-page: 782 year: 2013 end-page: 794 ident: bib21 article-title: Spontaneous and electrically modulated spatiotemporal dynamics of the neocortical slow oscillation and associated local fast activity publication-title: NeuroImage – start-page: 1426 year: 2007 end-page: 1429 ident: bib45 article-title: Odor Cues during Slow-wave Sleep Prompt Declarative Memory Consolidation. Science – volume: 15 start-page: 222 year: 2008 end-page: 228 ident: bib18 article-title: Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning publication-title: Learn. Mem. – volume: 15 start-page: 1439 year: 2012 end-page: 1444 ident: bib5 article-title: Biasing the content of hippocampal replay during sleep publication-title: Nat. Neurosci. – volume: 101 start-page: 1921 year: 2009 end-page: 1931 ident: bib58 article-title: Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity publication-title: J. Neurophysiol. – volume: 188 start-page: 324 year: 2013 end-page: 332 ident: bib41 article-title: Breathing and brain state: urethane anesthesia as a model for natural sleep publication-title: Respir. Physiol. Neurobiol. – volume: 29 start-page: 178 year: 2014 end-page: 186 ident: bib61 article-title: Neural control of brain state publication-title: Curr. Opin. Neurobiol. – volume: 75 start-page: 35 year: 2013 end-page: 45 ident: bib29 article-title: Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat publication-title: Neurosci. Res. – volume: 106 start-page: 3035 year: 2012 end-page: 3044 ident: bib20 article-title: Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex publication-title: J. Neurophysiol. – volume: 70 start-page: 153 year: 2011 end-page: 169 ident: bib39 article-title: Regional slow waves and spindles in human sleep publication-title: Neuron – volume: 2 start-page: 685 year: 2001 end-page: 694 ident: bib24 article-title: Searching for a baseline: functional imaging and the resting human brain publication-title: Nat. Rev. Neurosci. – volume: 4 start-page: 031217 year: 2017 ident: bib19 article-title: Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship publication-title: Neurophotonics – volume: 26 start-page: 6213 year: 2006 end-page: 6229 ident: bib60 article-title: Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity publication-title: J. Neurosci. – volume: 15 start-page: 4658 year: 1995 end-page: 4677 ident: bib1 article-title: Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation publication-title: J. Neurosci. – volume: 6 year: 2011 ident: bib31 article-title: Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans publication-title: PloS one – volume: 80 start-page: 751 year: 2013 end-page: 764 ident: bib12 article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms publication-title: Neuron – volume: 504 start-page: 153 year: 1997 end-page: 168 ident: bib54 article-title: Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials publication-title: J. physiology – volume: 24 start-page: 6862 year: 2004 end-page: 6870 ident: bib33 article-title: The sleep slow oscillation as a traveling wave publication-title: J. Neurosci. – volume: 31 start-page: 8770 year: 2011 end-page: 8779 ident: bib25 article-title: Complex propagation patterns characterize human cortical activity during slow-wave sleep publication-title: J. Neurosci. – start-page: 676 year: 1994 end-page: 679 ident: bib59 article-title: Reactivation of Hippocampal Ensemble Memories during Sleep. Science – volume: 26 start-page: 5665 year: 2006 end-page: 5672 ident: bib57 article-title: Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected] publication-title: J. Neurosci. – volume: 30 start-page: 11476 year: 2010 end-page: 11485 ident: bib40 article-title: Transcranial electric stimulation entrains cortical neuronal populations in rats publication-title: J. Neurosci. – volume: 40 year: 2017 ident: bib37 article-title: Sleep consolidates motor learning of complex movement sequences in mice publication-title: Sleep – volume: 22 start-page: 10941 year: 2002 end-page: 10947 ident: bib36 article-title: Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep publication-title: J. Neurosci. – volume: 26 start-page: 12914 year: 2006 end-page: 12920 ident: bib17 article-title: Elevated sleep spindle density after learning or after retrieval in rats publication-title: J. Neurosci. – volume: 10 start-page: 792 year: 2009 end-page: 802 ident: bib56 article-title: What does the retrosplenial cortex do? publication-title: Nat. Rev. Neurosci. – volume: 16 start-page: 1426 year: 2013 end-page: 1435 ident: bib34 article-title: Spontaneous cortical activity alternates between motifs defined by regional axonal projections publication-title: Nat. Neurosci. – volume: 15 start-page: 604 year: 1995 end-page: 622 ident: bib14 article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships publication-title: J. Neurosci. – start-page: 1926 year: 2004 end-page: 1929 ident: bib11 article-title: Neuronal Oscillations in Cortical Networks. Science – volume: 104 start-page: 8496 year: 2007 end-page: 8501 ident: bib32 article-title: Triggering sleep slow waves by transcranial magnetic stimulation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 97 start-page: 3751 year: 2007 end-page: 3762 ident: bib6 article-title: Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex publication-title: J. Neurophysiol. – volume: 13 start-page: 3252 year: 1993 end-page: 3265 ident: bib52 article-title: A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components publication-title: J. Neurosci. – volume: 10 start-page: 100 year: 2007 end-page: 107 ident: bib28 article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep publication-title: Nat. Neurosci. – volume: 13 start-page: 3266 year: 1993 end-page: 3283 ident: bib51 article-title: Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram publication-title: J. Neurosci. – volume: 8 start-page: 208 year: 2014 ident: bib3 article-title: Enhancement of sleep slow waves: underlying mechanisms and practical consequences publication-title: Front. Syst. Neurosci. – volume: 133 start-page: 189 year: 2016 end-page: 206 ident: bib22 article-title: Stimulating forebrain communications: slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states publication-title: NeuroImage – volume: 74 start-page: 2220 year: 1995 end-page: 2224 ident: bib47 article-title: Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons publication-title: J. Neurophysiol. – volume: 444 start-page: 610 year: 2006 end-page: 613 ident: bib30 article-title: Boosting slow oscillations during sleep potentiates memory publication-title: Nature – volume: 214 start-page: 35 year: 2010 end-page: 41 ident: bib16 article-title: Ups and downs in the hippocampus: the influence of oscillatory sleep states on “neuroplasticity” at different time scales publication-title: Behav. Brain Res. – volume: 5 start-page: 874 year: 2004 end-page: 885 ident: bib23 article-title: VSDI: a new era in functional imaging of cortical dynamics publication-title: Nat. Rev. Neurosci. – volume: 24 start-page: 9897 year: 2004 end-page: 9902 ident: bib26 article-title: Spiral waves in disinhibited mammalian neocortex publication-title: J. Neurosci. – volume: 10 start-page: 380 year: 2000 end-page: 388 ident: bib46 article-title: Hippocampo-cortical and cortico-cortical backprojections publication-title: Hippocampus – volume: 37 start-page: 7513 year: 2017 end-page: 7533 ident: bib55 article-title: Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules publication-title: J. Neurosci. – volume: 93 start-page: 681 year: 2013 end-page: 766 ident: bib44 article-title: About sleep's role in memory publication-title: Physiol. Rev. – volume: 16 start-page: 227 year: 2013 end-page: 234 ident: bib4 article-title: Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex publication-title: Nat. Neurosci. – volume: 7 start-page: 17 year: 1998 end-page: 23 ident: bib9 article-title: Memory consolidation during sleep: a neurophysiological perspective publication-title: J. sleep Res. – volume: 137 start-page: 1087 year: 2006 end-page: 1106 ident: bib50 article-title: Grouping of brain rhythms in corticothalamic systems publication-title: Neuroscience – volume: 97 start-page: 213 year: 2012 end-page: 219 ident: bib7 article-title: Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats publication-title: Neurobiol. Learn. Mem. – volume: 3 start-page: e2004 year: 2008 ident: bib15 article-title: Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia publication-title: PLoS One – volume: 24 start-page: 791 year: 1999 end-page: 802 ident: bib48 article-title: Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes publication-title: Neuron – volume: 52 start-page: 871 year: 2006 end-page: 882 ident: bib27 article-title: Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations publication-title: Neuron – volume: 77 start-page: 1136 year: 2013 end-page: 1150 ident: bib53 article-title: Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo publication-title: Neuron – volume: 108 start-page: 17207 year: 2011 end-page: 17212 ident: bib43 article-title: Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2006 ident: bib10 article-title: Rhythms of the Brain – volume: 30 start-page: 3745 year: 2010 end-page: 3751 ident: bib35 article-title: Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice publication-title: J. Neurosci. – volume: 11 start-page: 697 year: 2004 end-page: 704 ident: bib2 article-title: Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions publication-title: Learn. Mem. – volume: 100 start-page: 2065 year: 2003 end-page: 2069 ident: bib49 article-title: Communication between neocortex and hippocampus during sleep in rodents publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 78 start-page: 545 year: 2013 end-page: 553 ident: bib38 article-title: Auditory closed-loop stimulation of the sleep slow oscillation enhances memory publication-title: Neuron – volume: 7 start-page: 508 year: 2014 end-page: 515 ident: bib8 article-title: Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats publication-title: Brain Stimul. – volume: 100 start-page: 13638 year: 2003 end-page: 13643 ident: bib42 article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 227 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib4 article-title: Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex publication-title: Nat. Neurosci. doi: 10.1038/nn.3306 – volume: 74 start-page: 2220 year: 1995 ident: 10.1016/j.neuroimage.2018.03.019_bib47 article-title: Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.1995.74.5.2220 – volume: 13 start-page: 3266 year: 1993 ident: 10.1016/j.neuroimage.2018.03.019_bib51 article-title: Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.13-08-03266.1993 – volume: 52 start-page: 871 year: 2006 ident: 10.1016/j.neuroimage.2018.03.019_bib27 article-title: Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations publication-title: Neuron doi: 10.1016/j.neuron.2006.10.023 – volume: 26 start-page: 6213 year: 2006 ident: 10.1016/j.neuroimage.2018.03.019_bib60 article-title: Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5594-05.2006 – volume: 101 start-page: 1921 year: 2009 ident: 10.1016/j.neuroimage.2018.03.019_bib58 article-title: Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity publication-title: J. Neurophysiol. doi: 10.1152/jn.91157.2008 – volume: 97 start-page: 3751 year: 2007 ident: 10.1016/j.neuroimage.2018.03.019_bib6 article-title: Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.01178.2006 – year: 2006 ident: 10.1016/j.neuroimage.2018.03.019_bib10 – volume: 22 start-page: 10941 year: 2002 ident: 10.1016/j.neuroimage.2018.03.019_bib36 article-title: Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.22-24-10941.2002 – volume: 75 start-page: 35 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib29 article-title: Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat publication-title: Neurosci. Res. doi: 10.1016/j.neures.2012.10.007 – start-page: 676 year: 1994 ident: 10.1016/j.neuroimage.2018.03.019_bib59 – start-page: 1426 year: 2007 ident: 10.1016/j.neuroimage.2018.03.019_bib45 – volume: 15 start-page: 1439 year: 2012 ident: 10.1016/j.neuroimage.2018.03.019_bib5 article-title: Biasing the content of hippocampal replay during sleep publication-title: Nat. Neurosci. doi: 10.1038/nn.3203 – volume: 26 start-page: 12914 year: 2006 ident: 10.1016/j.neuroimage.2018.03.019_bib17 article-title: Elevated sleep spindle density after learning or after retrieval in rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3175-06.2006 – volume: 10 start-page: 100 year: 2007 ident: 10.1016/j.neuroimage.2018.03.019_bib28 article-title: Coordinated memory replay in the visual cortex and hippocampus during sleep publication-title: Nat. Neurosci. doi: 10.1038/nn1825 – volume: 6 year: 2011 ident: 10.1016/j.neuroimage.2018.03.019_bib31 article-title: Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans publication-title: PloS one doi: 10.1371/journal.pone.0016905 – volume: 214 start-page: 35 year: 2010 ident: 10.1016/j.neuroimage.2018.03.019_bib16 article-title: Ups and downs in the hippocampus: the influence of oscillatory sleep states on “neuroplasticity” at different time scales publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2010.04.002 – volume: 13 start-page: 3252 year: 1993 ident: 10.1016/j.neuroimage.2018.03.019_bib52 article-title: A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.13-08-03252.1993 – volume: 40 year: 2017 ident: 10.1016/j.neuroimage.2018.03.019_bib37 article-title: Sleep consolidates motor learning of complex movement sequences in mice publication-title: Sleep doi: 10.1093/sleep/zsw059 – volume: 108 start-page: 17207 year: 2011 ident: 10.1016/j.neuroimage.2018.03.019_bib43 article-title: Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1103612108 – volume: 37 start-page: 7513 year: 2017 ident: 10.1016/j.neuroimage.2018.03.019_bib55 article-title: Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3560-16.2017 – volume: 10 start-page: 380 year: 2000 ident: 10.1016/j.neuroimage.2018.03.019_bib46 article-title: Hippocampo-cortical and cortico-cortical backprojections publication-title: Hippocampus doi: 10.1002/1098-1063(2000)10:4<380::AID-HIPO4>3.0.CO;2-0 – volume: 100 start-page: 2065 year: 2003 ident: 10.1016/j.neuroimage.2018.03.019_bib49 article-title: Communication between neocortex and hippocampus during sleep in rodents publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0437938100 – volume: 24 start-page: 6862 year: 2004 ident: 10.1016/j.neuroimage.2018.03.019_bib33 article-title: The sleep slow oscillation as a traveling wave publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1318-04.2004 – volume: 77 start-page: 1136 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib53 article-title: Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo publication-title: Neuron doi: 10.1016/j.neuron.2013.01.031 – volume: 70 start-page: 153 year: 2011 ident: 10.1016/j.neuroimage.2018.03.019_bib39 article-title: Regional slow waves and spindles in human sleep publication-title: Neuron doi: 10.1016/j.neuron.2011.02.043 – volume: 137 start-page: 1087 year: 2006 ident: 10.1016/j.neuroimage.2018.03.019_bib50 article-title: Grouping of brain rhythms in corticothalamic systems publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.10.029 – volume: 133 start-page: 189 year: 2016 ident: 10.1016/j.neuroimage.2018.03.019_bib22 article-title: Stimulating forebrain communications: slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.070 – volume: 15 start-page: 604 year: 1995 ident: 10.1016/j.neuroimage.2018.03.019_bib14 article-title: Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-01-00604.1995 – volume: 3 start-page: e2004 year: 2008 ident: 10.1016/j.neuroimage.2018.03.019_bib15 article-title: Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia publication-title: PLoS One doi: 10.1371/journal.pone.0002004 – volume: 26 start-page: 5665 year: 2006 ident: 10.1016/j.neuroimage.2018.03.019_bib57 article-title: Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected] publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0279-06.2006 – start-page: 1926 year: 2004 ident: 10.1016/j.neuroimage.2018.03.019_bib11 – volume: 11 start-page: 697 year: 2004 ident: 10.1016/j.neuroimage.2018.03.019_bib2 article-title: Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions publication-title: Learn. Mem. doi: 10.1101/lm.73504 – volume: 504 start-page: 153 issue: Pt 1 year: 1997 ident: 10.1016/j.neuroimage.2018.03.019_bib54 article-title: Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials publication-title: J. physiology doi: 10.1111/j.1469-7793.1997.153bf.x – volume: 97 start-page: 213 year: 2012 ident: 10.1016/j.neuroimage.2018.03.019_bib7 article-title: Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2011.12.004 – volume: 100 start-page: 13638 year: 2003 ident: 10.1016/j.neuroimage.2018.03.019_bib42 article-title: Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2235811100 – volume: 30 start-page: 3745 year: 2010 ident: 10.1016/j.neuroimage.2018.03.019_bib35 article-title: Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6437-09.2010 – volume: 83C start-page: 782 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib21 article-title: Spontaneous and electrically modulated spatiotemporal dynamics of the neocortical slow oscillation and associated local fast activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.034 – volume: 15 start-page: 222 year: 2008 ident: 10.1016/j.neuroimage.2018.03.019_bib18 article-title: Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning publication-title: Learn. Mem. doi: 10.1101/lm.726008 – volume: 7 start-page: 508 year: 2014 ident: 10.1016/j.neuroimage.2018.03.019_bib8 article-title: Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats publication-title: Brain Stimul. doi: 10.1016/j.brs.2014.03.001 – volume: 5 start-page: 874 year: 2004 ident: 10.1016/j.neuroimage.2018.03.019_bib23 article-title: VSDI: a new era in functional imaging of cortical dynamics publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1536 – volume: 24 start-page: 9897 year: 2004 ident: 10.1016/j.neuroimage.2018.03.019_bib26 article-title: Spiral waves in disinhibited mammalian neocortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2705-04.2004 – volume: 78 start-page: 545 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib38 article-title: Auditory closed-loop stimulation of the sleep slow oscillation enhances memory publication-title: Neuron doi: 10.1016/j.neuron.2013.03.006 – volume: 93 start-page: 681 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib44 article-title: About sleep's role in memory publication-title: Physiol. Rev. doi: 10.1152/physrev.00032.2012 – volume: 15 start-page: 4658 year: 1995 ident: 10.1016/j.neuroimage.2018.03.019_bib1 article-title: Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-06-04658.1995 – volume: 29 start-page: 178 year: 2014 ident: 10.1016/j.neuroimage.2018.03.019_bib61 article-title: Neural control of brain state publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.09.010 – volume: 6 start-page: 7738 year: 2015 ident: 10.1016/j.neuroimage.2018.03.019_bib13 article-title: Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs publication-title: Nat. Commun. doi: 10.1038/ncomms8738 – volume: 188 start-page: 324 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib41 article-title: Breathing and brain state: urethane anesthesia as a model for natural sleep publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2013.05.035 – volume: 444 start-page: 610 year: 2006 ident: 10.1016/j.neuroimage.2018.03.019_bib30 article-title: Boosting slow oscillations during sleep potentiates memory publication-title: Nature doi: 10.1038/nature05278 – volume: 80 start-page: 751 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib12 article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms publication-title: Neuron doi: 10.1016/j.neuron.2013.10.002 – volume: 104 start-page: 8496 year: 2007 ident: 10.1016/j.neuroimage.2018.03.019_bib32 article-title: Triggering sleep slow waves by transcranial magnetic stimulation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0702495104 – volume: 24 start-page: 791 year: 1999 ident: 10.1016/j.neuroimage.2018.03.019_bib48 article-title: Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes publication-title: Neuron doi: 10.1016/S0896-6273(00)81027-2 – volume: 2 start-page: 685 year: 2001 ident: 10.1016/j.neuroimage.2018.03.019_bib24 article-title: Searching for a baseline: functional imaging and the resting human brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/35094500 – volume: 8 start-page: 208 year: 2014 ident: 10.1016/j.neuroimage.2018.03.019_bib3 article-title: Enhancement of sleep slow waves: underlying mechanisms and practical consequences publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00208 – volume: 106 start-page: 3035 year: 2012 ident: 10.1016/j.neuroimage.2018.03.019_bib20 article-title: Stereotypical spatiotemporal activity patterns during slow-wave activity in the neocortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00811.2010 – volume: 16 start-page: 1426 year: 2013 ident: 10.1016/j.neuroimage.2018.03.019_bib34 article-title: Spontaneous cortical activity alternates between motifs defined by regional axonal projections publication-title: Nat. Neurosci. doi: 10.1038/nn.3499 – volume: 31 start-page: 8770 year: 2011 ident: 10.1016/j.neuroimage.2018.03.019_bib25 article-title: Complex propagation patterns characterize human cortical activity during slow-wave sleep publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1498-11.2011 – volume: 30 start-page: 11476 year: 2010 ident: 10.1016/j.neuroimage.2018.03.019_bib40 article-title: Transcranial electric stimulation entrains cortical neuronal populations in rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5252-09.2010 – volume: 4 start-page: 031217 year: 2017 ident: 10.1016/j.neuroimage.2018.03.019_bib19 article-title: Imaging Cajal's neuronal avalanche: how wide-field optical imaging of the point-spread advanced the understanding of neocortical structure-function relationship publication-title: Neurophotonics doi: 10.1117/1.NPh.4.3.031217 – volume: 7 start-page: 17 issue: Suppl. 1 year: 1998 ident: 10.1016/j.neuroimage.2018.03.019_bib9 article-title: Memory consolidation during sleep: a neurophysiological perspective publication-title: J. sleep Res. doi: 10.1046/j.1365-2869.7.s1.3.x – volume: 10 start-page: 792 year: 2009 ident: 10.1016/j.neuroimage.2018.03.019_bib56 article-title: What does the retrosplenial cortex do? publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2733 |
SSID | ssj0009148 |
Score | 2.373391 |
Snippet | The signature rhythm of slow-wave forebrain activity is the large amplitude, slow oscillation (SO: ∼1 Hz) made up of alternating synchronous periods of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 328 |
SubjectTerms | Activity patterns Alternating current Ethyl carbamate Forebrain Memory Memory consolidation Neural networks Neuroimaging Propagation Respiration Rhythm Rhythms Sleep Slow-wave sleep Somatosensory cortex Voltage-sensitive dye |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbtFkovIX1vkhYVejX1Q7Ks5BBKaQiF9FC6sDchybNsyj7SeDeb_PvOSPLupS17MQZrjO3RPKz59A1jHynG1l4DTt68yUQFeaaFw4MDTYTkoAPjzdX3-nIkvo3lOC24dQlW2fvE4Kjbpac18k9UMFOCqFLOb35n1DWKqquphcZj9oSoywjSpcZqR7pbiLgVTlZZgwMSkifiuwJf5PUcrZYAXk2gOiW-nb-Hp3-lnyEMXRyyg5Q_8s9R4c_ZI1i8YE-vUoX8Jdug1-IbewfdKf8xfVhN59eex143pA4eEGsc7Xqe-nbxHZeznc0eeCifd5yQs5g3wnKN57PlhrexdX3HbXhyTksGwHGAJ7ju_Ss2uvj688tllporZF5Ivcq0n4BqHYajlji8wHmN5lsKJUHiX5SHFsDVXgqrKq9qzOsmmvaSgBW5Va2tXrPBYrmAt4z7ogFlfWtr_OC6mLjSF66u2lI52fiyHDLVf1PjE_M4NcCYmR5i9svstGFIGyavDGpjyIqt5E1k39hDRvdqM_3uUvSHBkPEHrJnW9mUgcTMYk_pk36WmOQJOrObt0P2YXsZbZgKM1GNdI9KNTUmFEP2Js6u7euWWlYyL9XR_29-zJ7Rk0Qg8QkbrG7X8A7TpZV7H2ziD7N2FyU priority: 102 providerName: ProQuest |
Title | New waves: Rhythmic electrical field stimulation systematically alters spontaneous slow dynamics across mouse neocortex |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918302234 https://dx.doi.org/10.1016/j.neuroimage.2018.03.019 https://www.ncbi.nlm.nih.gov/pubmed/29535027 https://www.proquest.com/docview/2036744893 https://www.proquest.com/docview/2013786341 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBalg7KXsfuytUWDvXqxLcmy1qe2tKQrDaNbIW9CkhWakktZ0qV92W_fOZKcMOggsBfn5hNknautT98h5BPm2MopD8ab1xlnPs8Ut3CwXiEhuVeB8eaiX_Wu-NeBGGyR43YvDMIqU-yPMT1E6_RNN81m93Y06n6HygDSDdxvIIVVyZATlHOJVv759xrmoQoet8MJluHZCc0TMV6BM3I0Ac9FkFcd6E6Rc-fxFPWvEjSkotPn5FmqIelhHOYLsuWnL8nORVolf0WWELno0vzy8y_08vphcT0ZORr73aBKaECtUfDtSerdRdd8zmY8fqBhCX1OET0LtaOf3cH78WxJm9i-fk5NGDnFxwaewgkOIbv3r8nV6cmP416WGixkjgu1yJQbetlYSEkN8nh56xS4cMml8ALupEAF3tvKCW4kc7KC2m6ocD-JNzw3sjHsDdmezqb-HaGuqL00rjEVTLgqhrZ0ha1YU0oraleWHSLbOdUusY9jE4yxbmFmN3qtDY3a0DnToI0OKVaSt5GBYwMZ1apNtztMISZqSBMbyB6sZP-yxA2ld1sr0SkazDUu9kqOND8d8nH1M_gxLs5ENeJ_MFlXUFR0yNtoXavLLZVgIi_l-_8a2gfyFD9FrPEu2V78vPN7UFEt7H5wGTjKgdwnTw7Pznt9eD066X-7_APx6CaL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG-2FDASHCPycOIYhBCPVlvaXaGqlXpzHWdWLdpHS7Ys-6f4jczEye4F0F56iSIlYyWe8Xjs-fwNwCueYzOnkYw3zAOZYBhoWdClQM2E5Khrxpv-IOsdy68n6ckG_G7PwjCssvWJtaMup473yN9wwkxJpkr5cHEZcNUozq62JTS8WezjYk5Ltur93hfS7-s43t05-twLmqoCgZOpngXaDVGVBfnhksmrsHCa7DaWKsWUlg8OS8Qic6m0KnEqo4BmqPkQBVoZWlXahNq9AZsyoaVMBzY_7Qy-Ha5ofiPpD9-lSZBHkW6wQx5RVjNUno_JTzCkLK_JVZnh5-8T4r8C3nri270Ld5qIVXz0JnYPNnByH272m5z8A5iTnxRz-xOrt-LwbDE7G5874avrsAGIGiMnyJOMm0phYsUebUejhagT9pVgrC5Fqji9ovvRdC7KxcRSW5Ww9ZcL3qRAQS84Bgj_egjH19Lxj6AzmU7wCQgX5aisK21GHa6jYRG7qMiSMlZFmrs47oJq-9S4huucS26MTAtq-25W2jCsDRMmhrTRhWgpeeH5PtaQ0a3aTHuelTywoUlpDdl3S9km5vGxzJrS262VmMb3VGY1UrrwcvmYvAangrwauY1E5RmFMF147K1r-buxTpM0jNXW_xt_Abd6R_0Dc7A32H8Kt_mrPIx5GzqzH1f4jIK1WfG8GSECTq97UP4B7rxVpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFDASHKMmThzHIIQQZdVSWiFEpb0Zx5lVi_ZRyJZl_1p_XWfiZPcCaC-9RJGSsRLPw5PM528AXvIam3uDZLxxEWUpxpHJSjqUaJiQHE3DeHN0nO-fZJ8GarABl91eGIZVdjGxCdTV1PM_8l0umOmMqVJ2hy0s4ste_935z4g7SHGltWunEUzkEBdz-nyr3x7ska5fSdn_-O3DftR2GIh8pswsMn6IuiopJldMZIWlN2TDMtMKFX1KeKwQy9yrzOnU65ySm6HhDRXostjpyqU07g24qVOVsI_pgV4R_iZZ2Ian0qhIEtOiiAK2rOGqPBtTxGBwWdHQrDLXz9-Xxn-lvs0S2L8Dt9vcVbwPxnYXNnByD7aO2ur8fZhTxBRz9xvr1-Lr6WJ2Oj7zIvTZYVMQDVpOUEwZtz3DxIpH2o1GC9GU7mvBqF3KWXF6Qeej6VxUi4mjsWrhmicX_LsCBd3gGSr85wGcXMu0P4TNyXSC2yB8UqB2vnI5TbhJhqX0SZmnldSlKryUPdDdnFrfsp5z842R7eBtP-xKG5a1YePUkjZ6kCwlzwPzxxoyplOb7Xa2Uiy2tDytIftmKdtmPyGrWVN6p7MS20ah2q58pgcvlpcpfnBRKKiRx0h1kVMy04NHwbqWryuNSlUs9eP_D_4ctsgV7eeD48MncIsfKuCZd2Bz9usCn1LWNiufNe4h4Pt1--MV0fxYdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+waves%3A+Rhythmic+electrical+field+stimulation+systematically+alters+spontaneous+slow+dynamics+across+mouse+neocortex&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Greenberg%2C+Anastasia&rft.au=Abadchi%2C+Javad+Karimi&rft.au=Dickson%2C+Clayton+T.&rft.au=Mohajerani%2C+Majid+H.&rft.date=2018-07-01&rft.issn=1053-8119&rft.volume=174&rft.spage=328&rft.epage=339&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.03.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neuroimage_2018_03_019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |