Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals
Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials 1 . Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polar...
Saved in:
Published in | Nature photonics Vol. 14; no. 11; pp. 658 - 662 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1749-4885 1749-4893 |
DOI | 10.1038/s41566-020-0691-0 |
Cover
Loading…
Abstract | Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials
1
. Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light
2
,
3
, we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing
4
, modal vortex light sources
5
,
6
, high-dimensional parametric processes
7
and multi-state optical magnetization
8
, our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light.
An experimental study of the second-harmonic-generation process in a beta barium borate crystal shows that homogeneous optical crystals can exhibit the rich physics of the spin–orbit angular momentum cascade in the nonlinear optical regime. |
---|---|
AbstractList | Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials1. Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light2,3, we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing4, modal vortex light sources5,6, high-dimensional parametric processes7 and multi-state optical magnetization8, our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light.An experimental study of the second-harmonic-generation process in a beta barium borate crystal shows that homogeneous optical crystals can exhibit the rich physics of the spin–orbit angular momentum cascade in the nonlinear optical regime. Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials 1 . Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light 2 , 3 , we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing 4 , modal vortex light sources 5 , 6 , high-dimensional parametric processes 7 and multi-state optical magnetization 8 , our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light. An experimental study of the second-harmonic-generation process in a beta barium borate crystal shows that homogeneous optical crystals can exhibit the rich physics of the spin–orbit angular momentum cascade in the nonlinear optical regime. Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials1. Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light2,3, we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing4, modal vortex light sources5,6, high-dimensional parametric processes7 and multi-state optical magnetization8, our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light |
Author | Brasselet, Etienne Zhang, Xuecai Deng, Junhong Tang, Yutao Li, Kingfai Li, Guixin |
Author_xml | – sequence: 1 givenname: Yutao surname: Tang fullname: Tang, Yutao organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 2 givenname: Kingfai surname: Li fullname: Li, Kingfai organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 3 givenname: Xuecai surname: Zhang fullname: Zhang, Xuecai organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 4 givenname: Junhong surname: Deng fullname: Deng, Junhong organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology – sequence: 5 givenname: Guixin orcidid: 0000-0001-9689-8705 surname: Li fullname: Li, Guixin email: ligx@sustech.edu.cn organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology – sequence: 6 givenname: Etienne orcidid: 0000-0001-6672-6785 surname: Brasselet fullname: Brasselet, Etienne email: etienne.brasselet@u-bordeaux.fr organization: Université de Bordeaux, CNRS, LOMA, UMR 5798 |
BackLink | https://hal.science/hal-03126750$$DView record in HAL |
BookMark | eNp9kM9KAzEQxoMo2FYfwNuCJw-rSTa72RxLUSsseNFzmKZpTdlNapIVevMdfEOfxJT1Dwh6mmHm-2Y-fmN0aJ3VCJ0RfElwUV8FRsqqyjHFOa4EyfEBGhHORM5qURx-93V5jMYhbDAuC0HpCDVz8J2zRmVha-z765vzCxMzsOu-BZ91rtM29l2mIChY6szYLH1ujdVp67bRKGgz5XchQhtO0NEqFX36WSfo8eb6YTbPm_vbu9m0yRUrRcwFVbyuOQFaLgsCGDSlmJdpvGBMEIFXGEAXtRIURKWWsARWEUg9p1woKCboYrj7BK3cetOB30kHRs6njdzPcEFoxUv8QpL2fNBuvXvudYhy43pvUzxJGSclYYlMUvFBpbwLweuVVCZCNM5GD6aVBMs9Zjlglgmz3GNOjyaI_HJ-BfrPQwdPSFq71v4n09-mD7kekWs |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2021_107134 crossref_primary_10_1364_OPTICA_449590 crossref_primary_10_1080_23746149_2024_2327453 crossref_primary_10_1039_D4QI03060E crossref_primary_10_1126_science_abj0039 crossref_primary_10_1364_OL_449823 crossref_primary_10_1002_adpr_202000205 crossref_primary_10_1038_s41566_021_00780_4 crossref_primary_10_1038_s41566_021_00782_2 crossref_primary_10_1063_5_0204694 crossref_primary_10_1126_sciadv_ado7315 crossref_primary_10_29026_oea_2024_240138 crossref_primary_10_1002_ange_202215145 crossref_primary_10_1021_jacs_1c03930 crossref_primary_10_3390_nano13061094 crossref_primary_10_3788_AOS230895 crossref_primary_10_1039_D2TC02699F crossref_primary_10_1103_PhysRevA_104_023506 crossref_primary_10_1038_s41566_022_01023_w crossref_primary_10_1063_5_0252617 crossref_primary_10_1039_D2QI00937D crossref_primary_10_1038_s41377_023_01238_8 crossref_primary_10_1051_epjconf_202328704006 crossref_primary_10_1038_s41566_021_00808_9 crossref_primary_10_1103_PhysRevFluids_9_084610 crossref_primary_10_1002_lpor_202401180 crossref_primary_10_1038_s41598_021_86945_1 crossref_primary_10_1002_lpor_202301089 crossref_primary_10_1103_PhysRevApplied_22_054032 crossref_primary_10_1002_smll_202305828 crossref_primary_10_1016_j_chaos_2021_111406 crossref_primary_10_2478_amns_2021_2_00101 crossref_primary_10_1103_PhysRevA_105_063518 crossref_primary_10_1117_1_AP_6_2_026003 crossref_primary_10_1021_acsphotonics_4c01821 crossref_primary_10_1109_JPHOT_2022_3218815 crossref_primary_10_1088_2040_8986_ac7d5f crossref_primary_10_1140_epjd_s10053_023_00701_w crossref_primary_10_1016_j_mtphys_2023_100987 crossref_primary_10_1016_j_ceramint_2024_03_156 crossref_primary_10_1021_acsphotonics_2c01460 crossref_primary_10_1088_1367_2630_ad50fe crossref_primary_10_1364_OPTICA_487001 crossref_primary_10_1515_nanoph_2024_0174 crossref_primary_10_1186_s43593_024_00074_6 crossref_primary_10_1557_s43578_023_01176_6 crossref_primary_10_1103_PhysRevApplied_19_014045 crossref_primary_10_1038_s41377_021_00474_0 crossref_primary_10_1007_s11082_023_05285_8 crossref_primary_10_1038_s41377_025_01741_0 crossref_primary_10_1038_s41467_022_34740_5 crossref_primary_10_1038_s41467_024_45607_2 crossref_primary_10_1002_adom_202101098 crossref_primary_10_1103_PhysRevLett_129_236101 crossref_primary_10_1063_5_0159662 crossref_primary_10_3390_nano12040653 crossref_primary_10_1126_sciadv_ade0953 crossref_primary_10_1038_s41377_022_00897_3 crossref_primary_10_1039_D5QI00517E crossref_primary_10_1103_PhysRevResearch_2_042045 crossref_primary_10_1103_PhysRevLett_130_153803 crossref_primary_10_1109_JLT_2022_3220509 crossref_primary_10_1103_PhysRevApplied_15_024039 crossref_primary_10_1016_j_optcom_2023_130211 crossref_primary_10_1515_nanoph_2024_0725 crossref_primary_10_1364_OE_507169 crossref_primary_10_1002_adfm_202310407 crossref_primary_10_1038_s41566_021_00841_8 crossref_primary_10_1093_nsr_nwac234 crossref_primary_10_29026_oea_2022_210174 crossref_primary_10_1007_s40843_023_2439_8 crossref_primary_10_1002_anie_202215145 crossref_primary_10_1002_lpor_202301229 crossref_primary_10_1002_lpor_202200681 crossref_primary_10_1186_s43593_021_00005_9 crossref_primary_10_1515_nanoph_2021_0489 crossref_primary_10_1039_D4QI01603C |
Cites_doi | 10.1021/nl401734r 10.1126/science.aat9042 10.1038/nphys3699 10.1038/natrevmats.2017.10 10.1364/OL.27.001875 10.1364/OL.35.000007 10.1364/JOSAA.20.000163 10.1126/science.aaw9486 10.1016/j.optcom.2004.07.023 10.1364/OL.34.001021 10.1364/OL.43.001439 10.1038/s41467-019-11114-y 10.1103/PhysRevLett.108.233902 10.1088/2040-8986/aa9445 10.1038/s41566-020-0623-z 10.1038/nphoton.2012.138 10.1038/nphoton.2014.108 10.1103/PhysRevA.45.8185 10.1038/s41467-019-12251-0 10.1103/PhysRevLett.93.053601 10.1103/PhysRev.171.1104 10.1016/S0030-4018(97)00591-9 10.1126/science.aat8196 10.1515/nanoph-2019-0198 10.1103/PhysRevLett.96.163905 10.1038/lsa.2014.48 10.1364/OL.34.003166 10.1103/PhysRevLett.112.135502 10.1103/PhysRevA.54.R3742 10.1038/s41377-019-0194-2 10.1038/nphoton.2015.201 10.1063/1.1652961 10.1117/1.3572109 10.1103/PhysRevLett.113.033901 10.1016/0030-4018(93)90168-5 10.1103/PhysRevA.88.063827 10.1007/BF03048332 10.1134/1.1448648 10.1117/12.824851 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES |
DOI | 10.1038/s41566-020-0691-0 |
DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1749-4893 |
EndPage | 662 |
ExternalDocumentID | oai_HAL_hal_03126750v1 10_1038_s41566_020_0691_0 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11774145 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -~X 0R~ 123 29M 39C 4.4 5BI 5M7 5S5 70F 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABZEH ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE HCIFZ HVGLF HZ~ I-F LK8 M7P NNMJJ O9- ODYON P2P P62 Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 1XC NFIDA VOOES |
ID | FETCH-LOGICAL-c459t-92c78871a25d31a0ae2207592cb449190f0aae38c92a96cdada461aa967279ca3 |
IEDL.DBID | 8FG |
ISSN | 1749-4885 |
IngestDate | Mon Jul 28 23:39:39 EDT 2025 Sat Aug 23 14:23:13 EDT 2025 Tue Jul 01 03:06:59 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Fri Feb 21 02:42:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-92c78871a25d31a0ae2207592cb449190f0aae38c92a96cdada461aa967279ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6672-6785 0000-0001-9689-8705 |
OpenAccessLink | https://hal.science/hal-03126750 |
PQID | 2471514749 |
PQPubID | 546300 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_03126750v1 proquest_journals_2471514749 crossref_citationtrail_10_1038_s41566_020_0691_0 crossref_primary_10_1038_s41566_020_0691_0 springer_journals_10_1038_s41566_020_0691_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature photonics |
PublicationTitleAbbrev | Nat. Photonics |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Chen (CR35) 2014; 113 Karimi (CR16) 2014; 3 Li, Zhang, Zentgraf (CR23) 2017; 2 Marrucci, Manzo, Paparo (CR14) 2006; 96 Sroor (CR6) 2020; 14 Buono (CR37) 2018; 43 Wang (CR4) 2012; 6 Wei (CR22) 2019; 10 Shen (CR10) 2019; 8 Beržanskis, Matijošius, Piskarskas, Smilgevičius, Stabinis (CR19) 1998; 150 Li (CR15) 2013; 13 Basistiy, Bazhenov, Soskin, Vasnetsov (CR17) 1993; 103 Bloch (CR20) 2012; 108 Wang (CR38) 2018; 361 Langford (CR29) 2004; 93 CR31 Patel, Van Tran (CR3) 1969; 15 Shao, Wu, Chen, Xu, Lu (CR34) 2013; 88 Rego (CR40) 2019; 364 Sato, Kozawa (CR32) 2009; 34 Konishi (CR36) 2014; 112 Volyar, Fadeeva, Egorov (CR11) 2002; 28 Bekshaev, Soskin, Vasnetsov (CR26) 2004; 241 Belyi, Khilo, Kazak, Ryzhevich, Forbes (CR33) 2011; 50 Biener, Niv, Kleiner, Hasman (CR13) 2002; 27 Dholakia, Simpson, Padgett, Allen (CR18) 1996; 54 Omatsu, Miyamoto, Lee (CR5) 2017; 19 Ciattoni, Cincotti, Palma (CR12) 2003; 20 Chen, Wu, Jiang, You (CR25) 1985; 28 Stav (CR39) 2018; 361 Liu (CR21) 2019; 10 Allen, Beijersbergen, Spreeuw, Woerdman (CR9) 1992; 45 Bliokh, Rodríguez-Fortuño, Nori, Zayats (CR1) 2015; 9 Lin (CR8) 2019; 8 Brasselet (CR28) 2009; 34 Loussert, Brasselet (CR27) 2010; 35 Simon, Bloembergen (CR2) 1968; 171 Bhagavantam, Chandrasekhar (CR30) 1972; 76 Fleischer, Kfir, Diskin, Sidorenko, Cohen (CR7) 2014; 8 Li, Zentgraf, Zhang (CR24) 2016; 12 A Ciattoni (691_CR12) 2003; 20 S Chen (691_CR35) 2014; 113 IV Basistiy (691_CR17) 1993; 103 C Loussert (691_CR27) 2010; 35 Y Shen (691_CR10) 2019; 8 L Marrucci (691_CR14) 2006; 96 G-H Shao (691_CR34) 2013; 88 T Omatsu (691_CR5) 2017; 19 G Li (691_CR23) 2017; 2 KY Bliokh (691_CR1) 2015; 9 E Brasselet (691_CR28) 2009; 34 NK Langford (691_CR29) 2004; 93 S Bhagavantam (691_CR30) 1972; 76 AY Bekshaev (691_CR26) 2004; 241 V Belyi (691_CR33) 2011; 50 A Beržanskis (691_CR19) 1998; 150 D Wei (691_CR22) 2019; 10 G Li (691_CR15) 2013; 13 G Biener (691_CR13) 2002; 27 CKN Patel (691_CR3) 1969; 15 L Rego (691_CR40) 2019; 364 WT Buono (691_CR37) 2018; 43 T Stav (691_CR39) 2018; 361 H Sroor (691_CR6) 2020; 14 691_CR31 AV Volyar (691_CR11) 2002; 28 J Wang (691_CR4) 2012; 6 E Karimi (691_CR16) 2014; 3 C Chen (691_CR25) 1985; 28 K Wang (691_CR38) 2018; 361 HJ Simon (691_CR2) 1968; 171 G Li (691_CR24) 2016; 12 A Fleischer (691_CR7) 2014; 8 S Sato (691_CR32) 2009; 34 NV Bloch (691_CR20) 2012; 108 S Lin (691_CR8) 2019; 8 L Allen (691_CR9) 1992; 45 K Konishi (691_CR36) 2014; 112 K Dholakia (691_CR18) 1996; 54 S Liu (691_CR21) 2019; 10 |
References_xml | – volume: 13 start-page: 4148 year: 2013 end-page: 4151 ident: CR15 article-title: Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light publication-title: Nano Lett. doi: 10.1021/nl401734r – volume: 361 start-page: 1101 year: 2018 end-page: 1104 ident: CR39 article-title: Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials publication-title: Science doi: 10.1126/science.aat9042 – volume: 12 start-page: 736 year: 2016 end-page: 740 ident: CR24 article-title: Rotational Doppler effect in nonlinear optics publication-title: Nat. Phys. doi: 10.1038/nphys3699 – volume: 2 start-page: 17010 year: 2017 ident: CR23 article-title: Nonlinear photonic metasurfaces publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.10 – volume: 27 start-page: 1875 year: 2002 end-page: 1877 ident: CR13 article-title: Formation of helical beams by use of Pancharatnam-Berry phase optical elements publication-title: Opt. Lett. doi: 10.1364/OL.27.001875 – volume: 35 start-page: 7 year: 2010 end-page: 9 ident: CR27 article-title: Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media publication-title: Opt. Lett. doi: 10.1364/OL.35.000007 – volume: 20 start-page: 163 year: 2003 end-page: 171 ident: CR12 article-title: Circularly polarized beams and vortex generation in uniaxial media publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.20.000163 – volume: 364 start-page: eaaw9486 year: 2019 ident: CR40 article-title: Generation of extreme-ultraviolet beams with time-varying orbital angular momentum publication-title: Science doi: 10.1126/science.aaw9486 – volume: 241 start-page: 237 year: 2004 end-page: 247 ident: CR26 article-title: Transformation of higher-order optical vortices upon focusing by an astigmatic lens publication-title: Opt. Commun. doi: 10.1016/j.optcom.2004.07.023 – volume: 34 start-page: 1021 year: 2009 end-page: 1023 ident: CR28 article-title: Dynamics of optical spin-orbit coupling in uniaxial crystals publication-title: Opt. Lett. doi: 10.1364/OL.34.001021 – volume: 43 start-page: 1439 year: 2018 end-page: 1442 ident: CR37 article-title: Polarization-controlled orbital angular momentum switching in nonlinear wave mixing publication-title: Opt. Lett. doi: 10.1364/OL.43.001439 – volume: 10 year: 2019 ident: CR21 article-title: Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals publication-title: Nat. Commun. doi: 10.1038/s41467-019-11114-y – volume: 108 start-page: 233902 year: 2012 ident: CR20 article-title: Twisting light by nonlinear photonic crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.233902 – volume: 19 start-page: 123002 year: 2017 ident: CR5 article-title: Wavelength-versatile optical vortex lasers publication-title: J. Opt. doi: 10.1088/2040-8986/aa9445 – volume: 14 start-page: 498 year: 2020 end-page: 503 ident: CR6 article-title: High-purity orbital angular momentum states from a visible metasurface laser publication-title: Nat. Photon. doi: 10.1038/s41566-020-0623-z – volume: 6 start-page: 488 year: 2012 end-page: 496 ident: CR4 article-title: Terabit free-space data transmission employing orbital angular momentum multiplexing publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.138 – volume: 8 start-page: 543 year: 2014 end-page: 549 ident: CR7 article-title: Spin angular momentum and tunable polarization in high-harmonic generation publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.108 – volume: 45 start-page: 8185 year: 1992 end-page: 8189 ident: CR9 article-title: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8185 – volume: 10 year: 2019 ident: CR22 article-title: Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals publication-title: Nat. Commun. doi: 10.1038/s41467-019-12251-0 – volume: 93 start-page: 053601 year: 2004 ident: CR29 article-title: Measuring entangled qutrits and their use for quantum bit commitment publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.053601 – volume: 171 start-page: 1104 year: 1968 end-page: 1114 ident: CR2 article-title: Second-harmonic light generation in crystals with natural optical activity publication-title: Phys. Rev. doi: 10.1103/PhysRev.171.1104 – volume: 150 start-page: 372 year: 1998 end-page: 380 ident: CR19 article-title: Sum-frequency mixing of optical vortices in nonlinear crystals publication-title: Opt. Commun. doi: 10.1016/S0030-4018(97)00591-9 – volume: 361 start-page: 1104 year: 2018 end-page: 1108 ident: CR38 article-title: Quantum metasurface for multiphoton interference and state reconstruction publication-title: Science doi: 10.1126/science.aat8196 – volume: 8 start-page: 2177 year: 2019 end-page: 2188 ident: CR8 article-title: All-optical vectorial control of multistate magnetization through anisotropy-mediated spin-orbit coupling publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0198 – volume: 96 start-page: 163905 year: 2006 ident: CR14 article-title: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.163905 – volume: 3 start-page: e167 year: 2014 ident: CR16 article-title: Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.48 – volume: 28 start-page: 235 year: 1985 end-page: 243 ident: CR25 article-title: A new-type ultraviolet SHG crystal: -BaB O publication-title: Sci. Sin. Ser. B – volume: 34 start-page: 3166 year: 2009 end-page: 3168 ident: CR32 article-title: Radially polarized annular beam generated through a second-harmonic-generation process publication-title: Opt. Lett. doi: 10.1364/OL.34.003166 – volume: 112 start-page: 135502 year: 2014 ident: CR36 article-title: Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.135502 – volume: 54 start-page: R3742 year: 1996 end-page: R3745 ident: CR18 article-title: Second-harmonic generation and the orbital angular momentum of light publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.R3742 – volume: 8 start-page: 90 year: 2019 ident: CR10 article-title: Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0194-2 – volume: 9 start-page: 796 year: 2015 end-page: 808 ident: CR1 article-title: Spin–orbit interactions of light publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.201 – ident: CR31 – volume: 15 start-page: 189 year: 1969 end-page: 191 ident: CR3 article-title: Phase-matched nonlinear interaction between circularly polarized waves publication-title: Appl. Phys. Lett. doi: 10.1063/1.1652961 – volume: 50 start-page: 059001 year: 2011 ident: CR33 article-title: Propagation of high-order circularly polarized Bessel beams and vortex generation in uniaxial publication-title: Opt. Eng. doi: 10.1117/1.3572109 – volume: 113 start-page: 033901 year: 2014 ident: CR35 article-title: Symmetry-selective third-harmonic generation from plasmonic metacrystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.033901 – volume: 103 start-page: 422 year: 1993 end-page: 428 ident: CR17 article-title: Optics of light beams with screw dislocations publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90168-5 – volume: 88 start-page: 063827 year: 2013 ident: CR34 article-title: Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.063827 – volume: 76 start-page: 13 year: 1972 end-page: 20 ident: CR30 article-title: Harmonic generation and selection rules in nonlinear optics publication-title: Proc. Ind. Acad. Sci. A doi: 10.1007/BF03048332 – volume: 28 start-page: 70 year: 2002 end-page: 77 ident: CR11 article-title: Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation publication-title: Tech. Phys. Lett. doi: 10.1134/1.1448648 – volume: 108 start-page: 233902 year: 2012 ident: 691_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.233902 – volume: 35 start-page: 7 year: 2010 ident: 691_CR27 publication-title: Opt. Lett. doi: 10.1364/OL.35.000007 – volume: 361 start-page: 1104 year: 2018 ident: 691_CR38 publication-title: Science doi: 10.1126/science.aat8196 – volume: 93 start-page: 053601 year: 2004 ident: 691_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.053601 – volume: 103 start-page: 422 year: 1993 ident: 691_CR17 publication-title: Opt. Commun. doi: 10.1016/0030-4018(93)90168-5 – volume: 113 start-page: 033901 year: 2014 ident: 691_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.033901 – volume: 6 start-page: 488 year: 2012 ident: 691_CR4 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.138 – volume: 76 start-page: 13 year: 1972 ident: 691_CR30 publication-title: Proc. Ind. Acad. Sci. A doi: 10.1007/BF03048332 – ident: 691_CR31 doi: 10.1117/12.824851 – volume: 45 start-page: 8185 year: 1992 ident: 691_CR9 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8185 – volume: 43 start-page: 1439 year: 2018 ident: 691_CR37 publication-title: Opt. Lett. doi: 10.1364/OL.43.001439 – volume: 364 start-page: eaaw9486 year: 2019 ident: 691_CR40 publication-title: Science doi: 10.1126/science.aaw9486 – volume: 3 start-page: e167 year: 2014 ident: 691_CR16 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.48 – volume: 2 start-page: 17010 year: 2017 ident: 691_CR23 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.10 – volume: 28 start-page: 235 year: 1985 ident: 691_CR25 publication-title: Sci. Sin. Ser. B – volume: 34 start-page: 1021 year: 2009 ident: 691_CR28 publication-title: Opt. Lett. doi: 10.1364/OL.34.001021 – volume: 13 start-page: 4148 year: 2013 ident: 691_CR15 publication-title: Nano Lett. doi: 10.1021/nl401734r – volume: 241 start-page: 237 year: 2004 ident: 691_CR26 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2004.07.023 – volume: 19 start-page: 123002 year: 2017 ident: 691_CR5 publication-title: J. Opt. doi: 10.1088/2040-8986/aa9445 – volume: 20 start-page: 163 year: 2003 ident: 691_CR12 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.20.000163 – volume: 171 start-page: 1104 year: 1968 ident: 691_CR2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.171.1104 – volume: 10 year: 2019 ident: 691_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12251-0 – volume: 8 start-page: 90 year: 2019 ident: 691_CR10 publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0194-2 – volume: 150 start-page: 372 year: 1998 ident: 691_CR19 publication-title: Opt. Commun. doi: 10.1016/S0030-4018(97)00591-9 – volume: 28 start-page: 70 year: 2002 ident: 691_CR11 publication-title: Tech. Phys. Lett. doi: 10.1134/1.1448648 – volume: 50 start-page: 059001 year: 2011 ident: 691_CR33 publication-title: Opt. Eng. doi: 10.1117/1.3572109 – volume: 8 start-page: 543 year: 2014 ident: 691_CR7 publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.108 – volume: 34 start-page: 3166 year: 2009 ident: 691_CR32 publication-title: Opt. Lett. doi: 10.1364/OL.34.003166 – volume: 27 start-page: 1875 year: 2002 ident: 691_CR13 publication-title: Opt. Lett. doi: 10.1364/OL.27.001875 – volume: 96 start-page: 163905 year: 2006 ident: 691_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.163905 – volume: 112 start-page: 135502 year: 2014 ident: 691_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.135502 – volume: 10 year: 2019 ident: 691_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11114-y – volume: 14 start-page: 498 year: 2020 ident: 691_CR6 publication-title: Nat. Photon. doi: 10.1038/s41566-020-0623-z – volume: 9 start-page: 796 year: 2015 ident: 691_CR1 publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.201 – volume: 8 start-page: 2177 year: 2019 ident: 691_CR8 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0198 – volume: 361 start-page: 1101 year: 2018 ident: 691_CR39 publication-title: Science doi: 10.1126/science.aat9042 – volume: 15 start-page: 189 year: 1969 ident: 691_CR3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1652961 – volume: 12 start-page: 736 year: 2016 ident: 691_CR24 publication-title: Nat. Phys. doi: 10.1038/nphys3699 – volume: 88 start-page: 063827 year: 2013 ident: 691_CR34 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.063827 – volume: 54 start-page: R3742 year: 1996 ident: 691_CR18 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.R3742 |
SSID | ssj0053922 |
Score | 2.5863736 |
Snippet | Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 658 |
SubjectTerms | 639/624/400/385 639/766/400/385 Angular momentum Applied and Technical Physics Barium BBO crystals Circular polarization Crystals Letter Nonlinear control Nonlinear optics Optics Photonic crystals Physics Physics and Astronomy Quantum Physics Second harmonic generation Spin-orbit interactions |
Title | Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals |
URI | https://link.springer.com/article/10.1038/s41566-020-0691-0 https://www.proquest.com/docview/2471514749 https://hal.science/hal-03126750 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LatwwcGiSSy9t-qLbJkGUnlpMZFnetU5lt2S7lLCU0kBuYizZdCH7yNop9NZ_6B_2Szojy0lTSE42kmzBzGjemgF46xH1CGtMCpdlZKAYn5QqXGDWvjYjl5Y-VPucD2dn-vN5fh4dbk1Mq-x5YmDUfu3YR36siIuScB9p82FzmXDXKI6uxhYaO7CXkqRhCi-mn3pOnJPsV92FSJMQoeZ9VDMrjptguCRsPMkhJ__ckks73zkr8h-V878oaRA-0314FLVGMe7Q_AQeVKun8DhqkCKez-YZnM5wu-Rit6LZLFZ_fv1eb8tFK9gnSRasWHK5hfZqKRw2nBcvFiux6mpl0Ox6E_zawm1_ksp40TyHs-nJt4-zJPZLSJzOTZsY5Tg3MEWV-yxFiZVSpBHQcKm1IclfS8QqK5xRaIbOo0c9TJHeSYkxDrMXsEubVi9BKFRGl45QVUpdV7LEtM5N5auRrNHnagCyh5Z1sZg497S4sCGonRW2A7AlAFsGsJUDeHf9yaarpHHf4jeEgut1XAN7Nj61PEZcSJGVI3-kAzjoMWTjyWvsDZ0M4H2PtZvpO3d8df_PXsNDxcQSbiEewG67vaoOSR1py6NAc0ewN55OJnN6Tk7mX77-BVA13mM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNSWA1x4I7YtYCG4gKI6trMbHxCqgCWlS0-t1JuZ2I5Yqftgk4J64x_4Dz6KL2HsJC0g0Vtvke3Y0sx4Hp4XwDOHqEZYYZJbKclA0S4pRUxgVq7SI5uWLlb7PBgWR-rDcXa8Bj_7XJgQVtnzxMio3cKGN_IdQVyUhPtI6dfLL0noGhW8q30LjZYs9v3ZNzLZ6ld7bwm_z4UYvzt8UyRdV4HEqkw3iRY2RNClKDInU-TohSC5ScOlUprkY8URvcytFqiH1qFDNUyRvknUa4uS9l2Ha0pKHUII8_H7nvNnpGuINgFTJ3Qxst6LKvOdOhpKSTDW-DAEG_0lB9c_hyjMP1Tcf7yyUdiNb8PNTktluy1Z3YE1P78LtzqNlXX8oL4HkwJXs1Bcl9XL6fzX9x-LVTltWHgDJYuZzUJ5h-Z0xizWIQ6fTeds3tbmoNnFMr6jM7s6IxX1pL4PR1cCyQewQYf6h8AECq1KS6RRclV5XmJaZdo7P-IVukwMgPfQMrYrXh56aJyY6ESXuWkBbAjAJgDY8AG8OP9l2VbuuGzxU0LB-bpQc7vYnZgwRlxPkFXFv6YD2O4xZLqbXpsLuhzAyx5rF9P_PXHz8s2ewPXi8OPETPYO9rfghgiEEzMgt2GjWZ36R6QKNeXjSH8MPl01wf8GDqAXoA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNQWCXHhjVgoYCG4gKJ1HGcTHxCqKMuWrioOVOrNTGxHrNR9sElBvfEP_A2fw5cwk0cLSPTWW2Q7tjQznofnBfDMI-oMS4xylyRkoBgfFapJYNa-NJmLC99U-zwYTQ71-6P0aAN-9rkwHFbZ88SGUful4zfyoSIuSsI902ZYdmERH3bHr1dfIu4gxZ7Wvp1GSyL74fQbmW_Vq71dwvVzpcZvP76ZRF2Hgcjp1NSRUY6j6WJUqU9ilBiUIhlKw4XWhmRlKRFDkjuj0IycR496FCN9k9g3DhPadxOuZEkuuXtCPn7XS4GU9A7VJmOaiC5J2ntUk3xYNUZTxIabHHHg0V8ycfMzR2T-oe7-46FtBN_4JlzvNFax05LYLdgIi9two9NeRccbqjswneB6zoV2RbWaLX59_7FcF7Na8HsoWc9izqUe6pO5cFhxTL6YLcSirdNBs8tV86Yu3PqU1NXj6i4cXgok78EWHRrug1CojC4ckUkhdRlkgXGZmuBDJkv0qRqA7KFlXVfInPtpHNvGoZ7ktgWwJQBbBrCVA3hx9suqreJx0eKnhIKzdVx_e7IztTxGHFCRhSW_xgPY7jFku1tf2XMaHcDLHmvn0_898cHFmz2Bq0Tqdrp3sP8QrimmmyYZchu26vVJeERaUV08bshPwKfLpvffANMbzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+spin%E2%80%93orbit+angular+momentum+cascade+in+nonlinear+optical+crystals&rft.jtitle=Nature+photonics&rft.au=Tang%2C+Yutao&rft.au=Li%2C+Kingfai&rft.au=Zhang%2C+Xuecai&rft.au=Deng%2C+Junhong&rft.date=2020-11-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=14&rft.issue=11&rft.spage=658&rft.epage=662&rft_id=info:doi/10.1038%2Fs41566-020-0691-0&rft.externalDocID=10_1038_s41566_020_0691_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |