Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals

Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials 1 . Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polar...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 14; no. 11; pp. 658 - 662
Main Authors Tang, Yutao, Li, Kingfai, Zhang, Xuecai, Deng, Junhong, Li, Guixin, Brasselet, Etienne
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1749-4885
1749-4893
DOI10.1038/s41566-020-0691-0

Cover

Loading…
Abstract Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials 1 . Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light 2 , 3 , we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing 4 , modal vortex light sources 5 , 6 , high-dimensional parametric processes 7 and multi-state optical magnetization 8 , our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light. An experimental study of the second-harmonic-generation process in a beta barium borate crystal shows that homogeneous optical crystals can exhibit the rich physics of the spin–orbit angular momentum cascade in the nonlinear optical regime.
AbstractList Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials1. Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light2,3, we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing4, modal vortex light sources5,6, high-dimensional parametric processes7 and multi-state optical magnetization8, our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light.An experimental study of the second-harmonic-generation process in a beta barium borate crystal shows that homogeneous optical crystals can exhibit the rich physics of the spin–orbit angular momentum cascade in the nonlinear optical regime.
Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials 1 . Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light 2 , 3 , we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing 4 , modal vortex light sources 5 , 6 , high-dimensional parametric processes 7 and multi-state optical magnetization 8 , our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light. An experimental study of the second-harmonic-generation process in a beta barium borate crystal shows that homogeneous optical crystals can exhibit the rich physics of the spin–orbit angular momentum cascade in the nonlinear optical regime.
Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical processes in spatially engineered optical materials1. Re-examining the basics of nonlinear optics of homogeneous crystals under circularly polarized light2,3, we report experiments on the enrichment of the spin–orbit angular momentum spectrum of paraxial light. The demonstration is made within the framework of second-harmonic generation using a crystal with three-fold rotational symmetry. Four spin–orbit optical states for the second harmonic field are predicted from a single fundamental state owing to the interplay between linear spin–orbit coupling and nonlinear wave mixing; three of these states are experimentally verified. Besides representing a spin-controlled nonlinear route to orbital angular multiplexing4, modal vortex light sources5,6, high-dimensional parametric processes7 and multi-state optical magnetization8, our findings suggest that the fundamentals of nonlinear optics are worth revisiting through the prism of the spin–orbit interaction of light
Author Brasselet, Etienne
Zhang, Xuecai
Deng, Junhong
Tang, Yutao
Li, Kingfai
Li, Guixin
Author_xml – sequence: 1
  givenname: Yutao
  surname: Tang
  fullname: Tang, Yutao
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 2
  givenname: Kingfai
  surname: Li
  fullname: Li, Kingfai
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 3
  givenname: Xuecai
  surname: Zhang
  fullname: Zhang, Xuecai
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology
– sequence: 4
  givenname: Junhong
  surname: Deng
  fullname: Deng, Junhong
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology
– sequence: 5
  givenname: Guixin
  orcidid: 0000-0001-9689-8705
  surname: Li
  fullname: Li, Guixin
  email: ligx@sustech.edu.cn
  organization: Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology
– sequence: 6
  givenname: Etienne
  orcidid: 0000-0001-6672-6785
  surname: Brasselet
  fullname: Brasselet, Etienne
  email: etienne.brasselet@u-bordeaux.fr
  organization: Université de Bordeaux, CNRS, LOMA, UMR 5798
BackLink https://hal.science/hal-03126750$$DView record in HAL
BookMark eNp9kM9KAzEQxoMo2FYfwNuCJw-rSTa72RxLUSsseNFzmKZpTdlNapIVevMdfEOfxJT1Dwh6mmHm-2Y-fmN0aJ3VCJ0RfElwUV8FRsqqyjHFOa4EyfEBGhHORM5qURx-93V5jMYhbDAuC0HpCDVz8J2zRmVha-z765vzCxMzsOu-BZ91rtM29l2mIChY6szYLH1ujdVp67bRKGgz5XchQhtO0NEqFX36WSfo8eb6YTbPm_vbu9m0yRUrRcwFVbyuOQFaLgsCGDSlmJdpvGBMEIFXGEAXtRIURKWWsARWEUg9p1woKCboYrj7BK3cetOB30kHRs6njdzPcEFoxUv8QpL2fNBuvXvudYhy43pvUzxJGSclYYlMUvFBpbwLweuVVCZCNM5GD6aVBMs9Zjlglgmz3GNOjyaI_HJ-BfrPQwdPSFq71v4n09-mD7kekWs
CitedBy_id crossref_primary_10_1016_j_optlastec_2021_107134
crossref_primary_10_1364_OPTICA_449590
crossref_primary_10_1080_23746149_2024_2327453
crossref_primary_10_1039_D4QI03060E
crossref_primary_10_1126_science_abj0039
crossref_primary_10_1364_OL_449823
crossref_primary_10_1002_adpr_202000205
crossref_primary_10_1038_s41566_021_00780_4
crossref_primary_10_1038_s41566_021_00782_2
crossref_primary_10_1063_5_0204694
crossref_primary_10_1126_sciadv_ado7315
crossref_primary_10_29026_oea_2024_240138
crossref_primary_10_1002_ange_202215145
crossref_primary_10_1021_jacs_1c03930
crossref_primary_10_3390_nano13061094
crossref_primary_10_3788_AOS230895
crossref_primary_10_1039_D2TC02699F
crossref_primary_10_1103_PhysRevA_104_023506
crossref_primary_10_1038_s41566_022_01023_w
crossref_primary_10_1063_5_0252617
crossref_primary_10_1039_D2QI00937D
crossref_primary_10_1038_s41377_023_01238_8
crossref_primary_10_1051_epjconf_202328704006
crossref_primary_10_1038_s41566_021_00808_9
crossref_primary_10_1103_PhysRevFluids_9_084610
crossref_primary_10_1002_lpor_202401180
crossref_primary_10_1038_s41598_021_86945_1
crossref_primary_10_1002_lpor_202301089
crossref_primary_10_1103_PhysRevApplied_22_054032
crossref_primary_10_1002_smll_202305828
crossref_primary_10_1016_j_chaos_2021_111406
crossref_primary_10_2478_amns_2021_2_00101
crossref_primary_10_1103_PhysRevA_105_063518
crossref_primary_10_1117_1_AP_6_2_026003
crossref_primary_10_1021_acsphotonics_4c01821
crossref_primary_10_1109_JPHOT_2022_3218815
crossref_primary_10_1088_2040_8986_ac7d5f
crossref_primary_10_1140_epjd_s10053_023_00701_w
crossref_primary_10_1016_j_mtphys_2023_100987
crossref_primary_10_1016_j_ceramint_2024_03_156
crossref_primary_10_1021_acsphotonics_2c01460
crossref_primary_10_1088_1367_2630_ad50fe
crossref_primary_10_1364_OPTICA_487001
crossref_primary_10_1515_nanoph_2024_0174
crossref_primary_10_1186_s43593_024_00074_6
crossref_primary_10_1557_s43578_023_01176_6
crossref_primary_10_1103_PhysRevApplied_19_014045
crossref_primary_10_1038_s41377_021_00474_0
crossref_primary_10_1007_s11082_023_05285_8
crossref_primary_10_1038_s41377_025_01741_0
crossref_primary_10_1038_s41467_022_34740_5
crossref_primary_10_1038_s41467_024_45607_2
crossref_primary_10_1002_adom_202101098
crossref_primary_10_1103_PhysRevLett_129_236101
crossref_primary_10_1063_5_0159662
crossref_primary_10_3390_nano12040653
crossref_primary_10_1126_sciadv_ade0953
crossref_primary_10_1038_s41377_022_00897_3
crossref_primary_10_1039_D5QI00517E
crossref_primary_10_1103_PhysRevResearch_2_042045
crossref_primary_10_1103_PhysRevLett_130_153803
crossref_primary_10_1109_JLT_2022_3220509
crossref_primary_10_1103_PhysRevApplied_15_024039
crossref_primary_10_1016_j_optcom_2023_130211
crossref_primary_10_1515_nanoph_2024_0725
crossref_primary_10_1364_OE_507169
crossref_primary_10_1002_adfm_202310407
crossref_primary_10_1038_s41566_021_00841_8
crossref_primary_10_1093_nsr_nwac234
crossref_primary_10_29026_oea_2022_210174
crossref_primary_10_1007_s40843_023_2439_8
crossref_primary_10_1002_anie_202215145
crossref_primary_10_1002_lpor_202301229
crossref_primary_10_1002_lpor_202200681
crossref_primary_10_1186_s43593_021_00005_9
crossref_primary_10_1515_nanoph_2021_0489
crossref_primary_10_1039_D4QI01603C
Cites_doi 10.1021/nl401734r
10.1126/science.aat9042
10.1038/nphys3699
10.1038/natrevmats.2017.10
10.1364/OL.27.001875
10.1364/OL.35.000007
10.1364/JOSAA.20.000163
10.1126/science.aaw9486
10.1016/j.optcom.2004.07.023
10.1364/OL.34.001021
10.1364/OL.43.001439
10.1038/s41467-019-11114-y
10.1103/PhysRevLett.108.233902
10.1088/2040-8986/aa9445
10.1038/s41566-020-0623-z
10.1038/nphoton.2012.138
10.1038/nphoton.2014.108
10.1103/PhysRevA.45.8185
10.1038/s41467-019-12251-0
10.1103/PhysRevLett.93.053601
10.1103/PhysRev.171.1104
10.1016/S0030-4018(97)00591-9
10.1126/science.aat8196
10.1515/nanoph-2019-0198
10.1103/PhysRevLett.96.163905
10.1038/lsa.2014.48
10.1364/OL.34.003166
10.1103/PhysRevLett.112.135502
10.1103/PhysRevA.54.R3742
10.1038/s41377-019-0194-2
10.1038/nphoton.2015.201
10.1063/1.1652961
10.1117/1.3572109
10.1103/PhysRevLett.113.033901
10.1016/0030-4018(93)90168-5
10.1103/PhysRevA.88.063827
10.1007/BF03048332
10.1134/1.1448648
10.1117/12.824851
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QO
7SP
7U5
8FD
8FE
8FG
8FH
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
L7M
LK8
M7P
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOI 10.1038/s41566-020-0691-0
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1749-4893
EndPage 662
ExternalDocumentID oai_HAL_hal_03126750v1
10_1038_s41566_020_0691_0
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11774145
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -~X
0R~
123
29M
39C
4.4
5BI
5M7
5S5
70F
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABZEH
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NNMJJ
O9-
ODYON
P2P
P62
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QO
7SP
7U5
8FD
AZQEC
DWQXO
FR3
GNUQQ
H8D
L7M
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
1XC
NFIDA
VOOES
ID FETCH-LOGICAL-c459t-92c78871a25d31a0ae2207592cb449190f0aae38c92a96cdada461aa967279ca3
IEDL.DBID 8FG
ISSN 1749-4885
IngestDate Mon Jul 28 23:39:39 EDT 2025
Sat Aug 23 14:23:13 EDT 2025
Tue Jul 01 03:06:59 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Fri Feb 21 02:42:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-92c78871a25d31a0ae2207592cb449190f0aae38c92a96cdada461aa967279ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6672-6785
0000-0001-9689-8705
OpenAccessLink https://hal.science/hal-03126750
PQID 2471514749
PQPubID 546300
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_03126750v1
proquest_journals_2471514749
crossref_citationtrail_10_1038_s41566_020_0691_0
crossref_primary_10_1038_s41566_020_0691_0
springer_journals_10_1038_s41566_020_0691_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature photonics
PublicationTitleAbbrev Nat. Photonics
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chen (CR35) 2014; 113
Karimi (CR16) 2014; 3
Li, Zhang, Zentgraf (CR23) 2017; 2
Marrucci, Manzo, Paparo (CR14) 2006; 96
Sroor (CR6) 2020; 14
Buono (CR37) 2018; 43
Wang (CR4) 2012; 6
Wei (CR22) 2019; 10
Shen (CR10) 2019; 8
Beržanskis, Matijošius, Piskarskas, Smilgevičius, Stabinis (CR19) 1998; 150
Li (CR15) 2013; 13
Basistiy, Bazhenov, Soskin, Vasnetsov (CR17) 1993; 103
Bloch (CR20) 2012; 108
Wang (CR38) 2018; 361
Langford (CR29) 2004; 93
CR31
Patel, Van Tran (CR3) 1969; 15
Shao, Wu, Chen, Xu, Lu (CR34) 2013; 88
Rego (CR40) 2019; 364
Sato, Kozawa (CR32) 2009; 34
Konishi (CR36) 2014; 112
Volyar, Fadeeva, Egorov (CR11) 2002; 28
Bekshaev, Soskin, Vasnetsov (CR26) 2004; 241
Belyi, Khilo, Kazak, Ryzhevich, Forbes (CR33) 2011; 50
Biener, Niv, Kleiner, Hasman (CR13) 2002; 27
Dholakia, Simpson, Padgett, Allen (CR18) 1996; 54
Omatsu, Miyamoto, Lee (CR5) 2017; 19
Ciattoni, Cincotti, Palma (CR12) 2003; 20
Chen, Wu, Jiang, You (CR25) 1985; 28
Stav (CR39) 2018; 361
Liu (CR21) 2019; 10
Allen, Beijersbergen, Spreeuw, Woerdman (CR9) 1992; 45
Bliokh, Rodríguez-Fortuño, Nori, Zayats (CR1) 2015; 9
Lin (CR8) 2019; 8
Brasselet (CR28) 2009; 34
Loussert, Brasselet (CR27) 2010; 35
Simon, Bloembergen (CR2) 1968; 171
Bhagavantam, Chandrasekhar (CR30) 1972; 76
Fleischer, Kfir, Diskin, Sidorenko, Cohen (CR7) 2014; 8
Li, Zentgraf, Zhang (CR24) 2016; 12
A Ciattoni (691_CR12) 2003; 20
S Chen (691_CR35) 2014; 113
IV Basistiy (691_CR17) 1993; 103
C Loussert (691_CR27) 2010; 35
Y Shen (691_CR10) 2019; 8
L Marrucci (691_CR14) 2006; 96
G-H Shao (691_CR34) 2013; 88
T Omatsu (691_CR5) 2017; 19
G Li (691_CR23) 2017; 2
KY Bliokh (691_CR1) 2015; 9
E Brasselet (691_CR28) 2009; 34
NK Langford (691_CR29) 2004; 93
S Bhagavantam (691_CR30) 1972; 76
AY Bekshaev (691_CR26) 2004; 241
V Belyi (691_CR33) 2011; 50
A Beržanskis (691_CR19) 1998; 150
D Wei (691_CR22) 2019; 10
G Li (691_CR15) 2013; 13
G Biener (691_CR13) 2002; 27
CKN Patel (691_CR3) 1969; 15
L Rego (691_CR40) 2019; 364
WT Buono (691_CR37) 2018; 43
T Stav (691_CR39) 2018; 361
H Sroor (691_CR6) 2020; 14
691_CR31
AV Volyar (691_CR11) 2002; 28
J Wang (691_CR4) 2012; 6
E Karimi (691_CR16) 2014; 3
C Chen (691_CR25) 1985; 28
K Wang (691_CR38) 2018; 361
HJ Simon (691_CR2) 1968; 171
G Li (691_CR24) 2016; 12
A Fleischer (691_CR7) 2014; 8
S Sato (691_CR32) 2009; 34
NV Bloch (691_CR20) 2012; 108
S Lin (691_CR8) 2019; 8
L Allen (691_CR9) 1992; 45
K Konishi (691_CR36) 2014; 112
K Dholakia (691_CR18) 1996; 54
S Liu (691_CR21) 2019; 10
References_xml – volume: 13
  start-page: 4148
  year: 2013
  end-page: 4151
  ident: CR15
  article-title: Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light
  publication-title: Nano Lett.
  doi: 10.1021/nl401734r
– volume: 361
  start-page: 1101
  year: 2018
  end-page: 1104
  ident: CR39
  article-title: Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials
  publication-title: Science
  doi: 10.1126/science.aat9042
– volume: 12
  start-page: 736
  year: 2016
  end-page: 740
  ident: CR24
  article-title: Rotational Doppler effect in nonlinear optics
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3699
– volume: 2
  start-page: 17010
  year: 2017
  ident: CR23
  article-title: Nonlinear photonic metasurfaces
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.10
– volume: 27
  start-page: 1875
  year: 2002
  end-page: 1877
  ident: CR13
  article-title: Formation of helical beams by use of Pancharatnam-Berry phase optical elements
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001875
– volume: 35
  start-page: 7
  year: 2010
  end-page: 9
  ident: CR27
  article-title: Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.000007
– volume: 20
  start-page: 163
  year: 2003
  end-page: 171
  ident: CR12
  article-title: Circularly polarized beams and vortex generation in uniaxial media
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.20.000163
– volume: 364
  start-page: eaaw9486
  year: 2019
  ident: CR40
  article-title: Generation of extreme-ultraviolet beams with time-varying orbital angular momentum
  publication-title: Science
  doi: 10.1126/science.aaw9486
– volume: 241
  start-page: 237
  year: 2004
  end-page: 247
  ident: CR26
  article-title: Transformation of higher-order optical vortices upon focusing by an astigmatic lens
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2004.07.023
– volume: 34
  start-page: 1021
  year: 2009
  end-page: 1023
  ident: CR28
  article-title: Dynamics of optical spin-orbit coupling in uniaxial crystals
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001021
– volume: 43
  start-page: 1439
  year: 2018
  end-page: 1442
  ident: CR37
  article-title: Polarization-controlled orbital angular momentum switching in nonlinear wave mixing
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001439
– volume: 10
  year: 2019
  ident: CR21
  article-title: Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11114-y
– volume: 108
  start-page: 233902
  year: 2012
  ident: CR20
  article-title: Twisting light by nonlinear photonic crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.233902
– volume: 19
  start-page: 123002
  year: 2017
  ident: CR5
  article-title: Wavelength-versatile optical vortex lasers
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/aa9445
– volume: 14
  start-page: 498
  year: 2020
  end-page: 503
  ident: CR6
  article-title: High-purity orbital angular momentum states from a visible metasurface laser
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-020-0623-z
– volume: 6
  start-page: 488
  year: 2012
  end-page: 496
  ident: CR4
  article-title: Terabit free-space data transmission employing orbital angular momentum multiplexing
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.138
– volume: 8
  start-page: 543
  year: 2014
  end-page: 549
  ident: CR7
  article-title: Spin angular momentum and tunable polarization in high-harmonic generation
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.108
– volume: 45
  start-page: 8185
  year: 1992
  end-page: 8189
  ident: CR9
  article-title: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8185
– volume: 10
  year: 2019
  ident: CR22
  article-title: Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12251-0
– volume: 93
  start-page: 053601
  year: 2004
  ident: CR29
  article-title: Measuring entangled qutrits and their use for quantum bit commitment
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.053601
– volume: 171
  start-page: 1104
  year: 1968
  end-page: 1114
  ident: CR2
  article-title: Second-harmonic light generation in crystals with natural optical activity
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.171.1104
– volume: 150
  start-page: 372
  year: 1998
  end-page: 380
  ident: CR19
  article-title: Sum-frequency mixing of optical vortices in nonlinear crystals
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(97)00591-9
– volume: 361
  start-page: 1104
  year: 2018
  end-page: 1108
  ident: CR38
  article-title: Quantum metasurface for multiphoton interference and state reconstruction
  publication-title: Science
  doi: 10.1126/science.aat8196
– volume: 8
  start-page: 2177
  year: 2019
  end-page: 2188
  ident: CR8
  article-title: All-optical vectorial control of multistate magnetization through anisotropy-mediated spin-orbit coupling
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0198
– volume: 96
  start-page: 163905
  year: 2006
  ident: CR14
  article-title: Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.163905
– volume: 3
  start-page: e167
  year: 2014
  ident: CR16
  article-title: Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.48
– volume: 28
  start-page: 235
  year: 1985
  end-page: 243
  ident: CR25
  article-title: A new-type ultraviolet SHG crystal: -BaB O
  publication-title: Sci. Sin. Ser. B
– volume: 34
  start-page: 3166
  year: 2009
  end-page: 3168
  ident: CR32
  article-title: Radially polarized annular beam generated through a second-harmonic-generation process
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.003166
– volume: 112
  start-page: 135502
  year: 2014
  ident: CR36
  article-title: Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.135502
– volume: 54
  start-page: R3742
  year: 1996
  end-page: R3745
  ident: CR18
  article-title: Second-harmonic generation and the orbital angular momentum of light
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.R3742
– volume: 8
  start-page: 90
  year: 2019
  ident: CR10
  article-title: Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-019-0194-2
– volume: 9
  start-page: 796
  year: 2015
  end-page: 808
  ident: CR1
  article-title: Spin–orbit interactions of light
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.201
– ident: CR31
– volume: 15
  start-page: 189
  year: 1969
  end-page: 191
  ident: CR3
  article-title: Phase-matched nonlinear interaction between circularly polarized waves
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1652961
– volume: 50
  start-page: 059001
  year: 2011
  ident: CR33
  article-title: Propagation of high-order circularly polarized Bessel beams and vortex generation in uniaxial
  publication-title: Opt. Eng.
  doi: 10.1117/1.3572109
– volume: 113
  start-page: 033901
  year: 2014
  ident: CR35
  article-title: Symmetry-selective third-harmonic generation from plasmonic metacrystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.033901
– volume: 103
  start-page: 422
  year: 1993
  end-page: 428
  ident: CR17
  article-title: Optics of light beams with screw dislocations
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90168-5
– volume: 88
  start-page: 063827
  year: 2013
  ident: CR34
  article-title: Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.063827
– volume: 76
  start-page: 13
  year: 1972
  end-page: 20
  ident: CR30
  article-title: Harmonic generation and selection rules in nonlinear optics
  publication-title: Proc. Ind. Acad. Sci. A
  doi: 10.1007/BF03048332
– volume: 28
  start-page: 70
  year: 2002
  end-page: 77
  ident: CR11
  article-title: Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation
  publication-title: Tech. Phys. Lett.
  doi: 10.1134/1.1448648
– volume: 108
  start-page: 233902
  year: 2012
  ident: 691_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.233902
– volume: 35
  start-page: 7
  year: 2010
  ident: 691_CR27
  publication-title: Opt. Lett.
  doi: 10.1364/OL.35.000007
– volume: 361
  start-page: 1104
  year: 2018
  ident: 691_CR38
  publication-title: Science
  doi: 10.1126/science.aat8196
– volume: 93
  start-page: 053601
  year: 2004
  ident: 691_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.053601
– volume: 103
  start-page: 422
  year: 1993
  ident: 691_CR17
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(93)90168-5
– volume: 113
  start-page: 033901
  year: 2014
  ident: 691_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.033901
– volume: 6
  start-page: 488
  year: 2012
  ident: 691_CR4
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.138
– volume: 76
  start-page: 13
  year: 1972
  ident: 691_CR30
  publication-title: Proc. Ind. Acad. Sci. A
  doi: 10.1007/BF03048332
– ident: 691_CR31
  doi: 10.1117/12.824851
– volume: 45
  start-page: 8185
  year: 1992
  ident: 691_CR9
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8185
– volume: 43
  start-page: 1439
  year: 2018
  ident: 691_CR37
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.001439
– volume: 364
  start-page: eaaw9486
  year: 2019
  ident: 691_CR40
  publication-title: Science
  doi: 10.1126/science.aaw9486
– volume: 3
  start-page: e167
  year: 2014
  ident: 691_CR16
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2014.48
– volume: 2
  start-page: 17010
  year: 2017
  ident: 691_CR23
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.10
– volume: 28
  start-page: 235
  year: 1985
  ident: 691_CR25
  publication-title: Sci. Sin. Ser. B
– volume: 34
  start-page: 1021
  year: 2009
  ident: 691_CR28
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.001021
– volume: 13
  start-page: 4148
  year: 2013
  ident: 691_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl401734r
– volume: 241
  start-page: 237
  year: 2004
  ident: 691_CR26
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2004.07.023
– volume: 19
  start-page: 123002
  year: 2017
  ident: 691_CR5
  publication-title: J. Opt.
  doi: 10.1088/2040-8986/aa9445
– volume: 20
  start-page: 163
  year: 2003
  ident: 691_CR12
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.20.000163
– volume: 171
  start-page: 1104
  year: 1968
  ident: 691_CR2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.171.1104
– volume: 10
  year: 2019
  ident: 691_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12251-0
– volume: 8
  start-page: 90
  year: 2019
  ident: 691_CR10
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-019-0194-2
– volume: 150
  start-page: 372
  year: 1998
  ident: 691_CR19
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(97)00591-9
– volume: 28
  start-page: 70
  year: 2002
  ident: 691_CR11
  publication-title: Tech. Phys. Lett.
  doi: 10.1134/1.1448648
– volume: 50
  start-page: 059001
  year: 2011
  ident: 691_CR33
  publication-title: Opt. Eng.
  doi: 10.1117/1.3572109
– volume: 8
  start-page: 543
  year: 2014
  ident: 691_CR7
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2014.108
– volume: 34
  start-page: 3166
  year: 2009
  ident: 691_CR32
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.003166
– volume: 27
  start-page: 1875
  year: 2002
  ident: 691_CR13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.001875
– volume: 96
  start-page: 163905
  year: 2006
  ident: 691_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.163905
– volume: 112
  start-page: 135502
  year: 2014
  ident: 691_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.135502
– volume: 10
  year: 2019
  ident: 691_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11114-y
– volume: 14
  start-page: 498
  year: 2020
  ident: 691_CR6
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-020-0623-z
– volume: 9
  start-page: 796
  year: 2015
  ident: 691_CR1
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.201
– volume: 8
  start-page: 2177
  year: 2019
  ident: 691_CR8
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0198
– volume: 361
  start-page: 1101
  year: 2018
  ident: 691_CR39
  publication-title: Science
  doi: 10.1126/science.aat9042
– volume: 15
  start-page: 189
  year: 1969
  ident: 691_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1652961
– volume: 12
  start-page: 736
  year: 2016
  ident: 691_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3699
– volume: 88
  start-page: 063827
  year: 2013
  ident: 691_CR34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.063827
– volume: 54
  start-page: R3742
  year: 1996
  ident: 691_CR18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.R3742
SSID ssj0053922
Score 2.5863736
Snippet Optical angular momentum-based photonic technologies demonstrate the key role of the optical spin–orbit interaction that usually refers to linear optical...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 658
SubjectTerms 639/624/400/385
639/766/400/385
Angular momentum
Applied and Technical Physics
Barium
BBO crystals
Circular polarization
Crystals
Letter
Nonlinear control
Nonlinear optics
Optics
Photonic crystals
Physics
Physics and Astronomy
Quantum Physics
Second harmonic generation
Spin-orbit interactions
Title Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals
URI https://link.springer.com/article/10.1038/s41566-020-0691-0
https://www.proquest.com/docview/2471514749
https://hal.science/hal-03126750
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LatwwcGiSSy9t-qLbJkGUnlpMZFnetU5lt2S7lLCU0kBuYizZdCH7yNop9NZ_6B_2Szojy0lTSE42kmzBzGjemgF46xH1CGtMCpdlZKAYn5QqXGDWvjYjl5Y-VPucD2dn-vN5fh4dbk1Mq-x5YmDUfu3YR36siIuScB9p82FzmXDXKI6uxhYaO7CXkqRhCi-mn3pOnJPsV92FSJMQoeZ9VDMrjptguCRsPMkhJ__ckks73zkr8h-V878oaRA-0314FLVGMe7Q_AQeVKun8DhqkCKez-YZnM5wu-Rit6LZLFZ_fv1eb8tFK9gnSRasWHK5hfZqKRw2nBcvFiux6mpl0Ox6E_zawm1_ksp40TyHs-nJt4-zJPZLSJzOTZsY5Tg3MEWV-yxFiZVSpBHQcKm1IclfS8QqK5xRaIbOo0c9TJHeSYkxDrMXsEubVi9BKFRGl45QVUpdV7LEtM5N5auRrNHnagCyh5Z1sZg497S4sCGonRW2A7AlAFsGsJUDeHf9yaarpHHf4jeEgut1XAN7Nj61PEZcSJGVI3-kAzjoMWTjyWvsDZ0M4H2PtZvpO3d8df_PXsNDxcQSbiEewG67vaoOSR1py6NAc0ewN55OJnN6Tk7mX77-BVA13mM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNSWA1x4I7YtYCG4gKI6trMbHxCqgCWlS0-t1JuZ2I5Yqftgk4J64x_4Dz6KL2HsJC0g0Vtvke3Y0sx4Hp4XwDOHqEZYYZJbKclA0S4pRUxgVq7SI5uWLlb7PBgWR-rDcXa8Bj_7XJgQVtnzxMio3cKGN_IdQVyUhPtI6dfLL0noGhW8q30LjZYs9v3ZNzLZ6ld7bwm_z4UYvzt8UyRdV4HEqkw3iRY2RNClKDInU-TohSC5ScOlUprkY8URvcytFqiH1qFDNUyRvknUa4uS9l2Ha0pKHUII8_H7nvNnpGuINgFTJ3Qxst6LKvOdOhpKSTDW-DAEG_0lB9c_hyjMP1Tcf7yyUdiNb8PNTktluy1Z3YE1P78LtzqNlXX8oL4HkwJXs1Bcl9XL6fzX9x-LVTltWHgDJYuZzUJ5h-Z0xizWIQ6fTeds3tbmoNnFMr6jM7s6IxX1pL4PR1cCyQewQYf6h8AECq1KS6RRclV5XmJaZdo7P-IVukwMgPfQMrYrXh56aJyY6ESXuWkBbAjAJgDY8AG8OP9l2VbuuGzxU0LB-bpQc7vYnZgwRlxPkFXFv6YD2O4xZLqbXpsLuhzAyx5rF9P_PXHz8s2ewPXi8OPETPYO9rfghgiEEzMgt2GjWZ36R6QKNeXjSH8MPl01wf8GDqAXoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcNQWCXHhjVgoYCG4gKJ1HGcTHxCqKMuWrioOVOrNTGxHrNR9sElBvfEP_A2fw5cwk0cLSPTWW2Q7tjQznofnBfDMI-oMS4xylyRkoBgfFapJYNa-NJmLC99U-zwYTQ71-6P0aAN-9rkwHFbZ88SGUful4zfyoSIuSsI902ZYdmERH3bHr1dfIu4gxZ7Wvp1GSyL74fQbmW_Vq71dwvVzpcZvP76ZRF2Hgcjp1NSRUY6j6WJUqU9ilBiUIhlKw4XWhmRlKRFDkjuj0IycR496FCN9k9g3DhPadxOuZEkuuXtCPn7XS4GU9A7VJmOaiC5J2ntUk3xYNUZTxIabHHHg0V8ycfMzR2T-oe7-46FtBN_4JlzvNFax05LYLdgIi9two9NeRccbqjswneB6zoV2RbWaLX59_7FcF7Na8HsoWc9izqUe6pO5cFhxTL6YLcSirdNBs8tV86Yu3PqU1NXj6i4cXgok78EWHRrug1CojC4ckUkhdRlkgXGZmuBDJkv0qRqA7KFlXVfInPtpHNvGoZ7ktgWwJQBbBrCVA3hx9suqreJx0eKnhIKzdVx_e7IztTxGHFCRhSW_xgPY7jFku1tf2XMaHcDLHmvn0_898cHFmz2Bq0Tqdrp3sP8QrimmmyYZchu26vVJeERaUV08bshPwKfLpvffANMbzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+spin%E2%80%93orbit+angular+momentum+cascade+in+nonlinear+optical+crystals&rft.jtitle=Nature+photonics&rft.au=Tang%2C+Yutao&rft.au=Li%2C+Kingfai&rft.au=Zhang%2C+Xuecai&rft.au=Deng%2C+Junhong&rft.date=2020-11-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1749-4885&rft.eissn=1749-4893&rft.volume=14&rft.issue=11&rft.spage=658&rft.epage=662&rft_id=info:doi/10.1038%2Fs41566-020-0691-0&rft.externalDocID=10_1038_s41566_020_0691_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon