A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte
Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first ti...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 7; pp. 2682 - 269 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10
−2
S cm
−1
), while the solvothermally synthesized COF proved ineffective under similar conditions.
Mechanochemically synthesized bipyridine based covalent organic framework showing high proton conductivity of 0.014 S cm
−1
with improved performance over the solvothermal one giving a stable Open Circuit Voltage (0.93 V at 50 °C) on fabrication in PEM fuel cell. |
---|---|
AbstractList | Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10
−2
S cm
−1
), while the solvothermally synthesized COF proved ineffective under similar conditions.
Mechanochemically synthesized bipyridine based covalent organic framework showing high proton conductivity of 0.014 S cm
−1
with improved performance over the solvothermal one giving a stable Open Circuit Voltage (0.93 V at 50 °C) on fabrication in PEM fuel cell. Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 degree C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 10 super(-2) S cm super(-1)), while the solvothermally synthesized COF proved ineffective under similar conditions. Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10⁻² S cm⁻¹), while the solvothermally synthesized COF proved ineffective under similar conditions. Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10 −2 S cm −1 ), while the solvothermally synthesized COF proved ineffective under similar conditions. |
Author | Kurungot, Sreekumar Bhadra, Mohitosh Aiyappa, Harshitha Barike Shinde, Digambar Balaji Wadge, Pritish Banerjee, Rahul Garai, Bikash Biswal, Bishnu P Kandambeth, Sharath Kundu, Tanay |
AuthorAffiliation | Academy of Scientific and Innovative Research (AcSIR) CSIR-National Chemical Laboratory Physical/Materials Chemistry Division |
AuthorAffiliation_xml | – sequence: 0 name: CSIR-National Chemical Laboratory – sequence: 0 name: Academy of Scientific and Innovative Research (AcSIR) – sequence: 0 name: Physical/Materials Chemistry Division |
Author_xml | – sequence: 1 givenname: Digambar Balaji surname: Shinde fullname: Shinde, Digambar Balaji – sequence: 2 givenname: Harshitha Barike surname: Aiyappa fullname: Aiyappa, Harshitha Barike – sequence: 3 givenname: Mohitosh surname: Bhadra fullname: Bhadra, Mohitosh – sequence: 4 givenname: Bishnu P surname: Biswal fullname: Biswal, Bishnu P – sequence: 5 givenname: Pritish surname: Wadge fullname: Wadge, Pritish – sequence: 6 givenname: Sharath surname: Kandambeth fullname: Kandambeth, Sharath – sequence: 7 givenname: Bikash surname: Garai fullname: Garai, Bikash – sequence: 8 givenname: Tanay surname: Kundu fullname: Kundu, Tanay – sequence: 9 givenname: Sreekumar surname: Kurungot fullname: Kurungot, Sreekumar – sequence: 10 givenname: Rahul surname: Banerjee fullname: Banerjee, Rahul |
BookMark | eNqF0UFLHTEQB_BQLNRaL70XciyF1dlNspscH49aBaEXPS9xduJLm01skld5fnq3fWJBCuYyYfjNMPB_zw5iisTYxxZOWhDmFFW1Laiu3bxhhx0oaAZp-oPnv9bv2HEpP2B5GqA35pDhis-EGxsTbmj2aEPY8bKLdUPFP9DEMf22gWLlKd_a6JG7bGe6T_knt4VbfpdTTbHBFKctVh9veUnBT5wCYc0p7Cp9YG-dDYWOn-oRuz77erU-by6_f7tYry4blMrUZuhRtT0KPZEhcbM0e2fAyclJpMEN0hmaetFbkE4Imozt9aSEQw1GorwRR-zzfu9y068tlTrOviCFYCOlbRm7bmg1dEbKV-niQGolBbxOB6MHoUB3C4U9xZxKyeRG9NVWn2LN1oexhfFPUONaXa3-BnW-jHx5MXKX_Wzz7v_40x7ngs_uX-riESBXoIo |
CitedBy_id | crossref_primary_10_1021_acsaem_9b00920 crossref_primary_10_3724_j_issn_1674_4969_23060101 crossref_primary_10_1016_j_jechem_2023_04_002 crossref_primary_10_1016_j_chemphys_2023_112142 crossref_primary_10_1016_j_aca_2022_340204 crossref_primary_10_1021_jacs_6b05568 crossref_primary_10_1016_j_cej_2023_143525 crossref_primary_10_1002_adma_202004707 crossref_primary_10_1039_D2TA00793B crossref_primary_10_1039_D4CC03117B crossref_primary_10_1002_ange_202319876 crossref_primary_10_1002_chem_201806385 crossref_primary_10_1016_j_jpowsour_2022_231143 crossref_primary_10_1038_natrevmats_2016_68 crossref_primary_10_1039_D2DT02347D crossref_primary_10_1107_S2052252516013762 crossref_primary_10_1021_jacs_4c14029 crossref_primary_10_1002_aoc_6263 crossref_primary_10_1016_j_est_2024_115026 crossref_primary_10_1002_chem_201703016 crossref_primary_10_1002_ange_202012947 crossref_primary_10_1039_D1CE00957E crossref_primary_10_12677_MS_2024_142017 crossref_primary_10_1007_s11426_019_9658_1 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1039_C7TA02105D crossref_primary_10_1039_D0CS00017E crossref_primary_10_1002_anie_201913983 crossref_primary_10_1007_s11581_024_05734_8 crossref_primary_10_1021_acs_orglett_6b00577 crossref_primary_10_1002_app_53802 crossref_primary_10_1039_D3TA05200A crossref_primary_10_1021_acsanm_4c00560 crossref_primary_10_1002_adfm_201705553 crossref_primary_10_1002_anie_201609049 crossref_primary_10_1016_j_apsusc_2021_149909 crossref_primary_10_1021_acsanm_9b01366 crossref_primary_10_1021_acsapm_0c00425 crossref_primary_10_1021_acsanm_1c02329 crossref_primary_10_1088_1361_6528_abb903 crossref_primary_10_1016_j_memsci_2018_11_040 crossref_primary_10_1039_C9NR07525A crossref_primary_10_1016_j_chempr_2020_08_024 crossref_primary_10_1021_acsami_8b14446 crossref_primary_10_1039_D3NJ01826A crossref_primary_10_1021_acsami_0c06267 crossref_primary_10_1021_acs_iecr_3c02052 crossref_primary_10_1002_ange_202101400 crossref_primary_10_1002_cssc_202400750 crossref_primary_10_1016_j_jpowsour_2017_11_089 crossref_primary_10_1016_j_mtchem_2021_100573 crossref_primary_10_1039_D0CE00902D crossref_primary_10_1039_D2CY00088A crossref_primary_10_1039_C9NR08007D crossref_primary_10_3390_inorganics11070283 crossref_primary_10_1016_j_ijhydene_2024_10_199 crossref_primary_10_1039_C8DT00125A crossref_primary_10_1016_j_apsusc_2021_152093 crossref_primary_10_1016_j_micromeso_2019_05_026 crossref_primary_10_1021_jacs_7b06640 crossref_primary_10_1016_j_jhazmat_2020_122333 crossref_primary_10_1021_acs_bioconjchem_1c00040 crossref_primary_10_1039_D1CS01093J crossref_primary_10_1039_D0CS01569E crossref_primary_10_1039_D2TA08435J crossref_primary_10_1002_adma_202202751 crossref_primary_10_1021_jacs_7b01631 crossref_primary_10_1002_smll_202305978 crossref_primary_10_1039_C8GC03295E crossref_primary_10_1039_D0TA05894G crossref_primary_10_1002_adma_201907090 crossref_primary_10_1002_chem_202403627 crossref_primary_10_1039_D0TA06927B crossref_primary_10_1039_D4TA00892H crossref_primary_10_1016_j_apcatb_2022_121314 crossref_primary_10_1021_acsami_1c01134 crossref_primary_10_1002_slct_202301828 crossref_primary_10_1038_s41467_020_15918_1 crossref_primary_10_1016_j_ccr_2021_214241 crossref_primary_10_1039_D3CS00908D crossref_primary_10_1002_asia_202200970 crossref_primary_10_1039_D2RA02093A crossref_primary_10_1021_acsmacrolett_3c00438 crossref_primary_10_1021_acs_inorgchem_9b01897 crossref_primary_10_1039_C7CC02117H crossref_primary_10_1016_j_chempr_2017_12_011 crossref_primary_10_1021_acs_chemmater_1c00737 crossref_primary_10_1021_acssuschemeng_4c04003 crossref_primary_10_1002_app_49745 crossref_primary_10_1016_j_snb_2019_03_110 crossref_primary_10_1021_jacs_2c02405 crossref_primary_10_1016_j_cjsc_2024_100466 crossref_primary_10_1021_jacs_8b10334 crossref_primary_10_1039_C9RA00453J crossref_primary_10_1007_s12274_023_5812_x crossref_primary_10_1002_ange_202404539 crossref_primary_10_1002_anie_201804753 crossref_primary_10_1016_j_apsusc_2023_156414 crossref_primary_10_1016_j_cej_2024_154915 crossref_primary_10_1039_C9TA06807D crossref_primary_10_1002_ange_201904291 crossref_primary_10_1002_anie_202415454 crossref_primary_10_1021_acsami_1c03170 crossref_primary_10_1002_adma_201705155 crossref_primary_10_1039_D0TA01733G crossref_primary_10_1007_s12200_022_00032_5 crossref_primary_10_1002_anie_202202089 crossref_primary_10_1002_chem_202303126 crossref_primary_10_1016_j_seppur_2024_128588 crossref_primary_10_1055_a_2291_8578 crossref_primary_10_1039_D1TA00201E crossref_primary_10_1016_j_gce_2023_04_001 crossref_primary_10_1016_j_ccr_2021_213957 crossref_primary_10_1021_acs_cgd_7b01593 crossref_primary_10_1016_j_seppur_2023_126167 crossref_primary_10_1002_cctc_201902064 crossref_primary_10_1016_j_electacta_2019_135235 crossref_primary_10_1016_j_dyepig_2021_109818 crossref_primary_10_3390_nano8010015 crossref_primary_10_1016_j_cclet_2017_03_026 crossref_primary_10_1002_adma_202002038 crossref_primary_10_1016_j_polymer_2020_122632 crossref_primary_10_1039_D2TA08759F crossref_primary_10_1016_j_progpolymsci_2020_101288 crossref_primary_10_3390_membranes13080696 crossref_primary_10_1021_jacs_2c01814 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1039_D0MH00081G crossref_primary_10_1039_C7TA05279K crossref_primary_10_1016_j_apcatb_2020_119174 crossref_primary_10_1039_C8CE01397G crossref_primary_10_1016_j_apsusc_2022_153621 crossref_primary_10_1021_jacs_2c00285 crossref_primary_10_1002_anie_202012947 crossref_primary_10_1016_j_chroma_2022_463188 crossref_primary_10_1021_jacs_4c07091 crossref_primary_10_1002_ange_201913983 crossref_primary_10_1021_jacs_3c10627 crossref_primary_10_1088_1361_6528_ab5ff5 crossref_primary_10_1002_cctc_201900894 crossref_primary_10_1016_j_jclepro_2021_125822 crossref_primary_10_1021_acsmaterialslett_2c00432 crossref_primary_10_1080_15583724_2022_2025602 crossref_primary_10_1016_j_ccr_2020_213465 crossref_primary_10_1039_D0TC04423G crossref_primary_10_1016_j_memsci_2023_121610 crossref_primary_10_1002_adsu_202400245 crossref_primary_10_1016_j_jcis_2023_06_062 crossref_primary_10_1021_acsapm_4c03799 crossref_primary_10_1039_D1PY00776A crossref_primary_10_1039_D3TA01907A crossref_primary_10_1002_chem_202101587 crossref_primary_10_1016_j_apsusc_2021_149047 crossref_primary_10_1021_acsmaterialslett_9b00185 crossref_primary_10_1039_D0QO01354D crossref_primary_10_1007_s12274_022_5307_1 crossref_primary_10_1039_D0SC01737J crossref_primary_10_1021_acs_langmuir_8b00926 crossref_primary_10_1021_jacs_9b02997 crossref_primary_10_1002_ange_202415454 crossref_primary_10_1039_D2QM00656A crossref_primary_10_1002_ange_202202089 crossref_primary_10_1016_j_mcat_2024_114127 crossref_primary_10_1039_D1CP05699A crossref_primary_10_1021_acs_iecr_3c02384 crossref_primary_10_1039_D1SC06372C crossref_primary_10_1039_D4CS00409D crossref_primary_10_1021_acsomega_9b04160 crossref_primary_10_1021_acs_iecr_4c01290 crossref_primary_10_1002_adma_202416100 crossref_primary_10_1016_j_trac_2024_117604 crossref_primary_10_1002_asia_202300196 crossref_primary_10_1016_j_cclet_2016_06_046 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1039_D2MA00909A crossref_primary_10_1021_acsaem_2c01461 crossref_primary_10_1021_jacs_9b01891 crossref_primary_10_1007_s10904_017_0553_5 crossref_primary_10_1007_s12274_022_4575_0 crossref_primary_10_1016_j_jlumin_2018_03_041 crossref_primary_10_1016_j_memsci_2018_09_050 crossref_primary_10_1021_acsaem_2c01346 crossref_primary_10_1016_j_scitotenv_2023_169000 crossref_primary_10_1038_s41467_021_22288_9 crossref_primary_10_1039_D3GC01927F crossref_primary_10_1002_advs_202206933 crossref_primary_10_1016_j_jhazmat_2019_02_046 crossref_primary_10_1039_D3CC01970E crossref_primary_10_1039_C7TA01302G crossref_primary_10_1016_j_ccr_2021_214298 crossref_primary_10_1002_chem_201701596 crossref_primary_10_1002_pola_29209 crossref_primary_10_3390_polym15020267 crossref_primary_10_2139_ssrn_4162761 crossref_primary_10_1016_j_apcata_2022_118793 crossref_primary_10_1002_slct_202203450 crossref_primary_10_1016_j_memsci_2023_122091 crossref_primary_10_1021_jacs_5b13490 crossref_primary_10_1038_s41467_022_28409_2 crossref_primary_10_1016_j_chroma_2022_463770 crossref_primary_10_1039_D2CC02051C crossref_primary_10_1016_j_jhazmat_2022_128705 crossref_primary_10_1002_ange_201804753 crossref_primary_10_1016_j_ica_2016_09_033 crossref_primary_10_1021_acs_inorgchem_1c03093 crossref_primary_10_1002_asia_202401434 crossref_primary_10_1016_j_jpowsour_2016_09_135 crossref_primary_10_1021_jacs_9b06080 crossref_primary_10_1002_aenm_202102300 crossref_primary_10_1002_chem_202303615 crossref_primary_10_1038_s41467_018_03689_9 crossref_primary_10_1002_asia_201600396 crossref_primary_10_1002_celc_202100492 crossref_primary_10_1021_acsami_1c10351 crossref_primary_10_1016_j_jcis_2021_04_130 crossref_primary_10_2139_ssrn_4199809 crossref_primary_10_1016_j_cis_2024_103228 crossref_primary_10_1016_j_jcis_2021_08_118 crossref_primary_10_1002_adfm_202307618 crossref_primary_10_1002_adfm_201701465 crossref_primary_10_1016_j_ijhydene_2019_09_096 crossref_primary_10_1002_asia_202401349 crossref_primary_10_1007_s42247_024_00833_8 crossref_primary_10_1016_j_mtcomm_2021_102612 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_3390_molecules30051086 crossref_primary_10_3390_polym14163289 crossref_primary_10_1016_j_ssi_2020_115316 crossref_primary_10_1016_j_mser_2024_100771 crossref_primary_10_1016_j_electacta_2020_137212 crossref_primary_10_1002_anie_202101400 crossref_primary_10_1016_S1872_2067_22_64154_8 crossref_primary_10_1002_anie_202404539 crossref_primary_10_3390_polym16050659 crossref_primary_10_1021_acssuschemeng_2c04428 crossref_primary_10_1016_j_checat_2022_06_006 crossref_primary_10_1021_acsami_8b19087 crossref_primary_10_1002_anie_201904291 crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1007_s11426_022_1391_0 crossref_primary_10_1016_j_cej_2018_08_184 crossref_primary_10_1021_acsami_4c09181 crossref_primary_10_1016_j_ccr_2024_216087 crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1039_D4SC08674K crossref_primary_10_1039_C9NJ00830F crossref_primary_10_1002_admt_202001171 crossref_primary_10_1002_anie_202319876 crossref_primary_10_1007_s11426_024_2179_6 crossref_primary_10_1002_adfm_202311655 crossref_primary_10_1039_D3TA00079F crossref_primary_10_1002_cptc_202400131 crossref_primary_10_1039_C9DT01236B crossref_primary_10_1016_j_physleta_2020_127100 crossref_primary_10_1016_j_mattod_2023_05_023 crossref_primary_10_1039_D0EE02309D crossref_primary_10_1021_acs_langmuir_3c03809 crossref_primary_10_1002_ange_201609049 crossref_primary_10_3390_polym13060970 crossref_primary_10_1002_cssc_201700120 crossref_primary_10_1016_j_ccr_2024_216398 crossref_primary_10_1007_s10967_023_08980_8 crossref_primary_10_1039_D4CE00514G crossref_primary_10_1021_acs_energyfuels_3c00162 crossref_primary_10_1039_D4RA05339G crossref_primary_10_1039_D4NR03204G crossref_primary_10_1039_C9CC07500C crossref_primary_10_1002_cssc_201901997 crossref_primary_10_1039_D1MA00008J crossref_primary_10_1016_j_electacta_2020_135706 crossref_primary_10_1021_jacs_3c05403 crossref_primary_10_1016_j_ccr_2022_214889 crossref_primary_10_1016_j_jtice_2023_105067 crossref_primary_10_1021_acsami_6b06189 crossref_primary_10_3390_s23083881 crossref_primary_10_1016_j_ccr_2022_214882 crossref_primary_10_3390_membranes10050107 crossref_primary_10_1016_j_seppur_2024_130374 crossref_primary_10_1021_jacs_7b07918 crossref_primary_10_1021_jacs_7b05182 crossref_primary_10_1016_j_matt_2022_05_033 crossref_primary_10_1039_C7NH00172J crossref_primary_10_1016_j_molstruc_2020_128807 crossref_primary_10_1002_adfm_202302917 crossref_primary_10_1021_acsmacrolett_7b00849 crossref_primary_10_1021_acsomega_2c07883 crossref_primary_10_1021_acs_chemmater_8b03897 crossref_primary_10_1039_C9CE01716J crossref_primary_10_1021_jacs_6b08815 crossref_primary_10_1039_D1TA00396H crossref_primary_10_1039_C7CC05779B crossref_primary_10_1002_ejic_202400435 crossref_primary_10_1021_acs_chemmater_6b01370 crossref_primary_10_1016_j_nantod_2021_101247 crossref_primary_10_1039_D3RA04855A crossref_primary_10_1016_j_jpowsour_2022_232332 crossref_primary_10_1002_chem_201805550 crossref_primary_10_1039_D1MH01147B crossref_primary_10_1021_acs_cgd_8b00545 crossref_primary_10_1016_j_jcis_2022_05_026 crossref_primary_10_3390_w16111588 crossref_primary_10_1016_j_chempr_2021_04_012 crossref_primary_10_1016_j_ccr_2023_215214 crossref_primary_10_1016_j_ccr_2023_215577 crossref_primary_10_1021_acsami_7b02355 crossref_primary_10_1039_D0CS00793E crossref_primary_10_1016_j_cherd_2022_02_003 crossref_primary_10_1016_j_jcis_2024_03_102 crossref_primary_10_1016_j_checat_2025_101327 crossref_primary_10_1016_j_talanta_2016_08_041 crossref_primary_10_1016_j_ccr_2024_215873 crossref_primary_10_1016_j_memsci_2020_118090 crossref_primary_10_1039_D3QM00151B crossref_primary_10_1039_C6OB02727J crossref_primary_10_1002_asia_201901338 crossref_primary_10_1039_C7OB02058A crossref_primary_10_1039_D3DT02116E crossref_primary_10_1107_S2052252516016900 crossref_primary_10_1016_j_apt_2021_04_025 crossref_primary_10_1039_D0CS00236D crossref_primary_10_1039_C8SC02640H crossref_primary_10_1039_D0TA04488A crossref_primary_10_3390_polym14153158 crossref_primary_10_1039_D0QM00801J crossref_primary_10_1016_j_apcatb_2025_125246 crossref_primary_10_1016_j_cclet_2024_110189 |
Cites_doi | 10.1039/C4CC07104B 10.1002/anie.201503902 10.1021/ja808681m 10.1021/ja3122872 10.1038/nchem.1569 10.1021/acs.jpcc.5b01067 10.1021/cr0207123 10.1021/ja510926w 10.1126/science.1120411 10.1039/C1CS15171A 10.1002/anie.201310500 10.1021/ja511389q 10.1021/ja408121p 10.1038/nchem.402 10.1021/ja409421d 10.1039/C4CS00093E 10.1039/c2ee03055a 10.1039/c2cs15332g 10.1039/C4CS00230J 10.1021/ma049711y 10.1039/c2cs35157a 10.1038/nchem.2352 10.1021/cr020715f 10.1002/anie.201206410 10.1002/chem.201203753 10.1021/cr940089p 10.1038/nmat2526 10.1038/ncomms7786 10.1021/ja409033p 10.1039/c0cc03792c 10.1039/c2cc33583b 10.1021/ja510895m 10.1002/anie.201306775 10.1016/j.energy.2006.07.009 10.1021/ja4017842 10.1006/jssc.1996.0200 10.1002/anie.201209002 10.1021/ja001239i 10.1021/ja9015765 10.1021/ja4103293 10.1039/b203651g 10.1021/ja809279s 10.1021/ja304693r 10.1021/jp304761t 10.1016/0009-2614(95)00905-J 10.1021/cr030697h 10.1039/C4SC02294G 10.1021/cm201140r 10.1021/ja401060q 10.1039/B301726P 10.1039/c3ee40507a 10.1021/ja206846p 10.1021/ar300291s 10.1021/cr200304e 10.1016/j.solidstatesciences.2006.03.005 10.1002/anie.200906583 10.1038/nchem.1505 10.1002/anie.201101777 10.1021/ja502212v 10.1021/cm034398k 10.1002/anie.200803826 10.1038/nchem.548 10.1039/C4CC03389B 10.1021/ja305587n 10.1002/3527601821 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST 7U6 C1K 7SR 7SU 7U5 8BQ 8FD FR3 JG9 L7M 7S9 L.6 |
DOI | 10.1039/c5ta10521h |
DatabaseName | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Engineered Materials Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Environment Abstracts AGRICOLA Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 269 |
ExternalDocumentID | 10_1039_C5TA10521H c5ta10521h |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION J3G J3H 7ST 7U6 C1K 7SR 7SU 7U5 8BQ 8FD FR3 JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c459t-76c516c38de9e3bc456f90f4df4ce7f74f9ed636a04f33ed9a68d53fc8094c4b3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 00:20:50 EDT 2025 Fri Jul 11 04:21:43 EDT 2025 Fri Jul 11 11:17:20 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Tue Jul 01 04:18:02 EDT 2025 Tue Dec 17 21:00:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-76c516c38de9e3bc456f90f4df4ce7f74f9ed636a04f33ed9a68d53fc8094c4b3 |
Notes | C solid state NMR, TGA, SEM, TEM, and crystallographic data (CIF). CCDC For ESI and crystallographic data in CIF or other electronic format see DOI 13 1046996 and 1046997 10.1039/c5ta10521h Electronic supplementary information (ESI) available: Synthetic procedures, PXRD, gas adsorption, FT-IR ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1798735082 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1039_C5TA10521H proquest_miscellaneous_1800485430 rsc_primary_c5ta10521h proquest_miscellaneous_1798735082 proquest_miscellaneous_2271802944 crossref_primary_10_1039_C5TA10521H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2016 |
References | Icli (C5TA10521H-(cit8a)/*[position()=1]) 2009; 131 Karim (C5TA10521H-(cit10i)/*[position()=1]) 2013; 135 Kongstein (C5TA10521H-(cit13d)/*[position()=1]) 2007; 32 MacGillivray (C5TA10521H-(cit2a)/*[position()=1]) 2000; 122 Ramaswamy (C5TA10521H-(cit10k)/*[position()=1]) 2014; 43 Huang (C5TA10521H-(cit8c)/*[position()=1]) 2005; 38 Quartarone (C5TA10521H-(cit13c)/*[position()=1]) 2012; 5 Wan (C5TA10521H-(cit6m)/*[position()=1]) 2011; 23 Ponomareva (C5TA10521H-(cit14)/*[position()=1]) 2012; 134 Xu (C5TA10521H-(cit6n)/*[position()=1]) 2015; 7 Wan (C5TA10521H-(cit6j)/*[position()=1]) 2008; 47 Huang (C5TA10521H-(cit6o)/*[position()=1]) 2015; 54 Côté (C5TA10521H-(cit5a)/*[position()=1]) 2005; 310 Kreuer (C5TA10521H-(cit10a)/*[position()=1]) 2004; 104 Lia (C5TA10521H-(cit10l)/*[position()=1]) 2013; 6 Furukawa (C5TA10521H-(cit6a)/*[position()=1]) 2009; 131 Umeyama (C5TA10521H-(cit10h)/*[position()=1]) 2012; 134 Mauritz (C5TA10521H-(cit10d)/*[position()=1]) 2004; 104 Jackson (C5TA10521H-(cit6d)/*[position()=1]) 2012; 48 Dogru (C5TA10521H-(cit6f)/*[position()=1]) 2011; 47 Friščić (C5TA10521H-(cit4b)/*[position()=1]) 2003; 11 Doonan (C5TA10521H-(cit5c)/*[position()=1]) 2010; 2 Medina (C5TA10521H-(cit5e)/*[position()=1]) 2015; 137 Morris (C5TA10521H-(cit3b)/*[position()=1]) 2013; 52 Agmon (C5TA10521H-(cit16)/*[position()=1]) 1995; 244 Rabbani (C5TA10521H-(cit6c)/*[position()=1]) 2013; 19 Friščić (C5TA10521H-(cit2b)/*[position()=1]) 2012; 41 Medina (C5TA10521H-(cit7d)/*[position()=1]) 2015; 137 Suarez (C5TA10521H-(cit13b)/*[position()=1]) 2012; 116 Ye (C5TA10521H-(cit15)/*[position()=1]) 2015; 137 Chandra (C5TA10521H-(cit11)/*[position()=1]) 2014; 136 Carné-Sánchez (C5TA10521H-(cit7c)/*[position()=1]) 2013; 5 Zeng (C5TA10521H-(cit5d)/*[position()=1]) 2015; 137 Bureekaew (C5TA10521H-(cit10c)/*[position()=1]) 2009; 8 Eddaoudi (C5TA10521H-(cit7b)/*[position()=1]) 2015; 44 Ding (C5TA10521H-(cit6g)/*[position()=1]) 2011; 133 DeBlase (C5TA10521H-(cit6l)/*[position()=1]) 2013; 135 Aiyappa (C5TA10521H-(cit17a)/*[position()=1]) 2015; 6 Friščić (C5TA10521H-(cit4d)/*[position()=1]) 2013; 5 Mecerreyes (C5TA10521H-(cit13e)/*[position()=1]) 2004; 16 Dalapati (C5TA10521H-(cit6k)/*[position()=1]) 2013; 135 Friščić (C5TA10521H-(cit4a)/*[position()=1]) 2010; 49 Das (C5TA10521H-(cit9b)/*[position()=1]) 2014; 50 Stock (C5TA10521H-(cit7a)/*[position()=1]) 2012; 112 Chandra (C5TA10521H-(cit8d)/*[position()=1]) 2013; 135 Horike (C5TA10521H-(cit10m)/*[position()=1]) 2013; 135 Yamada (C5TA10521H-(cit10f)/*[position()=1]) 2009; 131 Tanaka (C5TA10521H-(cit1a)/*[position()=1]) 2003 Oueslati (C5TA10521H-(cit12b)/*[position()=1]) 2006; 8 Nicotera (C5TA10521H-(cit13a)/*[position()=1]) 2015; 119 Fang (C5TA10521H-(cit6h)/*[position()=1]) 2014; 53 Zaccaro (C5TA10521H-(cit12a)/*[position()=1]) 1996; 124 Shinde (C5TA10521H-(cit6i)/*[position()=1]) 2015; 51 Kandambeth (C5TA10521H-(cit6e)/*[position()=1]) 2013; 52 Hurd (C5TA10521H-(cit10b)/*[position()=1]) 2009; 1 Beyer (C5TA10521H-(cit3a)/*[position()=1]) 2005; 105 Orita (C5TA10521H-(cit8b)/*[position()=1]) 2002 Zhang (C5TA10521H-(cit6b)/*[position()=1]) 2013; 135 Feng (C5TA10521H-(cit5b)/*[position()=1]) 2012; 41 Yoon (C5TA10521H-(cit10g)/*[position()=1]) 2013; 52 Biswal (C5TA10521H-(cit9a)/*[position()=1]) 2013; 135 Yoon (C5TA10521H-(cit10e)/*[position()=1]) 2011; 50 Kandambeth (C5TA10521H-(cit5f)/*[position()=1]) 2015; 6 Tanaka (C5TA10521H-(cit4c)/*[position()=1]) 2000; 100 Horike (C5TA10521H-(cit10j)/*[position()=1]) 2013; 46 James (C5TA10521H-(cit1b)/*[position()=1]) 2012; 41 |
References_xml | – issn: 2003 publication-title: Solvent-free Organic Synthesis doi: Tanaka – volume: 51 start-page: 310 year: 2015 ident: C5TA10521H-(cit6i)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC07104B – volume: 54 start-page: 8704 year: 2015 ident: C5TA10521H-(cit6o)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503902 – volume: 131 start-page: 3144 year: 2009 ident: C5TA10521H-(cit10f)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808681m – volume: 135 start-page: 4612 year: 2013 ident: C5TA10521H-(cit10m)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3122872 – volume: 5 start-page: 203 year: 2013 ident: C5TA10521H-(cit7c)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1569 – volume: 119 start-page: 9745 year: 2015 ident: C5TA10521H-(cit13a)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01067 – volume: 104 start-page: 4535 year: 2004 ident: C5TA10521H-(cit10d)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr0207123 – volume: 137 start-page: 1020 year: 2015 ident: C5TA10521H-(cit5d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510926w – volume: 310 start-page: 1166 year: 2005 ident: C5TA10521H-(cit5a)/*[position()=1] publication-title: Science doi: 10.1126/science.1120411 – volume: 41 start-page: 413 year: 2012 ident: C5TA10521H-(cit1b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15171A – volume: 53 start-page: 2878 year: 2014 ident: C5TA10521H-(cit6h)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201310500 – volume: 137 start-page: 913 year: 2015 ident: C5TA10521H-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511389q – volume: 135 start-page: 17853 year: 2013 ident: C5TA10521H-(cit8d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408121p – volume: 1 start-page: 705 year: 2009 ident: C5TA10521H-(cit10b)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.402 – volume: 135 start-page: 16821 year: 2013 ident: C5TA10521H-(cit6l)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409421d – volume: 43 start-page: 5913 year: 2014 ident: C5TA10521H-(cit10k)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00093E – volume: 5 start-page: 6436 year: 2012 ident: C5TA10521H-(cit13c)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03055a – volume: 41 start-page: 3493 year: 2012 ident: C5TA10521H-(cit2b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs15332g – volume: 44 start-page: 228 year: 2015 ident: C5TA10521H-(cit7b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00230J – volume: 38 start-page: 317 year: 2005 ident: C5TA10521H-(cit8c)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma049711y – volume: 41 start-page: 6010 year: 2012 ident: C5TA10521H-(cit5b)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 7 start-page: 905 year: 2015 ident: C5TA10521H-(cit6n)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2352 – volume: 104 start-page: 4637 year: 2004 ident: C5TA10521H-(cit10a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr020715f – volume: 52 start-page: 2688 year: 2013 ident: C5TA10521H-(cit10g)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201206410 – volume: 19 start-page: 3324 year: 2013 ident: C5TA10521H-(cit6c)/*[position()=1] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201203753 – volume: 100 start-page: 1025 year: 2000 ident: C5TA10521H-(cit4c)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr940089p – volume: 8 start-page: 831 year: 2009 ident: C5TA10521H-(cit10c)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2526 – volume: 6 start-page: 6786 year: 2015 ident: C5TA10521H-(cit5f)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7786 – volume: 135 start-page: 16336 year: 2013 ident: C5TA10521H-(cit6b)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409033p – volume: 47 start-page: 1707 year: 2011 ident: C5TA10521H-(cit6f)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc03792c – volume: 48 start-page: 8823 year: 2012 ident: C5TA10521H-(cit6d)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc33583b – volume: 137 start-page: 1016 year: 2015 ident: C5TA10521H-(cit5e)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510895m – volume: 52 start-page: 13052 year: 2013 ident: C5TA10521H-(cit6e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201306775 – volume: 32 start-page: 418 year: 2007 ident: C5TA10521H-(cit13d)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2006.07.009 – volume: 135 start-page: 5328 year: 2013 ident: C5TA10521H-(cit9a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4017842 – volume: 124 start-page: 8 year: 1996 ident: C5TA10521H-(cit12a)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1006/jssc.1996.0200 – volume: 52 start-page: 2163 year: 2013 ident: C5TA10521H-(cit3b)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209002 – volume: 137 start-page: 1016 year: 2015 ident: C5TA10521H-(cit7d)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510895m – volume: 122 start-page: 7817 year: 2000 ident: C5TA10521H-(cit2a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja001239i – volume: 131 start-page: 8875 year: 2009 ident: C5TA10521H-(cit6a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9015765 – volume: 135 start-page: 17310 year: 2013 ident: C5TA10521H-(cit6k)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4103293 – start-page: 1362 year: 2002 ident: C5TA10521H-(cit8b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b203651g – volume: 131 start-page: 3154 year: 2009 ident: C5TA10521H-(cit8a)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809279s – volume: 134 start-page: 12780 year: 2012 ident: C5TA10521H-(cit10h)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304693r – volume: 116 start-page: 12545 year: 2012 ident: C5TA10521H-(cit13b)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp304761t – volume: 244 start-page: 456 year: 1995 ident: C5TA10521H-(cit16)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)00905-J – volume: 105 start-page: 2921 year: 2005 ident: C5TA10521H-(cit3a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr030697h – volume: 6 start-page: 603 year: 2015 ident: C5TA10521H-(cit17a)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC02294G – volume: 23 start-page: 4094 year: 2011 ident: C5TA10521H-(cit6m)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm201140r – volume: 135 start-page: 8097 year: 2013 ident: C5TA10521H-(cit10i)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401060q – volume: 11 start-page: 1306 year: 2003 ident: C5TA10521H-(cit4b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/B301726P – volume: 6 start-page: 1656 year: 2013 ident: C5TA10521H-(cit10l)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40507a – volume: 133 start-page: 19816 year: 2011 ident: C5TA10521H-(cit6g)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206846p – volume: 46 start-page: 2376 year: 2013 ident: C5TA10521H-(cit10j)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300291s – volume: 112 start-page: 933 year: 2012 ident: C5TA10521H-(cit7a)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200304e – volume: 8 start-page: 1067 year: 2006 ident: C5TA10521H-(cit12b)/*[position()=1] publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2006.03.005 – volume: 49 start-page: 712 year: 2010 ident: C5TA10521H-(cit4a)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906583 – volume: 5 start-page: 66 year: 2013 ident: C5TA10521H-(cit4d)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.1505 – volume: 50 start-page: 7870 year: 2011 ident: C5TA10521H-(cit10e)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201101777 – volume: 136 start-page: 6570 year: 2014 ident: C5TA10521H-(cit11)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502212v – volume: 16 start-page: 604 year: 2004 ident: C5TA10521H-(cit13e)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm034398k – volume: 47 start-page: 8826 year: 2008 ident: C5TA10521H-(cit6j)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200803826 – volume: 2 start-page: 235 year: 2010 ident: C5TA10521H-(cit5c)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.548 – volume: 50 start-page: 12615 year: 2014 ident: C5TA10521H-(cit9b)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC03389B – volume: 134 start-page: 15640 year: 2012 ident: C5TA10521H-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305587n – volume-title: Solvent-free Organic Synthesis year: 2003 ident: C5TA10521H-(cit1a)/*[position()=1] doi: 10.1002/3527601821 |
SSID | ssj0000800699 |
Score | 2.5967877 |
Snippet | Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2682 |
SubjectTerms | Assembly Covalence crystal structure Crystallinity electric potential difference Electrodes Electrolytes fuel cells fuels Mechanochemistry Open circuit voltage porosity Solid electrolytes |
Title | A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte |
URI | https://www.proquest.com/docview/1798735082 https://www.proquest.com/docview/1800485430 https://www.proquest.com/docview/2271802944 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8T5UtG8IKijDS2k_gxm4YKQrzQSXurLo5DM7q2alKh7v_i_8PnfE7dEPASVbaVJr7L-Xy--_0IeRdJroUKlCukli5nqecC-MKNtM4UopOEYLMtvgaTc_75QlwMBr96WUvbMjlW17fWlfyPVE2bkStWyf6DZNubmgbz28jXXI2EzfWvZBw7Vxord5H1ypb9L3YIQWB8uiK_1livZv7NHvbbikvlZE0qFtLLACZnIYOw2RIj6quNLKwWeerU3DiLXXkzUahzXo2fW72goxrGuGMnrop_mh4LJl6VFtrofFOqhdm4bSD_2xzxGq3ly7_DVQIb5wQWcJm3mpjvYL22Lu4EMOe6nAOekuQ_unyAOaSWLslYKNO_KtoQ90le_ITqXCUv5sttXc1WRznG_SiHNYa-JzzEPa1ste63VYy4jTXnPaUN-5Y5qEiO6lXerwhi9hYQjyH-qhIljLGsed4tk23yYtd5QA59szvxh-QwPpt--tIG99ANDyx3afvcDTQukx-6G9x0hrodzsGmoZ-xbs70IXlQi5jGlbI9IgO9fEzu91ArnxAV0z21oz21o43a0VrtaKt2FAoKdE_tqFU72lO7p-T849n0dOLWXB2u4kKWbhgoMQ4Ui1ItNUtMY5BJL-NpxpUOs5BnUqcBC8DjGWM6lRBEqWDGHniSK56wIzJcrpb6GaFmxeC2QlynEU-9KBGQ6LFUoFXC0jGMyPtm0maqBrJHPpXFzCZUMDk7FdPYTvBkRN62Y9cVfMuto940cz8znwwemcFSr7bFDOH8QmY2Mf4fxkS4DArOvLvH-H6IUIuS8xE5MsJtH6bThed3dbwg97ov4iUZlputfmU84TJ5Xevdb7ZyvX8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mechanochemically+synthesized+covalent+organic+framework+as+a+proton-conducting+solid+electrolyte&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Shinde%2C+Digambar+Balaji&rft.au=Aiyappa%2C+Harshitha+Barike&rft.au=Bhadra%2C+Mohitosh&rft.au=Biswal%2C+Bishnu+P&rft.date=2016-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=7&rft.spage=2682&rft.epage=269&rft_id=info:doi/10.1039%2Fc5ta10521h&rft.externalDocID=c5ta10521h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |