A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte

Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first ti...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 7; pp. 2682 - 269
Main Authors Shinde, Digambar Balaji, Aiyappa, Harshitha Barike, Bhadra, Mohitosh, Biswal, Bishnu P, Wadge, Pritish, Kandambeth, Sharath, Garai, Bikash, Kundu, Tanay, Kurungot, Sreekumar, Banerjee, Rahul
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10 −2 S cm −1 ), while the solvothermally synthesized COF proved ineffective under similar conditions. Mechanochemically synthesized bipyridine based covalent organic framework showing high proton conductivity of 0.014 S cm −1 with improved performance over the solvothermal one giving a stable Open Circuit Voltage (0.93 V at 50 °C) on fabrication in PEM fuel cell.
AbstractList Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10 −2 S cm −1 ), while the solvothermally synthesized COF proved ineffective under similar conditions. Mechanochemically synthesized bipyridine based covalent organic framework showing high proton conductivity of 0.014 S cm −1 with improved performance over the solvothermal one giving a stable Open Circuit Voltage (0.93 V at 50 °C) on fabrication in PEM fuel cell.
Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 degree C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 10 super(-2) S cm super(-1)), while the solvothermally synthesized COF proved ineffective under similar conditions.
Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10⁻² S cm⁻¹), while the solvothermally synthesized COF proved ineffective under similar conditions.
Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in terms of their crystallinity and porosity has been their major drawback for any practical applications. In this report, we have for the first time successfully leveraged such characteristics to show that the mechanochemically synthesized bipyridine based covalent organic framework (COF) outperforms its conventional solvothermal counterpart as an efficient solid-state electrolyte in PEM fuel cells. Marking the first such attempt in COFs, a Membrane Electrode Assembly (MEA) fabricated using the mechanochemically synthesized COF was observed to inhibit the fuel crossover and build up a stable Open Circuit Voltage (OCV = 0.93 V at 50 °C), thereby establishing itself as an effective solid electrolyte material (with a proton conductivity of 1.4 × 10 −2 S cm −1 ), while the solvothermally synthesized COF proved ineffective under similar conditions.
Author Kurungot, Sreekumar
Bhadra, Mohitosh
Aiyappa, Harshitha Barike
Shinde, Digambar Balaji
Wadge, Pritish
Banerjee, Rahul
Garai, Bikash
Biswal, Bishnu P
Kandambeth, Sharath
Kundu, Tanay
AuthorAffiliation Academy of Scientific and Innovative Research (AcSIR)
CSIR-National Chemical Laboratory
Physical/Materials Chemistry Division
AuthorAffiliation_xml – sequence: 0
  name: CSIR-National Chemical Laboratory
– sequence: 0
  name: Academy of Scientific and Innovative Research (AcSIR)
– sequence: 0
  name: Physical/Materials Chemistry Division
Author_xml – sequence: 1
  givenname: Digambar Balaji
  surname: Shinde
  fullname: Shinde, Digambar Balaji
– sequence: 2
  givenname: Harshitha Barike
  surname: Aiyappa
  fullname: Aiyappa, Harshitha Barike
– sequence: 3
  givenname: Mohitosh
  surname: Bhadra
  fullname: Bhadra, Mohitosh
– sequence: 4
  givenname: Bishnu P
  surname: Biswal
  fullname: Biswal, Bishnu P
– sequence: 5
  givenname: Pritish
  surname: Wadge
  fullname: Wadge, Pritish
– sequence: 6
  givenname: Sharath
  surname: Kandambeth
  fullname: Kandambeth, Sharath
– sequence: 7
  givenname: Bikash
  surname: Garai
  fullname: Garai, Bikash
– sequence: 8
  givenname: Tanay
  surname: Kundu
  fullname: Kundu, Tanay
– sequence: 9
  givenname: Sreekumar
  surname: Kurungot
  fullname: Kurungot, Sreekumar
– sequence: 10
  givenname: Rahul
  surname: Banerjee
  fullname: Banerjee, Rahul
BookMark eNqF0UFLHTEQB_BQLNRaL70XciyF1dlNspscH49aBaEXPS9xduJLm01skld5fnq3fWJBCuYyYfjNMPB_zw5iisTYxxZOWhDmFFW1Laiu3bxhhx0oaAZp-oPnv9bv2HEpP2B5GqA35pDhis-EGxsTbmj2aEPY8bKLdUPFP9DEMf22gWLlKd_a6JG7bGe6T_knt4VbfpdTTbHBFKctVh9veUnBT5wCYc0p7Cp9YG-dDYWOn-oRuz77erU-by6_f7tYry4blMrUZuhRtT0KPZEhcbM0e2fAyclJpMEN0hmaetFbkE4Imozt9aSEQw1GorwRR-zzfu9y068tlTrOviCFYCOlbRm7bmg1dEbKV-niQGolBbxOB6MHoUB3C4U9xZxKyeRG9NVWn2LN1oexhfFPUONaXa3-BnW-jHx5MXKX_Wzz7v_40x7ngs_uX-riESBXoIo
CitedBy_id crossref_primary_10_1021_acsaem_9b00920
crossref_primary_10_3724_j_issn_1674_4969_23060101
crossref_primary_10_1016_j_jechem_2023_04_002
crossref_primary_10_1016_j_chemphys_2023_112142
crossref_primary_10_1016_j_aca_2022_340204
crossref_primary_10_1021_jacs_6b05568
crossref_primary_10_1016_j_cej_2023_143525
crossref_primary_10_1002_adma_202004707
crossref_primary_10_1039_D2TA00793B
crossref_primary_10_1039_D4CC03117B
crossref_primary_10_1002_ange_202319876
crossref_primary_10_1002_chem_201806385
crossref_primary_10_1016_j_jpowsour_2022_231143
crossref_primary_10_1038_natrevmats_2016_68
crossref_primary_10_1039_D2DT02347D
crossref_primary_10_1107_S2052252516013762
crossref_primary_10_1021_jacs_4c14029
crossref_primary_10_1002_aoc_6263
crossref_primary_10_1016_j_est_2024_115026
crossref_primary_10_1002_chem_201703016
crossref_primary_10_1002_ange_202012947
crossref_primary_10_1039_D1CE00957E
crossref_primary_10_12677_MS_2024_142017
crossref_primary_10_1007_s11426_019_9658_1
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1039_C7TA02105D
crossref_primary_10_1039_D0CS00017E
crossref_primary_10_1002_anie_201913983
crossref_primary_10_1007_s11581_024_05734_8
crossref_primary_10_1021_acs_orglett_6b00577
crossref_primary_10_1002_app_53802
crossref_primary_10_1039_D3TA05200A
crossref_primary_10_1021_acsanm_4c00560
crossref_primary_10_1002_adfm_201705553
crossref_primary_10_1002_anie_201609049
crossref_primary_10_1016_j_apsusc_2021_149909
crossref_primary_10_1021_acsanm_9b01366
crossref_primary_10_1021_acsapm_0c00425
crossref_primary_10_1021_acsanm_1c02329
crossref_primary_10_1088_1361_6528_abb903
crossref_primary_10_1016_j_memsci_2018_11_040
crossref_primary_10_1039_C9NR07525A
crossref_primary_10_1016_j_chempr_2020_08_024
crossref_primary_10_1021_acsami_8b14446
crossref_primary_10_1039_D3NJ01826A
crossref_primary_10_1021_acsami_0c06267
crossref_primary_10_1021_acs_iecr_3c02052
crossref_primary_10_1002_ange_202101400
crossref_primary_10_1002_cssc_202400750
crossref_primary_10_1016_j_jpowsour_2017_11_089
crossref_primary_10_1016_j_mtchem_2021_100573
crossref_primary_10_1039_D0CE00902D
crossref_primary_10_1039_D2CY00088A
crossref_primary_10_1039_C9NR08007D
crossref_primary_10_3390_inorganics11070283
crossref_primary_10_1016_j_ijhydene_2024_10_199
crossref_primary_10_1039_C8DT00125A
crossref_primary_10_1016_j_apsusc_2021_152093
crossref_primary_10_1016_j_micromeso_2019_05_026
crossref_primary_10_1021_jacs_7b06640
crossref_primary_10_1016_j_jhazmat_2020_122333
crossref_primary_10_1021_acs_bioconjchem_1c00040
crossref_primary_10_1039_D1CS01093J
crossref_primary_10_1039_D0CS01569E
crossref_primary_10_1039_D2TA08435J
crossref_primary_10_1002_adma_202202751
crossref_primary_10_1021_jacs_7b01631
crossref_primary_10_1002_smll_202305978
crossref_primary_10_1039_C8GC03295E
crossref_primary_10_1039_D0TA05894G
crossref_primary_10_1002_adma_201907090
crossref_primary_10_1002_chem_202403627
crossref_primary_10_1039_D0TA06927B
crossref_primary_10_1039_D4TA00892H
crossref_primary_10_1016_j_apcatb_2022_121314
crossref_primary_10_1021_acsami_1c01134
crossref_primary_10_1002_slct_202301828
crossref_primary_10_1038_s41467_020_15918_1
crossref_primary_10_1016_j_ccr_2021_214241
crossref_primary_10_1039_D3CS00908D
crossref_primary_10_1002_asia_202200970
crossref_primary_10_1039_D2RA02093A
crossref_primary_10_1021_acsmacrolett_3c00438
crossref_primary_10_1021_acs_inorgchem_9b01897
crossref_primary_10_1039_C7CC02117H
crossref_primary_10_1016_j_chempr_2017_12_011
crossref_primary_10_1021_acs_chemmater_1c00737
crossref_primary_10_1021_acssuschemeng_4c04003
crossref_primary_10_1002_app_49745
crossref_primary_10_1016_j_snb_2019_03_110
crossref_primary_10_1021_jacs_2c02405
crossref_primary_10_1016_j_cjsc_2024_100466
crossref_primary_10_1021_jacs_8b10334
crossref_primary_10_1039_C9RA00453J
crossref_primary_10_1007_s12274_023_5812_x
crossref_primary_10_1002_ange_202404539
crossref_primary_10_1002_anie_201804753
crossref_primary_10_1016_j_apsusc_2023_156414
crossref_primary_10_1016_j_cej_2024_154915
crossref_primary_10_1039_C9TA06807D
crossref_primary_10_1002_ange_201904291
crossref_primary_10_1002_anie_202415454
crossref_primary_10_1021_acsami_1c03170
crossref_primary_10_1002_adma_201705155
crossref_primary_10_1039_D0TA01733G
crossref_primary_10_1007_s12200_022_00032_5
crossref_primary_10_1002_anie_202202089
crossref_primary_10_1002_chem_202303126
crossref_primary_10_1016_j_seppur_2024_128588
crossref_primary_10_1055_a_2291_8578
crossref_primary_10_1039_D1TA00201E
crossref_primary_10_1016_j_gce_2023_04_001
crossref_primary_10_1016_j_ccr_2021_213957
crossref_primary_10_1021_acs_cgd_7b01593
crossref_primary_10_1016_j_seppur_2023_126167
crossref_primary_10_1002_cctc_201902064
crossref_primary_10_1016_j_electacta_2019_135235
crossref_primary_10_1016_j_dyepig_2021_109818
crossref_primary_10_3390_nano8010015
crossref_primary_10_1016_j_cclet_2017_03_026
crossref_primary_10_1002_adma_202002038
crossref_primary_10_1016_j_polymer_2020_122632
crossref_primary_10_1039_D2TA08759F
crossref_primary_10_1016_j_progpolymsci_2020_101288
crossref_primary_10_3390_membranes13080696
crossref_primary_10_1021_jacs_2c01814
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1039_D0MH00081G
crossref_primary_10_1039_C7TA05279K
crossref_primary_10_1016_j_apcatb_2020_119174
crossref_primary_10_1039_C8CE01397G
crossref_primary_10_1016_j_apsusc_2022_153621
crossref_primary_10_1021_jacs_2c00285
crossref_primary_10_1002_anie_202012947
crossref_primary_10_1016_j_chroma_2022_463188
crossref_primary_10_1021_jacs_4c07091
crossref_primary_10_1002_ange_201913983
crossref_primary_10_1021_jacs_3c10627
crossref_primary_10_1088_1361_6528_ab5ff5
crossref_primary_10_1002_cctc_201900894
crossref_primary_10_1016_j_jclepro_2021_125822
crossref_primary_10_1021_acsmaterialslett_2c00432
crossref_primary_10_1080_15583724_2022_2025602
crossref_primary_10_1016_j_ccr_2020_213465
crossref_primary_10_1039_D0TC04423G
crossref_primary_10_1016_j_memsci_2023_121610
crossref_primary_10_1002_adsu_202400245
crossref_primary_10_1016_j_jcis_2023_06_062
crossref_primary_10_1021_acsapm_4c03799
crossref_primary_10_1039_D1PY00776A
crossref_primary_10_1039_D3TA01907A
crossref_primary_10_1002_chem_202101587
crossref_primary_10_1016_j_apsusc_2021_149047
crossref_primary_10_1021_acsmaterialslett_9b00185
crossref_primary_10_1039_D0QO01354D
crossref_primary_10_1007_s12274_022_5307_1
crossref_primary_10_1039_D0SC01737J
crossref_primary_10_1021_acs_langmuir_8b00926
crossref_primary_10_1021_jacs_9b02997
crossref_primary_10_1002_ange_202415454
crossref_primary_10_1039_D2QM00656A
crossref_primary_10_1002_ange_202202089
crossref_primary_10_1016_j_mcat_2024_114127
crossref_primary_10_1039_D1CP05699A
crossref_primary_10_1021_acs_iecr_3c02384
crossref_primary_10_1039_D1SC06372C
crossref_primary_10_1039_D4CS00409D
crossref_primary_10_1021_acsomega_9b04160
crossref_primary_10_1021_acs_iecr_4c01290
crossref_primary_10_1002_adma_202416100
crossref_primary_10_1016_j_trac_2024_117604
crossref_primary_10_1002_asia_202300196
crossref_primary_10_1016_j_cclet_2016_06_046
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1039_D2MA00909A
crossref_primary_10_1021_acsaem_2c01461
crossref_primary_10_1021_jacs_9b01891
crossref_primary_10_1007_s10904_017_0553_5
crossref_primary_10_1007_s12274_022_4575_0
crossref_primary_10_1016_j_jlumin_2018_03_041
crossref_primary_10_1016_j_memsci_2018_09_050
crossref_primary_10_1021_acsaem_2c01346
crossref_primary_10_1016_j_scitotenv_2023_169000
crossref_primary_10_1038_s41467_021_22288_9
crossref_primary_10_1039_D3GC01927F
crossref_primary_10_1002_advs_202206933
crossref_primary_10_1016_j_jhazmat_2019_02_046
crossref_primary_10_1039_D3CC01970E
crossref_primary_10_1039_C7TA01302G
crossref_primary_10_1016_j_ccr_2021_214298
crossref_primary_10_1002_chem_201701596
crossref_primary_10_1002_pola_29209
crossref_primary_10_3390_polym15020267
crossref_primary_10_2139_ssrn_4162761
crossref_primary_10_1016_j_apcata_2022_118793
crossref_primary_10_1002_slct_202203450
crossref_primary_10_1016_j_memsci_2023_122091
crossref_primary_10_1021_jacs_5b13490
crossref_primary_10_1038_s41467_022_28409_2
crossref_primary_10_1016_j_chroma_2022_463770
crossref_primary_10_1039_D2CC02051C
crossref_primary_10_1016_j_jhazmat_2022_128705
crossref_primary_10_1002_ange_201804753
crossref_primary_10_1016_j_ica_2016_09_033
crossref_primary_10_1021_acs_inorgchem_1c03093
crossref_primary_10_1002_asia_202401434
crossref_primary_10_1016_j_jpowsour_2016_09_135
crossref_primary_10_1021_jacs_9b06080
crossref_primary_10_1002_aenm_202102300
crossref_primary_10_1002_chem_202303615
crossref_primary_10_1038_s41467_018_03689_9
crossref_primary_10_1002_asia_201600396
crossref_primary_10_1002_celc_202100492
crossref_primary_10_1021_acsami_1c10351
crossref_primary_10_1016_j_jcis_2021_04_130
crossref_primary_10_2139_ssrn_4199809
crossref_primary_10_1016_j_cis_2024_103228
crossref_primary_10_1016_j_jcis_2021_08_118
crossref_primary_10_1002_adfm_202307618
crossref_primary_10_1002_adfm_201701465
crossref_primary_10_1016_j_ijhydene_2019_09_096
crossref_primary_10_1002_asia_202401349
crossref_primary_10_1007_s42247_024_00833_8
crossref_primary_10_1016_j_mtcomm_2021_102612
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_3390_molecules30051086
crossref_primary_10_3390_polym14163289
crossref_primary_10_1016_j_ssi_2020_115316
crossref_primary_10_1016_j_mser_2024_100771
crossref_primary_10_1016_j_electacta_2020_137212
crossref_primary_10_1002_anie_202101400
crossref_primary_10_1016_S1872_2067_22_64154_8
crossref_primary_10_1002_anie_202404539
crossref_primary_10_3390_polym16050659
crossref_primary_10_1021_acssuschemeng_2c04428
crossref_primary_10_1016_j_checat_2022_06_006
crossref_primary_10_1021_acsami_8b19087
crossref_primary_10_1002_anie_201904291
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1007_s11426_022_1391_0
crossref_primary_10_1016_j_cej_2018_08_184
crossref_primary_10_1021_acsami_4c09181
crossref_primary_10_1016_j_ccr_2024_216087
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1039_D4SC08674K
crossref_primary_10_1039_C9NJ00830F
crossref_primary_10_1002_admt_202001171
crossref_primary_10_1002_anie_202319876
crossref_primary_10_1007_s11426_024_2179_6
crossref_primary_10_1002_adfm_202311655
crossref_primary_10_1039_D3TA00079F
crossref_primary_10_1002_cptc_202400131
crossref_primary_10_1039_C9DT01236B
crossref_primary_10_1016_j_physleta_2020_127100
crossref_primary_10_1016_j_mattod_2023_05_023
crossref_primary_10_1039_D0EE02309D
crossref_primary_10_1021_acs_langmuir_3c03809
crossref_primary_10_1002_ange_201609049
crossref_primary_10_3390_polym13060970
crossref_primary_10_1002_cssc_201700120
crossref_primary_10_1016_j_ccr_2024_216398
crossref_primary_10_1007_s10967_023_08980_8
crossref_primary_10_1039_D4CE00514G
crossref_primary_10_1021_acs_energyfuels_3c00162
crossref_primary_10_1039_D4RA05339G
crossref_primary_10_1039_D4NR03204G
crossref_primary_10_1039_C9CC07500C
crossref_primary_10_1002_cssc_201901997
crossref_primary_10_1039_D1MA00008J
crossref_primary_10_1016_j_electacta_2020_135706
crossref_primary_10_1021_jacs_3c05403
crossref_primary_10_1016_j_ccr_2022_214889
crossref_primary_10_1016_j_jtice_2023_105067
crossref_primary_10_1021_acsami_6b06189
crossref_primary_10_3390_s23083881
crossref_primary_10_1016_j_ccr_2022_214882
crossref_primary_10_3390_membranes10050107
crossref_primary_10_1016_j_seppur_2024_130374
crossref_primary_10_1021_jacs_7b07918
crossref_primary_10_1021_jacs_7b05182
crossref_primary_10_1016_j_matt_2022_05_033
crossref_primary_10_1039_C7NH00172J
crossref_primary_10_1016_j_molstruc_2020_128807
crossref_primary_10_1002_adfm_202302917
crossref_primary_10_1021_acsmacrolett_7b00849
crossref_primary_10_1021_acsomega_2c07883
crossref_primary_10_1021_acs_chemmater_8b03897
crossref_primary_10_1039_C9CE01716J
crossref_primary_10_1021_jacs_6b08815
crossref_primary_10_1039_D1TA00396H
crossref_primary_10_1039_C7CC05779B
crossref_primary_10_1002_ejic_202400435
crossref_primary_10_1021_acs_chemmater_6b01370
crossref_primary_10_1016_j_nantod_2021_101247
crossref_primary_10_1039_D3RA04855A
crossref_primary_10_1016_j_jpowsour_2022_232332
crossref_primary_10_1002_chem_201805550
crossref_primary_10_1039_D1MH01147B
crossref_primary_10_1021_acs_cgd_8b00545
crossref_primary_10_1016_j_jcis_2022_05_026
crossref_primary_10_3390_w16111588
crossref_primary_10_1016_j_chempr_2021_04_012
crossref_primary_10_1016_j_ccr_2023_215214
crossref_primary_10_1016_j_ccr_2023_215577
crossref_primary_10_1021_acsami_7b02355
crossref_primary_10_1039_D0CS00793E
crossref_primary_10_1016_j_cherd_2022_02_003
crossref_primary_10_1016_j_jcis_2024_03_102
crossref_primary_10_1016_j_checat_2025_101327
crossref_primary_10_1016_j_talanta_2016_08_041
crossref_primary_10_1016_j_ccr_2024_215873
crossref_primary_10_1016_j_memsci_2020_118090
crossref_primary_10_1039_D3QM00151B
crossref_primary_10_1039_C6OB02727J
crossref_primary_10_1002_asia_201901338
crossref_primary_10_1039_C7OB02058A
crossref_primary_10_1039_D3DT02116E
crossref_primary_10_1107_S2052252516016900
crossref_primary_10_1016_j_apt_2021_04_025
crossref_primary_10_1039_D0CS00236D
crossref_primary_10_1039_C8SC02640H
crossref_primary_10_1039_D0TA04488A
crossref_primary_10_3390_polym14153158
crossref_primary_10_1039_D0QM00801J
crossref_primary_10_1016_j_apcatb_2025_125246
crossref_primary_10_1016_j_cclet_2024_110189
Cites_doi 10.1039/C4CC07104B
10.1002/anie.201503902
10.1021/ja808681m
10.1021/ja3122872
10.1038/nchem.1569
10.1021/acs.jpcc.5b01067
10.1021/cr0207123
10.1021/ja510926w
10.1126/science.1120411
10.1039/C1CS15171A
10.1002/anie.201310500
10.1021/ja511389q
10.1021/ja408121p
10.1038/nchem.402
10.1021/ja409421d
10.1039/C4CS00093E
10.1039/c2ee03055a
10.1039/c2cs15332g
10.1039/C4CS00230J
10.1021/ma049711y
10.1039/c2cs35157a
10.1038/nchem.2352
10.1021/cr020715f
10.1002/anie.201206410
10.1002/chem.201203753
10.1021/cr940089p
10.1038/nmat2526
10.1038/ncomms7786
10.1021/ja409033p
10.1039/c0cc03792c
10.1039/c2cc33583b
10.1021/ja510895m
10.1002/anie.201306775
10.1016/j.energy.2006.07.009
10.1021/ja4017842
10.1006/jssc.1996.0200
10.1002/anie.201209002
10.1021/ja001239i
10.1021/ja9015765
10.1021/ja4103293
10.1039/b203651g
10.1021/ja809279s
10.1021/ja304693r
10.1021/jp304761t
10.1016/0009-2614(95)00905-J
10.1021/cr030697h
10.1039/C4SC02294G
10.1021/cm201140r
10.1021/ja401060q
10.1039/B301726P
10.1039/c3ee40507a
10.1021/ja206846p
10.1021/ar300291s
10.1021/cr200304e
10.1016/j.solidstatesciences.2006.03.005
10.1002/anie.200906583
10.1038/nchem.1505
10.1002/anie.201101777
10.1021/ja502212v
10.1021/cm034398k
10.1002/anie.200803826
10.1038/nchem.548
10.1039/C4CC03389B
10.1021/ja305587n
10.1002/3527601821
ContentType Journal Article
DBID AAYXX
CITATION
7ST
7U6
C1K
7SR
7SU
7U5
8BQ
8FD
FR3
JG9
L7M
7S9
L.6
DOI 10.1039/c5ta10521h
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Environment Abstracts
AGRICOLA
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 269
ExternalDocumentID 10_1039_C5TA10521H
c5ta10521h
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
J3G
J3H
7ST
7U6
C1K
7SR
7SU
7U5
8BQ
8FD
FR3
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c459t-76c516c38de9e3bc456f90f4df4ce7f74f9ed636a04f33ed9a68d53fc8094c4b3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 00:20:50 EDT 2025
Fri Jul 11 04:21:43 EDT 2025
Fri Jul 11 11:17:20 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Tue Jul 01 04:18:02 EDT 2025
Tue Dec 17 21:00:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-76c516c38de9e3bc456f90f4df4ce7f74f9ed636a04f33ed9a68d53fc8094c4b3
Notes C solid state NMR, TGA, SEM, TEM, and crystallographic data (CIF). CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
13
1046996
and
1046997
10.1039/c5ta10521h
Electronic supplementary information (ESI) available: Synthetic procedures, PXRD, gas adsorption, FT-IR
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1798735082
PQPubID 23462
PageCount 9
ParticipantIDs crossref_citationtrail_10_1039_C5TA10521H
proquest_miscellaneous_1800485430
rsc_primary_c5ta10521h
proquest_miscellaneous_1798735082
proquest_miscellaneous_2271802944
crossref_primary_10_1039_C5TA10521H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2016
References Icli (C5TA10521H-(cit8a)/*[position()=1]) 2009; 131
Karim (C5TA10521H-(cit10i)/*[position()=1]) 2013; 135
Kongstein (C5TA10521H-(cit13d)/*[position()=1]) 2007; 32
MacGillivray (C5TA10521H-(cit2a)/*[position()=1]) 2000; 122
Ramaswamy (C5TA10521H-(cit10k)/*[position()=1]) 2014; 43
Huang (C5TA10521H-(cit8c)/*[position()=1]) 2005; 38
Quartarone (C5TA10521H-(cit13c)/*[position()=1]) 2012; 5
Wan (C5TA10521H-(cit6m)/*[position()=1]) 2011; 23
Ponomareva (C5TA10521H-(cit14)/*[position()=1]) 2012; 134
Xu (C5TA10521H-(cit6n)/*[position()=1]) 2015; 7
Wan (C5TA10521H-(cit6j)/*[position()=1]) 2008; 47
Huang (C5TA10521H-(cit6o)/*[position()=1]) 2015; 54
Côté (C5TA10521H-(cit5a)/*[position()=1]) 2005; 310
Kreuer (C5TA10521H-(cit10a)/*[position()=1]) 2004; 104
Lia (C5TA10521H-(cit10l)/*[position()=1]) 2013; 6
Furukawa (C5TA10521H-(cit6a)/*[position()=1]) 2009; 131
Umeyama (C5TA10521H-(cit10h)/*[position()=1]) 2012; 134
Mauritz (C5TA10521H-(cit10d)/*[position()=1]) 2004; 104
Jackson (C5TA10521H-(cit6d)/*[position()=1]) 2012; 48
Dogru (C5TA10521H-(cit6f)/*[position()=1]) 2011; 47
Friščić (C5TA10521H-(cit4b)/*[position()=1]) 2003; 11
Doonan (C5TA10521H-(cit5c)/*[position()=1]) 2010; 2
Medina (C5TA10521H-(cit5e)/*[position()=1]) 2015; 137
Morris (C5TA10521H-(cit3b)/*[position()=1]) 2013; 52
Agmon (C5TA10521H-(cit16)/*[position()=1]) 1995; 244
Rabbani (C5TA10521H-(cit6c)/*[position()=1]) 2013; 19
Friščić (C5TA10521H-(cit2b)/*[position()=1]) 2012; 41
Medina (C5TA10521H-(cit7d)/*[position()=1]) 2015; 137
Suarez (C5TA10521H-(cit13b)/*[position()=1]) 2012; 116
Ye (C5TA10521H-(cit15)/*[position()=1]) 2015; 137
Chandra (C5TA10521H-(cit11)/*[position()=1]) 2014; 136
Carné-Sánchez (C5TA10521H-(cit7c)/*[position()=1]) 2013; 5
Zeng (C5TA10521H-(cit5d)/*[position()=1]) 2015; 137
Bureekaew (C5TA10521H-(cit10c)/*[position()=1]) 2009; 8
Eddaoudi (C5TA10521H-(cit7b)/*[position()=1]) 2015; 44
Ding (C5TA10521H-(cit6g)/*[position()=1]) 2011; 133
DeBlase (C5TA10521H-(cit6l)/*[position()=1]) 2013; 135
Aiyappa (C5TA10521H-(cit17a)/*[position()=1]) 2015; 6
Friščić (C5TA10521H-(cit4d)/*[position()=1]) 2013; 5
Mecerreyes (C5TA10521H-(cit13e)/*[position()=1]) 2004; 16
Dalapati (C5TA10521H-(cit6k)/*[position()=1]) 2013; 135
Friščić (C5TA10521H-(cit4a)/*[position()=1]) 2010; 49
Das (C5TA10521H-(cit9b)/*[position()=1]) 2014; 50
Stock (C5TA10521H-(cit7a)/*[position()=1]) 2012; 112
Chandra (C5TA10521H-(cit8d)/*[position()=1]) 2013; 135
Horike (C5TA10521H-(cit10m)/*[position()=1]) 2013; 135
Yamada (C5TA10521H-(cit10f)/*[position()=1]) 2009; 131
Tanaka (C5TA10521H-(cit1a)/*[position()=1]) 2003
Oueslati (C5TA10521H-(cit12b)/*[position()=1]) 2006; 8
Nicotera (C5TA10521H-(cit13a)/*[position()=1]) 2015; 119
Fang (C5TA10521H-(cit6h)/*[position()=1]) 2014; 53
Zaccaro (C5TA10521H-(cit12a)/*[position()=1]) 1996; 124
Shinde (C5TA10521H-(cit6i)/*[position()=1]) 2015; 51
Kandambeth (C5TA10521H-(cit6e)/*[position()=1]) 2013; 52
Hurd (C5TA10521H-(cit10b)/*[position()=1]) 2009; 1
Beyer (C5TA10521H-(cit3a)/*[position()=1]) 2005; 105
Orita (C5TA10521H-(cit8b)/*[position()=1]) 2002
Zhang (C5TA10521H-(cit6b)/*[position()=1]) 2013; 135
Feng (C5TA10521H-(cit5b)/*[position()=1]) 2012; 41
Yoon (C5TA10521H-(cit10g)/*[position()=1]) 2013; 52
Biswal (C5TA10521H-(cit9a)/*[position()=1]) 2013; 135
Yoon (C5TA10521H-(cit10e)/*[position()=1]) 2011; 50
Kandambeth (C5TA10521H-(cit5f)/*[position()=1]) 2015; 6
Tanaka (C5TA10521H-(cit4c)/*[position()=1]) 2000; 100
Horike (C5TA10521H-(cit10j)/*[position()=1]) 2013; 46
James (C5TA10521H-(cit1b)/*[position()=1]) 2012; 41
References_xml – issn: 2003
  publication-title: Solvent-free Organic Synthesis
  doi: Tanaka
– volume: 51
  start-page: 310
  year: 2015
  ident: C5TA10521H-(cit6i)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07104B
– volume: 54
  start-page: 8704
  year: 2015
  ident: C5TA10521H-(cit6o)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503902
– volume: 131
  start-page: 3144
  year: 2009
  ident: C5TA10521H-(cit10f)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808681m
– volume: 135
  start-page: 4612
  year: 2013
  ident: C5TA10521H-(cit10m)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3122872
– volume: 5
  start-page: 203
  year: 2013
  ident: C5TA10521H-(cit7c)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1569
– volume: 119
  start-page: 9745
  year: 2015
  ident: C5TA10521H-(cit13a)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01067
– volume: 104
  start-page: 4535
  year: 2004
  ident: C5TA10521H-(cit10d)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr0207123
– volume: 137
  start-page: 1020
  year: 2015
  ident: C5TA10521H-(cit5d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510926w
– volume: 310
  start-page: 1166
  year: 2005
  ident: C5TA10521H-(cit5a)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 41
  start-page: 413
  year: 2012
  ident: C5TA10521H-(cit1b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15171A
– volume: 53
  start-page: 2878
  year: 2014
  ident: C5TA10521H-(cit6h)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310500
– volume: 137
  start-page: 913
  year: 2015
  ident: C5TA10521H-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511389q
– volume: 135
  start-page: 17853
  year: 2013
  ident: C5TA10521H-(cit8d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408121p
– volume: 1
  start-page: 705
  year: 2009
  ident: C5TA10521H-(cit10b)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.402
– volume: 135
  start-page: 16821
  year: 2013
  ident: C5TA10521H-(cit6l)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409421d
– volume: 43
  start-page: 5913
  year: 2014
  ident: C5TA10521H-(cit10k)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00093E
– volume: 5
  start-page: 6436
  year: 2012
  ident: C5TA10521H-(cit13c)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03055a
– volume: 41
  start-page: 3493
  year: 2012
  ident: C5TA10521H-(cit2b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs15332g
– volume: 44
  start-page: 228
  year: 2015
  ident: C5TA10521H-(cit7b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00230J
– volume: 38
  start-page: 317
  year: 2005
  ident: C5TA10521H-(cit8c)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma049711y
– volume: 41
  start-page: 6010
  year: 2012
  ident: C5TA10521H-(cit5b)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 7
  start-page: 905
  year: 2015
  ident: C5TA10521H-(cit6n)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2352
– volume: 104
  start-page: 4637
  year: 2004
  ident: C5TA10521H-(cit10a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr020715f
– volume: 52
  start-page: 2688
  year: 2013
  ident: C5TA10521H-(cit10g)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201206410
– volume: 19
  start-page: 3324
  year: 2013
  ident: C5TA10521H-(cit6c)/*[position()=1]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201203753
– volume: 100
  start-page: 1025
  year: 2000
  ident: C5TA10521H-(cit4c)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr940089p
– volume: 8
  start-page: 831
  year: 2009
  ident: C5TA10521H-(cit10c)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2526
– volume: 6
  start-page: 6786
  year: 2015
  ident: C5TA10521H-(cit5f)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7786
– volume: 135
  start-page: 16336
  year: 2013
  ident: C5TA10521H-(cit6b)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409033p
– volume: 47
  start-page: 1707
  year: 2011
  ident: C5TA10521H-(cit6f)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc03792c
– volume: 48
  start-page: 8823
  year: 2012
  ident: C5TA10521H-(cit6d)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc33583b
– volume: 137
  start-page: 1016
  year: 2015
  ident: C5TA10521H-(cit5e)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510895m
– volume: 52
  start-page: 13052
  year: 2013
  ident: C5TA10521H-(cit6e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201306775
– volume: 32
  start-page: 418
  year: 2007
  ident: C5TA10521H-(cit13d)/*[position()=1]
  publication-title: Energy
  doi: 10.1016/j.energy.2006.07.009
– volume: 135
  start-page: 5328
  year: 2013
  ident: C5TA10521H-(cit9a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4017842
– volume: 124
  start-page: 8
  year: 1996
  ident: C5TA10521H-(cit12a)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1996.0200
– volume: 52
  start-page: 2163
  year: 2013
  ident: C5TA10521H-(cit3b)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209002
– volume: 137
  start-page: 1016
  year: 2015
  ident: C5TA10521H-(cit7d)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510895m
– volume: 122
  start-page: 7817
  year: 2000
  ident: C5TA10521H-(cit2a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja001239i
– volume: 131
  start-page: 8875
  year: 2009
  ident: C5TA10521H-(cit6a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9015765
– volume: 135
  start-page: 17310
  year: 2013
  ident: C5TA10521H-(cit6k)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4103293
– start-page: 1362
  year: 2002
  ident: C5TA10521H-(cit8b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b203651g
– volume: 131
  start-page: 3154
  year: 2009
  ident: C5TA10521H-(cit8a)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809279s
– volume: 134
  start-page: 12780
  year: 2012
  ident: C5TA10521H-(cit10h)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304693r
– volume: 116
  start-page: 12545
  year: 2012
  ident: C5TA10521H-(cit13b)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp304761t
– volume: 244
  start-page: 456
  year: 1995
  ident: C5TA10521H-(cit16)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)00905-J
– volume: 105
  start-page: 2921
  year: 2005
  ident: C5TA10521H-(cit3a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr030697h
– volume: 6
  start-page: 603
  year: 2015
  ident: C5TA10521H-(cit17a)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02294G
– volume: 23
  start-page: 4094
  year: 2011
  ident: C5TA10521H-(cit6m)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm201140r
– volume: 135
  start-page: 8097
  year: 2013
  ident: C5TA10521H-(cit10i)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401060q
– volume: 11
  start-page: 1306
  year: 2003
  ident: C5TA10521H-(cit4b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/B301726P
– volume: 6
  start-page: 1656
  year: 2013
  ident: C5TA10521H-(cit10l)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40507a
– volume: 133
  start-page: 19816
  year: 2011
  ident: C5TA10521H-(cit6g)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206846p
– volume: 46
  start-page: 2376
  year: 2013
  ident: C5TA10521H-(cit10j)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300291s
– volume: 112
  start-page: 933
  year: 2012
  ident: C5TA10521H-(cit7a)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200304e
– volume: 8
  start-page: 1067
  year: 2006
  ident: C5TA10521H-(cit12b)/*[position()=1]
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2006.03.005
– volume: 49
  start-page: 712
  year: 2010
  ident: C5TA10521H-(cit4a)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906583
– volume: 5
  start-page: 66
  year: 2013
  ident: C5TA10521H-(cit4d)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1505
– volume: 50
  start-page: 7870
  year: 2011
  ident: C5TA10521H-(cit10e)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101777
– volume: 136
  start-page: 6570
  year: 2014
  ident: C5TA10521H-(cit11)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502212v
– volume: 16
  start-page: 604
  year: 2004
  ident: C5TA10521H-(cit13e)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm034398k
– volume: 47
  start-page: 8826
  year: 2008
  ident: C5TA10521H-(cit6j)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200803826
– volume: 2
  start-page: 235
  year: 2010
  ident: C5TA10521H-(cit5c)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.548
– volume: 50
  start-page: 12615
  year: 2014
  ident: C5TA10521H-(cit9b)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC03389B
– volume: 134
  start-page: 15640
  year: 2012
  ident: C5TA10521H-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305587n
– volume-title: Solvent-free Organic Synthesis
  year: 2003
  ident: C5TA10521H-(cit1a)/*[position()=1]
  doi: 10.1002/3527601821
SSID ssj0000800699
Score 2.5967877
Snippet Mechanochemistry has become an increasingly important synthetic tool for a waste-free environment. However, the poor quality of the so-derived materials in...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2682
SubjectTerms Assembly
Covalence
crystal structure
Crystallinity
electric potential difference
Electrodes
Electrolytes
fuel cells
fuels
Mechanochemistry
Open circuit voltage
porosity
Solid electrolytes
Title A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte
URI https://www.proquest.com/docview/1798735082
https://www.proquest.com/docview/1800485430
https://www.proquest.com/docview/2271802944
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8T5UtG8IKijDS2k_gxm4YKQrzQSXurLo5DM7q2alKh7v_i_8PnfE7dEPASVbaVJr7L-Xy--_0IeRdJroUKlCukli5nqecC-MKNtM4UopOEYLMtvgaTc_75QlwMBr96WUvbMjlW17fWlfyPVE2bkStWyf6DZNubmgbz28jXXI2EzfWvZBw7Vxord5H1ypb9L3YIQWB8uiK_1livZv7NHvbbikvlZE0qFtLLACZnIYOw2RIj6quNLKwWeerU3DiLXXkzUahzXo2fW72goxrGuGMnrop_mh4LJl6VFtrofFOqhdm4bSD_2xzxGq3ly7_DVQIb5wQWcJm3mpjvYL22Lu4EMOe6nAOekuQ_unyAOaSWLslYKNO_KtoQ90le_ITqXCUv5sttXc1WRznG_SiHNYa-JzzEPa1ste63VYy4jTXnPaUN-5Y5qEiO6lXerwhi9hYQjyH-qhIljLGsed4tk23yYtd5QA59szvxh-QwPpt--tIG99ANDyx3afvcDTQukx-6G9x0hrodzsGmoZ-xbs70IXlQi5jGlbI9IgO9fEzu91ArnxAV0z21oz21o43a0VrtaKt2FAoKdE_tqFU72lO7p-T849n0dOLWXB2u4kKWbhgoMQ4Ui1ItNUtMY5BJL-NpxpUOs5BnUqcBC8DjGWM6lRBEqWDGHniSK56wIzJcrpb6GaFmxeC2QlynEU-9KBGQ6LFUoFXC0jGMyPtm0maqBrJHPpXFzCZUMDk7FdPYTvBkRN62Y9cVfMuto940cz8znwwemcFSr7bFDOH8QmY2Mf4fxkS4DArOvLvH-H6IUIuS8xE5MsJtH6bThed3dbwg97ov4iUZlputfmU84TJ5Xevdb7ZyvX8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mechanochemically+synthesized+covalent+organic+framework+as+a+proton-conducting+solid+electrolyte&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Shinde%2C+Digambar+Balaji&rft.au=Aiyappa%2C+Harshitha+Barike&rft.au=Bhadra%2C+Mohitosh&rft.au=Biswal%2C+Bishnu+P&rft.date=2016-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=4&rft.issue=7&rft.spage=2682&rft.epage=269&rft_id=info:doi/10.1039%2Fc5ta10521h&rft.externalDocID=c5ta10521h
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon