Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy
Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth...
Saved in:
Published in | Journal of the American Heart Association Vol. 7; no. 23; p. e010404 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
04.12.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late-stage caspase-mediated cleavage of gelsolin. The requirement of caspase-mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy-related transcription activity. The in vivo impact of caspase-mediated cleavage was investigated by echo-guided intramyocardial injection of adenoviral-expressed gelsolin. Expression of the N-terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end-stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response. |
---|---|
AbstractList | Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase‐directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late‐stage caspase‐mediated cleavage of gelsolin. The requirement of caspase‐mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy‐related transcription activity. The in vivo impact of caspase‐mediated cleavage was investigated by echo‐guided intramyocardial injection of adenoviral‐expressed gelsolin. Expression of the N‐terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end‐stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response. Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late-stage caspase-mediated cleavage of gelsolin. The requirement of caspase-mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy-related transcription activity. The in vivo impact of caspase-mediated cleavage was investigated by echo-guided intramyocardial injection of adenoviral-expressed gelsolin. Expression of the N-terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end-stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late-stage caspase-mediated cleavage of gelsolin. The requirement of caspase-mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy-related transcription activity. The in vivo impact of caspase-mediated cleavage was investigated by echo-guided intramyocardial injection of adenoviral-expressed gelsolin. Expression of the N-terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end-stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response. |
Author | Megeney, Lynn A. Burgon, Patrick G. Brunette, Steve Abdul‐Ghani, Mohammad Putinski, Charis |
AuthorAffiliation | 3 Department of Medicine University of Ottawa Ontario Canada 4 University of Ottawa Heart Institute Ottawa Ontario Canada 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada 2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada |
AuthorAffiliation_xml | – name: 4 University of Ottawa Heart Institute Ottawa Ontario Canada – name: 2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada – name: 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada – name: 3 Department of Medicine University of Ottawa Ontario Canada |
Author_xml | – sequence: 1 givenname: Charis surname: Putinski fullname: Putinski, Charis organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada, Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada – sequence: 2 givenname: Mohammad surname: Abdul‐Ghani fullname: Abdul‐Ghani, Mohammad organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada, Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada – sequence: 3 givenname: Steve surname: Brunette fullname: Brunette, Steve organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada – sequence: 4 givenname: Patrick G. surname: Burgon fullname: Burgon, Patrick G. organization: Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada, Department of Medicine University of Ottawa Ontario Canada, University of Ottawa Heart Institute Ottawa Ontario Canada – sequence: 5 givenname: Lynn A. surname: Megeney fullname: Megeney, Lynn A. organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada, Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada, Department of Medicine University of Ottawa Ontario Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30486716$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1r3DAQxU1JadI0596Kj71sIllf9qWwmDS7JdBC27MYS-NdBa3lSvbC_vfVdpOSFKqDNGje-z2B5m1xNoQBi-I9JdeUSnrzZbla5qq-JpRwwl8VFxXhatE0NTl7Vp8XVyk9kLxkpZho3hTnjPBaKioviu8tpBESlq1H2MMGy9CXd-hT8G4o16mEvA92NpPbZ9GMZR9i-Q2mbfBh40zZQrQOTLk6jBinGMbt4V3xugef8OrxvCx-fr790a4W91_v1u3yfmG4aKaFxFpy0zSSV50lglWsEkiAdoxRpSRIUlWGGYFNbgnW8b7m1jIlbW9ZI4BdFusT1wZ40GN0O4gHHcDpPxchbjTEyRmPGgF7gUxh5maO7CitKsVR9UA6K0lmfTqxxrnboTU4TBH8C-jLzuC2ehP2WnIiBD8CPj4CYvg1Y5r0ziWD3sOAYU66ovnNUshaZemH51l_Q55-JQvESWBiSClir42bYHLhGO28pkQfB0AfByBXtT4NQPbd_ON7Qv_P8RuwgLCa |
CitedBy_id | crossref_primary_10_1038_s42255_023_00939_z crossref_primary_10_1016_j_yjmcc_2023_03_012 crossref_primary_10_3390_cells11223566 crossref_primary_10_3390_ijms25042206 |
Cites_doi | 10.1128/MCB.01539-09 10.1161/CIRCRESAHA.115.305250 10.1074/jbc.M414270200 10.1126/science.278.5336.294 10.1073/pnas.96.14.8144 10.1073/pnas.1315587110 10.1056/NEJMra072139 10.1007/s11010-014-1977-7 10.1016/S0171-9335(98)80088-5 10.1038/323455a0 10.1038/nrm1983 10.1016/S0092-8674(00)81011-9 10.1161/CIRCRESAHA.108.172882 10.1182/blood-2002-03-0686 10.1084/jem.193.2.247 10.1161/HYPERTENSIONAHA.106.079426 10.1126/scisignal.aad2959 10.1096/fj.04-2981fje 10.1096/fj.06-5912hyp 10.1073/pnas.092022999 10.1007/s12192-015-0637-5 10.1126/scisignal.2001682 10.1146/annurev.physiol.65.092101.142243 10.1046/j.1365-2362.1999.00481.x 10.1007/BF00926743 10.1016/S1534-5807(03)00120-5 10.1073/pnas.1512869112 10.1002/cm.21117 10.1172/JCI62839 10.1128/MCB.21.16.5346-5358.2001 10.1038/cdd.2008.100 10.1038/cr.2017.87 10.1016/j.stem.2008.04.001 10.1074/mcp.M000063-MCP201 10.1073/pnas.162172899 10.1006/jmcc.1998.0885 10.1074/jbc.M109.056028 10.1038/cdd.2017.37 10.1152/physiolgenomics.00226.2004 10.1016/S0735-1097(01)01769-7 10.1002/med.20231 10.1002/elps.200800015 10.1073/pnas.95.17.10140 10.1093/cvr/cvu013 10.1128/MCB.24.23.10425-10436.2004 |
ContentType | Journal Article |
Copyright | 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. |
Copyright_xml | – notice: 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1161/JAHA.118.010404 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Putinski et al |
EISSN | 2047-9980 |
ExternalDocumentID | oai_doaj_org_article_eaef5e37e76a4f86b112274e7fa0bd60 PMC6405540 30486716 10_1161_JAHA_118_010404 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ontario Graduate Scholarship (Putinski) – fundername: Canadian Institutes of Health Research (Megeney) |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 8-1 AAYXX AAZKR ACCMX ACGFO ACXQS ADBBV ADKYN ADRAZ ADZMN AEGXH AENEX AIAGR ALAGY ALMA_UNASSIGNED_HOLDINGS AOIJS AVUZU BAWUL BCNDV CITATION DIK EBS EMOBN GODZA GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 RAH RNS RPM AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 5PM WIN |
ID | FETCH-LOGICAL-c459t-6e864c99642bd0532325e0a1b331776a6022c3c5e932353b4f84dd376dfd395a3 |
IEDL.DBID | M48 |
ISSN | 2047-9980 |
IngestDate | Wed Aug 27 01:27:47 EDT 2025 Thu Aug 21 13:41:43 EDT 2025 Fri Jul 11 12:25:44 EDT 2025 Mon Jul 21 06:02:39 EDT 2025 Tue Jul 01 04:01:40 EDT 2025 Thu Apr 24 23:04:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | cytoskeletal dynamics cardiomyocyte hypertrophy cardiac hypertrophy gelsolin cell signaling caspase‐3 |
Language | English |
License | This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-6e864c99642bd0532325e0a1b331776a6022c3c5e932353b4f84dd376dfd395a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1161/JAHA.118.010404 |
PMID | 30486716 |
PQID | 2139565687 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eaef5e37e76a4f86b112274e7fa0bd60 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405540 proquest_miscellaneous_2139565687 pubmed_primary_30486716 crossref_citationtrail_10_1161_JAHA_118_010404 crossref_primary_10_1161_JAHA_118_010404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-04 |
PublicationDateYYYYMMDD | 2018-12-04 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | Journal of the American Heart Association |
PublicationTitleAlternate | J Am Heart Assoc |
PublicationYear | 2018 |
Publisher | John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley and Sons Inc – name: Wiley |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_28_2 doi: 10.1128/MCB.01539-09 – ident: e_1_3_2_6_2 doi: 10.1161/CIRCRESAHA.115.305250 – ident: e_1_3_2_33_2 doi: 10.1074/jbc.M414270200 – ident: e_1_3_2_13_2 doi: 10.1126/science.278.5336.294 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.96.14.8144 – ident: e_1_3_2_11_2 doi: 10.1073/pnas.1315587110 – ident: e_1_3_2_3_2 doi: 10.1056/NEJMra072139 – ident: e_1_3_2_18_2 doi: 10.1007/s11010-014-1977-7 – ident: e_1_3_2_12_2 doi: 10.1016/S0171-9335(98)80088-5 – ident: e_1_3_2_16_2 doi: 10.1038/323455a0 – ident: e_1_3_2_7_2 doi: 10.1038/nrm1983 – ident: e_1_3_2_21_2 doi: 10.1016/S0092-8674(00)81011-9 – ident: e_1_3_2_14_2 doi: 10.1161/CIRCRESAHA.108.172882 – ident: e_1_3_2_34_2 doi: 10.1182/blood-2002-03-0686 – ident: e_1_3_2_23_2 doi: 10.1084/jem.193.2.247 – ident: e_1_3_2_4_2 doi: 10.1161/HYPERTENSIONAHA.106.079426 – ident: e_1_3_2_22_2 doi: 10.1126/scisignal.aad2959 – ident: e_1_3_2_26_2 doi: 10.1096/fj.04-2981fje – ident: e_1_3_2_35_2 doi: 10.1096/fj.06-5912hyp – ident: e_1_3_2_42_2 doi: 10.1073/pnas.092022999 – ident: e_1_3_2_39_2 doi: 10.1007/s12192-015-0637-5 – ident: e_1_3_2_37_2 doi: 10.1126/scisignal.2001682 – ident: e_1_3_2_8_2 doi: 10.1146/annurev.physiol.65.092101.142243 – ident: e_1_3_2_45_2 doi: 10.1046/j.1365-2362.1999.00481.x – ident: e_1_3_2_40_2 doi: 10.1007/BF00926743 – ident: e_1_3_2_25_2 doi: 10.1016/S1534-5807(03)00120-5 – ident: e_1_3_2_29_2 doi: 10.1073/pnas.1512869112 – ident: e_1_3_2_17_2 doi: 10.1002/cm.21117 – ident: e_1_3_2_9_2 doi: 10.1172/JCI62839 – ident: e_1_3_2_31_2 doi: 10.1128/MCB.21.16.5346-5358.2001 – ident: e_1_3_2_36_2 doi: 10.1038/cdd.2008.100 – ident: e_1_3_2_10_2 doi: 10.1038/cr.2017.87 – ident: e_1_3_2_27_2 doi: 10.1016/j.stem.2008.04.001 – ident: e_1_3_2_20_2 doi: 10.1074/mcp.M000063-MCP201 – ident: e_1_3_2_24_2 doi: 10.1073/pnas.162172899 – ident: e_1_3_2_41_2 doi: 10.1006/jmcc.1998.0885 – ident: e_1_3_2_15_2 doi: 10.1074/jbc.M109.056028 – ident: e_1_3_2_38_2 doi: 10.1038/cdd.2017.37 – ident: e_1_3_2_2_2 doi: 10.1152/physiolgenomics.00226.2004 – ident: e_1_3_2_43_2 doi: 10.1016/S0735-1097(01)01769-7 – ident: e_1_3_2_46_2 doi: 10.1002/med.20231 – ident: e_1_3_2_19_2 doi: 10.1002/elps.200800015 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.95.17.10140 – ident: e_1_3_2_5_2 doi: 10.1093/cvr/cvu013 – ident: e_1_3_2_32_2 doi: 10.1128/MCB.24.23.10425-10436.2004 |
SSID | ssj0000627359 |
Score | 2.1759837 |
Snippet | Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e010404 |
SubjectTerms | Animals cardiac hypertrophy Cardiomegaly - etiology Cardiomegaly - metabolism cardiomyocyte hypertrophy Caspase 3 - metabolism caspase‐3 cell signaling cytoskeletal dynamics Fluorescent Antibody Technique gelsolin Gelsolin - metabolism Gene Knockdown Techniques Male Myocytes, Cardiac - metabolism Original Research Rats Rats, Sprague-Dawley |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kB_Eivo0vVvDgJW2TfWRzrMFaCxVBC72Fze4GhZJIm_r7nd2kpRXFi5ew5EGWbyYz37CbbxC6CTVjnArlB4pJ28JM-bEtVpgIFOVGxLm2PziPnvhgTIcTNllr9WX3hNXywDVwHSNNzgyJTMQlzQXPgCBAJWWiXHYzzV21DjlvrZiqYzCkZRY3Wj7AajrD3qAHI9G2BUjTlm2Zhpxa_08U8_tOybXU099Duw1nxL16rvtoyxQHaHvUrIofopdEQlyYG5xMjfyEAIHLHD9A0rMNefDjHEs4FlbYFUIbThYGA1PFz7JqIh9OnJsoPICidFbNSoD-CI3796_JwG-aJfiKsrjyAVdOFVQvNMy0bfdAQma6MsgIMATAjkOyVkQxA4SNMJIBllRrCC861yRmkhyjVlEW5hRhoGhxLqxuKXX6gDGJg5CHVBvK8yxkHmovsUtVoyRuG1pMU1dR8CC1YMNIpDXYHrpdPfBRi2j8fuudNcbqNqt-7U6AT6SNT6R_-YSHrpemTOFrsUsgsjDlYp6GQHgthRWRh05q065eRZz6YMA9FG0YfWMum1eK9zenyM2B9gL1PfuPyZ-jHSBlwm2ZoReoVc0W5hKIT5VdOR__AhCo_e4 priority: 102 providerName: Directory of Open Access Journals |
Title | Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30486716 https://www.proquest.com/docview/2139565687 https://pubmed.ncbi.nlm.nih.gov/PMC6405540 https://doaj.org/article/eaef5e37e76a4f86b112274e7fa0bd60 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwELbQkKa9oMEGhMHkSTzsJaWJf8R5QKiLGGVS0aRRaW-RYzuAVCWQpgj-e-4ct1tR9xJFSZwfd_bdd3HyfYS8Ta0QkisTJ0ZolDAzcY7FilCJ4dKpvLb4g_Psi5zO-dWtuL2TAwoGXO4s7VBPat4tRn9-_f0AA_69H_AyeXc1mU5gTY2wtkBu0MeQljKUM5gFrD-EZcjUIg_0PjvaHZB95gnoUPv8XpLyXP67AOj_31HeS0yXh-RJQJR0MnSBp-SRa56R_VmYMz8iN4WGqLF0tFg4_RvCB21r-glSIsr10M9LqmHZIO0rBD5arBwFHEuvdR_iIi18JzJ0CiVr13ctOOaYzC8_fi2mcZBSiA0XeR-D1SU3UNvwtLIoBsFS4cY6qRjgh0xqCancMCMcwDkmWMVrxa2F4GNry3Kh2XOy17SNe0koALi8Vshqyj17YM7yJJUpt47LukpFREZr25Um8Iyj3MWi9PWGTEq0O6ypcrB7RM43DX4OFBsPH3qBztgchtzYfkPbfSvDUCuddrVwLHPwXPAcsgJICbW3y2o9rqwcR-Rs7coSxhJOkOjGtatlmQIcRoCrsoi8GFy7udS6a0Qk23L61r1s72l-fPd83RJAMQDjVw-e84QcAA5T_isZ_prs9d3KvQGs01en_h3Bqe_J_wBocffx |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caspase+Cleavage+of+Gelsolin+Is+an+Inductive+Cue+for+Pathologic+Cardiac+Hypertrophy&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Putinski%2C+Charis&rft.au=Abdul-Ghani%2C+Mohammad&rft.au=Brunette%2C+Steve&rft.au=Burgon%2C+Patrick+G&rft.date=2018-12-04&rft.eissn=2047-9980&rft.volume=7&rft.issue=23&rft.spage=e010404&rft_id=info:doi/10.1161%2FJAHA.118.010404&rft_id=info%3Apmid%2F30486716&rft.externalDocID=30486716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon |