Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy

Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Heart Association Vol. 7; no. 23; p. e010404
Main Authors Putinski, Charis, Abdul‐Ghani, Mohammad, Brunette, Steve, Burgon, Patrick G., Megeney, Lynn A.
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons Inc 04.12.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late-stage caspase-mediated cleavage of gelsolin. The requirement of caspase-mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy-related transcription activity. The in vivo impact of caspase-mediated cleavage was investigated by echo-guided intramyocardial injection of adenoviral-expressed gelsolin. Expression of the N-terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end-stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.
AbstractList Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase‐directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late‐stage caspase‐mediated cleavage of gelsolin. The requirement of caspase‐mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy‐related transcription activity. The in vivo impact of caspase‐mediated cleavage was investigated by echo‐guided intramyocardial injection of adenoviral‐expressed gelsolin. Expression of the N‐terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end‐stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.
Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late-stage caspase-mediated cleavage of gelsolin. The requirement of caspase-mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy-related transcription activity. The in vivo impact of caspase-mediated cleavage was investigated by echo-guided intramyocardial injection of adenoviral-expressed gelsolin. Expression of the N-terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end-stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic hypertrophy yield distinct outcomes, yet both are dependent on caspase-directed proteolysis. This suggests that each form of myocardial growth may derive from a specific caspase cleavage event(s). We examined whether caspase 3 cleavage of the actin capping/severing protein gelsolin is essential for the development of pathologic hypertrophy. Methods and Results Caspase targeting of gelsolin was established through protein analysis of hypertrophic cardiomyocytes and mass spectrometry mapping of cleavage sites. Pathologic agonists induced late-stage caspase-mediated cleavage of gelsolin. The requirement of caspase-mediated gelsolin cleavage for hypertrophy induction was evaluated in primary cardiomyocytes by cell size analysis, monitoring of prohypertrophy markers, and measurement of hypertrophy-related transcription activity. The in vivo impact of caspase-mediated cleavage was investigated by echo-guided intramyocardial injection of adenoviral-expressed gelsolin. Expression of the N-terminal gelsolin caspase cleavage fragment was necessary and sufficient to cause pathologic remodeling in isolated cardiomyocytes and the intact heart, whereas expression of a noncleavable form prevents cardiac remodeling. Alterations in myocardium structure and function were determined by echocardiography and end-stage cardiomyocyte cell size analysis. Gelsolin secretion was also monitored for its impact on naïve cells using competitive antibody trapping, demonstrating that hypertrophic agonist stimulation of cardiomyocytes leads to gelsolin secretion, which induces hypertrophy in naïve cells. Conclusions These results suggest that cell autonomous caspase cleavage of gelsolin is essential for pathologic hypertrophy and that cardiomyocyte secretion of gelsolin may accelerate this negative remodeling response.
Author Megeney, Lynn A.
Burgon, Patrick G.
Brunette, Steve
Abdul‐Ghani, Mohammad
Putinski, Charis
AuthorAffiliation 3 Department of Medicine University of Ottawa Ontario Canada
4 University of Ottawa Heart Institute Ottawa Ontario Canada
1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada
2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
AuthorAffiliation_xml – name: 4 University of Ottawa Heart Institute Ottawa Ontario Canada
– name: 2 Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
– name: 1 Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada
– name: 3 Department of Medicine University of Ottawa Ontario Canada
Author_xml – sequence: 1
  givenname: Charis
  surname: Putinski
  fullname: Putinski, Charis
  organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada, Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
– sequence: 2
  givenname: Mohammad
  surname: Abdul‐Ghani
  fullname: Abdul‐Ghani, Mohammad
  organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada, Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada
– sequence: 3
  givenname: Steve
  surname: Brunette
  fullname: Brunette, Steve
  organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada
– sequence: 4
  givenname: Patrick G.
  surname: Burgon
  fullname: Burgon, Patrick G.
  organization: Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada, Department of Medicine University of Ottawa Ontario Canada, University of Ottawa Heart Institute Ottawa Ontario Canada
– sequence: 5
  givenname: Lynn A.
  surname: Megeney
  fullname: Megeney, Lynn A.
  organization: Ottawa Hospital Research Institute Sprott Centre for Stem Cell Research Regenerative Medicine Program Ottawa Hospital Ottawa Ontario Canada, Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa Ontario Canada, Department of Medicine University of Ottawa Ontario Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30486716$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1r3DAQxU1JadI0596Kj71sIllf9qWwmDS7JdBC27MYS-NdBa3lSvbC_vfVdpOSFKqDNGje-z2B5m1xNoQBi-I9JdeUSnrzZbla5qq-JpRwwl8VFxXhatE0NTl7Vp8XVyk9kLxkpZho3hTnjPBaKioviu8tpBESlq1H2MMGy9CXd-hT8G4o16mEvA92NpPbZ9GMZR9i-Q2mbfBh40zZQrQOTLk6jBinGMbt4V3xugef8OrxvCx-fr790a4W91_v1u3yfmG4aKaFxFpy0zSSV50lglWsEkiAdoxRpSRIUlWGGYFNbgnW8b7m1jIlbW9ZI4BdFusT1wZ40GN0O4gHHcDpPxchbjTEyRmPGgF7gUxh5maO7CitKsVR9UA6K0lmfTqxxrnboTU4TBH8C-jLzuC2ehP2WnIiBD8CPj4CYvg1Y5r0ziWD3sOAYU66ovnNUshaZemH51l_Q55-JQvESWBiSClir42bYHLhGO28pkQfB0AfByBXtT4NQPbd_ON7Qv_P8RuwgLCa
CitedBy_id crossref_primary_10_1038_s42255_023_00939_z
crossref_primary_10_1016_j_yjmcc_2023_03_012
crossref_primary_10_3390_cells11223566
crossref_primary_10_3390_ijms25042206
Cites_doi 10.1128/MCB.01539-09
10.1161/CIRCRESAHA.115.305250
10.1074/jbc.M414270200
10.1126/science.278.5336.294
10.1073/pnas.96.14.8144
10.1073/pnas.1315587110
10.1056/NEJMra072139
10.1007/s11010-014-1977-7
10.1016/S0171-9335(98)80088-5
10.1038/323455a0
10.1038/nrm1983
10.1016/S0092-8674(00)81011-9
10.1161/CIRCRESAHA.108.172882
10.1182/blood-2002-03-0686
10.1084/jem.193.2.247
10.1161/HYPERTENSIONAHA.106.079426
10.1126/scisignal.aad2959
10.1096/fj.04-2981fje
10.1096/fj.06-5912hyp
10.1073/pnas.092022999
10.1007/s12192-015-0637-5
10.1126/scisignal.2001682
10.1146/annurev.physiol.65.092101.142243
10.1046/j.1365-2362.1999.00481.x
10.1007/BF00926743
10.1016/S1534-5807(03)00120-5
10.1073/pnas.1512869112
10.1002/cm.21117
10.1172/JCI62839
10.1128/MCB.21.16.5346-5358.2001
10.1038/cdd.2008.100
10.1038/cr.2017.87
10.1016/j.stem.2008.04.001
10.1074/mcp.M000063-MCP201
10.1073/pnas.162172899
10.1006/jmcc.1998.0885
10.1074/jbc.M109.056028
10.1038/cdd.2017.37
10.1152/physiolgenomics.00226.2004
10.1016/S0735-1097(01)01769-7
10.1002/med.20231
10.1002/elps.200800015
10.1073/pnas.95.17.10140
10.1093/cvr/cvu013
10.1128/MCB.24.23.10425-10436.2004
ContentType Journal Article
Copyright 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Copyright_xml – notice: 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1161/JAHA.118.010404
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Putinski et al
EISSN 2047-9980
ExternalDocumentID oai_doaj_org_article_eaef5e37e76a4f86b112274e7fa0bd60
PMC6405540
30486716
10_1161_JAHA_118_010404
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ontario Graduate Scholarship (Putinski)
– fundername: Canadian Institutes of Health Research (Megeney)
GroupedDBID 0R~
1OC
24P
53G
5VS
8-1
AAYXX
AAZKR
ACCMX
ACGFO
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEGXH
AENEX
AIAGR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVUZU
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GODZA
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
RAH
RNS
RPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
WIN
ID FETCH-LOGICAL-c459t-6e864c99642bd0532325e0a1b331776a6022c3c5e932353b4f84dd376dfd395a3
IEDL.DBID M48
ISSN 2047-9980
IngestDate Wed Aug 27 01:27:47 EDT 2025
Thu Aug 21 13:41:43 EDT 2025
Fri Jul 11 12:25:44 EDT 2025
Mon Jul 21 06:02:39 EDT 2025
Tue Jul 01 04:01:40 EDT 2025
Thu Apr 24 23:04:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords cytoskeletal dynamics
cardiomyocyte hypertrophy
cardiac hypertrophy
gelsolin
cell signaling
caspase‐3
Language English
License This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-6e864c99642bd0532325e0a1b331776a6022c3c5e932353b4f84dd376dfd395a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1161/JAHA.118.010404
PMID 30486716
PQID 2139565687
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_eaef5e37e76a4f86b112274e7fa0bd60
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405540
proquest_miscellaneous_2139565687
pubmed_primary_30486716
crossref_citationtrail_10_1161_JAHA_118_010404
crossref_primary_10_1161_JAHA_118_010404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-04
PublicationDateYYYYMMDD 2018-12-04
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-04
  day: 04
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Journal of the American Heart Association
PublicationTitleAlternate J Am Heart Assoc
PublicationYear 2018
Publisher John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_28_2
  doi: 10.1128/MCB.01539-09
– ident: e_1_3_2_6_2
  doi: 10.1161/CIRCRESAHA.115.305250
– ident: e_1_3_2_33_2
  doi: 10.1074/jbc.M414270200
– ident: e_1_3_2_13_2
  doi: 10.1126/science.278.5336.294
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.96.14.8144
– ident: e_1_3_2_11_2
  doi: 10.1073/pnas.1315587110
– ident: e_1_3_2_3_2
  doi: 10.1056/NEJMra072139
– ident: e_1_3_2_18_2
  doi: 10.1007/s11010-014-1977-7
– ident: e_1_3_2_12_2
  doi: 10.1016/S0171-9335(98)80088-5
– ident: e_1_3_2_16_2
  doi: 10.1038/323455a0
– ident: e_1_3_2_7_2
  doi: 10.1038/nrm1983
– ident: e_1_3_2_21_2
  doi: 10.1016/S0092-8674(00)81011-9
– ident: e_1_3_2_14_2
  doi: 10.1161/CIRCRESAHA.108.172882
– ident: e_1_3_2_34_2
  doi: 10.1182/blood-2002-03-0686
– ident: e_1_3_2_23_2
  doi: 10.1084/jem.193.2.247
– ident: e_1_3_2_4_2
  doi: 10.1161/HYPERTENSIONAHA.106.079426
– ident: e_1_3_2_22_2
  doi: 10.1126/scisignal.aad2959
– ident: e_1_3_2_26_2
  doi: 10.1096/fj.04-2981fje
– ident: e_1_3_2_35_2
  doi: 10.1096/fj.06-5912hyp
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.092022999
– ident: e_1_3_2_39_2
  doi: 10.1007/s12192-015-0637-5
– ident: e_1_3_2_37_2
  doi: 10.1126/scisignal.2001682
– ident: e_1_3_2_8_2
  doi: 10.1146/annurev.physiol.65.092101.142243
– ident: e_1_3_2_45_2
  doi: 10.1046/j.1365-2362.1999.00481.x
– ident: e_1_3_2_40_2
  doi: 10.1007/BF00926743
– ident: e_1_3_2_25_2
  doi: 10.1016/S1534-5807(03)00120-5
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.1512869112
– ident: e_1_3_2_17_2
  doi: 10.1002/cm.21117
– ident: e_1_3_2_9_2
  doi: 10.1172/JCI62839
– ident: e_1_3_2_31_2
  doi: 10.1128/MCB.21.16.5346-5358.2001
– ident: e_1_3_2_36_2
  doi: 10.1038/cdd.2008.100
– ident: e_1_3_2_10_2
  doi: 10.1038/cr.2017.87
– ident: e_1_3_2_27_2
  doi: 10.1016/j.stem.2008.04.001
– ident: e_1_3_2_20_2
  doi: 10.1074/mcp.M000063-MCP201
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.162172899
– ident: e_1_3_2_41_2
  doi: 10.1006/jmcc.1998.0885
– ident: e_1_3_2_15_2
  doi: 10.1074/jbc.M109.056028
– ident: e_1_3_2_38_2
  doi: 10.1038/cdd.2017.37
– ident: e_1_3_2_2_2
  doi: 10.1152/physiolgenomics.00226.2004
– ident: e_1_3_2_43_2
  doi: 10.1016/S0735-1097(01)01769-7
– ident: e_1_3_2_46_2
  doi: 10.1002/med.20231
– ident: e_1_3_2_19_2
  doi: 10.1002/elps.200800015
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.95.17.10140
– ident: e_1_3_2_5_2
  doi: 10.1093/cvr/cvu013
– ident: e_1_3_2_32_2
  doi: 10.1128/MCB.24.23.10425-10436.2004
SSID ssj0000627359
Score 2.1759837
Snippet Background Cardiac hypertrophy is an adaptive remodeling event that may improve or diminish contractile performance of the heart. Physiologic and pathologic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e010404
SubjectTerms Animals
cardiac hypertrophy
Cardiomegaly - etiology
Cardiomegaly - metabolism
cardiomyocyte hypertrophy
Caspase 3 - metabolism
caspase‐3
cell signaling
cytoskeletal dynamics
Fluorescent Antibody Technique
gelsolin
Gelsolin - metabolism
Gene Knockdown Techniques
Male
Myocytes, Cardiac - metabolism
Original Research
Rats
Rats, Sprague-Dawley
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kB_Eivo0vVvDgJW2TfWRzrMFaCxVBC72Fze4GhZJIm_r7nd2kpRXFi5ew5EGWbyYz37CbbxC6CTVjnArlB4pJ28JM-bEtVpgIFOVGxLm2PziPnvhgTIcTNllr9WX3hNXywDVwHSNNzgyJTMQlzQXPgCBAJWWiXHYzzV21DjlvrZiqYzCkZRY3Wj7AajrD3qAHI9G2BUjTlm2Zhpxa_08U8_tOybXU099Duw1nxL16rvtoyxQHaHvUrIofopdEQlyYG5xMjfyEAIHLHD9A0rMNefDjHEs4FlbYFUIbThYGA1PFz7JqIh9OnJsoPICidFbNSoD-CI3796_JwG-aJfiKsrjyAVdOFVQvNMy0bfdAQma6MsgIMATAjkOyVkQxA4SNMJIBllRrCC861yRmkhyjVlEW5hRhoGhxLqxuKXX6gDGJg5CHVBvK8yxkHmovsUtVoyRuG1pMU1dR8CC1YMNIpDXYHrpdPfBRi2j8fuudNcbqNqt-7U6AT6SNT6R_-YSHrpemTOFrsUsgsjDlYp6GQHgthRWRh05q065eRZz6YMA9FG0YfWMum1eK9zenyM2B9gL1PfuPyZ-jHSBlwm2ZoReoVc0W5hKIT5VdOR__AhCo_e4
  priority: 102
  providerName: Directory of Open Access Journals
Title Caspase Cleavage of Gelsolin Is an Inductive Cue for Pathologic Cardiac Hypertrophy
URI https://www.ncbi.nlm.nih.gov/pubmed/30486716
https://www.proquest.com/docview/2139565687
https://pubmed.ncbi.nlm.nih.gov/PMC6405540
https://doaj.org/article/eaef5e37e76a4f86b112274e7fa0bd60
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3fb9MwELbQkKa9oMEGhMHkSTzsJaWJf8R5QKiLGGVS0aRRaW-RYzuAVCWQpgj-e-4ct1tR9xJFSZwfd_bdd3HyfYS8Ta0QkisTJ0ZolDAzcY7FilCJ4dKpvLb4g_Psi5zO-dWtuL2TAwoGXO4s7VBPat4tRn9-_f0AA_69H_AyeXc1mU5gTY2wtkBu0MeQljKUM5gFrD-EZcjUIg_0PjvaHZB95gnoUPv8XpLyXP67AOj_31HeS0yXh-RJQJR0MnSBp-SRa56R_VmYMz8iN4WGqLF0tFg4_RvCB21r-glSIsr10M9LqmHZIO0rBD5arBwFHEuvdR_iIi18JzJ0CiVr13ctOOaYzC8_fi2mcZBSiA0XeR-D1SU3UNvwtLIoBsFS4cY6qRjgh0xqCancMCMcwDkmWMVrxa2F4GNry3Kh2XOy17SNe0koALi8Vshqyj17YM7yJJUpt47LukpFREZr25Um8Iyj3MWi9PWGTEq0O6ypcrB7RM43DX4OFBsPH3qBztgchtzYfkPbfSvDUCuddrVwLHPwXPAcsgJICbW3y2o9rqwcR-Rs7coSxhJOkOjGtatlmQIcRoCrsoi8GFy7udS6a0Qk23L61r1s72l-fPd83RJAMQDjVw-e84QcAA5T_isZ_prs9d3KvQGs01en_h3Bqe_J_wBocffx
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caspase+Cleavage+of+Gelsolin+Is+an+Inductive+Cue+for+Pathologic+Cardiac+Hypertrophy&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Putinski%2C+Charis&rft.au=Abdul-Ghani%2C+Mohammad&rft.au=Brunette%2C+Steve&rft.au=Burgon%2C+Patrick+G&rft.date=2018-12-04&rft.eissn=2047-9980&rft.volume=7&rft.issue=23&rft.spage=e010404&rft_id=info:doi/10.1161%2FJAHA.118.010404&rft_id=info%3Apmid%2F30486716&rft.externalDocID=30486716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon