GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE

Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous an...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 755; no. 2; pp. 164 - 23
Main Authors Ackermann, M., Ajello, M., Allafort, A., Baldini, L., Ballet, J., Bastieri, D., Bechtol, K., Bellazzini, R., Berenji, B., Bloom, E. D., Bonamente, E., Borgland, A. W., Bouvier, A., Bregeon, J., Brigida, M., Bruel, P., Buehler, R., Buson, S., Caliandro, G. A., Cameron, R. A., Caraveo, P. A., Casandjian, J. M., Cecchi, C., Charles, E., Chekhtman, A., Cheung, C. C., Chiang, J., Cillis, A. N., Ciprini, S., Claus, R., Cohen-Tanugi, J., Conrad, J., Cutini, S., de Palma, F., Dermer, C. D., Digel, S. W., do Couto e Silva, E., Drell, P. S., Drlica-Wagner, A., Favuzzi, C., Fegan, S. J., Fortin, P., Fukazawa, Y., Funk, S., Fusco, P., Gargano, F., Gasparrini, D., Germani, S., Giglietto, N., Giordano, F., Glanzman, T., Godfrey, G., Grenier, I. A., Guiriec, S., Gustafsson, M., Hadasch, D., Hayashida, M., Hays, E., Hughes, R. E., Jóhannesson, G., Johnson, A. S., Kamae, T., Katagiri, H., Kataoka, J., Knödlseder, J., Kuss, M., Lande, J., Longo, F., Loparco, F., Lott, B., Lovellette, M. N., Lubrano, P., Madejski, G. M., Martin, P., Mazziotta, M. N., McEnery, J. E., Michelson, P. F., Mizuno, T., Monte, C., Monzani, M. E., Morselli, A., Moskalenko, I. V., Murgia, S., Nishino, S., Norris, J. P., Nuss, E., Ohno, M., Ohsugi, T., Okumura, A., Omodei, N., Orlando, E., Ozaki, M., Parent, D., Persic, M., Pesce-Rollins, M., Petrosian, V., Pierbattista, M., Piron, F., Pivato, G., Porter, T. A.
Format Journal Article
LanguageEnglish
Published United States American Astronomical Society 20.08.2012
Institute of Physics (IOP)
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
1538-4357
DOI10.1088/0004-637X/755/2/164

Cover

Abstract Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values [> ~]0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L sub(0.1,100 GeV)/L sub(1.4 GHz)) = 1.7 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) and log (L sub(0.1-100 GeV)/L sub(8,1000 mu m)) = -4.3 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) for a galaxy with a star formation rate of 1 M sub([middot in circle]) yr super(-1), assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 > z > 2.5 above 0.1 GeV is estimated to be 0.4-2.4 x 10 super(-6) ph cm super(-2) s super(-1) sr super(-1) (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
AbstractList Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies.We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log(L0.1-100 GeV/L1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log(L0.1-100 GeV/L8-1000μm) = −4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1M yr−1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 ×10−6 ph cm−2 s−1 sr−1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT).We anticipate that∼10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values [> ~]0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L sub(0.1,100 GeV)/L sub(1.4 GHz)) = 1.7 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) and log (L sub(0.1-100 GeV)/L sub(8,1000 mu m)) = -4.3 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) for a galaxy with a star formation rate of 1 M sub([middot in circle]) yr super(-1), assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 > z > 2.5 above 0.1 GeV is estimated to be 0.4-2.4 x 10 super(-6) ph cm super(-2) s super(-1) sr super(-1) (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values less than or similar to 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log(L0.1-100GeV/L-1.4GHz) = 1.7 +/- 0.1((statistical)) +/- 0.2((dispersion)) and log(L0.1-100GeV/L8-1000 (mu m)) = -4.3 +/- 0.1((statistical)) +/- 0.2((dispersion)) for a galaxy with a star formation rate of 1 M-circle dot yr(-1), assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 &lt; z &lt; 2.5 above 0.1 GeV is estimated to be 0.4-2.4 x 10(-6) ph cm(-2) s(-1) sr(-1) (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that similar to 10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here, we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
Author Bonamente, E.
de Palma, F.
Gustafsson, M.
Mazziotta, M. N.
Giordano, F.
Hays, E.
Orlando, E.
Fortin, P.
Fusco, P.
Claus, R.
Cohen-Tanugi, J.
Caliandro, G. A.
Gargano, F.
Lovellette, M. N.
do Couto e Silva, E.
Bechtol, K.
Monte, C.
Monzani, M. E.
Charles, E.
Hayashida, M.
Cheung, C. C.
Chekhtman, A.
Norris, J. P.
Drell, P. S.
Dermer, C. D.
Longo, F.
Germani, S.
Bruel, P.
Casandjian, J. M.
Godfrey, G.
Morselli, A.
Digel, S. W.
Okumura, A.
Lubrano, P.
Hughes, R. E.
Petrosian, V.
Johnson, A. S.
Mizuno, T.
Bellazzini, R.
Berenji, B.
Baldini, L.
Fukazawa, Y.
Omodei, N.
Pesce-Rollins, M.
Michelson, P. F.
Ballet, J.
Caraveo, P. A.
Nishino, S.
Chiang, J.
Nuss, E.
Loparco, F.
Martin, P.
Parent, D.
Katagiri, H.
Ohno, M.
Kuss, M.
Lande, J.
Cecchi, C.
Bloom, E. D.
Grenier, I. A.
Pierbattista, M.
Pivato, G.
Lott, B.
Ozaki, M.
Glanzman, T.
Brigida, M.
Kataoka, J.
Drlica-Wagner, A.
Moskalenko, I. V.
Cameron, R. A.
Cutini, S.
Bastieri, D.
Ciprini, S.
Hadasch, D.
Cillis, A. N.
Conrad, J.
Buehler, R.
Ajello, M.
Allafort, A.
Bouvier, A.
Jóhannesson, G.
Gasparrini, D.
Borgland, A. W.
Knö
Author_xml – sequence: 1
  givenname: M.
  surname: Ackermann
  fullname: Ackermann, M.
– sequence: 2
  givenname: M.
  surname: Ajello
  fullname: Ajello, M.
– sequence: 3
  givenname: A.
  surname: Allafort
  fullname: Allafort, A.
– sequence: 4
  givenname: L.
  surname: Baldini
  fullname: Baldini, L.
– sequence: 5
  givenname: J.
  surname: Ballet
  fullname: Ballet, J.
– sequence: 6
  givenname: D.
  surname: Bastieri
  fullname: Bastieri, D.
– sequence: 7
  givenname: K.
  surname: Bechtol
  fullname: Bechtol, K.
– sequence: 8
  givenname: R.
  surname: Bellazzini
  fullname: Bellazzini, R.
– sequence: 9
  givenname: B.
  surname: Berenji
  fullname: Berenji, B.
– sequence: 10
  givenname: E. D.
  surname: Bloom
  fullname: Bloom, E. D.
– sequence: 11
  givenname: E.
  surname: Bonamente
  fullname: Bonamente, E.
– sequence: 12
  givenname: A. W.
  surname: Borgland
  fullname: Borgland, A. W.
– sequence: 13
  givenname: A.
  surname: Bouvier
  fullname: Bouvier, A.
– sequence: 14
  givenname: J.
  surname: Bregeon
  fullname: Bregeon, J.
– sequence: 15
  givenname: M.
  surname: Brigida
  fullname: Brigida, M.
– sequence: 16
  givenname: P.
  surname: Bruel
  fullname: Bruel, P.
– sequence: 17
  givenname: R.
  surname: Buehler
  fullname: Buehler, R.
– sequence: 18
  givenname: S.
  surname: Buson
  fullname: Buson, S.
– sequence: 19
  givenname: G. A.
  surname: Caliandro
  fullname: Caliandro, G. A.
– sequence: 20
  givenname: R. A.
  surname: Cameron
  fullname: Cameron, R. A.
– sequence: 21
  givenname: P. A.
  surname: Caraveo
  fullname: Caraveo, P. A.
– sequence: 22
  givenname: J. M.
  surname: Casandjian
  fullname: Casandjian, J. M.
– sequence: 23
  givenname: C.
  surname: Cecchi
  fullname: Cecchi, C.
– sequence: 24
  givenname: E.
  surname: Charles
  fullname: Charles, E.
– sequence: 25
  givenname: A.
  surname: Chekhtman
  fullname: Chekhtman, A.
– sequence: 26
  givenname: C. C.
  surname: Cheung
  fullname: Cheung, C. C.
– sequence: 27
  givenname: J.
  surname: Chiang
  fullname: Chiang, J.
– sequence: 28
  givenname: A. N.
  surname: Cillis
  fullname: Cillis, A. N.
– sequence: 29
  givenname: S.
  surname: Ciprini
  fullname: Ciprini, S.
– sequence: 30
  givenname: R.
  surname: Claus
  fullname: Claus, R.
– sequence: 31
  givenname: J.
  surname: Cohen-Tanugi
  fullname: Cohen-Tanugi, J.
– sequence: 32
  givenname: J.
  surname: Conrad
  fullname: Conrad, J.
– sequence: 33
  givenname: S.
  surname: Cutini
  fullname: Cutini, S.
– sequence: 34
  givenname: F.
  surname: de Palma
  fullname: de Palma, F.
– sequence: 35
  givenname: C. D.
  surname: Dermer
  fullname: Dermer, C. D.
– sequence: 36
  givenname: S. W.
  surname: Digel
  fullname: Digel, S. W.
– sequence: 37
  givenname: E.
  surname: do Couto e Silva
  fullname: do Couto e Silva, E.
– sequence: 38
  givenname: P. S.
  surname: Drell
  fullname: Drell, P. S.
– sequence: 39
  givenname: A.
  surname: Drlica-Wagner
  fullname: Drlica-Wagner, A.
– sequence: 40
  givenname: C.
  surname: Favuzzi
  fullname: Favuzzi, C.
– sequence: 41
  givenname: S. J.
  surname: Fegan
  fullname: Fegan, S. J.
– sequence: 42
  givenname: P.
  surname: Fortin
  fullname: Fortin, P.
– sequence: 43
  givenname: Y.
  surname: Fukazawa
  fullname: Fukazawa, Y.
– sequence: 44
  givenname: S.
  surname: Funk
  fullname: Funk, S.
– sequence: 45
  givenname: P.
  surname: Fusco
  fullname: Fusco, P.
– sequence: 46
  givenname: F.
  surname: Gargano
  fullname: Gargano, F.
– sequence: 47
  givenname: D.
  surname: Gasparrini
  fullname: Gasparrini, D.
– sequence: 48
  givenname: S.
  surname: Germani
  fullname: Germani, S.
– sequence: 49
  givenname: N.
  surname: Giglietto
  fullname: Giglietto, N.
– sequence: 50
  givenname: F.
  surname: Giordano
  fullname: Giordano, F.
– sequence: 51
  givenname: T.
  surname: Glanzman
  fullname: Glanzman, T.
– sequence: 52
  givenname: G.
  surname: Godfrey
  fullname: Godfrey, G.
– sequence: 53
  givenname: I. A.
  surname: Grenier
  fullname: Grenier, I. A.
– sequence: 54
  givenname: S.
  surname: Guiriec
  fullname: Guiriec, S.
– sequence: 55
  givenname: M.
  surname: Gustafsson
  fullname: Gustafsson, M.
– sequence: 56
  givenname: D.
  surname: Hadasch
  fullname: Hadasch, D.
– sequence: 57
  givenname: M.
  surname: Hayashida
  fullname: Hayashida, M.
– sequence: 58
  givenname: E.
  surname: Hays
  fullname: Hays, E.
– sequence: 59
  givenname: R. E.
  surname: Hughes
  fullname: Hughes, R. E.
– sequence: 60
  givenname: G.
  surname: Jóhannesson
  fullname: Jóhannesson, G.
– sequence: 61
  givenname: A. S.
  surname: Johnson
  fullname: Johnson, A. S.
– sequence: 62
  givenname: T.
  surname: Kamae
  fullname: Kamae, T.
– sequence: 63
  givenname: H.
  surname: Katagiri
  fullname: Katagiri, H.
– sequence: 64
  givenname: J.
  surname: Kataoka
  fullname: Kataoka, J.
– sequence: 65
  givenname: J.
  surname: Knödlseder
  fullname: Knödlseder, J.
– sequence: 66
  givenname: M.
  surname: Kuss
  fullname: Kuss, M.
– sequence: 67
  givenname: J.
  surname: Lande
  fullname: Lande, J.
– sequence: 68
  givenname: F.
  surname: Longo
  fullname: Longo, F.
– sequence: 69
  givenname: F.
  surname: Loparco
  fullname: Loparco, F.
– sequence: 70
  givenname: B.
  surname: Lott
  fullname: Lott, B.
– sequence: 71
  givenname: M. N.
  surname: Lovellette
  fullname: Lovellette, M. N.
– sequence: 72
  givenname: P.
  surname: Lubrano
  fullname: Lubrano, P.
– sequence: 73
  givenname: G. M.
  surname: Madejski
  fullname: Madejski, G. M.
– sequence: 74
  givenname: P.
  surname: Martin
  fullname: Martin, P.
– sequence: 75
  givenname: M. N.
  surname: Mazziotta
  fullname: Mazziotta, M. N.
– sequence: 76
  givenname: J. E.
  surname: McEnery
  fullname: McEnery, J. E.
– sequence: 77
  givenname: P. F.
  surname: Michelson
  fullname: Michelson, P. F.
– sequence: 78
  givenname: T.
  surname: Mizuno
  fullname: Mizuno, T.
– sequence: 79
  givenname: C.
  surname: Monte
  fullname: Monte, C.
– sequence: 80
  givenname: M. E.
  surname: Monzani
  fullname: Monzani, M. E.
– sequence: 81
  givenname: A.
  surname: Morselli
  fullname: Morselli, A.
– sequence: 82
  givenname: I. V.
  surname: Moskalenko
  fullname: Moskalenko, I. V.
– sequence: 83
  givenname: S.
  surname: Murgia
  fullname: Murgia, S.
– sequence: 84
  givenname: S.
  surname: Nishino
  fullname: Nishino, S.
– sequence: 85
  givenname: J. P.
  surname: Norris
  fullname: Norris, J. P.
– sequence: 86
  givenname: E.
  surname: Nuss
  fullname: Nuss, E.
– sequence: 87
  givenname: M.
  surname: Ohno
  fullname: Ohno, M.
– sequence: 88
  givenname: T.
  surname: Ohsugi
  fullname: Ohsugi, T.
– sequence: 89
  givenname: A.
  surname: Okumura
  fullname: Okumura, A.
– sequence: 90
  givenname: N.
  surname: Omodei
  fullname: Omodei, N.
– sequence: 91
  givenname: E.
  surname: Orlando
  fullname: Orlando, E.
– sequence: 92
  givenname: M.
  surname: Ozaki
  fullname: Ozaki, M.
– sequence: 93
  givenname: D.
  surname: Parent
  fullname: Parent, D.
– sequence: 94
  givenname: M.
  surname: Persic
  fullname: Persic, M.
– sequence: 95
  givenname: M.
  surname: Pesce-Rollins
  fullname: Pesce-Rollins, M.
– sequence: 96
  givenname: V.
  surname: Petrosian
  fullname: Petrosian, V.
– sequence: 97
  givenname: M.
  surname: Pierbattista
  fullname: Pierbattista, M.
– sequence: 98
  givenname: F.
  surname: Piron
  fullname: Piron, F.
– sequence: 99
  givenname: G.
  surname: Pivato
  fullname: Pivato, G.
– sequence: 100
  givenname: T. A.
  surname: Porter
  fullname: Porter, T. A.
BackLink https://in2p3.hal.science/in2p3-00747346$$DView record in HAL
https://www.osti.gov/servlets/purl/1356697$$D View this record in Osti.gov
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162396$$DView record from Swedish Publication Index
BookMark eNqN0U-L1DAYBvAgKzi7-gm8BE-C1sm_Ju0xjplOobuVto57C2maupXZdmw6Lvvt7VBZ0IN4CiG_5yUvzyW46IfeAfAaow8YRdEaIcQCTsXtWoThmqwxZ8_ACoc0ChgNxQVYPYkX4NL77-crieMVuE7cHuYfS1XsZZXmNyXMt7CsZBFs8-I6vUlgIjN5m6oSfk2rHax2Cm7V_AIzWSQKykJJWKlMlZv8s3oJnrfm4N2r3-cV-LJV1WYXZHmSbmQWWBbGU8ANMQ0xQrQMtbzhluG6cSasQ0NEExnssIhcTRxhouaGUmZNi1trqWXMsoZegffLXP_gjqdaH8fu3oyPejCd_tTtpR7Gb9qfNOaExnzmbxY--KnT3naTs3d26HtnJ41pyHksZvRuQXfm8MfAncx015Mj1QgJJijjP_Gs3y76OA4_Ts5P-r7z1h0OpnfDyWsscBTTKArJf1CEw7kQQmdKF2rHwfvRtU8fwUifm9bn4vS5Rz03rcm8IZtT8V-peUMzdUM_jaY7_DP7C1pBpxg
CitedBy_id crossref_primary_10_1088_1475_7516_2016_09_002
crossref_primary_10_1088_1475_7516_2014_02_014
crossref_primary_10_1093_mnras_stv1606
crossref_primary_10_1093_mnras_stac3601
crossref_primary_10_3390_universe7050141
crossref_primary_10_1088_1475_7516_2015_12_029
crossref_primary_10_1051_0004_6361_201323329
crossref_primary_10_1088_1538_3873_aaa6b0
crossref_primary_10_1103_PhysRevD_91_061302
crossref_primary_10_1146_annurev_astro_082214_122457
crossref_primary_10_1093_mnras_stab1748
crossref_primary_10_1051_0004_6361_201425249
crossref_primary_10_1103_PhysRevD_101_103012
crossref_primary_10_3847_1538_4357_ad84e9
crossref_primary_10_1103_PhysRevD_110_103032
crossref_primary_10_3847_1538_4357_ac0341
crossref_primary_10_1093_mnras_stab2261
crossref_primary_10_1088_1475_7516_2016_06_045
crossref_primary_10_1093_mnras_stac031
crossref_primary_10_1088_0004_637X_776_1_33
crossref_primary_10_1103_PhysRevD_97_115006
crossref_primary_10_1051_0004_6361_202037518
crossref_primary_10_1051_0004_6361_202037639
crossref_primary_10_1088_1475_7516_2017_12_017
crossref_primary_10_1093_mnras_stae1606
crossref_primary_10_1088_1475_7516_2020_01_059
crossref_primary_10_1051_0004_6361_201936339
crossref_primary_10_1093_mnrasl_slv195
crossref_primary_10_3847_1538_4357_abe2a6
crossref_primary_10_1051_0004_6361_201833202
crossref_primary_10_1051_0004_6361_201423871
crossref_primary_10_3847_1538_4357_ab2715
crossref_primary_10_1088_1674_4527_21_10_263
crossref_primary_10_1088_0004_637X_773_1_61
crossref_primary_10_1093_mnras_stt746
crossref_primary_10_3847_1538_4357_ab3e6f
crossref_primary_10_1093_mnras_stz1161
crossref_primary_10_1088_0067_0049_217_1_15
crossref_primary_10_1093_astrogeo_atac090
crossref_primary_10_1016_j_astropartphys_2015_06_004
crossref_primary_10_3847_1538_4357_ad11f1
crossref_primary_10_1007_s13538_014_0221_y
crossref_primary_10_1016_j_jheap_2017_12_001
crossref_primary_10_1093_mnras_stad2105
crossref_primary_10_1051_0004_6361_201628667
crossref_primary_10_1088_1475_7516_2019_08_028
crossref_primary_10_1093_mnras_stz963
crossref_primary_10_3847_1538_4357_ace166
crossref_primary_10_1088_1475_7516_2022_11_011
crossref_primary_10_1051_0004_6361_201424814
crossref_primary_10_1088_0067_0049_221_2_29
crossref_primary_10_3847_0004_637X_832_2_117
crossref_primary_10_3847_1538_4357_aa7464
crossref_primary_10_1103_PhysRevD_90_023514
crossref_primary_10_1051_0004_6361_201322827
crossref_primary_10_1093_mnras_stw2059
crossref_primary_10_1088_1475_7516_2019_03_019
crossref_primary_10_3847_2041_8213_ad4999
crossref_primary_10_1088_2041_8205_771_1_L5
crossref_primary_10_1088_0004_637X_780_2_161
crossref_primary_10_1016_j_physrep_2015_09_002
crossref_primary_10_1088_1475_7516_2012_11_026
crossref_primary_10_1088_1475_7516_2023_02_003
crossref_primary_10_1088_1475_7516_2014_09_043
crossref_primary_10_3847_1538_4357_834_2_208
crossref_primary_10_1051_0004_6361_202347394
crossref_primary_10_1093_mnrasl_sls025
crossref_primary_10_1051_0004_6361_202347034
crossref_primary_10_1093_mnras_stx929
crossref_primary_10_1088_1674_1137_41_4_045104
crossref_primary_10_1016_j_nuclphysbps_2014_10_029
crossref_primary_10_1007_JHEP09_2016_162
crossref_primary_10_1007_s12036_019_9604_3
crossref_primary_10_1088_2041_8205_800_2_L27
crossref_primary_10_1051_epjconf_201921001007
crossref_primary_10_1088_1475_7516_2023_07_058
crossref_primary_10_1103_PhysRevD_106_022005
crossref_primary_10_1103_PhysRevD_89_127304
crossref_primary_10_1093_mnras_stx365
crossref_primary_10_3847_1538_4357_ac2c08
crossref_primary_10_3847_2041_8213_aca53c
crossref_primary_10_3847_1538_3881_ac5ea4
crossref_primary_10_1088_1742_6596_718_4_042019
crossref_primary_10_1093_mnras_stab2118
crossref_primary_10_1093_mnras_stab1707
crossref_primary_10_1088_0004_637X_794_2_126
crossref_primary_10_1051_0004_6361_201629136
crossref_primary_10_1088_1475_7516_2020_06_017
crossref_primary_10_1088_0004_637X_779_2_131
crossref_primary_10_3847_1538_4357_ad12b6
crossref_primary_10_1103_PhysRevD_95_123006
crossref_primary_10_1093_mnras_stab148
crossref_primary_10_3847_1538_4357_aac029
crossref_primary_10_1088_0004_637X_797_2_79
crossref_primary_10_1088_1674_4527_21_7_172
crossref_primary_10_1051_0004_6361_201526920
crossref_primary_10_1051_epjconf_201713602008
crossref_primary_10_1016_j_nuclphysbps_2015_06_061
crossref_primary_10_1103_PhysRevD_94_103006
crossref_primary_10_1103_PhysRevD_103_083017
crossref_primary_10_1007_s10509_021_04026_1
crossref_primary_10_1088_1475_7516_2022_08_011
crossref_primary_10_1088_0004_637X_806_1_24
crossref_primary_10_1088_1674_4527_acab45
crossref_primary_10_3847_1538_4357_ab3a51
crossref_primary_10_1051_0004_6361_201731452
crossref_primary_10_1088_0004_637X_796_1_14
crossref_primary_10_3847_1538_4357_acaf57
crossref_primary_10_1103_PhysRevD_102_023034
crossref_primary_10_3847_2041_8205_821_2_L20
crossref_primary_10_3847_0067_0049_225_2_18
crossref_primary_10_1088_0004_637X_810_1_14
crossref_primary_10_1088_1475_7516_2024_08_040
crossref_primary_10_1051_0004_6361_202347976
crossref_primary_10_1088_0004_637X_799_1_86
crossref_primary_10_1088_0004_637X_786_2_129
crossref_primary_10_3390_galaxies9020036
crossref_primary_10_1103_PhysRevD_102_123008
crossref_primary_10_1103_PhysRevD_97_103017
crossref_primary_10_3847_1538_4357_aaf6e4
crossref_primary_10_3847_2041_8213_aa6af0
crossref_primary_10_3847_2041_8213_aa8bb1
crossref_primary_10_1093_mnras_stac2133
crossref_primary_10_1007_s11433_018_9350_3
crossref_primary_10_1088_1475_7516_2024_09_075
crossref_primary_10_1103_PhysRevLett_124_051103
crossref_primary_10_1093_mnras_stz081
crossref_primary_10_3847_1538_4357_ab9b1f
crossref_primary_10_1088_1475_7516_2014_11_021
crossref_primary_10_1103_PhysRevD_98_123018
crossref_primary_10_1088_1475_7516_2016_08_019
crossref_primary_10_3847_1538_4357_ab86a6
crossref_primary_10_1007_s00159_015_0090_6
crossref_primary_10_1088_1475_7516_2014_11_028
crossref_primary_10_3847_1538_4357_aa8f9d
crossref_primary_10_1051_0004_6361_202038752
crossref_primary_10_3847_0004_637X_826_2_133
crossref_primary_10_1103_PhysRevD_89_023012
crossref_primary_10_1088_1475_7516_2019_09_004
crossref_primary_10_1051_0004_6361_202348447
crossref_primary_10_1088_1475_7516_2015_09_008
crossref_primary_10_1146_annurev_astro_081913_040044
crossref_primary_10_1038_nphys3837
crossref_primary_10_1093_mnras_stae746
crossref_primary_10_1088_1475_7516_2019_02_012
crossref_primary_10_1088_1674_4527_19_3_46
crossref_primary_10_1088_1475_7516_2017_03_057
crossref_primary_10_1093_mnras_stz223
crossref_primary_10_1093_mnras_stt122
crossref_primary_10_3847_2041_8213_aaebf9
crossref_primary_10_3847_2041_8205_823_1_L17
crossref_primary_10_1051_0004_6361_201833859
crossref_primary_10_1093_mnras_stv2773
crossref_primary_10_1093_mnras_stac553
crossref_primary_10_1093_pasj_psad072
crossref_primary_10_1088_1475_7516_2015_09_016
crossref_primary_10_1088_0004_637X_794_1_26
crossref_primary_10_1093_mnras_staa811
crossref_primary_10_3847_1538_4357_ac1c77
crossref_primary_10_1088_0004_637X_807_2_161
crossref_primary_10_1093_mnras_sty2622
crossref_primary_10_1088_1475_7516_2015_06_029
crossref_primary_10_1088_1475_7516_2017_03_047
crossref_primary_10_3389_fspas_2022_836215
crossref_primary_10_1007_s11214_020_00663_0
crossref_primary_10_1088_1674_1137_ac3fa9
crossref_primary_10_1093_mnras_stz2651
crossref_primary_10_3847_1538_4357_836_1_127
crossref_primary_10_1016_j_astropartphys_2019_04_003
crossref_primary_10_3847_2041_8213_aaf810
crossref_primary_10_1051_0004_6361_201527762
crossref_primary_10_1093_mnras_staa726
crossref_primary_10_3847_1538_4357_ac5fa9
crossref_primary_10_1103_PhysRevD_90_063502
crossref_primary_10_1007_s10509_016_2926_6
crossref_primary_10_1142_S0217751X19430188
crossref_primary_10_3847_2041_8213_aafc62
crossref_primary_10_1088_1475_7516_2015_03_038
crossref_primary_10_1073_pnas_1315181111
crossref_primary_10_1093_mnras_stab1325
crossref_primary_10_1093_mnras_stab1324
crossref_primary_10_1051_0004_6361_201322664
crossref_primary_10_1093_mnras_stz321
crossref_primary_10_3847_2041_8205_832_1_L6
crossref_primary_10_3847_2041_8213_ac8935
crossref_primary_10_1051_0004_6361_201832666
crossref_primary_10_1103_PhysRevD_92_123540
crossref_primary_10_3847_0004_637X_818_2_187
crossref_primary_10_1038_s41550_017_0194
crossref_primary_10_1088_0004_637X_805_2_95
crossref_primary_10_1093_mnras_stac1240
crossref_primary_10_1103_PhysRevLett_115_221101
crossref_primary_10_3847_1538_4365_ac545a
crossref_primary_10_1051_0004_6361_202038428
crossref_primary_10_1016_j_jheap_2020_01_001
crossref_primary_10_1088_0004_637X_786_1_40
crossref_primary_10_1103_PhysRevD_96_083001
crossref_primary_10_1103_PhysRevLett_124_101102
crossref_primary_10_3847_0004_637X_827_1_67
crossref_primary_10_1088_1475_7516_2018_08_019
crossref_primary_10_1016_j_astropartphys_2017_03_010
crossref_primary_10_1016_j_physletb_2015_04_032
crossref_primary_10_1093_mnras_stab1799
crossref_primary_10_1093_mnras_stad1303
crossref_primary_10_3847_1538_4357_acde7c
crossref_primary_10_1088_2041_8205_802_1_L1
crossref_primary_10_1093_mnras_stu542
crossref_primary_10_1093_mnras_stt697
crossref_primary_10_1093_mnras_stab2406
crossref_primary_10_1088_0004_637X_805_2_111
crossref_primary_10_3847_1538_4357_ab44ba
crossref_primary_10_1016_j_astropartphys_2017_01_012
crossref_primary_10_1103_PhysRevD_99_063012
crossref_primary_10_3847_1538_4357_aae0f8
crossref_primary_10_1038_s41550_020_01287_8
crossref_primary_10_1016_j_nuclphysbps_2013_09_014
crossref_primary_10_1093_pasj_psy039
crossref_primary_10_1088_1475_7516_2015_05_024
crossref_primary_10_1088_1475_7516_2017_03_011
crossref_primary_10_1093_mnras_stad3733
crossref_primary_10_1088_1742_6596_718_2_022008
crossref_primary_10_3847_1538_4357_aab3e5
crossref_primary_10_3847_1538_4365_aa8553
crossref_primary_10_1103_PhysRevD_91_123001
crossref_primary_10_1093_mnras_stw437
crossref_primary_10_1051_0004_6361_202348080
crossref_primary_10_1093_mnras_stz2994
crossref_primary_10_3847_1538_4357_835_2_269
crossref_primary_10_1093_mnras_stab3273
crossref_primary_10_3847_2041_8213_ab982c
crossref_primary_10_1016_j_jheap_2022_06_004
crossref_primary_10_1093_mnras_stab3274
crossref_primary_10_3847_1538_4357_ad9333
crossref_primary_10_1088_0004_637X_769_2_153
crossref_primary_10_1103_RevModPhys_92_045006
crossref_primary_10_3847_2041_8205_826_2_L31
crossref_primary_10_3847_1538_4357_ac771d
crossref_primary_10_1088_0004_637X_773_1_36
crossref_primary_10_1146_annurev_nucl_102014_022036
crossref_primary_10_1007_s00159_016_0098_6
crossref_primary_10_1093_mnras_staa698
crossref_primary_10_3847_1538_4357_aba043
crossref_primary_10_1093_mnras_stx2917
crossref_primary_10_1103_PhysRevD_98_103007
crossref_primary_10_1093_mnras_stae932
crossref_primary_10_1093_mnras_sty3354
crossref_primary_10_1016_j_dark_2015_10_002
crossref_primary_10_1016_j_physrep_2013_05_004
crossref_primary_10_3847_1538_4357_ad28be
crossref_primary_10_3847_1538_4357_ab258e
crossref_primary_10_1088_1475_7516_2019_10_073
crossref_primary_10_3847_2041_8213_ab7661
crossref_primary_10_1093_mnras_stad3622
crossref_primary_10_1103_PhysRevD_97_123015
crossref_primary_10_3847_2041_8213_acf296
crossref_primary_10_1016_j_crhy_2016_04_003
crossref_primary_10_1093_mnras_stac084
crossref_primary_10_1093_mnras_stad3628
crossref_primary_10_1007_s00159_017_0102_9
crossref_primary_10_3847_1538_4357_ab8cbd
crossref_primary_10_3390_galaxies11040086
crossref_primary_10_1093_mnrasl_slu186
crossref_primary_10_1093_mnras_stz1895
crossref_primary_10_3847_1538_4357_ac9588
crossref_primary_10_1016_j_physrep_2019_01_002
crossref_primary_10_1007_s00159_014_0077_8
crossref_primary_10_1088_0004_637X_780_2_137
crossref_primary_10_1093_mnras_stad1576
crossref_primary_10_1103_PhysRevD_88_023506
crossref_primary_10_3847_0004_637X_821_2_87
crossref_primary_10_1142_S021827182330001X
crossref_primary_10_3847_2041_8213_aaa66d
crossref_primary_10_3847_1538_4357_acb498
crossref_primary_10_1007_s00159_023_00149_2
crossref_primary_10_1103_PhysRevD_88_121301
crossref_primary_10_3847_1538_4357_aa5c3d
crossref_primary_10_1051_0004_6361_201526621
crossref_primary_10_1093_mnras_stab3495
crossref_primary_10_1103_PhysRevD_105_043011
crossref_primary_10_3847_2041_8213_ab398a
crossref_primary_10_1088_1475_7516_2014_10_061
crossref_primary_10_1103_PhysRevD_109_063002
crossref_primary_10_1088_0004_637X_768_1_53
crossref_primary_10_3847_0067_0049_224_1_8
crossref_primary_10_1093_mnras_staa1720
crossref_primary_10_1103_PhysRevD_98_083008
crossref_primary_10_3847_1538_4357_836_1_47
crossref_primary_10_1088_1475_7516_2016_12_012
crossref_primary_10_1088_1475_7516_2024_01_022
crossref_primary_10_1117_1_JATIS_4_1_011003
crossref_primary_10_3389_fspas_2019_00024
crossref_primary_10_3847_1538_4357_ab0ae2
crossref_primary_10_1016_j_astropartphys_2018_08_005
crossref_primary_10_1103_PhysRevD_93_043011
crossref_primary_10_1093_mnras_stad2559
crossref_primary_10_1038_s41586_021_03802_x
crossref_primary_10_1088_0004_637X_808_1_74
crossref_primary_10_1088_0004_637X_771_1_73
crossref_primary_10_3389_fspas_2017_00053
crossref_primary_10_1051_0004_6361_202141295
Cites_doi 10.1051/0004-6361/201014855
10.1086/180252
10.1086/323145
10.1086/431894
10.1086/421871
10.1086/342670
10.1086/376841
10.1146/annurev.nucl.57.090506.123011
10.1051/0004-6361/200912058
10.1126/science.1178826
10.1088/0004-637X/713/1/524
10.1063/1.2757402
10.1086/318358
10.1007/s10509-007-9480-1
10.1086/422425
10.1088/0004-637X/695/1/L40
10.1086/160660
10.1086/176969
10.1086/191472
10.1103/PhysRevD.85.083007
10.1080/01621459.1999.10474187
10.1111/j.1365-2966.2009.15661.x
10.1086/382999
10.1086/509068
10.1016/j.astropartphys.2006.08.002
10.1146/annurev.astro.34.1.749
10.1016/j.astropartphys.2010.06.003
10.1007/BF00643157
10.1086/432789
10.1086/305222
10.1086/504035
10.1086/428082
10.1086/305588
10.1088/0004-637X/742/2/66
10.1086/185179
10.1088/0004-637X/736/1/40
10.1088/2041-8205/729/1/L12
10.1086/192237
10.1086/170258
10.1046/j.1365-8711.2003.06201.x
10.1103/PhysRevD.80.122004
10.1086/310883
10.1051/0004-6361/201015759
10.1111/j.1365-2966.2007.12466.x
10.1086/505189
10.1086/317873
10.1086/129725
10.1086/341882
10.1088/0004-637X/717/1/1
10.1088/0004-637X/720/1/912
10.1016/S0927-6505(98)00018-8
10.1016/j.astropartphys.2009.08.002
10.1051/0004-6361/200913474
10.1038/nature08557
10.1103/PhysRevLett.87.251301
10.1088/0067-0049/188/2/405
10.1086/383003
10.1063/1.2757282
10.1146/annurev.ns.33.120183.001543
10.1007/978-94-009-9503-1
10.1088/2041-8205/717/1/L71
10.1086/145971
10.1086/186304
10.1088/0004-637X/697/2/1071
10.1086/173261
10.1088/0004-637X/692/1/L54
10.1088/0004-637X/698/2/1054
10.1051/0004-6361:20066330
10.1086/512667
10.1038/nature04364
10.1088/0004-637X/733/1/66
10.1086/175724
10.1086/511173
10.1088/0004-637X/720/1/435
10.1086/521981
10.1103/PhysRevD.66.123502
10.1086/153590
10.1007/BF01879571
10.1086/177180
10.1086/166958
10.1051/0004-6361/201014552
10.1088/0004-637X/747/2/104
10.1111/j.1365-2966.2009.15605.x
10.1016/j.physletb.2010.11.019
10.1093/mnras/220.1.51
10.1051/0004-6361:200809691
10.1051/0004-6361:20065002
10.1086/425415
10.1111/j.1365-2966.2010.16985.x
10.1086/164359
10.1088/0004-637X/734/2/107
10.1088/0004-637X/736/2/112
10.1086/499623
10.1093/mnras/175.1.23P
10.1086/376392
10.1051/0004-6361/201015644
10.1088/0067-0049/199/2/31
10.1111/j.1365-2966.2009.16218.x
10.1088/0004-637X/756/1/5
10.1051/0004-6361:20053478
10.1088/2041-8205/722/1/L58
10.1086/501117
10.1126/science.1199172
10.1086/177068
10.1093/mnras/278.4.919
10.1051/0004-6361/201117523
10.1086/498084
10.1086/300337
10.1088/0004-637X/728/1/58
10.1086/513183
10.1088/0004-637X/728/2/158
10.1051/0004-6361:20053613
10.1088/2041-8205/714/2/L190
10.1088/0004-637X/719/2/1433
10.1146/annurev.aa.30.090192.003043
10.1051/0004-6361:200809525
10.1051/0004-6361:200811443
10.1086/184556
10.1086/161051
10.1086/423196
10.1086/427496
10.1086/115674
10.1088/0004-637X/743/2/171
10.1016/j.astropartphys.2009.03.004
10.1063/1.3458566
10.1103/PhysRevLett.104.101101
10.1088/2041-8205/709/2/L152
10.1086/498636
10.1086/307155
10.1088/2041-8205/722/2/L199
10.1146/annurev.astro.36.1.189
10.1086/320638
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID AAYXX
CITATION
7TG
KL.
8FD
H8D
L7M
1XC
OIOZB
OTOTI
ADTPV
AOWAS
DG7
DOI 10.1088/0004-637X/755/2/164
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
OSTI.GOV - Hybrid
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic

Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
EndPage 23
ExternalDocumentID oai_DiVA_org_su_162396
1356697
oai_HAL_in2p3_00747346v1
10_1088_0004_637X_755_2_164
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
6TJ
85S
AAFWJ
AAGCD
AAJIO
AALHV
AAYXX
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CITATION
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XOL
XSW
7TG
AEINN
KL.
8FD
H8D
L7M
1XC
41~
6TS
9M8
ABDPE
ADXHL
AETEA
AI.
FA8
MVM
OHT
VH1
WHG
YYP
ZCG
ZKB
ZY4
OIOZB
OTOTI
ADTPV
AOWAS
DG7
ID FETCH-LOGICAL-c459t-6a2ad2a77f40f6d6c41bdea5b5a27d8a1e178eb2e247b6a334caf1fcc3c44c4d3
ISSN 0004-637X
1538-4357
IngestDate Wed Sep 10 02:42:56 EDT 2025
Mon Jun 16 03:03:02 EDT 2025
Wed Sep 10 06:20:53 EDT 2025
Fri Sep 05 04:31:28 EDT 2025
Fri Sep 05 06:54:32 EDT 2025
Tue Jul 01 01:16:17 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords gamma rays: diffuse background
galaxies: starburst
gamma rays: galaxies Online-only material: color figures
cosmic rays
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-6a2ad2a77f40f6d6c41bdea5b5a27d8a1e178eb2e247b6a334caf1fcc3c44c4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
None
AC02-76SF00515
ORCID 0000-0002-9978-2510
0000-0002-1320-9781
0000-0001-6885-7156
0000-0003-2186-9242
0000-0002-9021-2888
0000-0003-1790-8018
0000-0002-4383-0368
0000-0001-8604-7077
0000-0003-1853-4900
0000-0001-8040-7852
0000-0002-6790-5328
0000-0003-2501-2270
0000-0001-8663-6461
0000-0002-0921-8837
0000-0001-9022-4232
0000-0002-0014-7809
OpenAccessLink https://www.osti.gov/servlets/purl/1356697
PQID 1701500023
PQPubID 23462
PageCount 23
ParticipantIDs swepub_primary_oai_DiVA_org_su_162396
osti_scitechconnect_1356697
hal_primary_oai_HAL_in2p3_00747346v1
proquest_miscellaneous_1718938852
proquest_miscellaneous_1701500023
crossref_primary_10_1088_0004_637X_755_2_164
crossref_citationtrail_10_1088_0004_637X_755_2_164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-20
PublicationDateYYYYMMDD 2012-08-20
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Astrophysical journal
PublicationYear 2012
Publisher American Astronomical Society
Institute of Physics (IOP)
Publisher_xml – name: American Astronomical Society
– name: Institute of Physics (IOP)
References 88
Lacki (79) 2010; 717
Sargent (117) 2010; 714
Ptuskin (110) 2006; 642
Aharonian (19) 2009; 695
Akritas (22) 1996; 278
111
112
113
115
Chapman (39) 2005; 622
91
118
Sanders (114) 2003; 126
Lacki (80) 2011; 734
Strong (129) 2004; 613
Cillis (40) 2005; 621
94
96
97
10
Appleton (26) 2004; 154
12
13
Drury (57) 1994; 287
Thompson (134) 2007; 654
14
18
Völk (142) 1989; 218
Wang (143) 2011; 736
Makiya (92) 2011; 728
Coppi (47) 1997; 487
Jones (74) 2001; 547
120
121
1
122
Strong (131) 1976; 175
2
4
125
127
7
128
8
de Jong (50) 1985; 147
Kennicutt (78) 1998; 498
Sreekumar (123) 1998; 494
20
Kamae (75) 2006; 647
Stawarz (124) 2006; 637
21
Mannheim (93) 1994; 286
Abdo (6) 2010; 709
Kembhavi (76) 1986; 220
25
van der Kruit (141) 1973; 29
Sanuki (116) 2000; 545
Ballantyne (28) 2007; 660
Abdo (5) 2010; 720
Ackermann (17) 2012; 747
132
Bloemen (34) 1985; 145
138
Massaro (95) 2011; 729
139
Ohm (101) 2011
Wunderlich (149) 1987; 69
Dermer (52) 2007
Gao (66) 2004; 606
30
31
Nolan (100) 2012; 199
32
van der Kruit (140) 1971; 15
33
Akyüz (23) 1991; 248
38
Abdo (3) 2010; 188
LaValley (82) 1992
Teng (133) 2011; 742
Moskalenko (98) 2009; 692
144
146
147
41
42
43
Wright (145) 1990
44
Liu (89) 2010; 713
Pérez-González (105) 2005; 630
46
Dogiel (54) 2002; 572
48
Inoue (71) 2011; 733
Yun (150) 2001; 554
Baumgartner (29) 2010; 42
Huynh (70) 2007; 667
Burlon (36) 2011; 728
51
Stecker (126) 2011; 736
Abdo (9) 2010; 719
53
Freedman (64) 2001; 553
55
56
Faucher-Giguère (59) 2010
58
Abdo (11) 2010; 720
Persic (107) 2012
Pavlidou (104) 2002; 575
60
61
63
Strong (130) 2010; 722
Le (83) 2007
68
69
Condon (45) 1998; 115
Siegal-Gaskins (119) 2008
Fields (62) 2010; 722
Ackermann (15) 2010; 717
Blom (35) 1999; 516
Gao (65) 2004; 152
de Cea del Pozo (49) 2009; 698
72
73
Torres (136) 2004; 617
Atwood (27) 2009; 697
77
Ackermann (16) 2011; 743
Albert (24) 2007; 658
Torres (137) 2004; 607
Loiseau (90) 1987; 178
Murphy (99) 2006; 638
Ginzburg (67) 1964
102
103
106
81
Le Floc'h (84) 2005; 632
108
Thompson (135) 2006; 645
Caputi (37) 2007; 660
109
85
Wu (148) 2005; 635
86
87
References_xml – ident: 10
  doi: 10.1051/0004-6361/201014855
– ident: 41
  doi: 10.1086/180252
– volume: 554
  start-page: 803
  issn: 0004-637X
  year: 2001
  ident: 150
  publication-title: ApJ
  doi: 10.1086/323145
– volume: 630
  start-page: 82
  issn: 0004-637X
  year: 2005
  ident: 105
  publication-title: ApJ
  doi: 10.1086/431894
– volume: 607
  start-page: L99
  issn: 1538-4357
  year: 2004
  ident: 137
  publication-title: ApJ
  doi: 10.1086/421871
– volume: 575
  start-page: L5
  issn: 1538-4357
  year: 2002
  ident: 104
  publication-title: ApJ
  doi: 10.1086/342670
– volume: 126
  start-page: 1607
  issn: 1538-3881
  year: 2003
  ident: 114
  publication-title: AJ
  doi: 10.1086/376841
– ident: 128
  doi: 10.1146/annurev.nucl.57.090506.123011
– ident: 112
  doi: 10.1051/0004-6361/200912058
– ident: 13
  doi: 10.1126/science.1178826
– volume: 713
  start-page: 524
  issn: 0004-637X
  year: 2010
  ident: 89
  publication-title: ApJ
  doi: 10.1088/0004-637X/713/1/524
– start-page: 462
  year: 2007
  ident: 83
  publication-title: The First GLAST Symposium
  doi: 10.1063/1.2757402
– volume: 147
  start-page: L6
  issn: 0004-6361
  year: 1985
  ident: 50
  publication-title: A&A
– volume: 547
  start-page: 264
  issn: 0004-637X
  year: 2001
  ident: 74
  publication-title: ApJ
  doi: 10.1086/318358
– ident: 127
  doi: 10.1007/s10509-007-9480-1
– volume: 154
  start-page: 147
  issn: 0067-0049
  year: 2004
  ident: 26
  publication-title: ApJS
  doi: 10.1086/422425
– volume: 248
  start-page: 419
  issn: 0004-6361
  year: 1991
  ident: 23
  publication-title: A&A
– volume: 695
  start-page: L40
  issn: 1538-4357
  year: 2009
  ident: 19
  publication-title: ApJ
  doi: 10.1088/0004-637X/695/1/L40
– ident: 118
  doi: 10.1086/160660
– ident: 102
  doi: 10.1086/176969
– ident: 46
  doi: 10.1086/191472
– ident: 14
  doi: 10.1103/PhysRevD.85.083007
– ident: 58
  doi: 10.1080/01621459.1999.10474187
– ident: 111
  doi: 10.1111/j.1365-2966.2009.15661.x
– volume: 606
  start-page: 271
  issn: 0004-637X
  year: 2004
  ident: 66
  publication-title: ApJ
  doi: 10.1086/382999
– volume: 654
  start-page: 219
  issn: 0004-637X
  year: 2007
  ident: 134
  publication-title: ApJ
  doi: 10.1086/509068
– ident: 125
  doi: 10.1016/j.astropartphys.2006.08.002
– ident: 115
  doi: 10.1146/annurev.astro.34.1.749
– ident: 21
  doi: 10.1016/j.astropartphys.2010.06.003
– ident: 31
  doi: 10.1007/BF00643157
– volume: 632
  start-page: 169
  issn: 0004-637X
  year: 2005
  ident: 84
  publication-title: ApJ
  doi: 10.1086/432789
– start-page: JCAP01(2010)005
  issn: 1475-7516
  year: 2010
  ident: 59
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 494
  start-page: 523
  issn: 0004-637X
  year: 1998
  ident: 123
  publication-title: ApJ
  doi: 10.1086/305222
– volume: 645
  start-page: 186
  issn: 0004-637X
  year: 2006
  ident: 135
  publication-title: ApJ
  doi: 10.1086/504035
– start-page: 0
  year: 1990
  ident: 145
  publication-title: PKS Catalog
– volume: 145
  start-page: 391
  issn: 0004-6361
  year: 1985
  ident: 34
  publication-title: A&A
– volume: 622
  start-page: 772
  issn: 0004-637X
  year: 2005
  ident: 39
  publication-title: ApJ
  doi: 10.1086/428082
– volume: 498
  start-page: 541
  issn: 0004-637X
  year: 1998
  ident: 78
  publication-title: ApJ
  doi: 10.1086/305588
– volume: 742
  start-page: 66
  issn: 0004-637X
  year: 2011
  ident: 133
  publication-title: ApJ
  doi: 10.1088/0004-637X/742/2/66
– ident: 56
  doi: 10.1086/185179
– volume: 15
  start-page: 110
  issn: 0004-6361
  year: 1971
  ident: 140
  publication-title: A&A
– volume: 736
  start-page: 40
  issn: 0004-637X
  year: 2011
  ident: 126
  publication-title: ApJ
  doi: 10.1088/0004-637X/736/1/40
– volume: 729
  start-page: L12
  issn: 2041-8205
  year: 2011
  ident: 95
  publication-title: ApJ
  doi: 10.1088/2041-8205/729/1/L12
– ident: 144
  doi: 10.1086/192237
– ident: 44
  doi: 10.1086/170258
– ident: 132
  doi: 10.1046/j.1365-8711.2003.06201.x
– volume: 29
  start-page: 263
  issn: 0004-6361
  year: 1973
  ident: 141
  publication-title: A&A
– ident: 2
  doi: 10.1103/PhysRevD.80.122004
– volume: 487
  start-page: L9
  issn: 1538-4357
  year: 1997
  ident: 47
  publication-title: ApJ
  doi: 10.1086/310883
– ident: 4
  doi: 10.1051/0004-6361/201015759
– ident: 69
  doi: 10.1111/j.1365-2966.2007.12466.x
– volume: 647
  start-page: 692
  issn: 0004-637X
  year: 2006
  ident: 75
  publication-title: ApJ
  doi: 10.1086/505189
– volume: 545
  start-page: 1135
  issn: 0004-637X
  year: 2000
  ident: 116
  publication-title: ApJ
  doi: 10.1086/317873
– ident: 51
  doi: 10.1086/129725
– volume: 572
  start-page: L157
  issn: 1538-4357
  year: 2002
  ident: 54
  publication-title: ApJ
  doi: 10.1086/341882
– volume: 717
  start-page: 1
  issn: 0004-637X
  year: 2010
  ident: 79
  publication-title: ApJ
  doi: 10.1088/0004-637X/717/1/1
– volume: 720
  start-page: 912
  issn: 0004-637X
  year: 2010
  ident: 11
  publication-title: ApJ
  doi: 10.1088/0004-637X/720/1/912
– ident: 42
  doi: 10.1016/S0927-6505(98)00018-8
– ident: 1
  doi: 10.1016/j.astropartphys.2009.08.002
– ident: 7
  doi: 10.1051/0004-6361/200913474
– ident: 12
  doi: 10.1038/nature08557
– ident: 32
  doi: 10.1103/PhysRevLett.87.251301
– volume: 188
  start-page: 405
  issn: 0067-0049
  year: 2010
  ident: 3
  publication-title: ApJS
  doi: 10.1088/0067-0049/188/2/405
– volume: 152
  start-page: 63
  issn: 0067-0049
  year: 2004
  ident: 65
  publication-title: ApJS
  doi: 10.1086/383003
– start-page: 122
  year: 2007
  ident: 52
  publication-title: The First GLAST Symposium
  doi: 10.1063/1.2757282
– ident: 120
  doi: 10.1146/annurev.ns.33.120183.001543
– volume: 286
  start-page: 983
  issn: 0004-6361
  year: 1994
  ident: 93
  publication-title: A&A
– ident: 122
  doi: 10.1007/978-94-009-9503-1
– volume: 717
  start-page: L71
  issn: 2041-8205
  year: 2010
  ident: 15
  publication-title: ApJ
  doi: 10.1088/2041-8205/717/1/L71
– ident: 113
  doi: 10.1086/145971
– ident: 121
  doi: 10.1086/186304
– volume: 697
  start-page: 1071
  issn: 0004-637X
  year: 2009
  ident: 27
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/2/1071
– ident: 33
  doi: 10.1086/173261
– volume: 692
  start-page: L54
  issn: 1538-4357
  year: 2009
  ident: 98
  publication-title: ApJ
  doi: 10.1088/0004-637X/692/1/L54
– volume: 698
  start-page: 1054
  issn: 0004-637X
  year: 2009
  ident: 49
  publication-title: ApJ
  doi: 10.1088/0004-637X/698/2/1054
– start-page: JCAP10(2008)040
  issn: 1475-7516
  year: 2008
  ident: 119
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 138
  doi: 10.1051/0004-6361:20066330
– volume: 660
  start-page: 97
  issn: 0004-637X
  year: 2007
  ident: 37
  publication-title: ApJ
  doi: 10.1086/512667
– ident: 53
  doi: 10.1038/nature04364
– volume: 733
  start-page: 66
  issn: 0004-637X
  year: 2011
  ident: 71
  publication-title: ApJ
  doi: 10.1088/0004-637X/733/1/66
– volume: 287
  start-page: 959
  issn: 0004-6361
  year: 1994
  ident: 57
  publication-title: A&A
– ident: 94
  doi: 10.1086/175724
– volume: 658
  start-page: 245
  issn: 0004-637X
  year: 2007
  ident: 24
  publication-title: ApJ
  doi: 10.1086/511173
– start-page: 245
  year: 1992
  ident: 82
  publication-title: Astronomical Data Analysis Software and Systems I
– volume: 720
  start-page: 435
  issn: 0004-637X
  year: 2010
  ident: 5
  publication-title: ApJ
  doi: 10.1088/0004-637X/720/1/435
– volume: 667
  start-page: L9
  issn: 1538-4357
  year: 2007
  ident: 70
  publication-title: ApJ
  doi: 10.1086/521981
– ident: 139
  doi: 10.1103/PhysRevD.66.123502
– ident: 61
  doi: 10.1086/153590
– ident: 88
  doi: 10.1007/BF01879571
– year: 2012
  ident: 107
– ident: 85
  doi: 10.1086/177180
– volume: 178
  start-page: 62
  issn: 0004-6361
  year: 1987
  ident: 90
  publication-title: A&A
– ident: 146
  doi: 10.1086/166958
– ident: 73
  doi: 10.1051/0004-6361/201014552
– volume: 747
  start-page: 104
  issn: 0004-637X
  year: 2012
  ident: 17
  publication-title: ApJ
  doi: 10.1088/0004-637X/747/2/104
– ident: 25
  doi: 10.1111/j.1365-2966.2009.15605.x
– ident: 30
  doi: 10.1016/j.physletb.2010.11.019
– volume: 220
  start-page: 51
  issn: 0035-8711
  year: 1986
  ident: 76
  publication-title: MNRAS
  doi: 10.1093/mnras/220.1.51
– ident: 63
  doi: 10.1051/0004-6361:200809691
– ident: 103
  doi: 10.1051/0004-6361:20065002
– volume: 617
  start-page: 966
  issn: 0004-637X
  year: 2004
  ident: 136
  publication-title: ApJ
  doi: 10.1086/425415
– year: 1964
  ident: 67
  publication-title: The Origin of Cosmic Rays
– ident: 48
  doi: 10.1111/j.1365-2966.2010.16985.x
– ident: 72
  doi: 10.1086/164359
– volume: 734
  start-page: 107
  issn: 0004-637X
  year: 2011
  ident: 80
  publication-title: ApJ
  doi: 10.1088/0004-637X/734/2/107
– year: 2011
  ident: 101
– volume: 736
  start-page: 112
  issn: 0004-637X
  year: 2011
  ident: 143
  publication-title: ApJ
  doi: 10.1088/0004-637X/736/2/112
– volume: 635
  start-page: L173
  issn: 1538-4357
  year: 2005
  ident: 148
  publication-title: ApJ
  doi: 10.1086/499623
– volume: 175
  start-page: 23P
  issn: 0035-8711
  year: 1976
  ident: 131
  publication-title: MNRAS
  doi: 10.1093/mnras/175.1.23P
– ident: 38
  doi: 10.1086/376392
– ident: 86
  doi: 10.1051/0004-6361/201015644
– volume: 199
  start-page: 31
  issn: 0067-0049
  year: 2012
  ident: 100
  publication-title: ApJS
  doi: 10.1088/0067-0049/199/2/31
– ident: 106
  doi: 10.1111/j.1365-2966.2009.16218.x
– ident: 81
  doi: 10.1088/0004-637X/756/1/5
– ident: 20
  doi: 10.1051/0004-6361:20053478
– volume: 722
  start-page: L58
  issn: 2041-8205
  year: 2010
  ident: 130
  publication-title: ApJ
  doi: 10.1088/2041-8205/722/1/L58
– volume: 642
  start-page: 902
  issn: 0004-637X
  year: 2006
  ident: 110
  publication-title: ApJ
  doi: 10.1086/501117
– ident: 18
  doi: 10.1126/science.1199172
– volume: 42
  start-page: 675
  issn: 0002-7537
  year: 2010
  ident: 29
  publication-title: BAAS
– ident: 96
  doi: 10.1086/177068
– volume: 278
  start-page: 919
  issn: 0035-8711
  year: 1996
  ident: 22
  publication-title: MNRAS
  doi: 10.1093/mnras/278.4.919
– ident: 87
  doi: 10.1051/0004-6361/201117523
– volume: 637
  start-page: 693
  issn: 0004-637X
  year: 2006
  ident: 124
  publication-title: ApJ
  doi: 10.1086/498084
– volume: 115
  start-page: 1693
  issn: 1538-3881
  year: 1998
  ident: 45
  publication-title: AJ
  doi: 10.1086/300337
– volume: 728
  start-page: 58
  issn: 0004-637X
  year: 2011
  ident: 36
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/1/58
– volume: 660
  start-page: 988
  issn: 0004-637X
  year: 2007
  ident: 28
  publication-title: ApJ
  doi: 10.1086/513183
– volume: 728
  start-page: 158
  issn: 0004-637X
  year: 2011
  ident: 92
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/2/158
– ident: 55
  doi: 10.1051/0004-6361:20053613
– volume: 714
  start-page: L190
  issn: 2041-8205
  year: 2010
  ident: 117
  publication-title: ApJ
  doi: 10.1088/2041-8205/714/2/L190
– volume: 719
  start-page: 1433
  issn: 0004-637X
  year: 2010
  ident: 9
  publication-title: ApJ
  doi: 10.1088/0004-637X/719/2/1433
– ident: 43
  doi: 10.1146/annurev.aa.30.090192.003043
– ident: 108
  doi: 10.1051/0004-6361:200809525
– ident: 91
  doi: 10.1051/0004-6361:200811443
– volume: 218
  start-page: 67
  issn: 0004-6361
  year: 1989
  ident: 142
  publication-title: A&A
– ident: 68
  doi: 10.1086/184556
– ident: 60
  doi: 10.1086/161051
– volume: 613
  start-page: 956
  issn: 0004-637X
  year: 2004
  ident: 129
  publication-title: ApJ
  doi: 10.1086/423196
– volume: 621
  start-page: 139
  issn: 0004-637X
  year: 2005
  ident: 40
  publication-title: ApJ
  doi: 10.1086/427496
– ident: 147
  doi: 10.1086/115674
– volume: 743
  start-page: 171
  issn: 0004-637X
  year: 2011
  ident: 16
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/2/171
– ident: 97
  doi: 10.1016/j.astropartphys.2009.03.004
– ident: 109
  doi: 10.1063/1.3458566
– ident: 8
  doi: 10.1103/PhysRevLett.104.101101
– volume: 709
  start-page: L152
  issn: 2041-8205
  year: 2010
  ident: 6
  publication-title: ApJ
  doi: 10.1088/2041-8205/709/2/L152
– volume: 638
  start-page: 157
  issn: 0004-637X
  year: 2006
  ident: 99
  publication-title: ApJ
  doi: 10.1086/498636
– volume: 516
  start-page: 744
  issn: 0004-637X
  year: 1999
  ident: 35
  publication-title: ApJ
  doi: 10.1086/307155
– volume: 722
  start-page: L199
  issn: 2041-8205
  year: 2010
  ident: 62
  publication-title: ApJ
  doi: 10.1088/2041-8205/722/2/L199
– ident: 77
  doi: 10.1146/annurev.astro.36.1.189
– volume: 553
  start-page: 47
  issn: 0004-637X
  year: 2001
  ident: 64
  publication-title: ApJ
  doi: 10.1086/320638
– volume: 69
  start-page: 487
  issn: 1286-4846
  year: 1987
  ident: 149
  publication-title: A&AS
SSID ssj0004299
Score 2.580941
Snippet Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at...
Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous...
SourceID swepub
osti
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 164
SubjectTerms Astrophysics
Construction
cosmic rays
Earth and Planetary Astrophysics
Fluxes
Galaxies
galaxies: starburst
gamma rays: diffuse background
gamma rays: galaxies
Infrared
Luminosity
Physics
Sciences of the Universe
Star formation
Starburst galaxies
Telescopes
Title GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE
URI https://www.proquest.com/docview/1701500023
https://www.proquest.com/docview/1718938852
https://in2p3.hal.science/in2p3-00747346
https://www.osti.gov/servlets/purl/1356697
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162396
Volume 755
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYERIXBAO0MkBGGlxK2sZ24vSYjXQVaunUdaU3y3GcMQTt1KYc-Ot5dj6aimoaXCLLeU4i_35x3ovfB0InuqvgK6Y9J066XYcp6TkyYJ5DqErhayNTbjfaR1_8wRX7PPfm2yqONroki9vq9964kv9BFfoAVxMl-w_IVheFDmgDvnAEhOF4L4zP9aw1Pr2MJrMiGnjcBxUvnDhg2o2sU304DOeg8IGdPh1Y755-BGdaw3ByHrXCSRS2ptEwujwbX0R1NdWWal5nq-VtCWP9eQw_jDfGz6LA8qhddX8v93JqfUC0tKhXH1a9p9LseuWh2e36rwfjw2Hmf2c5ZY5Pba37ajnledrdgjdk7zINS1vu15gPhzaMMrEp5j9CntV8TxbsTzezUCxX12K9ES6obT3_AD0knNvt-TH9uo2HJb3C7Mmvn-fMDRxQDXmZeQoM_-p8B-7eIR3XZzvaycE34xvbWMJau2t_1HPKWj1k-hQ9KQwIHOZseIYe6MUhOrJgmfAU_AHXgFsfokcXees5GgFdcJ0ueNzHdbrgki7Y0AUDXbClC7Z0wYYuuKLLC3TVj6ZnA6eopuEo5vUyx5dEJkRynrJu6ie-Ym6caOnFniQ8CaSrXR7omGjCeOxLSuHFTd1UKaoYUyyhL1FjsVzoI4RBTrk6JTHV8A1IujFotdoDeR90m1ipJiLlLApVpJo3FU9-COvyEATG5YEJM_UCpl4QgJM10cdq0G2eaeVu8ROAp5I0_BiEQ3GzILdU2LIQlPm_3CY6NvgJ0CdNUmRlvMdUJlwKZkyPN9G7ElYBy6rZK5MLvdyshSlT4NlsUHfJuKDtB4FHmuh9zomd5_mbr6_uKXeMHm_ft9eoka02-g0ov1n81jL9D3cWm0w
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GeV+OBSERVATIONS+OF+STAR-FORMING+GALAXIES+WITH+THE+FERMI+LARGE+AREA+TELESCOPE&rft.jtitle=The+Astrophysical+journal&rft.au=Ackermann%2C+M.&rft.au=Ajello%2C+M.&rft.au=Allafort%2C+A.&rft.au=Baldini%2C+L.&rft.date=2012-08-20&rft.issn=0004-637X&rft.volume=755&rft.issue=2&rft_id=info:doi/10.1088%2F0004-637X%2F755%2F2%2F164&rft.externalDocID=oai_DiVA_org_su_162396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon