GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous an...
Saved in:
Published in | The Astrophysical journal Vol. 755; no. 2; pp. 164 - 23 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Astronomical Society
20.08.2012
Institute of Physics (IOP) |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 1538-4357 |
DOI | 10.1088/0004-637X/755/2/164 |
Cover
Abstract | Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values [> ~]0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L sub(0.1,100 GeV)/L sub(1.4 GHz)) = 1.7 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) and log (L sub(0.1-100 GeV)/L sub(8,1000 mu m)) = -4.3 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) for a galaxy with a star formation rate of 1 M sub([middot in circle]) yr super(-1), assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 > z > 2.5 above 0.1 GeV is estimated to be 0.4-2.4 x 10 super(-6) ph cm super(-2) s super(-1) sr super(-1) (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission. |
---|---|
AbstractList | Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies.We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log(L0.1-100 GeV/L1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log(L0.1-100 GeV/L8-1000μm) = −4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1M yr−1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 ×10−6 ph cm−2 s−1 sr−1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT).We anticipate that∼10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission. Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values [> ~]0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L sub(0.1,100 GeV)/L sub(1.4 GHz)) = 1.7 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) and log (L sub(0.1-100 GeV)/L sub(8,1000 mu m)) = -4.3 + or - 0.1 sub((statistical)) + or - 0.2 sub((dispersion)) for a galaxy with a star formation rate of 1 M sub([middot in circle]) yr super(-1), assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 > z > 2.5 above 0.1 GeV is estimated to be 0.4-2.4 x 10 super(-6) ph cm super(-2) s super(-1) sr super(-1) (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission. Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values less than or similar to 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log(L0.1-100GeV/L-1.4GHz) = 1.7 +/- 0.1((statistical)) +/- 0.2((dispersion)) and log(L0.1-100GeV/L8-1000 (mu m)) = -4.3 +/- 0.1((statistical)) +/- 0.2((dispersion)) for a galaxy with a star formation rate of 1 M-circle dot yr(-1), assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 x 10(-6) ph cm(-2) s(-1) sr(-1) (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that similar to 10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission. Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. Here, we find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = –4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙yr–1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10–6 ph cm–2 s–1 sr–1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). Furthermore, we anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission. |
Author | Bonamente, E. de Palma, F. Gustafsson, M. Mazziotta, M. N. Giordano, F. Hays, E. Orlando, E. Fortin, P. Fusco, P. Claus, R. Cohen-Tanugi, J. Caliandro, G. A. Gargano, F. Lovellette, M. N. do Couto e Silva, E. Bechtol, K. Monte, C. Monzani, M. E. Charles, E. Hayashida, M. Cheung, C. C. Chekhtman, A. Norris, J. P. Drell, P. S. Dermer, C. D. Longo, F. Germani, S. Bruel, P. Casandjian, J. M. Godfrey, G. Morselli, A. Digel, S. W. Okumura, A. Lubrano, P. Hughes, R. E. Petrosian, V. Johnson, A. S. Mizuno, T. Bellazzini, R. Berenji, B. Baldini, L. Fukazawa, Y. Omodei, N. Pesce-Rollins, M. Michelson, P. F. Ballet, J. Caraveo, P. A. Nishino, S. Chiang, J. Nuss, E. Loparco, F. Martin, P. Parent, D. Katagiri, H. Ohno, M. Kuss, M. Lande, J. Cecchi, C. Bloom, E. D. Grenier, I. A. Pierbattista, M. Pivato, G. Lott, B. Ozaki, M. Glanzman, T. Brigida, M. Kataoka, J. Drlica-Wagner, A. Moskalenko, I. V. Cameron, R. A. Cutini, S. Bastieri, D. Ciprini, S. Hadasch, D. Cillis, A. N. Conrad, J. Buehler, R. Ajello, M. Allafort, A. Bouvier, A. Jóhannesson, G. Gasparrini, D. Borgland, A. W. Knö |
Author_xml | – sequence: 1 givenname: M. surname: Ackermann fullname: Ackermann, M. – sequence: 2 givenname: M. surname: Ajello fullname: Ajello, M. – sequence: 3 givenname: A. surname: Allafort fullname: Allafort, A. – sequence: 4 givenname: L. surname: Baldini fullname: Baldini, L. – sequence: 5 givenname: J. surname: Ballet fullname: Ballet, J. – sequence: 6 givenname: D. surname: Bastieri fullname: Bastieri, D. – sequence: 7 givenname: K. surname: Bechtol fullname: Bechtol, K. – sequence: 8 givenname: R. surname: Bellazzini fullname: Bellazzini, R. – sequence: 9 givenname: B. surname: Berenji fullname: Berenji, B. – sequence: 10 givenname: E. D. surname: Bloom fullname: Bloom, E. D. – sequence: 11 givenname: E. surname: Bonamente fullname: Bonamente, E. – sequence: 12 givenname: A. W. surname: Borgland fullname: Borgland, A. W. – sequence: 13 givenname: A. surname: Bouvier fullname: Bouvier, A. – sequence: 14 givenname: J. surname: Bregeon fullname: Bregeon, J. – sequence: 15 givenname: M. surname: Brigida fullname: Brigida, M. – sequence: 16 givenname: P. surname: Bruel fullname: Bruel, P. – sequence: 17 givenname: R. surname: Buehler fullname: Buehler, R. – sequence: 18 givenname: S. surname: Buson fullname: Buson, S. – sequence: 19 givenname: G. A. surname: Caliandro fullname: Caliandro, G. A. – sequence: 20 givenname: R. A. surname: Cameron fullname: Cameron, R. A. – sequence: 21 givenname: P. A. surname: Caraveo fullname: Caraveo, P. A. – sequence: 22 givenname: J. M. surname: Casandjian fullname: Casandjian, J. M. – sequence: 23 givenname: C. surname: Cecchi fullname: Cecchi, C. – sequence: 24 givenname: E. surname: Charles fullname: Charles, E. – sequence: 25 givenname: A. surname: Chekhtman fullname: Chekhtman, A. – sequence: 26 givenname: C. C. surname: Cheung fullname: Cheung, C. C. – sequence: 27 givenname: J. surname: Chiang fullname: Chiang, J. – sequence: 28 givenname: A. N. surname: Cillis fullname: Cillis, A. N. – sequence: 29 givenname: S. surname: Ciprini fullname: Ciprini, S. – sequence: 30 givenname: R. surname: Claus fullname: Claus, R. – sequence: 31 givenname: J. surname: Cohen-Tanugi fullname: Cohen-Tanugi, J. – sequence: 32 givenname: J. surname: Conrad fullname: Conrad, J. – sequence: 33 givenname: S. surname: Cutini fullname: Cutini, S. – sequence: 34 givenname: F. surname: de Palma fullname: de Palma, F. – sequence: 35 givenname: C. D. surname: Dermer fullname: Dermer, C. D. – sequence: 36 givenname: S. W. surname: Digel fullname: Digel, S. W. – sequence: 37 givenname: E. surname: do Couto e Silva fullname: do Couto e Silva, E. – sequence: 38 givenname: P. S. surname: Drell fullname: Drell, P. S. – sequence: 39 givenname: A. surname: Drlica-Wagner fullname: Drlica-Wagner, A. – sequence: 40 givenname: C. surname: Favuzzi fullname: Favuzzi, C. – sequence: 41 givenname: S. J. surname: Fegan fullname: Fegan, S. J. – sequence: 42 givenname: P. surname: Fortin fullname: Fortin, P. – sequence: 43 givenname: Y. surname: Fukazawa fullname: Fukazawa, Y. – sequence: 44 givenname: S. surname: Funk fullname: Funk, S. – sequence: 45 givenname: P. surname: Fusco fullname: Fusco, P. – sequence: 46 givenname: F. surname: Gargano fullname: Gargano, F. – sequence: 47 givenname: D. surname: Gasparrini fullname: Gasparrini, D. – sequence: 48 givenname: S. surname: Germani fullname: Germani, S. – sequence: 49 givenname: N. surname: Giglietto fullname: Giglietto, N. – sequence: 50 givenname: F. surname: Giordano fullname: Giordano, F. – sequence: 51 givenname: T. surname: Glanzman fullname: Glanzman, T. – sequence: 52 givenname: G. surname: Godfrey fullname: Godfrey, G. – sequence: 53 givenname: I. A. surname: Grenier fullname: Grenier, I. A. – sequence: 54 givenname: S. surname: Guiriec fullname: Guiriec, S. – sequence: 55 givenname: M. surname: Gustafsson fullname: Gustafsson, M. – sequence: 56 givenname: D. surname: Hadasch fullname: Hadasch, D. – sequence: 57 givenname: M. surname: Hayashida fullname: Hayashida, M. – sequence: 58 givenname: E. surname: Hays fullname: Hays, E. – sequence: 59 givenname: R. E. surname: Hughes fullname: Hughes, R. E. – sequence: 60 givenname: G. surname: Jóhannesson fullname: Jóhannesson, G. – sequence: 61 givenname: A. S. surname: Johnson fullname: Johnson, A. S. – sequence: 62 givenname: T. surname: Kamae fullname: Kamae, T. – sequence: 63 givenname: H. surname: Katagiri fullname: Katagiri, H. – sequence: 64 givenname: J. surname: Kataoka fullname: Kataoka, J. – sequence: 65 givenname: J. surname: Knödlseder fullname: Knödlseder, J. – sequence: 66 givenname: M. surname: Kuss fullname: Kuss, M. – sequence: 67 givenname: J. surname: Lande fullname: Lande, J. – sequence: 68 givenname: F. surname: Longo fullname: Longo, F. – sequence: 69 givenname: F. surname: Loparco fullname: Loparco, F. – sequence: 70 givenname: B. surname: Lott fullname: Lott, B. – sequence: 71 givenname: M. N. surname: Lovellette fullname: Lovellette, M. N. – sequence: 72 givenname: P. surname: Lubrano fullname: Lubrano, P. – sequence: 73 givenname: G. M. surname: Madejski fullname: Madejski, G. M. – sequence: 74 givenname: P. surname: Martin fullname: Martin, P. – sequence: 75 givenname: M. N. surname: Mazziotta fullname: Mazziotta, M. N. – sequence: 76 givenname: J. E. surname: McEnery fullname: McEnery, J. E. – sequence: 77 givenname: P. F. surname: Michelson fullname: Michelson, P. F. – sequence: 78 givenname: T. surname: Mizuno fullname: Mizuno, T. – sequence: 79 givenname: C. surname: Monte fullname: Monte, C. – sequence: 80 givenname: M. E. surname: Monzani fullname: Monzani, M. E. – sequence: 81 givenname: A. surname: Morselli fullname: Morselli, A. – sequence: 82 givenname: I. V. surname: Moskalenko fullname: Moskalenko, I. V. – sequence: 83 givenname: S. surname: Murgia fullname: Murgia, S. – sequence: 84 givenname: S. surname: Nishino fullname: Nishino, S. – sequence: 85 givenname: J. P. surname: Norris fullname: Norris, J. P. – sequence: 86 givenname: E. surname: Nuss fullname: Nuss, E. – sequence: 87 givenname: M. surname: Ohno fullname: Ohno, M. – sequence: 88 givenname: T. surname: Ohsugi fullname: Ohsugi, T. – sequence: 89 givenname: A. surname: Okumura fullname: Okumura, A. – sequence: 90 givenname: N. surname: Omodei fullname: Omodei, N. – sequence: 91 givenname: E. surname: Orlando fullname: Orlando, E. – sequence: 92 givenname: M. surname: Ozaki fullname: Ozaki, M. – sequence: 93 givenname: D. surname: Parent fullname: Parent, D. – sequence: 94 givenname: M. surname: Persic fullname: Persic, M. – sequence: 95 givenname: M. surname: Pesce-Rollins fullname: Pesce-Rollins, M. – sequence: 96 givenname: V. surname: Petrosian fullname: Petrosian, V. – sequence: 97 givenname: M. surname: Pierbattista fullname: Pierbattista, M. – sequence: 98 givenname: F. surname: Piron fullname: Piron, F. – sequence: 99 givenname: G. surname: Pivato fullname: Pivato, G. – sequence: 100 givenname: T. A. surname: Porter fullname: Porter, T. A. |
BackLink | https://in2p3.hal.science/in2p3-00747346$$DView record in HAL https://www.osti.gov/servlets/purl/1356697$$D View this record in Osti.gov https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162396$$DView record from Swedish Publication Index |
BookMark | eNqN0U-L1DAYBvAgKzi7-gm8BE-C1sm_Ju0xjplOobuVto57C2maupXZdmw6Lvvt7VBZ0IN4CiG_5yUvzyW46IfeAfAaow8YRdEaIcQCTsXtWoThmqwxZ8_ACoc0ChgNxQVYPYkX4NL77-crieMVuE7cHuYfS1XsZZXmNyXMt7CsZBFs8-I6vUlgIjN5m6oSfk2rHax2Cm7V_AIzWSQKykJJWKlMlZv8s3oJnrfm4N2r3-cV-LJV1WYXZHmSbmQWWBbGU8ANMQ0xQrQMtbzhluG6cSasQ0NEExnssIhcTRxhouaGUmZNi1trqWXMsoZegffLXP_gjqdaH8fu3oyPejCd_tTtpR7Gb9qfNOaExnzmbxY--KnT3naTs3d26HtnJ41pyHksZvRuQXfm8MfAncx015Mj1QgJJijjP_Gs3y76OA4_Ts5P-r7z1h0OpnfDyWsscBTTKArJf1CEw7kQQmdKF2rHwfvRtU8fwUifm9bn4vS5Rz03rcm8IZtT8V-peUMzdUM_jaY7_DP7C1pBpxg |
CitedBy_id | crossref_primary_10_1088_1475_7516_2016_09_002 crossref_primary_10_1088_1475_7516_2014_02_014 crossref_primary_10_1093_mnras_stv1606 crossref_primary_10_1093_mnras_stac3601 crossref_primary_10_3390_universe7050141 crossref_primary_10_1088_1475_7516_2015_12_029 crossref_primary_10_1051_0004_6361_201323329 crossref_primary_10_1088_1538_3873_aaa6b0 crossref_primary_10_1103_PhysRevD_91_061302 crossref_primary_10_1146_annurev_astro_082214_122457 crossref_primary_10_1093_mnras_stab1748 crossref_primary_10_1051_0004_6361_201425249 crossref_primary_10_1103_PhysRevD_101_103012 crossref_primary_10_3847_1538_4357_ad84e9 crossref_primary_10_1103_PhysRevD_110_103032 crossref_primary_10_3847_1538_4357_ac0341 crossref_primary_10_1093_mnras_stab2261 crossref_primary_10_1088_1475_7516_2016_06_045 crossref_primary_10_1093_mnras_stac031 crossref_primary_10_1088_0004_637X_776_1_33 crossref_primary_10_1103_PhysRevD_97_115006 crossref_primary_10_1051_0004_6361_202037518 crossref_primary_10_1051_0004_6361_202037639 crossref_primary_10_1088_1475_7516_2017_12_017 crossref_primary_10_1093_mnras_stae1606 crossref_primary_10_1088_1475_7516_2020_01_059 crossref_primary_10_1051_0004_6361_201936339 crossref_primary_10_1093_mnrasl_slv195 crossref_primary_10_3847_1538_4357_abe2a6 crossref_primary_10_1051_0004_6361_201833202 crossref_primary_10_1051_0004_6361_201423871 crossref_primary_10_3847_1538_4357_ab2715 crossref_primary_10_1088_1674_4527_21_10_263 crossref_primary_10_1088_0004_637X_773_1_61 crossref_primary_10_1093_mnras_stt746 crossref_primary_10_3847_1538_4357_ab3e6f crossref_primary_10_1093_mnras_stz1161 crossref_primary_10_1088_0067_0049_217_1_15 crossref_primary_10_1093_astrogeo_atac090 crossref_primary_10_1016_j_astropartphys_2015_06_004 crossref_primary_10_3847_1538_4357_ad11f1 crossref_primary_10_1007_s13538_014_0221_y crossref_primary_10_1016_j_jheap_2017_12_001 crossref_primary_10_1093_mnras_stad2105 crossref_primary_10_1051_0004_6361_201628667 crossref_primary_10_1088_1475_7516_2019_08_028 crossref_primary_10_1093_mnras_stz963 crossref_primary_10_3847_1538_4357_ace166 crossref_primary_10_1088_1475_7516_2022_11_011 crossref_primary_10_1051_0004_6361_201424814 crossref_primary_10_1088_0067_0049_221_2_29 crossref_primary_10_3847_0004_637X_832_2_117 crossref_primary_10_3847_1538_4357_aa7464 crossref_primary_10_1103_PhysRevD_90_023514 crossref_primary_10_1051_0004_6361_201322827 crossref_primary_10_1093_mnras_stw2059 crossref_primary_10_1088_1475_7516_2019_03_019 crossref_primary_10_3847_2041_8213_ad4999 crossref_primary_10_1088_2041_8205_771_1_L5 crossref_primary_10_1088_0004_637X_780_2_161 crossref_primary_10_1016_j_physrep_2015_09_002 crossref_primary_10_1088_1475_7516_2012_11_026 crossref_primary_10_1088_1475_7516_2023_02_003 crossref_primary_10_1088_1475_7516_2014_09_043 crossref_primary_10_3847_1538_4357_834_2_208 crossref_primary_10_1051_0004_6361_202347394 crossref_primary_10_1093_mnrasl_sls025 crossref_primary_10_1051_0004_6361_202347034 crossref_primary_10_1093_mnras_stx929 crossref_primary_10_1088_1674_1137_41_4_045104 crossref_primary_10_1016_j_nuclphysbps_2014_10_029 crossref_primary_10_1007_JHEP09_2016_162 crossref_primary_10_1007_s12036_019_9604_3 crossref_primary_10_1088_2041_8205_800_2_L27 crossref_primary_10_1051_epjconf_201921001007 crossref_primary_10_1088_1475_7516_2023_07_058 crossref_primary_10_1103_PhysRevD_106_022005 crossref_primary_10_1103_PhysRevD_89_127304 crossref_primary_10_1093_mnras_stx365 crossref_primary_10_3847_1538_4357_ac2c08 crossref_primary_10_3847_2041_8213_aca53c crossref_primary_10_3847_1538_3881_ac5ea4 crossref_primary_10_1088_1742_6596_718_4_042019 crossref_primary_10_1093_mnras_stab2118 crossref_primary_10_1093_mnras_stab1707 crossref_primary_10_1088_0004_637X_794_2_126 crossref_primary_10_1051_0004_6361_201629136 crossref_primary_10_1088_1475_7516_2020_06_017 crossref_primary_10_1088_0004_637X_779_2_131 crossref_primary_10_3847_1538_4357_ad12b6 crossref_primary_10_1103_PhysRevD_95_123006 crossref_primary_10_1093_mnras_stab148 crossref_primary_10_3847_1538_4357_aac029 crossref_primary_10_1088_0004_637X_797_2_79 crossref_primary_10_1088_1674_4527_21_7_172 crossref_primary_10_1051_0004_6361_201526920 crossref_primary_10_1051_epjconf_201713602008 crossref_primary_10_1016_j_nuclphysbps_2015_06_061 crossref_primary_10_1103_PhysRevD_94_103006 crossref_primary_10_1103_PhysRevD_103_083017 crossref_primary_10_1007_s10509_021_04026_1 crossref_primary_10_1088_1475_7516_2022_08_011 crossref_primary_10_1088_0004_637X_806_1_24 crossref_primary_10_1088_1674_4527_acab45 crossref_primary_10_3847_1538_4357_ab3a51 crossref_primary_10_1051_0004_6361_201731452 crossref_primary_10_1088_0004_637X_796_1_14 crossref_primary_10_3847_1538_4357_acaf57 crossref_primary_10_1103_PhysRevD_102_023034 crossref_primary_10_3847_2041_8205_821_2_L20 crossref_primary_10_3847_0067_0049_225_2_18 crossref_primary_10_1088_0004_637X_810_1_14 crossref_primary_10_1088_1475_7516_2024_08_040 crossref_primary_10_1051_0004_6361_202347976 crossref_primary_10_1088_0004_637X_799_1_86 crossref_primary_10_1088_0004_637X_786_2_129 crossref_primary_10_3390_galaxies9020036 crossref_primary_10_1103_PhysRevD_102_123008 crossref_primary_10_1103_PhysRevD_97_103017 crossref_primary_10_3847_1538_4357_aaf6e4 crossref_primary_10_3847_2041_8213_aa6af0 crossref_primary_10_3847_2041_8213_aa8bb1 crossref_primary_10_1093_mnras_stac2133 crossref_primary_10_1007_s11433_018_9350_3 crossref_primary_10_1088_1475_7516_2024_09_075 crossref_primary_10_1103_PhysRevLett_124_051103 crossref_primary_10_1093_mnras_stz081 crossref_primary_10_3847_1538_4357_ab9b1f crossref_primary_10_1088_1475_7516_2014_11_021 crossref_primary_10_1103_PhysRevD_98_123018 crossref_primary_10_1088_1475_7516_2016_08_019 crossref_primary_10_3847_1538_4357_ab86a6 crossref_primary_10_1007_s00159_015_0090_6 crossref_primary_10_1088_1475_7516_2014_11_028 crossref_primary_10_3847_1538_4357_aa8f9d crossref_primary_10_1051_0004_6361_202038752 crossref_primary_10_3847_0004_637X_826_2_133 crossref_primary_10_1103_PhysRevD_89_023012 crossref_primary_10_1088_1475_7516_2019_09_004 crossref_primary_10_1051_0004_6361_202348447 crossref_primary_10_1088_1475_7516_2015_09_008 crossref_primary_10_1146_annurev_astro_081913_040044 crossref_primary_10_1038_nphys3837 crossref_primary_10_1093_mnras_stae746 crossref_primary_10_1088_1475_7516_2019_02_012 crossref_primary_10_1088_1674_4527_19_3_46 crossref_primary_10_1088_1475_7516_2017_03_057 crossref_primary_10_1093_mnras_stz223 crossref_primary_10_1093_mnras_stt122 crossref_primary_10_3847_2041_8213_aaebf9 crossref_primary_10_3847_2041_8205_823_1_L17 crossref_primary_10_1051_0004_6361_201833859 crossref_primary_10_1093_mnras_stv2773 crossref_primary_10_1093_mnras_stac553 crossref_primary_10_1093_pasj_psad072 crossref_primary_10_1088_1475_7516_2015_09_016 crossref_primary_10_1088_0004_637X_794_1_26 crossref_primary_10_1093_mnras_staa811 crossref_primary_10_3847_1538_4357_ac1c77 crossref_primary_10_1088_0004_637X_807_2_161 crossref_primary_10_1093_mnras_sty2622 crossref_primary_10_1088_1475_7516_2015_06_029 crossref_primary_10_1088_1475_7516_2017_03_047 crossref_primary_10_3389_fspas_2022_836215 crossref_primary_10_1007_s11214_020_00663_0 crossref_primary_10_1088_1674_1137_ac3fa9 crossref_primary_10_1093_mnras_stz2651 crossref_primary_10_3847_1538_4357_836_1_127 crossref_primary_10_1016_j_astropartphys_2019_04_003 crossref_primary_10_3847_2041_8213_aaf810 crossref_primary_10_1051_0004_6361_201527762 crossref_primary_10_1093_mnras_staa726 crossref_primary_10_3847_1538_4357_ac5fa9 crossref_primary_10_1103_PhysRevD_90_063502 crossref_primary_10_1007_s10509_016_2926_6 crossref_primary_10_1142_S0217751X19430188 crossref_primary_10_3847_2041_8213_aafc62 crossref_primary_10_1088_1475_7516_2015_03_038 crossref_primary_10_1073_pnas_1315181111 crossref_primary_10_1093_mnras_stab1325 crossref_primary_10_1093_mnras_stab1324 crossref_primary_10_1051_0004_6361_201322664 crossref_primary_10_1093_mnras_stz321 crossref_primary_10_3847_2041_8205_832_1_L6 crossref_primary_10_3847_2041_8213_ac8935 crossref_primary_10_1051_0004_6361_201832666 crossref_primary_10_1103_PhysRevD_92_123540 crossref_primary_10_3847_0004_637X_818_2_187 crossref_primary_10_1038_s41550_017_0194 crossref_primary_10_1088_0004_637X_805_2_95 crossref_primary_10_1093_mnras_stac1240 crossref_primary_10_1103_PhysRevLett_115_221101 crossref_primary_10_3847_1538_4365_ac545a crossref_primary_10_1051_0004_6361_202038428 crossref_primary_10_1016_j_jheap_2020_01_001 crossref_primary_10_1088_0004_637X_786_1_40 crossref_primary_10_1103_PhysRevD_96_083001 crossref_primary_10_1103_PhysRevLett_124_101102 crossref_primary_10_3847_0004_637X_827_1_67 crossref_primary_10_1088_1475_7516_2018_08_019 crossref_primary_10_1016_j_astropartphys_2017_03_010 crossref_primary_10_1016_j_physletb_2015_04_032 crossref_primary_10_1093_mnras_stab1799 crossref_primary_10_1093_mnras_stad1303 crossref_primary_10_3847_1538_4357_acde7c crossref_primary_10_1088_2041_8205_802_1_L1 crossref_primary_10_1093_mnras_stu542 crossref_primary_10_1093_mnras_stt697 crossref_primary_10_1093_mnras_stab2406 crossref_primary_10_1088_0004_637X_805_2_111 crossref_primary_10_3847_1538_4357_ab44ba crossref_primary_10_1016_j_astropartphys_2017_01_012 crossref_primary_10_1103_PhysRevD_99_063012 crossref_primary_10_3847_1538_4357_aae0f8 crossref_primary_10_1038_s41550_020_01287_8 crossref_primary_10_1016_j_nuclphysbps_2013_09_014 crossref_primary_10_1093_pasj_psy039 crossref_primary_10_1088_1475_7516_2015_05_024 crossref_primary_10_1088_1475_7516_2017_03_011 crossref_primary_10_1093_mnras_stad3733 crossref_primary_10_1088_1742_6596_718_2_022008 crossref_primary_10_3847_1538_4357_aab3e5 crossref_primary_10_3847_1538_4365_aa8553 crossref_primary_10_1103_PhysRevD_91_123001 crossref_primary_10_1093_mnras_stw437 crossref_primary_10_1051_0004_6361_202348080 crossref_primary_10_1093_mnras_stz2994 crossref_primary_10_3847_1538_4357_835_2_269 crossref_primary_10_1093_mnras_stab3273 crossref_primary_10_3847_2041_8213_ab982c crossref_primary_10_1016_j_jheap_2022_06_004 crossref_primary_10_1093_mnras_stab3274 crossref_primary_10_3847_1538_4357_ad9333 crossref_primary_10_1088_0004_637X_769_2_153 crossref_primary_10_1103_RevModPhys_92_045006 crossref_primary_10_3847_2041_8205_826_2_L31 crossref_primary_10_3847_1538_4357_ac771d crossref_primary_10_1088_0004_637X_773_1_36 crossref_primary_10_1146_annurev_nucl_102014_022036 crossref_primary_10_1007_s00159_016_0098_6 crossref_primary_10_1093_mnras_staa698 crossref_primary_10_3847_1538_4357_aba043 crossref_primary_10_1093_mnras_stx2917 crossref_primary_10_1103_PhysRevD_98_103007 crossref_primary_10_1093_mnras_stae932 crossref_primary_10_1093_mnras_sty3354 crossref_primary_10_1016_j_dark_2015_10_002 crossref_primary_10_1016_j_physrep_2013_05_004 crossref_primary_10_3847_1538_4357_ad28be crossref_primary_10_3847_1538_4357_ab258e crossref_primary_10_1088_1475_7516_2019_10_073 crossref_primary_10_3847_2041_8213_ab7661 crossref_primary_10_1093_mnras_stad3622 crossref_primary_10_1103_PhysRevD_97_123015 crossref_primary_10_3847_2041_8213_acf296 crossref_primary_10_1016_j_crhy_2016_04_003 crossref_primary_10_1093_mnras_stac084 crossref_primary_10_1093_mnras_stad3628 crossref_primary_10_1007_s00159_017_0102_9 crossref_primary_10_3847_1538_4357_ab8cbd crossref_primary_10_3390_galaxies11040086 crossref_primary_10_1093_mnrasl_slu186 crossref_primary_10_1093_mnras_stz1895 crossref_primary_10_3847_1538_4357_ac9588 crossref_primary_10_1016_j_physrep_2019_01_002 crossref_primary_10_1007_s00159_014_0077_8 crossref_primary_10_1088_0004_637X_780_2_137 crossref_primary_10_1093_mnras_stad1576 crossref_primary_10_1103_PhysRevD_88_023506 crossref_primary_10_3847_0004_637X_821_2_87 crossref_primary_10_1142_S021827182330001X crossref_primary_10_3847_2041_8213_aaa66d crossref_primary_10_3847_1538_4357_acb498 crossref_primary_10_1007_s00159_023_00149_2 crossref_primary_10_1103_PhysRevD_88_121301 crossref_primary_10_3847_1538_4357_aa5c3d crossref_primary_10_1051_0004_6361_201526621 crossref_primary_10_1093_mnras_stab3495 crossref_primary_10_1103_PhysRevD_105_043011 crossref_primary_10_3847_2041_8213_ab398a crossref_primary_10_1088_1475_7516_2014_10_061 crossref_primary_10_1103_PhysRevD_109_063002 crossref_primary_10_1088_0004_637X_768_1_53 crossref_primary_10_3847_0067_0049_224_1_8 crossref_primary_10_1093_mnras_staa1720 crossref_primary_10_1103_PhysRevD_98_083008 crossref_primary_10_3847_1538_4357_836_1_47 crossref_primary_10_1088_1475_7516_2016_12_012 crossref_primary_10_1088_1475_7516_2024_01_022 crossref_primary_10_1117_1_JATIS_4_1_011003 crossref_primary_10_3389_fspas_2019_00024 crossref_primary_10_3847_1538_4357_ab0ae2 crossref_primary_10_1016_j_astropartphys_2018_08_005 crossref_primary_10_1103_PhysRevD_93_043011 crossref_primary_10_1093_mnras_stad2559 crossref_primary_10_1038_s41586_021_03802_x crossref_primary_10_1088_0004_637X_808_1_74 crossref_primary_10_1088_0004_637X_771_1_73 crossref_primary_10_3389_fspas_2017_00053 crossref_primary_10_1051_0004_6361_202141295 |
Cites_doi | 10.1051/0004-6361/201014855 10.1086/180252 10.1086/323145 10.1086/431894 10.1086/421871 10.1086/342670 10.1086/376841 10.1146/annurev.nucl.57.090506.123011 10.1051/0004-6361/200912058 10.1126/science.1178826 10.1088/0004-637X/713/1/524 10.1063/1.2757402 10.1086/318358 10.1007/s10509-007-9480-1 10.1086/422425 10.1088/0004-637X/695/1/L40 10.1086/160660 10.1086/176969 10.1086/191472 10.1103/PhysRevD.85.083007 10.1080/01621459.1999.10474187 10.1111/j.1365-2966.2009.15661.x 10.1086/382999 10.1086/509068 10.1016/j.astropartphys.2006.08.002 10.1146/annurev.astro.34.1.749 10.1016/j.astropartphys.2010.06.003 10.1007/BF00643157 10.1086/432789 10.1086/305222 10.1086/504035 10.1086/428082 10.1086/305588 10.1088/0004-637X/742/2/66 10.1086/185179 10.1088/0004-637X/736/1/40 10.1088/2041-8205/729/1/L12 10.1086/192237 10.1086/170258 10.1046/j.1365-8711.2003.06201.x 10.1103/PhysRevD.80.122004 10.1086/310883 10.1051/0004-6361/201015759 10.1111/j.1365-2966.2007.12466.x 10.1086/505189 10.1086/317873 10.1086/129725 10.1086/341882 10.1088/0004-637X/717/1/1 10.1088/0004-637X/720/1/912 10.1016/S0927-6505(98)00018-8 10.1016/j.astropartphys.2009.08.002 10.1051/0004-6361/200913474 10.1038/nature08557 10.1103/PhysRevLett.87.251301 10.1088/0067-0049/188/2/405 10.1086/383003 10.1063/1.2757282 10.1146/annurev.ns.33.120183.001543 10.1007/978-94-009-9503-1 10.1088/2041-8205/717/1/L71 10.1086/145971 10.1086/186304 10.1088/0004-637X/697/2/1071 10.1086/173261 10.1088/0004-637X/692/1/L54 10.1088/0004-637X/698/2/1054 10.1051/0004-6361:20066330 10.1086/512667 10.1038/nature04364 10.1088/0004-637X/733/1/66 10.1086/175724 10.1086/511173 10.1088/0004-637X/720/1/435 10.1086/521981 10.1103/PhysRevD.66.123502 10.1086/153590 10.1007/BF01879571 10.1086/177180 10.1086/166958 10.1051/0004-6361/201014552 10.1088/0004-637X/747/2/104 10.1111/j.1365-2966.2009.15605.x 10.1016/j.physletb.2010.11.019 10.1093/mnras/220.1.51 10.1051/0004-6361:200809691 10.1051/0004-6361:20065002 10.1086/425415 10.1111/j.1365-2966.2010.16985.x 10.1086/164359 10.1088/0004-637X/734/2/107 10.1088/0004-637X/736/2/112 10.1086/499623 10.1093/mnras/175.1.23P 10.1086/376392 10.1051/0004-6361/201015644 10.1088/0067-0049/199/2/31 10.1111/j.1365-2966.2009.16218.x 10.1088/0004-637X/756/1/5 10.1051/0004-6361:20053478 10.1088/2041-8205/722/1/L58 10.1086/501117 10.1126/science.1199172 10.1086/177068 10.1093/mnras/278.4.919 10.1051/0004-6361/201117523 10.1086/498084 10.1086/300337 10.1088/0004-637X/728/1/58 10.1086/513183 10.1088/0004-637X/728/2/158 10.1051/0004-6361:20053613 10.1088/2041-8205/714/2/L190 10.1088/0004-637X/719/2/1433 10.1146/annurev.aa.30.090192.003043 10.1051/0004-6361:200809525 10.1051/0004-6361:200811443 10.1086/184556 10.1086/161051 10.1086/423196 10.1086/427496 10.1086/115674 10.1088/0004-637X/743/2/171 10.1016/j.astropartphys.2009.03.004 10.1063/1.3458566 10.1103/PhysRevLett.104.101101 10.1088/2041-8205/709/2/L152 10.1086/498636 10.1086/307155 10.1088/2041-8205/722/2/L199 10.1146/annurev.astro.36.1.189 10.1086/320638 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M 1XC OIOZB OTOTI ADTPV AOWAS DG7 |
DOI | 10.1088/0004-637X/755/2/164 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) OSTI.GOV - Hybrid OSTI.GOV SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
EndPage | 23 |
ExternalDocumentID | oai_DiVA_org_su_162396 1356697 oai_HAL_in2p3_00747346v1 10_1088_0004_637X_755_2_164 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 6TJ 85S AAFWJ AAGCD AAJIO AALHV AAYXX ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CITATION CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XOL XSW 7TG AEINN KL. 8FD H8D L7M 1XC 41~ 6TS 9M8 ABDPE ADXHL AETEA AI. FA8 MVM OHT VH1 WHG YYP ZCG ZKB ZY4 OIOZB OTOTI ADTPV AOWAS DG7 |
ID | FETCH-LOGICAL-c459t-6a2ad2a77f40f6d6c41bdea5b5a27d8a1e178eb2e247b6a334caf1fcc3c44c4d3 |
ISSN | 0004-637X 1538-4357 |
IngestDate | Wed Sep 10 02:42:56 EDT 2025 Mon Jun 16 03:03:02 EDT 2025 Wed Sep 10 06:20:53 EDT 2025 Fri Sep 05 04:31:28 EDT 2025 Fri Sep 05 06:54:32 EDT 2025 Tue Jul 01 01:16:17 EDT 2025 Thu Apr 24 23:04:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | gamma rays: diffuse background galaxies: starburst gamma rays: galaxies Online-only material: color figures cosmic rays |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-6a2ad2a77f40f6d6c41bdea5b5a27d8a1e178eb2e247b6a334caf1fcc3c44c4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE None AC02-76SF00515 |
ORCID | 0000-0002-9978-2510 0000-0002-1320-9781 0000-0001-6885-7156 0000-0003-2186-9242 0000-0002-9021-2888 0000-0003-1790-8018 0000-0002-4383-0368 0000-0001-8604-7077 0000-0003-1853-4900 0000-0001-8040-7852 0000-0002-6790-5328 0000-0003-2501-2270 0000-0001-8663-6461 0000-0002-0921-8837 0000-0001-9022-4232 0000-0002-0014-7809 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1356697 |
PQID | 1701500023 |
PQPubID | 23462 |
PageCount | 23 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_162396 osti_scitechconnect_1356697 hal_primary_oai_HAL_in2p3_00747346v1 proquest_miscellaneous_1718938852 proquest_miscellaneous_1701500023 crossref_primary_10_1088_0004_637X_755_2_164 crossref_citationtrail_10_1088_0004_637X_755_2_164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-20 |
PublicationDateYYYYMMDD | 2012-08-20 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationYear | 2012 |
Publisher | American Astronomical Society Institute of Physics (IOP) |
Publisher_xml | – name: American Astronomical Society – name: Institute of Physics (IOP) |
References | 88 Lacki (79) 2010; 717 Sargent (117) 2010; 714 Ptuskin (110) 2006; 642 Aharonian (19) 2009; 695 Akritas (22) 1996; 278 111 112 113 115 Chapman (39) 2005; 622 91 118 Sanders (114) 2003; 126 Lacki (80) 2011; 734 Strong (129) 2004; 613 Cillis (40) 2005; 621 94 96 97 10 Appleton (26) 2004; 154 12 13 Drury (57) 1994; 287 Thompson (134) 2007; 654 14 18 Völk (142) 1989; 218 Wang (143) 2011; 736 Makiya (92) 2011; 728 Coppi (47) 1997; 487 Jones (74) 2001; 547 120 121 1 122 Strong (131) 1976; 175 2 4 125 127 7 128 8 de Jong (50) 1985; 147 Kennicutt (78) 1998; 498 Sreekumar (123) 1998; 494 20 Kamae (75) 2006; 647 Stawarz (124) 2006; 637 21 Mannheim (93) 1994; 286 Abdo (6) 2010; 709 Kembhavi (76) 1986; 220 25 van der Kruit (141) 1973; 29 Sanuki (116) 2000; 545 Ballantyne (28) 2007; 660 Abdo (5) 2010; 720 Ackermann (17) 2012; 747 132 Bloemen (34) 1985; 145 138 Massaro (95) 2011; 729 139 Ohm (101) 2011 Wunderlich (149) 1987; 69 Dermer (52) 2007 Gao (66) 2004; 606 30 31 Nolan (100) 2012; 199 32 van der Kruit (140) 1971; 15 33 Akyüz (23) 1991; 248 38 Abdo (3) 2010; 188 LaValley (82) 1992 Teng (133) 2011; 742 Moskalenko (98) 2009; 692 144 146 147 41 42 43 Wright (145) 1990 44 Liu (89) 2010; 713 Pérez-González (105) 2005; 630 46 Dogiel (54) 2002; 572 48 Inoue (71) 2011; 733 Yun (150) 2001; 554 Baumgartner (29) 2010; 42 Huynh (70) 2007; 667 Burlon (36) 2011; 728 51 Stecker (126) 2011; 736 Abdo (9) 2010; 719 53 Freedman (64) 2001; 553 55 56 Faucher-Giguère (59) 2010 58 Abdo (11) 2010; 720 Persic (107) 2012 Pavlidou (104) 2002; 575 60 61 63 Strong (130) 2010; 722 Le (83) 2007 68 69 Condon (45) 1998; 115 Siegal-Gaskins (119) 2008 Fields (62) 2010; 722 Ackermann (15) 2010; 717 Blom (35) 1999; 516 Gao (65) 2004; 152 de Cea del Pozo (49) 2009; 698 72 73 Torres (136) 2004; 617 Atwood (27) 2009; 697 77 Ackermann (16) 2011; 743 Albert (24) 2007; 658 Torres (137) 2004; 607 Loiseau (90) 1987; 178 Murphy (99) 2006; 638 Ginzburg (67) 1964 102 103 106 81 Le Floc'h (84) 2005; 632 108 Thompson (135) 2006; 645 Caputi (37) 2007; 660 109 85 Wu (148) 2005; 635 86 87 |
References_xml | – ident: 10 doi: 10.1051/0004-6361/201014855 – ident: 41 doi: 10.1086/180252 – volume: 554 start-page: 803 issn: 0004-637X year: 2001 ident: 150 publication-title: ApJ doi: 10.1086/323145 – volume: 630 start-page: 82 issn: 0004-637X year: 2005 ident: 105 publication-title: ApJ doi: 10.1086/431894 – volume: 607 start-page: L99 issn: 1538-4357 year: 2004 ident: 137 publication-title: ApJ doi: 10.1086/421871 – volume: 575 start-page: L5 issn: 1538-4357 year: 2002 ident: 104 publication-title: ApJ doi: 10.1086/342670 – volume: 126 start-page: 1607 issn: 1538-3881 year: 2003 ident: 114 publication-title: AJ doi: 10.1086/376841 – ident: 128 doi: 10.1146/annurev.nucl.57.090506.123011 – ident: 112 doi: 10.1051/0004-6361/200912058 – ident: 13 doi: 10.1126/science.1178826 – volume: 713 start-page: 524 issn: 0004-637X year: 2010 ident: 89 publication-title: ApJ doi: 10.1088/0004-637X/713/1/524 – start-page: 462 year: 2007 ident: 83 publication-title: The First GLAST Symposium doi: 10.1063/1.2757402 – volume: 147 start-page: L6 issn: 0004-6361 year: 1985 ident: 50 publication-title: A&A – volume: 547 start-page: 264 issn: 0004-637X year: 2001 ident: 74 publication-title: ApJ doi: 10.1086/318358 – ident: 127 doi: 10.1007/s10509-007-9480-1 – volume: 154 start-page: 147 issn: 0067-0049 year: 2004 ident: 26 publication-title: ApJS doi: 10.1086/422425 – volume: 248 start-page: 419 issn: 0004-6361 year: 1991 ident: 23 publication-title: A&A – volume: 695 start-page: L40 issn: 1538-4357 year: 2009 ident: 19 publication-title: ApJ doi: 10.1088/0004-637X/695/1/L40 – ident: 118 doi: 10.1086/160660 – ident: 102 doi: 10.1086/176969 – ident: 46 doi: 10.1086/191472 – ident: 14 doi: 10.1103/PhysRevD.85.083007 – ident: 58 doi: 10.1080/01621459.1999.10474187 – ident: 111 doi: 10.1111/j.1365-2966.2009.15661.x – volume: 606 start-page: 271 issn: 0004-637X year: 2004 ident: 66 publication-title: ApJ doi: 10.1086/382999 – volume: 654 start-page: 219 issn: 0004-637X year: 2007 ident: 134 publication-title: ApJ doi: 10.1086/509068 – ident: 125 doi: 10.1016/j.astropartphys.2006.08.002 – ident: 115 doi: 10.1146/annurev.astro.34.1.749 – ident: 21 doi: 10.1016/j.astropartphys.2010.06.003 – ident: 31 doi: 10.1007/BF00643157 – volume: 632 start-page: 169 issn: 0004-637X year: 2005 ident: 84 publication-title: ApJ doi: 10.1086/432789 – start-page: JCAP01(2010)005 issn: 1475-7516 year: 2010 ident: 59 publication-title: J. Cosmol. Astropart. Phys. – volume: 494 start-page: 523 issn: 0004-637X year: 1998 ident: 123 publication-title: ApJ doi: 10.1086/305222 – volume: 645 start-page: 186 issn: 0004-637X year: 2006 ident: 135 publication-title: ApJ doi: 10.1086/504035 – start-page: 0 year: 1990 ident: 145 publication-title: PKS Catalog – volume: 145 start-page: 391 issn: 0004-6361 year: 1985 ident: 34 publication-title: A&A – volume: 622 start-page: 772 issn: 0004-637X year: 2005 ident: 39 publication-title: ApJ doi: 10.1086/428082 – volume: 498 start-page: 541 issn: 0004-637X year: 1998 ident: 78 publication-title: ApJ doi: 10.1086/305588 – volume: 742 start-page: 66 issn: 0004-637X year: 2011 ident: 133 publication-title: ApJ doi: 10.1088/0004-637X/742/2/66 – ident: 56 doi: 10.1086/185179 – volume: 15 start-page: 110 issn: 0004-6361 year: 1971 ident: 140 publication-title: A&A – volume: 736 start-page: 40 issn: 0004-637X year: 2011 ident: 126 publication-title: ApJ doi: 10.1088/0004-637X/736/1/40 – volume: 729 start-page: L12 issn: 2041-8205 year: 2011 ident: 95 publication-title: ApJ doi: 10.1088/2041-8205/729/1/L12 – ident: 144 doi: 10.1086/192237 – ident: 44 doi: 10.1086/170258 – ident: 132 doi: 10.1046/j.1365-8711.2003.06201.x – volume: 29 start-page: 263 issn: 0004-6361 year: 1973 ident: 141 publication-title: A&A – ident: 2 doi: 10.1103/PhysRevD.80.122004 – volume: 487 start-page: L9 issn: 1538-4357 year: 1997 ident: 47 publication-title: ApJ doi: 10.1086/310883 – ident: 4 doi: 10.1051/0004-6361/201015759 – ident: 69 doi: 10.1111/j.1365-2966.2007.12466.x – volume: 647 start-page: 692 issn: 0004-637X year: 2006 ident: 75 publication-title: ApJ doi: 10.1086/505189 – volume: 545 start-page: 1135 issn: 0004-637X year: 2000 ident: 116 publication-title: ApJ doi: 10.1086/317873 – ident: 51 doi: 10.1086/129725 – volume: 572 start-page: L157 issn: 1538-4357 year: 2002 ident: 54 publication-title: ApJ doi: 10.1086/341882 – volume: 717 start-page: 1 issn: 0004-637X year: 2010 ident: 79 publication-title: ApJ doi: 10.1088/0004-637X/717/1/1 – volume: 720 start-page: 912 issn: 0004-637X year: 2010 ident: 11 publication-title: ApJ doi: 10.1088/0004-637X/720/1/912 – ident: 42 doi: 10.1016/S0927-6505(98)00018-8 – ident: 1 doi: 10.1016/j.astropartphys.2009.08.002 – ident: 7 doi: 10.1051/0004-6361/200913474 – ident: 12 doi: 10.1038/nature08557 – ident: 32 doi: 10.1103/PhysRevLett.87.251301 – volume: 188 start-page: 405 issn: 0067-0049 year: 2010 ident: 3 publication-title: ApJS doi: 10.1088/0067-0049/188/2/405 – volume: 152 start-page: 63 issn: 0067-0049 year: 2004 ident: 65 publication-title: ApJS doi: 10.1086/383003 – start-page: 122 year: 2007 ident: 52 publication-title: The First GLAST Symposium doi: 10.1063/1.2757282 – ident: 120 doi: 10.1146/annurev.ns.33.120183.001543 – volume: 286 start-page: 983 issn: 0004-6361 year: 1994 ident: 93 publication-title: A&A – ident: 122 doi: 10.1007/978-94-009-9503-1 – volume: 717 start-page: L71 issn: 2041-8205 year: 2010 ident: 15 publication-title: ApJ doi: 10.1088/2041-8205/717/1/L71 – ident: 113 doi: 10.1086/145971 – ident: 121 doi: 10.1086/186304 – volume: 697 start-page: 1071 issn: 0004-637X year: 2009 ident: 27 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1071 – ident: 33 doi: 10.1086/173261 – volume: 692 start-page: L54 issn: 1538-4357 year: 2009 ident: 98 publication-title: ApJ doi: 10.1088/0004-637X/692/1/L54 – volume: 698 start-page: 1054 issn: 0004-637X year: 2009 ident: 49 publication-title: ApJ doi: 10.1088/0004-637X/698/2/1054 – start-page: JCAP10(2008)040 issn: 1475-7516 year: 2008 ident: 119 publication-title: J. Cosmol. Astropart. Phys. – ident: 138 doi: 10.1051/0004-6361:20066330 – volume: 660 start-page: 97 issn: 0004-637X year: 2007 ident: 37 publication-title: ApJ doi: 10.1086/512667 – ident: 53 doi: 10.1038/nature04364 – volume: 733 start-page: 66 issn: 0004-637X year: 2011 ident: 71 publication-title: ApJ doi: 10.1088/0004-637X/733/1/66 – volume: 287 start-page: 959 issn: 0004-6361 year: 1994 ident: 57 publication-title: A&A – ident: 94 doi: 10.1086/175724 – volume: 658 start-page: 245 issn: 0004-637X year: 2007 ident: 24 publication-title: ApJ doi: 10.1086/511173 – start-page: 245 year: 1992 ident: 82 publication-title: Astronomical Data Analysis Software and Systems I – volume: 720 start-page: 435 issn: 0004-637X year: 2010 ident: 5 publication-title: ApJ doi: 10.1088/0004-637X/720/1/435 – volume: 667 start-page: L9 issn: 1538-4357 year: 2007 ident: 70 publication-title: ApJ doi: 10.1086/521981 – ident: 139 doi: 10.1103/PhysRevD.66.123502 – ident: 61 doi: 10.1086/153590 – ident: 88 doi: 10.1007/BF01879571 – year: 2012 ident: 107 – ident: 85 doi: 10.1086/177180 – volume: 178 start-page: 62 issn: 0004-6361 year: 1987 ident: 90 publication-title: A&A – ident: 146 doi: 10.1086/166958 – ident: 73 doi: 10.1051/0004-6361/201014552 – volume: 747 start-page: 104 issn: 0004-637X year: 2012 ident: 17 publication-title: ApJ doi: 10.1088/0004-637X/747/2/104 – ident: 25 doi: 10.1111/j.1365-2966.2009.15605.x – ident: 30 doi: 10.1016/j.physletb.2010.11.019 – volume: 220 start-page: 51 issn: 0035-8711 year: 1986 ident: 76 publication-title: MNRAS doi: 10.1093/mnras/220.1.51 – ident: 63 doi: 10.1051/0004-6361:200809691 – ident: 103 doi: 10.1051/0004-6361:20065002 – volume: 617 start-page: 966 issn: 0004-637X year: 2004 ident: 136 publication-title: ApJ doi: 10.1086/425415 – year: 1964 ident: 67 publication-title: The Origin of Cosmic Rays – ident: 48 doi: 10.1111/j.1365-2966.2010.16985.x – ident: 72 doi: 10.1086/164359 – volume: 734 start-page: 107 issn: 0004-637X year: 2011 ident: 80 publication-title: ApJ doi: 10.1088/0004-637X/734/2/107 – year: 2011 ident: 101 – volume: 736 start-page: 112 issn: 0004-637X year: 2011 ident: 143 publication-title: ApJ doi: 10.1088/0004-637X/736/2/112 – volume: 635 start-page: L173 issn: 1538-4357 year: 2005 ident: 148 publication-title: ApJ doi: 10.1086/499623 – volume: 175 start-page: 23P issn: 0035-8711 year: 1976 ident: 131 publication-title: MNRAS doi: 10.1093/mnras/175.1.23P – ident: 38 doi: 10.1086/376392 – ident: 86 doi: 10.1051/0004-6361/201015644 – volume: 199 start-page: 31 issn: 0067-0049 year: 2012 ident: 100 publication-title: ApJS doi: 10.1088/0067-0049/199/2/31 – ident: 106 doi: 10.1111/j.1365-2966.2009.16218.x – ident: 81 doi: 10.1088/0004-637X/756/1/5 – ident: 20 doi: 10.1051/0004-6361:20053478 – volume: 722 start-page: L58 issn: 2041-8205 year: 2010 ident: 130 publication-title: ApJ doi: 10.1088/2041-8205/722/1/L58 – volume: 642 start-page: 902 issn: 0004-637X year: 2006 ident: 110 publication-title: ApJ doi: 10.1086/501117 – ident: 18 doi: 10.1126/science.1199172 – volume: 42 start-page: 675 issn: 0002-7537 year: 2010 ident: 29 publication-title: BAAS – ident: 96 doi: 10.1086/177068 – volume: 278 start-page: 919 issn: 0035-8711 year: 1996 ident: 22 publication-title: MNRAS doi: 10.1093/mnras/278.4.919 – ident: 87 doi: 10.1051/0004-6361/201117523 – volume: 637 start-page: 693 issn: 0004-637X year: 2006 ident: 124 publication-title: ApJ doi: 10.1086/498084 – volume: 115 start-page: 1693 issn: 1538-3881 year: 1998 ident: 45 publication-title: AJ doi: 10.1086/300337 – volume: 728 start-page: 58 issn: 0004-637X year: 2011 ident: 36 publication-title: ApJ doi: 10.1088/0004-637X/728/1/58 – volume: 660 start-page: 988 issn: 0004-637X year: 2007 ident: 28 publication-title: ApJ doi: 10.1086/513183 – volume: 728 start-page: 158 issn: 0004-637X year: 2011 ident: 92 publication-title: ApJ doi: 10.1088/0004-637X/728/2/158 – ident: 55 doi: 10.1051/0004-6361:20053613 – volume: 714 start-page: L190 issn: 2041-8205 year: 2010 ident: 117 publication-title: ApJ doi: 10.1088/2041-8205/714/2/L190 – volume: 719 start-page: 1433 issn: 0004-637X year: 2010 ident: 9 publication-title: ApJ doi: 10.1088/0004-637X/719/2/1433 – ident: 43 doi: 10.1146/annurev.aa.30.090192.003043 – ident: 108 doi: 10.1051/0004-6361:200809525 – ident: 91 doi: 10.1051/0004-6361:200811443 – volume: 218 start-page: 67 issn: 0004-6361 year: 1989 ident: 142 publication-title: A&A – ident: 68 doi: 10.1086/184556 – ident: 60 doi: 10.1086/161051 – volume: 613 start-page: 956 issn: 0004-637X year: 2004 ident: 129 publication-title: ApJ doi: 10.1086/423196 – volume: 621 start-page: 139 issn: 0004-637X year: 2005 ident: 40 publication-title: ApJ doi: 10.1086/427496 – ident: 147 doi: 10.1086/115674 – volume: 743 start-page: 171 issn: 0004-637X year: 2011 ident: 16 publication-title: ApJ doi: 10.1088/0004-637X/743/2/171 – ident: 97 doi: 10.1016/j.astropartphys.2009.03.004 – ident: 109 doi: 10.1063/1.3458566 – ident: 8 doi: 10.1103/PhysRevLett.104.101101 – volume: 709 start-page: L152 issn: 2041-8205 year: 2010 ident: 6 publication-title: ApJ doi: 10.1088/2041-8205/709/2/L152 – volume: 638 start-page: 157 issn: 0004-637X year: 2006 ident: 99 publication-title: ApJ doi: 10.1086/498636 – volume: 516 start-page: 744 issn: 0004-637X year: 1999 ident: 35 publication-title: ApJ doi: 10.1086/307155 – volume: 722 start-page: L199 issn: 2041-8205 year: 2010 ident: 62 publication-title: ApJ doi: 10.1088/2041-8205/722/2/L199 – ident: 77 doi: 10.1146/annurev.astro.36.1.189 – volume: 553 start-page: 47 issn: 0004-637X year: 2001 ident: 64 publication-title: ApJ doi: 10.1086/320638 – volume: 69 start-page: 487 issn: 1286-4846 year: 1987 ident: 149 publication-title: A&AS |
SSID | ssj0004299 |
Score | 2.580941 |
Snippet | Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at... Some recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous... |
SourceID | swepub osti hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 164 |
SubjectTerms | Astrophysics Construction cosmic rays Earth and Planetary Astrophysics Fluxes Galaxies galaxies: starburst gamma rays: diffuse background gamma rays: galaxies Infrared Luminosity Physics Sciences of the Universe Star formation Starburst galaxies Telescopes |
Title | GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THE FERMI LARGE AREA TELESCOPE |
URI | https://www.proquest.com/docview/1701500023 https://www.proquest.com/docview/1718938852 https://in2p3.hal.science/in2p3-00747346 https://www.osti.gov/servlets/purl/1356697 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-162396 |
Volume | 755 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYERIXBAO0MkBGGlxK2sZ24vSYjXQVaunUdaU3y3GcMQTt1KYc-Ot5dj6aimoaXCLLeU4i_35x3ovfB0InuqvgK6Y9J066XYcp6TkyYJ5DqErhayNTbjfaR1_8wRX7PPfm2yqONroki9vq9964kv9BFfoAVxMl-w_IVheFDmgDvnAEhOF4L4zP9aw1Pr2MJrMiGnjcBxUvnDhg2o2sU304DOeg8IGdPh1Y755-BGdaw3ByHrXCSRS2ptEwujwbX0R1NdWWal5nq-VtCWP9eQw_jDfGz6LA8qhddX8v93JqfUC0tKhXH1a9p9LseuWh2e36rwfjw2Hmf2c5ZY5Pba37ajnledrdgjdk7zINS1vu15gPhzaMMrEp5j9CntV8TxbsTzezUCxX12K9ES6obT3_AD0knNvt-TH9uo2HJb3C7Mmvn-fMDRxQDXmZeQoM_-p8B-7eIR3XZzvaycE34xvbWMJau2t_1HPKWj1k-hQ9KQwIHOZseIYe6MUhOrJgmfAU_AHXgFsfokcXees5GgFdcJ0ueNzHdbrgki7Y0AUDXbClC7Z0wYYuuKLLC3TVj6ZnA6eopuEo5vUyx5dEJkRynrJu6ie-Ym6caOnFniQ8CaSrXR7omGjCeOxLSuHFTd1UKaoYUyyhL1FjsVzoI4RBTrk6JTHV8A1IujFotdoDeR90m1ipJiLlLApVpJo3FU9-COvyEATG5YEJM_UCpl4QgJM10cdq0G2eaeVu8ROAp5I0_BiEQ3GzILdU2LIQlPm_3CY6NvgJ0CdNUmRlvMdUJlwKZkyPN9G7ElYBy6rZK5MLvdyshSlT4NlsUHfJuKDtB4FHmuh9zomd5_mbr6_uKXeMHm_ft9eoka02-g0ov1n81jL9D3cWm0w |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GeV+OBSERVATIONS+OF+STAR-FORMING+GALAXIES+WITH+THE+FERMI+LARGE+AREA+TELESCOPE&rft.jtitle=The+Astrophysical+journal&rft.au=Ackermann%2C+M.&rft.au=Ajello%2C+M.&rft.au=Allafort%2C+A.&rft.au=Baldini%2C+L.&rft.date=2012-08-20&rft.issn=0004-637X&rft.volume=755&rft.issue=2&rft_id=info:doi/10.1088%2F0004-637X%2F755%2F2%2F164&rft.externalDocID=oai_DiVA_org_su_162396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |