BioCreative V CDR task corpus: a resource for chemical disease relation extraction

Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation...

Full description

Saved in:
Bibliographic Details
Published inDatabase : the journal of biological databases and curation Vol. 2016; p. baw068
Main Authors Li, Jiao, Sun, Yueping, Johnson, Robin J, Sciaky, Daniela, Wei, Chih-Hsuan, Leaman, Robert, Davis, Allan Peter, Mattingly, Carolyn J, Wiegers, Thomas C, Lu, Zhiyong
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles. Despite previous efforts in biomedical corpus construction, none was found to be sufficient for the task. Thus, we developed our own corpus called BC5CDR during the challenge by inviting a team of Medical Subject Headings (MeSH) indexers for disease/chemical entity annotation and Comparative Toxicogenomics Database (CTD) curators for CID relation annotation. To ensure high annotation quality and productivity, detailed annotation guidelines and automatic annotation tools were provided. The resulting BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions. Each entity annotation includes both the mention text spans and normalized concept identifiers, using MeSH as the controlled vocabulary. To ensure accuracy, the entities were first captured independently by two annotators followed by a consensus annotation: The average inter-annotator agreement (IAA) scores were 87.49% and 96.05% for the disease and chemicals, respectively, in the test set according to the Jaccard similarity coefficient. Our corpus was successfully used for the BioCreative V challenge tasks and should serve as a valuable resource for the text-mining research community.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/.
AbstractList Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles. Despite previous efforts in biomedical corpus construction, none was found to be sufficient for the task. Thus, we developed our own corpus called BC5CDR during the challenge by inviting a team of Medical Subject Headings (MeSH) indexers for disease/chemical entity annotation and Comparative Toxicogenomics Database (CTD) curators for CID relation annotation. To ensure high annotation quality and productivity, detailed annotation guidelines and automatic annotation tools were provided. The resulting BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions. Each entity annotation includes both the mention text spans and normalized concept identifiers, using MeSH as the controlled vocabulary. To ensure accuracy, the entities were first captured independently by two annotators followed by a consensus annotation: The average inter-annotator agreement (IAA) scores were 87.49% and 96.05% for the disease and chemicals, respectively, in the test set according to the Jaccard similarity coefficient. Our corpus was successfully used for the BioCreative V challenge tasks and should serve as a valuable resource for the text-mining research community. Database URL : http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in BioCreative V, a new challenge was organized for the tasks of disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. Given the nature of both tasks, a test collection is required to contain both disease/chemical annotations and relation annotations in the same set of articles. Despite previous efforts in biomedical corpus construction, none was found to be sufficient for the task. Thus, we developed our own corpus called BC5CDR during the challenge by inviting a team of Medical Subject Headings (MeSH) indexers for disease/chemical entity annotation and Comparative Toxicogenomics Database (CTD) curators for CID relation annotation. To ensure high annotation quality and productivity, detailed annotation guidelines and automatic annotation tools were provided. The resulting BC5CDR corpus consists of 1500 PubMed articles with 4409 annotated chemicals, 5818 diseases and 3116 chemical-disease interactions. Each entity annotation includes both the mention text spans and normalized concept identifiers, using MeSH as the controlled vocabulary. To ensure accuracy, the entities were first captured independently by two annotators followed by a consensus annotation: The average inter-annotator agreement (IAA) scores were 87.49% and 96.05% for the disease and chemicals, respectively, in the test set according to the Jaccard similarity coefficient. Our corpus was successfully used for the BioCreative V challenge tasks and should serve as a valuable resource for the text-mining research community.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/.
Author Sciaky, Daniela
Wei, Chih-Hsuan
Sun, Yueping
Davis, Allan Peter
Johnson, Robin J
Mattingly, Carolyn J
Wiegers, Thomas C
Lu, Zhiyong
Li, Jiao
Leaman, Robert
Author_xml – sequence: 1
  givenname: Jiao
  surname: Li
  fullname: Li, Jiao
  organization: 1Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China
– sequence: 2
  givenname: Yueping
  surname: Sun
  fullname: Sun, Yueping
  organization: 1Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China
– sequence: 3
  givenname: Robin J
  surname: Johnson
  fullname: Johnson, Robin J
  organization: 2Department of Biological Sciences and the Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
– sequence: 4
  givenname: Daniela
  surname: Sciaky
  fullname: Sciaky, Daniela
  organization: 2Department of Biological Sciences and the Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
– sequence: 5
  givenname: Chih-Hsuan
  surname: Wei
  fullname: Wei, Chih-Hsuan
  organization: 3National Center for Biotechnology Information, Bethesda, MD 20894, USA
– sequence: 6
  givenname: Robert
  surname: Leaman
  fullname: Leaman, Robert
  organization: 3National Center for Biotechnology Information, Bethesda, MD 20894, USA
– sequence: 7
  givenname: Allan Peter
  surname: Davis
  fullname: Davis, Allan Peter
  organization: 2Department of Biological Sciences and the Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
– sequence: 8
  givenname: Carolyn J
  surname: Mattingly
  fullname: Mattingly, Carolyn J
  organization: 2Department of Biological Sciences and the Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
– sequence: 9
  givenname: Thomas C
  surname: Wiegers
  fullname: Wiegers, Thomas C
  organization: 2Department of Biological Sciences and the Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
– sequence: 10
  givenname: Zhiyong
  surname: Lu
  fullname: Lu, Zhiyong
  email: zhiyong.lu@nih.gov
  organization: 3National Center for Biotechnology Information, Bethesda, MD 20894, USA zhiyong.lu@nih.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27161011$$D View this record in MEDLINE/PubMed
BookMark eNpVUU1LAzEQDVLRVj17kxy91Cab3WzWg6D1EwpCUa8hm0zs6nZTk92q_96U1qKneTDvY5g3QL3GNYDQMSVnlBRsZFSrShVgVKpPwsUO6tM8E0OSctb7g_fRIIQ3QnguRLqH9pOcckoo7aPpVeXGHlRbLQG_4PH1FLcqvGPt_KIL51hhD8F1XgO2zmM9g3mlVY1NFSDmxm0dta7B8NV6pVfwEO1aVQc42swD9Hx78zS-H04e7x7Gl5OhTrOiHXKRFAzyMmHG2kJkKSMmpZoVWVHQRGVJbsvU8sIIYzWBMrPE8DQXhmWacc3YAbpY-y66cg5GQxMvqOXCV3Plv6VTlfy_aaqZfHVLmQpOeMKjwenGwLuPDkIr51XQUNeqAdcFSeO3koTFzEgdranauxA82G0MJXLVhPxtQq6biIqTv9dt-b-vZz9G84of
CitedBy_id crossref_primary_10_1016_j_eswa_2023_120182
crossref_primary_10_1016_j_jbi_2020_103541
crossref_primary_10_1016_j_ijmedinf_2022_104805
crossref_primary_10_1007_s10115_022_01779_1
crossref_primary_10_1007_s41060_022_00371_8
crossref_primary_10_1093_bioinformatics_bty449
crossref_primary_10_1186_s12911_018_0629_3
crossref_primary_10_1016_j_jbi_2022_104238
crossref_primary_10_1186_s13326_022_00267_3
crossref_primary_10_1093_bioinformatics_btab042
crossref_primary_10_26599_BDMA_2022_9020051
crossref_primary_10_1007_s00799_021_00306_x
crossref_primary_10_2196_18417
crossref_primary_10_1109_ACCESS_2020_2987399
crossref_primary_10_1109_JBHI_2023_3244044
crossref_primary_10_1038_s41597_022_01350_1
crossref_primary_10_1093_bioinformatics_btae163
crossref_primary_10_1109_TASLP_2021_3082295
crossref_primary_10_3390_app13074115
crossref_primary_10_1186_s12859_019_3321_4
crossref_primary_10_3233_JIFS_237167
crossref_primary_10_1093_jamia_ocaa106
crossref_primary_10_1186_s13326_024_00306_1
crossref_primary_10_1038_s41597_023_02617_x
crossref_primary_10_1016_j_csbj_2024_03_021
crossref_primary_10_1039_D4DD00011K
crossref_primary_10_1007_s40747_023_01084_6
crossref_primary_10_1093_bioinformatics_btac422
crossref_primary_10_1016_j_ipm_2021_102718
crossref_primary_10_1093_bioinformatics_btaa1087
crossref_primary_10_1093_database_baac047
crossref_primary_10_3233_IDA_227129
crossref_primary_10_1093_bioinformatics_btad361
crossref_primary_10_1093_jamiaopen_ooz009
crossref_primary_10_1038_s41746_023_00958_w
crossref_primary_10_1093_jamiaopen_ooab104
crossref_primary_10_1007_s10489_022_03731_w
crossref_primary_10_1186_s12859_024_05730_9
crossref_primary_10_1038_s41467_024_45563_x
crossref_primary_10_1038_s41598_024_58334_x
crossref_primary_10_1186_s12859_022_05051_9
crossref_primary_10_1093_database_bax090
crossref_primary_10_20965_jaciii_2024_p0361
crossref_primary_10_1016_j_csbj_2020_05_017
crossref_primary_10_1093_database_baw042
crossref_primary_10_1007_s40264_022_01170_7
crossref_primary_10_1093_bioinformatics_btad369
crossref_primary_10_1109_ACCESS_2023_3237025
crossref_primary_10_1186_s12859_019_2884_4
crossref_primary_10_1109_TASLP_2023_3331149
crossref_primary_10_1016_j_neucom_2023_127079
crossref_primary_10_5715_jnlp_31_105
crossref_primary_10_1109_ACCESS_2021_3108445
crossref_primary_10_1007_s10579_024_09738_8
crossref_primary_10_1186_s12920_017_0316_8
crossref_primary_10_2196_39582
crossref_primary_10_1093_database_baac074
crossref_primary_10_1007_s10115_020_01532_6
crossref_primary_10_3390_knowledge2040042
crossref_primary_10_1186_s13321_018_0290_y
crossref_primary_10_1371_journal_pone_0292356
crossref_primary_10_1007_s11042_023_15080_y
crossref_primary_10_1093_bioinformatics_btab474
crossref_primary_10_1145_3656168
crossref_primary_10_1093_jamia_ocab090
crossref_primary_10_1093_bioinformatics_btae104
crossref_primary_10_1186_s12911_021_01706_4
crossref_primary_10_1093_database_bax024
crossref_primary_10_1186_s12859_022_04810_y
crossref_primary_10_1186_s12859_021_04551_4
crossref_primary_10_1109_ACCESS_2022_3157854
crossref_primary_10_1038_s42256_020_0189_y
crossref_primary_10_1039_D4SC00966E
crossref_primary_10_3390_biochem1020007
crossref_primary_10_1016_j_ins_2022_06_089
crossref_primary_10_1186_s13321_018_0327_2
crossref_primary_10_1186_s13326_022_00280_6
crossref_primary_10_7717_peerj_cs_1085
crossref_primary_10_3389_fdgth_2023_1186516
crossref_primary_10_3390_v14122761
crossref_primary_10_1109_JAS_2023_123540
crossref_primary_10_1021_acs_chemrev_6b00851
crossref_primary_10_1145_3445965
crossref_primary_10_1109_TASLP_2023_3316454
crossref_primary_10_1016_j_jbi_2023_104557
crossref_primary_10_1093_bib_bbac543
crossref_primary_10_1016_j_jbi_2023_104431
crossref_primary_10_1007_s41666_023_00136_3
crossref_primary_10_1007_s11063_022_11102_2
crossref_primary_10_1146_annurev_biodatasci_021821_061045
crossref_primary_10_2196_17644
crossref_primary_10_1017_S1351324923000335
crossref_primary_10_1038_s41597_024_03317_w
crossref_primary_10_1007_s00521_023_09336_9
crossref_primary_10_1007_s00607_021_01000_1
crossref_primary_10_1109_TCBB_2022_3157630
crossref_primary_10_1186_s12859_023_05172_9
crossref_primary_10_1007_s13748_021_00230_w
crossref_primary_10_1002_qub2_57
crossref_primary_10_1093_nar_gkaa333
crossref_primary_10_1007_s10489_024_05448_4
crossref_primary_10_1007_s11227_022_04875_9
crossref_primary_10_1093_nar_gkw838
crossref_primary_10_1109_JBHI_2024_3358169
crossref_primary_10_1038_s41598_021_83966_8
crossref_primary_10_1093_bioinformatics_btad310
crossref_primary_10_3390_app11031090
crossref_primary_10_1021_acs_jcim_1c01199
crossref_primary_10_1109_TKDE_2022_3193126
crossref_primary_10_3390_app11167318
crossref_primary_10_1021_acs_jproteome_3c00367
crossref_primary_10_1093_nar_gkz389
crossref_primary_10_1109_ACCESS_2020_2992130
crossref_primary_10_1093_jamia_ocae095
crossref_primary_10_3389_fchem_2019_00924
crossref_primary_10_2196_44876
crossref_primary_10_5715_jnlp_30_557
crossref_primary_10_1109_JBHI_2022_3173558
crossref_primary_10_1093_bib_bbac282
crossref_primary_10_1007_s11704_020_9420_6
crossref_primary_10_1016_j_jbi_2021_103684
crossref_primary_10_1093_bioinformatics_btab702
crossref_primary_10_1093_bioinformatics_btae418
crossref_primary_10_3390_bdcc7010046
crossref_primary_10_1186_s13040_022_00311_z
crossref_primary_10_3390_biology11081221
crossref_primary_10_3390_app122111084
crossref_primary_10_3389_frma_2023_1247094
crossref_primary_10_1109_MIS_2022_3167168
crossref_primary_10_1007_s00521_024_09728_5
crossref_primary_10_1038_s41598_021_94897_9
crossref_primary_10_1093_nar_gky428
crossref_primary_10_1186_s12859_018_2316_x
crossref_primary_10_2196_14830
crossref_primary_10_1093_bioinformatics_btad174
crossref_primary_10_1038_s41597_021_00875_1
crossref_primary_10_2174_0122102981269053230921074451
crossref_primary_10_1093_nar_gkae235
crossref_primary_10_1186_s12911_021_01614_7
crossref_primary_10_5715_jnlp_30_507
crossref_primary_10_1145_3611651
crossref_primary_10_1093_bioinformatics_btac648
crossref_primary_10_1109_ACCESS_2021_3135381
crossref_primary_10_1017_S1351324923000165
crossref_primary_10_1007_s12559_023_10110_1
crossref_primary_10_1038_s41597_020_0543_2
crossref_primary_10_1007_s00521_021_05897_9
crossref_primary_10_36535_0548_0027_2020_11_5
crossref_primary_10_3934_mbe_2024073
crossref_primary_10_3389_frai_2021_732381
crossref_primary_10_3390_app13031614
crossref_primary_10_1007_s11280_023_01144_4
crossref_primary_10_1186_s12859_021_04292_4
crossref_primary_10_1109_TCBB_2021_3086090
crossref_primary_10_2196_41100
crossref_primary_10_1007_s00521_022_07223_3
crossref_primary_10_1186_s40168_019_0742_2
crossref_primary_10_1093_jamia_ocae037
crossref_primary_10_1186_s12911_019_0936_3
crossref_primary_10_1186_s13321_020_00461_4
Cites_doi 10.1093/database/bar034
10.1016/j.jbi.2012.04.008
10.1093/database/bap018
10.1093/database/bat064
10.1038/234034a0
10.1186/1471-2105-10-326
10.1016/j.jbi.2010.11.001
10.1186/1471-2105-8-423
10.1093/database/bat080
10.1186/1758-2946-7-S1-S2
10.1093/bioinformatics/btt474
10.1186/1471-2105-12-S1-S3
10.1016/j.jbi.2013.12.006
10.1093/database/bau050
10.1136/amiajnl-2010-000055
10.1093/database/bas041
10.1016/j.jbi.2012.04.004
10.1093/nar/gkn580
10.1093/nar/gkt441
10.1093/nar/gku935
10.1093/bib/bbv024
10.1016/j.jbi.2013.07.011
10.12688/f1000research.3216.1
10.1186/1758-2946-7-S1-S3
ContentType Journal Article
Copyright Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.
Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States. 2016
Copyright_xml – notice: Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.
– notice: Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States. 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/database/baw068
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1758-0463
ExternalDocumentID 10_1093_database_baw068
27161011
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES019604
– fundername: NIEHS NIH HHS
  grantid: ES019604
– fundername: NIEHS NIH HHS
  grantid: R01 ES014065
– fundername: NIEHS NIH HHS
  grantid: ES014065
GroupedDBID ---
.I3
0R~
18M
53G
5VS
5WA
70E
AAHBH
AAMVS
AAPPN
AAPXW
AAVAP
ABDBF
ABPTD
ABXVV
ACGFO
ACGFS
ACPRK
ADBBV
ADHZD
ADRAZ
AENZO
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CGR
CIDKT
CUY
CVF
CZ4
DIK
D~K
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
ESX
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KSI
M48
MK~
M~E
NPM
O5R
O5S
OAWHX
OJQWA
OK1
O~Y
P2P
PEELM
PQQKQ
RD5
ROX
RPM
RXO
SV3
TOX
TR2
TUS
X7H
ZBA
~91
~D7
~S-
AAYXX
ABEJV
CITATION
7X8
5PM
ID FETCH-LOGICAL-c459t-68293e7b23dff985430d41c3959912a527fb4f69d8dfc0eb5f0d6478d35c36c33
IEDL.DBID RPM
ISSN 1758-0463
IngestDate Tue Sep 17 21:31:01 EDT 2024
Wed Dec 04 15:19:27 EST 2024
Fri Nov 22 00:31:37 EST 2024
Tue Aug 27 13:45:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the United States.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-68293e7b23dff985430d41c3959912a527fb4f69d8dfc0eb5f0d6478d35c36c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation details: Li,J., Sun,Y., Johnson,R.J. et al. BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database (2016) Vol. 2016: article ID baw068; doi:10.1093/database/baw068
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/
PMID 27161011
PQID 1788223478
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4860626
proquest_miscellaneous_1788223478
crossref_primary_10_1093_database_baw068
pubmed_primary_27161011
PublicationCentury 2000
PublicationDate 2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016-00-00
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Database : the journal of biological databases and curation
PublicationTitleAlternate Database (Oxford)
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 17971238 - BMC Bioinformatics. 2007;8:423
18782832 - Nucleic Acids Res. 2009 Jan;37(Database issue):D786-92
24288140 - Database (Oxford). 2013;2013:bat080
24393765 - J Biomed Inform. 2014 Feb;47:1-10
25935162 - Brief Bioinform. 2016 Jan;17(1):132-44
22554700 - J Biomed Inform. 2012 Oct;45(5):879-84
21933848 - Database (Oxford). 2011;2011:bar034
10928714 - Bull Med Libr Assoc. 2000 Jul;88(3):265-6
23703206 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W518-22
21613640 - J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7
23969135 - Bioinformatics. 2013 Nov 15;29(22):2909-17
21094696 - J Biomed Inform. 2011 Apr;44(2):310-8
24919658 - Database (Oxford). 2014;2014. pii: bau050. doi: 10.1093/database/bau050
22554702 - J Biomed Inform. 2012 Oct;45(5):885-92
19814812 - BMC Bioinformatics. 2009;10:326
25326323 - Nucleic Acids Res. 2015 Jan;43(Database issue):D914-20
25254099 - F1000Res. 2014 Apr 25;3:96
25810773 - J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S2
25810774 - J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3
22151929 - BMC Bioinformatics. 2011;12 Suppl 8:S3
23160414 - Database (Oxford). 2012;2012:bas041
24048470 - Database (Oxford). 2013;2013:bat064
20157491 - Database (Oxford). 2009;2009:bap018
23906817 - J Biomed Inform. 2013 Oct;46(5):914-20
2016050917533309000_2016.0.baw068.2
2016050917533309000_2016.0.baw068.3
2016050917533309000_2016.0.baw068.1
2016050917533309000_2016.0.baw068.19
2016050917533309000_2016.0.baw068.6
2016050917533309000_2016.0.baw068.4
2016050917533309000_2016.0.baw068.5
Huang (2016050917533309000_2016.0.baw068.7) 2015; 17
2016050917533309000_2016.0.baw068.21
2016050917533309000_2016.0.baw068.20
2016050917533309000_2016.0.baw068.25
2016050917533309000_2016.0.baw068.24
2016050917533309000_2016.0.baw068.23
2016050917533309000_2016.0.baw068.29
2016050917533309000_2016.0.baw068.28
2016050917533309000_2016.0.baw068.27
2016050917533309000_2016.0.baw068.26
Neves (2016050917533309000_2016.0.baw068.9) 2014; 3
2016050917533309000_2016.0.baw068.10
2016050917533309000_2016.0.baw068.32
2016050917533309000_2016.0.baw068.31
Lipscomb (2016050917533309000_2016.0.baw068.22) 2000; 88
2016050917533309000_2016.0.baw068.30
2016050917533309000_2016.0.baw068.14
2016050917533309000_2016.0.baw068.13
2016050917533309000_2016.0.baw068.8
2016050917533309000_2016.0.baw068.12
2016050917533309000_2016.0.baw068.11
2016050917533309000_2016.0.baw068.33
2016050917533309000_2016.0.baw068.18
2016050917533309000_2016.0.baw068.17
2016050917533309000_2016.0.baw068.16
2016050917533309000_2016.0.baw068.15
References_xml – ident: 2016050917533309000_2016.0.baw068.23
  doi: 10.1093/database/bar034
– ident: 2016050917533309000_2016.0.baw068.17
  doi: 10.1016/j.jbi.2012.04.008
– ident: 2016050917533309000_2016.0.baw068.1
  doi: 10.1093/database/bap018
– volume: 88
  start-page: 265.
  year: 2000
  ident: 2016050917533309000_2016.0.baw068.22
  article-title: Medical subject headings (MeSH)
  publication-title: Bull. Med. Library Assoc
  contributor:
    fullname: Lipscomb
– ident: 2016050917533309000_2016.0.baw068.8
– ident: 2016050917533309000_2016.0.baw068.27
  doi: 10.1093/database/bat064
– ident: 2016050917533309000_2016.0.baw068.28
  doi: 10.1038/234034a0
– ident: 2016050917533309000_2016.0.baw068.29
  doi: 10.1186/1471-2105-10-326
– ident: 2016050917533309000_2016.0.baw068.18
– ident: 2016050917533309000_2016.0.baw068.32
– ident: 2016050917533309000_2016.0.baw068.24
  doi: 10.1016/j.jbi.2010.11.001
– ident: 2016050917533309000_2016.0.baw068.21
  doi: 10.1186/1471-2105-8-423
– ident: 2016050917533309000_2016.0.baw068.19
  doi: 10.1093/database/bat080
– ident: 2016050917533309000_2016.0.baw068.13
  doi: 10.1186/1758-2946-7-S1-S2
– ident: 2016050917533309000_2016.0.baw068.25
  doi: 10.1093/bioinformatics/btt474
– ident: 2016050917533309000_2016.0.baw068.14
  doi: 10.1186/1471-2105-12-S1-S3
– ident: 2016050917533309000_2016.0.baw068.20
– ident: 2016050917533309000_2016.0.baw068.11
  doi: 10.1016/j.jbi.2013.12.006
– ident: 2016050917533309000_2016.0.baw068.6
  doi: 10.1093/database/bau050
– ident: 2016050917533309000_2016.0.baw068.30
  doi: 10.1136/amiajnl-2010-000055
– ident: 2016050917533309000_2016.0.baw068.5
  doi: 10.1093/database/bas041
– ident: 2016050917533309000_2016.0.baw068.12
– ident: 2016050917533309000_2016.0.baw068.10
– ident: 2016050917533309000_2016.0.baw068.16
  doi: 10.1016/j.jbi.2012.04.004
– ident: 2016050917533309000_2016.0.baw068.2
  doi: 10.1093/nar/gkn580
– ident: 2016050917533309000_2016.0.baw068.31
– ident: 2016050917533309000_2016.0.baw068.33
– ident: 2016050917533309000_2016.0.baw068.4
  doi: 10.1093/nar/gkt441
– ident: 2016050917533309000_2016.0.baw068.3
  doi: 10.1093/nar/gku935
– volume: 17
  start-page: 132
  year: 2015
  ident: 2016050917533309000_2016.0.baw068.7
  article-title: Community challenges in biomedical text mining over 10 years: success, failure and the future
  publication-title: Brief. Bioinf
  doi: 10.1093/bib/bbv024
  contributor:
    fullname: Huang
– ident: 2016050917533309000_2016.0.baw068.15
  doi: 10.1016/j.jbi.2013.07.011
– volume: 3
  start-page: 96.
  year: 2014
  ident: 2016050917533309000_2016.0.baw068.9
  article-title: An analysis on the entity annotations in biological corpora
  publication-title: F1000Res
  doi: 10.12688/f1000research.3216.1
  contributor:
    fullname: Neves
– ident: 2016050917533309000_2016.0.baw068.26
  doi: 10.1186/1758-2946-7-S1-S3
SSID ssj0067884
Score 2.6230237
Snippet Community-run, formal evaluations and manually annotated text corpora are critically important for advancing biomedical text-mining research. Recently in...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage baw068
SubjectTerms Computational Biology - methods
Data Mining - methods
Databases, Factual
Disease
Humans
Original
Toxicogenetics - methods
SummonAdditionalLinks – databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46EbyIv62_iODBS7Vt0rQRRGQ6hjAPw8lupUlTFKWbbafuv_elzaZzHrwV2obwJXnvS97L-xA6UcwPPJpKO4g9ZlMVSJunktoCfiAuLKi4UlHo3LN2j971_f63HJABsPhza6f1pHr569nn2_gKFvylKYZ0rnMptc0_F_GHw8JFtOSBW9T5XR06DSmAUa7kh8FdhjqfkUzq_Mw3MOui5njn7_TJH_6otYZWDZHE1_XIr6MFlW2g5VpacryJuvDUrAjhu8KPuHnTxWVcvGDYbA5HxQWOcW4O7jHQVixN3QBsAjY4N0lyGIx3Xl9-2EK91u1Ds20b_QRbUp-XNgvBl6tAeCRJUx76lDgJdSXhPpBCL_a9IBU0ZTwJk1Q6Svipk-irpwnxJWGSkG3UyAaZ2kVYca2ZmHihEwPl4o6QgWAOl8KVPAmEtNDpBLJoWJfJiOrwNokm6EY1uhY6nkAawVTW8Yk4U4NREbkwRMBWoAcW2qkhnjbmwb4OrIdroWAG_OkHukz27Jvs-akql61ltmDbtvf_Lu6jFeBF5qTlADXKfKQOgXuU4qiaU1_MsN1R
  priority: 102
  providerName: Scholars Portal
Title BioCreative V CDR task corpus: a resource for chemical disease relation extraction
URI https://www.ncbi.nlm.nih.gov/pubmed/27161011
https://search.proquest.com/docview/1788223478
https://pubmed.ncbi.nlm.nih.gov/PMC4860626
Volume 2016
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qQfAivq2PsoIHL2keu5tkvUlsKUJFipXeQnazwaJNS9oq_nsnr2L15iUEkg3L7GTnm51vZgCutcs9hyXK8CLHNZj2lCESxQyJA6iNP1RUdFEYPLr9EXsY83EDeJ0LU5D2lZx00vdpJ528FtzK-VSZNU_MfBoEeeMkBOLmFmyh-a1d9HL7xc3XZ3UNH0HNnGiZGwRTRp-Wm7fnc9BFQEW0Ny3RH3j5myX5w-z09mC3wovkrpzXPjR0egDbZQfJr0MY4l1Q4L4PTV5IcD8ky2jxRtCnnK8WtyQiWXU-TxCdElWVByBVXIZkFReO4B6dlTkORzDqdZ-DvlG1STAU42JpuD6abO1Jh8ZJInzOqBUzW1HBEfs5EXe8RLLEFbEfJ8rSkidWnGeYxpQr6ipKj6GZzlJ9CkSLvDVi7PhWhMhKWFJ50rWEkrYSsSdVC25qkYXzshpGWEaxaVgLOiwF3YKrWqQhamwehohSPVstQhtXCEEJzqAFJ6WI1x-r16YF3obw1y_k1bA3n6CSFFWxK6U4-_fIc9hBNFSdr1xAc5mt9CUijqVso55Z3Xbhr-N1wPx2oXPfnC_diQ
link.rule.ids 230,314,727,780,784,864,885,4024,24318,27923,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BEYILYqesRuLAJWSxHcfcUAGVpQhVBXGLYscRFTStuoD4eyZbReHGLVLiyBqPZ549ywM4MT4XHku0JSLPt5gR2pKJZpbCAdTFDRXlLAqtB7_5xG5f-Msc8KoWJk_a16p7lr73ztLua55bOehpu8oTsx9bjYw4CYG4PQ8LnArpVof0wgCj-Q1Y1cVHUjtLtcxcgq2iT8fPCPo8PCSgKrqzvugPwPydJ_nD8VyvwkqJGMlFMbM1mDPpOiwWHJJfG9DGp0aO_D4MeSaNyzYZR6M3gqfKwWR0TiIyLG_oCeJTossGAaSMzJBhmQ1H0EoPiyqHTXi6vuo0mlZJlGBpxuXY8gN02kYoj8ZJIgPOqBMzV1PJEf15EfdEoljiyziIE-0YxRMnzmpMY8o19TWlW1BL-6nZAWJkRo4Ye4ETIbaSjtJC-Y7UytUyFkrX4bQSWTgo-mGERRybhpWgw0LQdTiuRBqizmaBiCg1_ckodHGFEJbgDOqwXYh4-rNqbeogZoQ__SDrhz37BtUk74tdqsXuv0cewVKz07oP728e7vZgGbFReduyD7XxcGIOEH-M1WGubd_PNN5C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48UHwRb9czgg--1B5J2sY3WV08l2VR8a00F4palz0U_73Ta3H1zbdCmxImk5lvMpP5AA5NyKOAWeVEaRA6zETKEVYxR-IA6uOGSgsWhdt2eHHPrh754w-qr6JoX8nn4-z17Th7fipqK3tvyq3rxNzObTMnTkIg7va0dadhllNUsjpQL40wmuCY1Z18BHXzcsvcLbgy_fTCnKQvwEAB1dGf9Ed_QObvWskfzqe1BIsVaiSn5eyWYcpkKzBX8kh-rUIXn5oF-vsw5IE0z7pkmA5eCEaWvdHghKSkX53SE8SoRFVNAkiVnSH9qiKOoKXulzcd1uC-dX7XvHAqsgRHMS6GThij4zaRDKi2VsScUU8zX1HBEQEGKQ8iK5kNhY61VZ6R3Ho6v2eqKVc0VJSuw0z2nplNIEbkBIk6iL0U8ZXwpIpk6AklfSV0JFUDjmqRJb2yJ0ZS5rJpUgs6KQXdgINapAnqbZ6MSDPzPhokPq4QQhOcQQM2ShGPf1avTQOiCeGPP8h7Yk--QVUpemNXqrH175H7MN85ayU3l-3rbVhAeFQduOzAzLA_MrsIQYZyr1C2b_xs31U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BioCreative+V+CDR+task+corpus%3A+a+resource+for+chemical+disease+relation+extraction&rft.jtitle=Database+%3A+the+journal+of+biological+databases+and+curation&rft.au=Li%2C+Jiao&rft.au=Sun%2C+Yueping&rft.au=Johnson%2C+Robin+J.&rft.au=Sciaky%2C+Daniela&rft.date=2016&rft.issn=1758-0463&rft.eissn=1758-0463&rft.volume=2016&rft.spage=baw068&rft_id=info:doi/10.1093%2Fdatabase%2Fbaw068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_database_baw068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-0463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-0463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-0463&client=summon