Chromatin-Based Regulation of Plant Root Development
Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped...
Saved in:
Published in | Frontiers in plant science Vol. 9; p. 1509 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
16.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development. |
---|---|
AbstractList | Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development. Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development.Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and asymmetric division due to well-organized cell layers and relatively simple cell types in root meristem. Besides genetic material DNA wrapped around histone octamer, chromatin structure determined by chromatin modification including DNA methylation, histone modification and chromatin remodeling also contributes greatly to the regulation of gene expression. In this review, we summarize the current progresses on the molecular mechanisms of chromatin modification in regulating root development. |
Author | Chen, Dong-Hong Jiang, Changhua Huang, Yong Si, Jin-Ping |
AuthorAffiliation | 1 State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University , Hangzhou , China 3 Shanghai Botanical Garden , Shanghai , China 2 Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University , Changsha , China |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University , Changsha , China – name: 3 Shanghai Botanical Garden , Shanghai , China – name: 1 State Key Laboratory of Subtropical Silviculture, SFGA Engineering Research Center for Dendrobium Catenatum, Zhejiang A&F University , Hangzhou , China |
Author_xml | – sequence: 1 givenname: Dong-Hong surname: Chen fullname: Chen, Dong-Hong – sequence: 2 givenname: Yong surname: Huang fullname: Huang, Yong – sequence: 3 givenname: Changhua surname: Jiang fullname: Jiang, Changhua – sequence: 4 givenname: Jin-Ping surname: Si fullname: Si, Jin-Ping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30386363$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1r3DAUFCWhSdOceys-9uLNk_V9KbSbfgQCLaGB3IQsP28cZGsreQP999XupiEJVBfpSTPzRm_ekIMpTkjIOwoLxrQ569chLxqgegFUgHlFjqmUvOayuTl4cj4ipznfQVkCwBj1mhwxYFoyyY4JX96mOLp5mOrPLmNXXeFqE0odpyr21c_gprm6inGuzvEeQ1yPOM1vyWHvQsbTh_2EXH_98mv5vb788e1i-emy9lyYuS4GFID2QuuOtrwtLrWUqvFOOm88RapaI6imtO2BGV8MUkF7aKgDxaRnJ-Rir9tFd2fXaRhd-mOjG-zuIqaVdWkefEDbMaEMOu4ABReqd4jMuZaKvoWWq63Wx73WetOO2PnyjeTCM9HnL9Nwa1fx3kpqNJesCHx4EEjx9wbzbMchewxlQhg32Ta0MYKBMqpA3z_t9djk39gL4GwP8CnmnLB_hFCw22ztNlu7zdbusi0M8YLhh3kXUzE7hP_y_gJR9qfW |
CitedBy_id | crossref_primary_10_1093_jxb_erz459 crossref_primary_10_3390_plants11030322 crossref_primary_10_1111_nph_16213 crossref_primary_10_3389_fpls_2020_603380 crossref_primary_10_1007_s11103_020_00985_1 crossref_primary_10_1080_15592324_2021_2014677 crossref_primary_10_3390_ijms21124195 crossref_primary_10_1016_j_indcrop_2025_120751 crossref_primary_10_3389_fpls_2021_761059 crossref_primary_10_1186_s12870_024_05457_y crossref_primary_10_1002_pld3_393 crossref_primary_10_3934_biophy_2020001 crossref_primary_10_1002_pro_3849 crossref_primary_10_3390_plants10071408 crossref_primary_10_3390_ijms20205093 crossref_primary_10_1007_s11103_024_01534_w crossref_primary_10_1007_s11240_024_02769_7 crossref_primary_10_1016_j_plaphy_2024_108797 crossref_primary_10_1186_s12864_022_08394_y |
Cites_doi | 10.1016/j.cell.2007.02.009 10.1371/journal.pone.0016070 10.1007/s00299-013-1474-6 10.1038/ncomms7003 10.1016/j.cell.2007.01.015 10.1371/journal.pgen.1004091 10.1073/pnas.0503143102 10.1038/nbt.2650 10.1105/tpc.110.079962 10.1126/science.1231143 10.1104/pp.107.111674 10.1038/ng.3712 10.1371/journal.pgen.1002040 10.1104/pp.16.01471 10.1093/nar/gkl295 10.1111/tpj.12877 10.1371/journal.pone.0138934 10.1371/journal.pgen.1000605 10.1093/jxb/eru355 10.1105/tpc.17.00655 10.1038/nplants.2016.58 10.1038/sj.emboj.7601311 10.1073/pnas.1203148109 10.1146/annurev.biochem.76.052705.162114 10.1016/j.cub.2013.05.050 10.1016/j.cell.2013.07.011 10.1105/tpc.007922 10.1073/pnas.112008599 10.1111/j.1744-7909.2008.00704.x 10.1038/cr.2010.151 10.1073/pnas.96.24.13839 10.1038/nature05763 10.1186/1471-2229-14-105 10.1080/15592324.2015.1131373 10.1016/j.pbi.2011.03.020 10.1126/science.1160158 10.3389/fpls.2017.02041 10.1016/j.cub.2010.09.046 10.1016/j.jmb.2008.09.040 10.1093/embo-reports/kvf053 10.1105/tpc.112.105114 10.1016/j.tplants.2012.10.002 10.1104/pp.104.058362 10.1111/tpj.12009 10.1105/tpc.107.052373 10.1104/pp.15.00821 10.1104/pp.114.244798 10.1074/jbc.M007372200 10.1038/38444 10.1111/j.1365-313X.2009.03839.x 10.1016/j.tplants.2008.08.004 10.1105/tpc.108.065300 10.1104/pp.106.092320 10.1186/s12915-016-0336-4 10.1007/s00425-015-2451-9 10.1007/s10577-006-1067-0 10.1093/nar/gkf660 10.1016/j.cub.2008.11.019 10.1105/tpc.112.107045 10.1371/journal.pone.0056537 10.1146/annurev.biochem.77.062706.153223 10.1038/nplants.2015.89 10.3389/fpls.2017.00867 10.1093/pcp/pcx006 10.1016/j.gde.2010.04.015 10.1016/S0092-8674(02)00654-2 10.1046/j.1365-313X.2003.01650.x 10.1371/journal.pone.0138276 10.1038/emboj.2013.145 10.1038/386044a0 10.1111/j.1365-313X.2007.03370.x 10.1016/j.pbi.2015.11.010 10.3389/fpls.2015.00505 10.1016/j.plaphy.2016.04.022 10.1016/j.devcel.2015.04.024 10.1016/S0065-2296(10)53001-5 10.1016/j.cub.2012.07.061 10.1016/j.bbaexp.2007.04.003 10.1371/journal.pgen.1002014 10.1104/pp.17.00014 10.1104/pp.15.00409 10.1016/j.bbagrm.2012.02.022 10.1007/s004250100598 10.1242/dev.033902 10.1146/annurev-arplant-042811-105555 10.1111/j.1365-313X.2009.03908.x 10.1016/S1360-1385(99)01551-4 10.1093/mp/ssu035 10.1242/dev.119.1.71 10.1016/j.cell.2014.09.037 10.4161/psb.24381 10.3389/fpls.2014.00495 10.1111/nph.12194 10.1105/tpc.15.00091 10.1046/j.1365-313X.2003.01971.x 10.1038/emboj.2011.108 10.1105/tpc.16.00908 10.1016/j.plaphy.2013.05.001 10.1105/tpc.15.00763 10.1242/dev.124.1.33 10.1038/nrg2719 10.1105/tpc.112.096313 10.1104/pp.112.198341 10.1242/dev.120.9.2475 10.1186/s12864-016-2407-x 10.1104/pp.15.01754 10.1105/tpc.13.4.843 10.1016/j.pbi.2012.09.006 10.1186/1471-2229-14-76 10.1105/tpc.114.124941 10.1105/tpc.15.00744 10.1093/pcp/pcw095 10.1242/dev.128.23.4847 10.1105/tpc.111.083352 10.1111/j.1365-313X.2006.02882.x 10.1016/j.pbi.2010.10.006 10.1016/j.tig.2015.10.007 10.1038/s41580-018-0016-z 10.1105/tpc.17.00366 10.1016/j.tplants.2009.05.002 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Chen, Huang, Jiang and Si. 2018 Chen, Huang, Jiang and Si |
Copyright_xml | – notice: Copyright © 2018 Chen, Huang, Jiang and Si. 2018 Chen, Huang, Jiang and Si |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2018.01509 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_d3579ea4a0e5457faee3aab15fb0b47c PMC6198463 30386363 10_3389_fpls_2018_01509 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-6647008c588d1b4b01586672ca6ac9c1e17b951811bf039c005151f021a0736c3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:27:21 EDT 2025 Thu Aug 21 18:05:58 EDT 2025 Thu Jul 10 22:25:10 EDT 2025 Tue Aug 05 11:47:54 EDT 2025 Tue Jul 01 02:06:02 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | root development stem cell niche histone modification chromatin remodeling Polycomb TrxG chromatin structure SDG family |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-6647008c588d1b4b01586672ca6ac9c1e17b951811bf039c005151f021a0736c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: José Manuel Pérez-Pérez, Universidad Miguel Hernández de Elche, Spain These authors have contributed equally to this work This article was submitted to Plant Evolution and Development, a section of the journal Frontiers in Plant Science Reviewed by: Hirotomo Takatsuka, Nara Institute of Science and Technology (NAIST), Japan; Crisanto Gutierrez, Consejo Superior de Investigaciones Científicas (CSIC), Spain |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2018.01509 |
PMID | 30386363 |
PQID | 2129530797 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3579ea4a0e5457faee3aab15fb0b47c pubmedcentral_primary_oai_pubmedcentral_nih_gov_6198463 proquest_miscellaneous_2129530797 pubmed_primary_30386363 crossref_primary_10_3389_fpls_2018_01509 crossref_citationtrail_10_3389_fpls_2018_01509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-16 |
PublicationDateYYYYMMDD | 2018-10-16 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Folta (B34) 2014; 14 Bouyer (B8) 2011; 7 Forderer (B35) 2016; 29 Li (B67) 2015; 168 Ikeuchi (B51) 2015; 1 Pontvianne (B93) 2010; 53 Chandrika (B13); 8 Zhang (B114) 2018; 19 Shahbazian (B100) 2007; 76 Bouazoune (B7) 2006; 14 Li (B70) 2017; 8 Zhou (B118) 2017; 29 Xu (B108) 2005; 102 Yuan (B113) 2016; 48 Pi (B92) 2015; 33 Meister (B79) 2004; 37 Napsucialy-Mendivil (B82) 2014; 65 Narlikar (B84) 2013; 154 Liu (B71) 2013; 25 Chen (B19) 2016; 11 Bratzel (B9) 2010; 20 Li (B69) 2014; 14 Lawrence (B65) 2016; 32 Knizewski (B58) 2008; 13 Ma (B74) 2015; 10 Fukaki (B36) 2006; 48 Dolan (B28) 1993; 119 Breuer (B10) 2010; 13 Suzuki (B102) 2007; 143 Scheres (B96) 1994; 120 Hecker (B44) 2015; 168 Kawakatsu (B57) 2016; 2 de Lucas (B25) 2016; 28 Peret (B91) 2009; 14 Mehdi (B78) 2016; 28 Lafos (B63) 2011; 7 Chen (B16) 2016; 4 Ng (B85) 2007; 1769 Cui (B24) 2009; 58 Hollender (B45) 2008; 50 Li (B68) 2017; 29 Huang (B49) 2014; 159 Law (B64) 2010; 11 Chen (B17) 2016; 243 Li (B66) 2007; 128 Ivanov (B52) 2013; 18 Malamy (B76) 1997; 124 Zhou (B119) 2013; 25 Chen (B18) 2018; 30 Manzano (B77) 2012; 160 Tanaka (B103) 2008; 146 Zhu (B120) 2011; 14 Gilroy (B38) 2000; 5 Casimiro (B12) 2001; 13 Han (B43) 2015; 83 Jang (B53) 2003; 33 Wanke (B107) 2011; 6 Flaus (B33) 2006; 34 Dubrovsky (B30) 2001; 214 Yang (B111) 2015; 27 Aichinger (B2) 2011; 23 Cong (B23) 2013; 339 Hakimi (B41) 2002; 99 Han (B42) 2012; 24 Schuettengruber (B98) 2009; 136 Chhun (B20) 2016; 57 Park (B90) 2017; 173 Molitor (B80) 2014; 10 Chung (B21) 2009; 59 Derkacheva (B27) 2013; 32 Aichinger (B1) 2012; 63 Chandrika (B14); 198 Gu (B40) 2014; 7 Paquette (B89) 2005; 138 Jegu (B54) 2015; 10 Hu (B47) 2012; 109 Schubert (B97) 2006; 25 Feng (B32) 2017; 8 Gaudin (B37) 2001; 128 Nguyen (B86) 2013; 32 Caro (B11) 2007; 447 Narlikar (B83) 2002; 108 Ogas (B87) 1999; 96 Clapier (B22) 2009; 78 Kumpf (B62) 2014; 166 Hu (B48) 2013; 70 Goodrich (B39) 1997; 386 Verstraeten (B104) 2014; 5 Yang (B110) 2013; 23 Zhang (B117) 2016; 171 Mu (B81) 2017; 58 Kornet (B60) 2009; 21 Jullien (B56) 2012; 22 Sang (B95) 2012; 72 Wang (B106) 2016; 105 Berr (B6) 2010; 22 Drisch (B29) 2015; 6 Bemer (B4) 2012; 15 Schuettengruber (B99) 2007; 128 Berger (B5) 2012; 1819 Eberharter (B31) 2002; 3 Hoppmann (B46) 2011; 30 De Smet (B26) 2008; 322 Luger (B73) 1997; 389 Pandey (B88) 2002; 30 Kohler (B59) 2010; 20 Aichinger (B3) 2009; 5 Ren (B94) 2008; 53 Zhang (B115) 2017; 173 Humphrey (B50) 2001; 276 Yao (B112) 2013; 8 Zhang (B116) 2015; 6 Krichevsky (B61) 2009; 385 Ma (B75) 2016; 17 Chen (B15) 2010; 20 Jiang (B55) 2007; 19 Vlachonasios (B105) 2003; 15 Shan (B101) 2013; 31 Liu (B72) 2014; 26 Xu (B109) 2008; 18 17450124 - Nature. 2007 May 10;447(7141):213-7 23929338 - Nat Biotechnol. 2013 Aug;31(8):686-8 27250255 - Nat Plants. 2015 Jun 29;1:15089 26143251 - Plant Physiol. 2015 Aug;168(4):1448-58 20684877 - Curr Opin Genet Dev. 2010 Oct;20(5):541-7 27108205 - Plant Physiol Biochem. 2016 Aug;105:185-194 28115583 - Plant Physiol. 2017 Mar;173(3):1574-1582 17362198 - Annu Rev Biochem. 2007;76:75-100 25631790 - Nat Commun. 2015 Jan 29;6:6003 21094078 - Curr Opin Plant Biol. 2010 Dec;13(6):654-60 21037105 - Plant Cell. 2010 Oct;22(10):3232-48 10570159 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13839-44 12615937 - Plant Cell. 2003 Mar;15(3):626-38 26704384 - Plant Cell. 2016 Jan;28(1):42-54 24666886 - BMC Plant Biol. 2014 Mar 25;14:76 18835563 - J Mol Biol. 2009 Jan 9;385(1):45-50 27819666 - Nat Genet. 2016 Dec;48(12):1527-1534 27243651 - Nat Plants. 2016 Apr 29;2(5):16058 23209114 - Plant Cell. 2012 Dec;24(12):4892-906 15955927 - Plant Physiol. 2005 Jun;138(2):636-40 19097900 - Curr Biol. 2008 Dec 23;18(24):1966-71 11102443 - J Biol Chem. 2001 Mar 2;276(9):6817-24 11882541 - EMBO Rep. 2002 Mar;3(3):224-9 19355820 - Annu Rev Biochem. 2009;78:273-304 23432399 - New Phytol. 2013 May;198(3):709-20 26826786 - Curr Opin Plant Biol. 2016 Feb;29:169-78 21530367 - Curr Opin Plant Biol. 2011 Jun;14(3):310-7 21423668 - PLoS Genet. 2011 Mar;7(3):e1002014 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 26217359 - Front Plant Sci. 2015 Jul 06;6:505 23483879 - PLoS One. 2013;8(2):e56537 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040 28487409 - Plant Cell. 2017 May;29(5):1088-1104 17512990 - Biochim Biophys Acta. 2007 May-Jun;1769(5-6):316-29 22940470 - Curr Biol. 2012 Oct 9;22(19):1825-30 22425673 - Biochim Biophys Acta. 2012 Aug;1819(8):863-8 16176989 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14469-74 11909519 - Cell. 2002 Feb 22;108(4):475-87 16957776 - EMBO J. 2006 Oct 4;25(19):4638-49 26025051 - Plant Physiol. 2015 Jul;168(3):1013-24 17158584 - Plant Physiol. 2007 Feb;143(2):902-11 16821138 - Chromosome Res. 2006;14(4):433-49 23062007 - Plant J. 2012 Dec;72(6):1000-14 26398683 - PLoS One. 2015 Sep 23;10(9):e0138934 18005227 - Plant J. 2008 Mar;53(5):705-16 20933424 - Curr Biol. 2010 Oct 26;20(20):1853-9 26704082 - Trends Genet. 2016 Jan;32(1):42-56 29784956 - Nat Rev Mol Cell Biol. 2018 Aug;19(8):489-506 21522130 - EMBO J. 2011 May 18;30(10):1939-52 28057895 - Plant Physiol. 2017 Feb;173(2):1463-1474 28596781 - Front Plant Sci. 2017 May 24;8:867 23778966 - EMBO J. 2013 Jul 17;32(14):2073-85 28007029 - BMC Biol. 2016 Dec 22;14(1):112 28855334 - Plant Cell. 2017 Sep;29(9):2183-2196 25324849 - Front Plant Sci. 2014 Sep 29;5:495 23770592 - Plant Physiol Biochem. 2013 Sep;70:33-42 16738128 - Nucleic Acids Res. 2006 May 31;34(10):2887-905 24465219 - PLoS Genet. 2014 Jan;10(1):e1004091 18786849 - Trends Plant Sci. 2008 Oct;13(10):557-65 23531693 - Plant Signal Behav. 2013 Jun;8(6):e24381 21060339 - Cell Res. 2010 Dec;20(12):1332-44 25303536 - Cell. 2014 Oct 9;159(2):458-458.e1 9006065 - Development. 1997 Jan;124(1):33-44 19228333 - Plant J. 2009 Jun;58(6):1016-27 17010112 - Plant J. 2006 Nov;48(3):380-9 24758373 - BMC Plant Biol. 2014 Apr 23;14:105 27650334 - Plant Cell. 2016 Oct;28(10):2616-2631 19376933 - Plant Cell. 2009 Apr;21(4):1070-9 12581311 - Plant J. 2003 Feb;33(3):531-41 29234344 - Front Plant Sci. 2017 Nov 28;8:2041 21441433 - Plant Cell. 2011 Mar;23(3):1047-60 24711289 - Mol Plant. 2014 Jun;7(6):977-988 11731464 - Development. 2001 Dec;128(23):4847-58 23362207 - Plant Cell. 2013 Jan;25(1):134-48 23362208 - Plant Cell. 2013 Jan;25(1):257-69 18948541 - Science. 2008 Oct 24;322(5901):594-7 22451926 - Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5773-8 19820181 - Development. 2009 Nov;136(21):3531-42 23287718 - Science. 2013 Feb 15;339(6121):819-23 29475938 - Plant Cell. 2018 Mar;30(3):600-619 27335347 - Plant Cell Physiol. 2016 Aug;57(8):1689-706 19453457 - Plant J. 2009 Sep;59(5):764-76 26729480 - Planta. 2016 Apr;243(4):825-46 26969721 - Plant Physiol. 2016 May;171(1):483-93 12032298 - Proc Natl Acad Sci U S A. 2002 May 28;99(11):7420-5 23810531 - Curr Biol. 2013 Jul 22;23(14):1324-9 22837358 - Plant Physiol. 2012 Oct;160(2):749-62 23911317 - Cell. 2013 Aug 1;154(3):490-503 11283340 - Plant Cell. 2001 Apr;13(4):843-52 25034019 - Plant Physiol. 2014 Oct;166(2):632-43 26457678 - PLoS One. 2015 Oct 12;10(10):e0138276 18713398 - J Integr Plant Biol. 2008 Jul;50(7):875-85 21347358 - PLoS One. 2011 Feb 10;6(2):e16070 14731261 - Plant J. 2004 Feb;37(3):426-38 26028217 - Dev Cell. 2015 Jun 8;33(5):576-88 10664614 - Trends Plant Sci. 2000 Feb;5(2):56-60 17921315 - Plant Cell. 2007 Oct;19(10):2975-87 22999383 - Curr Opin Plant Biol. 2012 Nov;15(5):523-9 17320508 - Cell. 2007 Feb 23;128(4):707-19 23123304 - Trends Plant Sci. 2013 May;18(5):237-43 22404469 - Annu Rev Plant Biol. 2012;63:615-36 25070639 - Plant Cell. 2014 Jul;26(7):2803-17 19559642 - Trends Plant Sci. 2009 Jul;14(7):399-408 11762168 - Planta. 2001 Nov;214(1):30-6 25991732 - Plant Cell. 2015 Jun;27(6):1670-80 9052779 - Nature. 1997 Mar 6;386(6620):44-51 28138058 - Plant Cell Physiol. 2017 Mar 1;58(3):607-621 17320510 - Cell. 2007 Feb 23;128(4):735-45 8275865 - Development. 1993 Sep;119(1):71-84 19680533 - PLoS Genet. 2009 Aug;5(8):e1000605 20703330 - Adv Bot Res. 2010 Jan 1;53:1-22 26689639 - Plant Signal Behav. 2016;11(2):e1131373 26847576 - BMC Genomics. 2016 Feb 04;17:96 18024558 - Plant Physiol. 2008 Jan;146(1):149-61 25205583 - J Exp Bot. 2014 Dec;65(22):6373-84 23820978 - Plant Cell Rep. 2013 Oct;32(10):1625-36 25977075 - Plant J. 2015 Jul;83(1):62-77 9305837 - Nature. 1997 Sep 18;389(6648):251-60 12466527 - Nucleic Acids Res. 2002 Dec 1;30(23):5036-55 |
References_xml | – volume: 128 start-page: 735 year: 2007 ident: B99 article-title: Genome regulation by polycomb and trithorax proteins publication-title: Cell doi: 10.1016/j.cell.2007.02.009 – volume: 6 start-page: e16070 year: 2011 ident: B107 article-title: Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus publication-title: PLoS ONE doi: 10.1371/journal.pone.0016070 – volume: 32 start-page: 1625 year: 2013 ident: B86 article-title: Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation publication-title: Plant Cell Rep. doi: 10.1007/s00299-013-1474-6 – volume: 6 start-page: 6003 year: 2015 ident: B116 article-title: ROW1 maintains quiescent centre identity by confining WOX5 expression to specific cells publication-title: Nat. Commun. doi: 10.1038/ncomms7003 – volume: 128 start-page: 707 year: 2007 ident: B66 article-title: The role of chromatin during transcription publication-title: Cell doi: 10.1016/j.cell.2007.01.015 – volume: 10 start-page: e1004091 year: 2014 ident: B80 article-title: Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004091 – volume: 102 start-page: 14469 year: 2005 ident: B108 article-title: Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0503143102 – volume: 31 start-page: 686 year: 2013 ident: B101 article-title: Targeted genome modification of crop plants using a CRISPR-Cas system publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2650 – volume: 22 start-page: 3232 year: 2010 ident: B6 article-title: Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development publication-title: Plant Cell doi: 10.1105/tpc.110.079962 – volume: 339 start-page: 819 year: 2013 ident: B23 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 146 start-page: 149 year: 2008 ident: B103 article-title: The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination publication-title: Plant Physiol. doi: 10.1104/pp.107.111674 – volume: 48 start-page: 1527 year: 2016 ident: B113 article-title: A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis publication-title: Nat. Genet. doi: 10.1038/ng.3712 – volume: 7 start-page: e1002040 year: 2011 ident: B63 article-title: Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002040 – volume: 173 start-page: 1463 year: 2017 ident: B90 article-title: Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions publication-title: Plant Physiol. doi: 10.1104/pp.16.01471 – volume: 34 start-page: 2887 year: 2006 ident: B33 article-title: Identification of multiple distinct Snf2 subfamilies with conserved structural motifs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl295 – volume: 83 start-page: 62 year: 2015 ident: B43 article-title: Roles and activities of chromatin remodeling ATPases in plants publication-title: Plant J. doi: 10.1111/tpj.12877 – volume: 10 start-page: e0138934 year: 2015 ident: B74 article-title: CHR729 Is a CHD3 protein that controls seedling development in rice publication-title: PLoS ONE doi: 10.1371/journal.pone.0138934 – volume: 5 start-page: e1000605 year: 2009 ident: B3 article-title: CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000605 – volume: 65 start-page: 6373 year: 2014 ident: B82 article-title: Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru355 – volume: 30 start-page: 600 year: 2018 ident: B18 article-title: HSI2/VAL1 silences AGL15 to regulate the developmental transition from seed maturation to vegetative growth in arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.17.00655 – volume: 2 start-page: 16058 year: 2016 ident: B57 article-title: Unique cell-type-specific patterns of DNA methylation in the root meristem publication-title: Nat. Plants doi: 10.1038/nplants.2016.58 – volume: 25 start-page: 4638 year: 2006 ident: B97 article-title: Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601311 – volume: 109 start-page: 5773 year: 2012 ident: B47 article-title: CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome publication-title: Proc Natl Acad Sci U.S.A. doi: 10.1073/pnas.1203148109 – volume: 76 start-page: 75 year: 2007 ident: B100 article-title: Functions of site-specific histone acetylation and deacetylation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052705.162114 – volume: 23 start-page: 1324 year: 2013 ident: B110 article-title: VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.05.050 – volume: 154 start-page: 490 year: 2013 ident: B84 article-title: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes publication-title: Cell doi: 10.1016/j.cell.2013.07.011 – volume: 15 start-page: 626 year: 2003 ident: B105 article-title: Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression publication-title: Plant Cell doi: 10.1105/tpc.007922 – volume: 99 start-page: 7420 year: 2002 ident: B41 article-title: A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.112008599 – volume: 50 start-page: 875 year: 2008 ident: B45 article-title: Histone deacetylase genes in Arabidopsis development publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2008.00704.x – volume: 20 start-page: 1332 year: 2010 ident: B15 article-title: The Arabidopsis PRC1-like ring-finger proteins are necessary for repression of embryonic traits during vegetative growth publication-title: Cell Res. doi: 10.1038/cr.2010.151 – volume: 96 start-page: 13839 year: 1999 ident: B87 article-title: PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis publication-title: Proc Natl Acad Sci U.S.A. doi: 10.1073/pnas.96.24.13839 – volume: 447 start-page: 213 year: 2007 ident: B11 article-title: A chromatin link that couples cell division to root epidermis patterning in Arabidopsis publication-title: Nature doi: 10.1038/nature05763 – volume: 14 start-page: 105 year: 2014 ident: B69 article-title: Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-14-105 – volume: 11 start-page: e1131373 year: 2016 ident: B19 article-title: One additional histone deacetylase and 2 histone acetyltransferases are involved in cellular patterning of Arabidopsis root epidermis publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2015.1131373 – volume: 14 start-page: 310 year: 2011 ident: B120 article-title: From lab to field, new approaches to phenotyping root system architecture publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2011.03.020 – volume: 322 start-page: 594 year: 2008 ident: B26 article-title: Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root publication-title: Science doi: 10.1126/science.1160158 – volume: 8 start-page: 2041 year: 2017 ident: B32 article-title: LHP1 could act as an activator and a repressor of transcription in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02041 – volume: 20 start-page: 1853 year: 2010 ident: B9 article-title: Keeping cell identity in Arabidopsis requires PRC1 RING-finger homologs that catalyze H2A monoubiquitination publication-title: Curr. Biol. doi: 10.1016/j.cub.2010.09.046 – volume: 385 start-page: 45 year: 2009 ident: B61 article-title: Regulation of root elongation by histone acetylation in Arabidopsis publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.09.040 – volume: 3 start-page: 224 year: 2002 ident: B31 article-title: Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics publication-title: EMBO Rep. doi: 10.1093/embo-reports/kvf053 – volume: 24 start-page: 4892 year: 2012 ident: B42 article-title: The SWI2/SNF2 chromatin remodeling ATPase brahma represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.105114 – volume: 18 start-page: 237 year: 2013 ident: B52 article-title: Longitudinal zonation pattern in plant roots: conflicts and solutions publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.10.002 – volume: 138 start-page: 636 year: 2005 ident: B89 article-title: Maturation of the ground tissue of the root is regulated by gibberellin and SCARECROW and requires SHORT-ROOT publication-title: Plant Physiol. doi: 10.1104/pp.104.058362 – volume: 72 start-page: 1000 year: 2012 ident: B95 article-title: Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects publication-title: Plant J. doi: 10.1111/tpj.12009 – volume: 19 start-page: 2975 year: 2007 ident: B55 article-title: Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and flowering locus C and thus promote the floral transition publication-title: Plant Cell doi: 10.1105/tpc.107.052373 – volume: 168 start-page: 1448 year: 2015 ident: B67 article-title: Histone deacetylase6-defective mutants show increased expression and acetylation of enhancer of triptychon and CAPRICE1 and GLABRA2 with small but significant effects on root epidermis cellular pattern publication-title: Plant Physiol. doi: 10.1104/pp.15.00821 – volume: 166 start-page: 632 year: 2014 ident: B62 article-title: The ASH1-RELATED3 SET-domain protein controls cell division competence of the meristem and the quiescent center of the Arabidopsis primary root publication-title: Plant Physiol. doi: 10.1104/pp.114.244798 – volume: 276 start-page: 6817 year: 2001 ident: B50 article-title: Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M007372200 – volume: 389 start-page: 251 year: 1997 ident: B73 article-title: Crystal structure of the nucleosome core particle at 2.8 A resolution publication-title: Nature doi: 10.1038/38444 – volume: 58 start-page: 1016 year: 2009 ident: B24 article-title: Interplay between scarecrow, GA and like heterochromatin protein 1 in ground tissue patterning in the Arabidopsis root publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.03839.x – volume: 13 start-page: 557 year: 2008 ident: B58 article-title: Snf2 proteins in plants: gene silencing and beyond publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.08.004 – volume: 21 start-page: 1070 year: 2009 ident: B60 article-title: Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.065300 – volume: 143 start-page: 902 year: 2007 ident: B102 article-title: Repression of the leafy cotyledon 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC acid insensitive 3-like B3 genes publication-title: Plant Physiol. doi: 10.1104/pp.106.092320 – volume: 4 start-page: 112 year: 2016 ident: B16 article-title: Arabidopsis PRC1 core component AtRING1 regulates stem cell-determining carpel development mainly through repression of class I KNOX genes publication-title: BMC Biol. doi: 10.1186/s12915-016-0336-4 – volume: 243 start-page: 825 year: 2016 ident: B17 article-title: The evolutionary landscape of PRC1 core components in green lineage publication-title: Planta doi: 10.1007/s00425-015-2451-9 – volume: 14 start-page: 433 year: 2006 ident: B7 article-title: ATP-dependent chromatin remodeling complexes in Drosophila publication-title: Chromosome Res. doi: 10.1007/s10577-006-1067-0 – volume: 30 start-page: 5036 year: 2002 ident: B88 article-title: Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf660 – volume: 18 start-page: 1966 year: 2008 ident: B109 article-title: Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis publication-title: Curr. Biol. doi: 10.1016/j.cub.2008.11.019 – volume: 25 start-page: 257 year: 2013 ident: B71 article-title: HDA18 affects cell fate in Arabidopsis root epidermis via histone acetylation at four kinase genes publication-title: Plant Cell doi: 10.1105/tpc.112.107045 – volume: 8 start-page: e56537 year: 2013 ident: B112 article-title: SDG2-mediated H3K4 methylation is required for proper Arabidopsis root growth and development publication-title: PLoS ONE doi: 10.1371/journal.pone.0056537 – volume: 78 start-page: 273 year: 2009 ident: B22 article-title: The biology of chromatin remodeling complexes publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.77.062706.153223 – volume: 1 start-page: 15089 year: 2015 ident: B51 article-title: PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis publication-title: Nat. Plants. doi: 10.1038/nplants.2015.89 – volume: 8 start-page: 867 year: 2017 ident: B70 article-title: Polycomb group proteins RING1A and RING1B regulate the vegetative phase transition in arabidopsis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00867 – volume: 58 start-page: 607 year: 2017 ident: B81 article-title: Basic pentacysteine proteins repress abscisic acid INSENSITIVE4 expression via direct recruitment of the polycomb-repressive complex 2 in arabidopsis root development publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcx006 – volume: 20 start-page: 541 year: 2010 ident: B59 article-title: Regulation of cell identity by plant Polycomb and trithorax group proteins publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2010.04.015 – volume: 108 start-page: 475 year: 2002 ident: B83 article-title: Cooperation between complexes that regulate chromatin structure and transcription publication-title: Cell doi: 10.1016/S0092-8674(02)00654-2 – volume: 33 start-page: 531 year: 2003 ident: B53 article-title: Structure and expression of the rice class-I type histone deacetylase genes OsHDAC1-3: OsHDAC1 overexpression in transgenic plants leads to increased growth rate and altered architecture publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01650.x – volume: 10 start-page: e0138276 year: 2015 ident: B54 article-title: A SWI/SNF chromatin remodelling protein controls cytokinin production through the regulation of chromatin architecture publication-title: PLoS ONE doi: 10.1371/journal.pone.0138276 – volume: 32 start-page: 2073 year: 2013 ident: B27 article-title: Arabidopsis MSI1 connects LHP1 to PRC2 complexes publication-title: EMBO J. doi: 10.1038/emboj.2013.145 – volume: 386 start-page: 44 year: 1997 ident: B39 article-title: A Polycomb-group gene regulates homeotic gene expression in Arabidopsis publication-title: Nature doi: 10.1038/386044a0 – volume: 53 start-page: 705 year: 2008 ident: B94 article-title: Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03370.x – volume: 29 start-page: 169 year: 2016 ident: B35 article-title: The age of multiplexity: recruitment and interactions of Polycomb complexes in plants publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.11.010 – volume: 6 start-page: 505 year: 2015 ident: B29 article-title: Function and regulation of transcription factors involved in root apical meristem and stem cell maintenance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00505 – volume: 105 start-page: 185 year: 2016 ident: B106 article-title: CRL6, a member of the CHD protein family, is required for crown root development in rice publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.04.022 – volume: 33 start-page: 576 year: 2015 ident: B92 article-title: Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression publication-title: Dev Cell doi: 10.1016/j.devcel.2015.04.024 – volume: 53 start-page: 1 year: 2010 ident: B93 article-title: Arabidopsis histone lysine methyltransferases publication-title: Adv. Bot. Res. doi: 10.1016/S0065-2296(10)53001-5 – volume: 22 start-page: 1825 year: 2012 ident: B56 article-title: DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.07.061 – volume: 1769 start-page: 316 year: 2007 ident: B85 article-title: Plant SET domain-containing proteins: structure, function and regulation publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbaexp.2007.04.003 – volume: 7 start-page: e1002014 year: 2011 ident: B8 article-title: Polycomb repressive complex 2 controls the embryo-to-seedling phase transition publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002014 – volume: 173 start-page: 1574 year: 2017 ident: B115 article-title: A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development publication-title: Plant Physiol. doi: 10.1104/pp.17.00014 – volume: 168 start-page: 1013 year: 2015 ident: B44 article-title: The Arabidopsis GAGA-binding factor basic pentacysteine6 Recruits the polycomb-repressive complex1 component like heterochromatin protein1 to GAGA DNA motifs publication-title: Plant Physiol. doi: 10.1104/pp.15.00409 – volume: 1819 start-page: 863 year: 2012 ident: B5 article-title: Evolution goes GAGA: GAGA binding proteins across kingdoms publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2012.02.022 – volume: 214 start-page: 30 year: 2001 ident: B30 article-title: Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana publication-title: Planta doi: 10.1007/s004250100598 – volume: 136 start-page: 3531 year: 2009 ident: B98 article-title: Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice publication-title: Development doi: 10.1242/dev.033902 – volume: 63 start-page: 615 year: 2012 ident: B1 article-title: Plant stem cell niches publication-title: Annu. Rev. Plant. Biol. doi: 10.1146/annurev-arplant-042811-105555 – volume: 59 start-page: 764 year: 2009 ident: B21 article-title: The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.03908.x – volume: 5 start-page: 56 year: 2000 ident: B38 article-title: Through form to function: root hair development and nutrient uptake publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(99)01551-4 – volume: 7 start-page: 977 year: 2014 ident: B40 article-title: A histone H3 lysine-27 methyltransferase complex represses lateral root formation in Arabidopsis thaliana publication-title: Mol. Plant doi: 10.1093/mp/ssu035 – volume: 119 start-page: 71 year: 1993 ident: B28 article-title: Cellular organisation of the Arabidopsis thaliana root publication-title: Development doi: 10.1242/dev.119.1.71 – volume: 159 start-page: 458.e1 year: 2014 ident: B49 article-title: SnapShot: histone modifications publication-title: Cell doi: 10.1016/j.cell.2014.09.037 – volume: 8 start-page: e24381 ident: B13 article-title: A PHD in histone language: on the role of histone methylation in plant responses to phosphate deficiency publication-title: Plant Signal. Behav. doi: 10.4161/psb.24381 – volume: 5 start-page: 495 year: 2014 ident: B104 article-title: Hypocotyl adventitious root organogenesis differs from lateral root development publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00495 – volume: 198 start-page: 709 ident: B14 article-title: ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis publication-title: New Phytol. doi: 10.1111/nph.12194 – volume: 27 start-page: 1670 year: 2015 ident: B111 article-title: The arabidopsis SWI2/SNF2 chromatin remodeling ATPase BRAHMA targets directly to PINs and is required for root stem cell niche maintenance publication-title: Plant Cell doi: 10.1105/tpc.15.00091 – volume: 37 start-page: 426 year: 2004 ident: B79 article-title: Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01971.x – volume: 30 start-page: 1939 year: 2011 ident: B46 article-title: The CW domain, a new histone recognition module in chromatin proteins publication-title: EMBO J. doi: 10.1038/emboj.2011.108 – volume: 29 start-page: 1088 year: 2017 ident: B118 article-title: Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem publication-title: Plant Cell doi: 10.1105/tpc.16.00908 – volume: 70 start-page: 33 year: 2013 ident: B48 article-title: Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.001 – volume: 28 start-page: 42 year: 2016 ident: B78 article-title: The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling publication-title: Plant Cell doi: 10.1105/tpc.15.00763 – volume: 124 start-page: 33 year: 1997 ident: B76 article-title: Organization and cell differentiation in lateral roots of Arabidopsis thaliana publication-title: Development doi: 10.1242/dev.124.1.33 – volume: 11 start-page: 204 year: 2010 ident: B64 article-title: Establishing, maintaining and modifying DNA methylation patterns in plants and animals publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2719 – volume: 25 start-page: 134 year: 2013 ident: B119 article-title: HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings publication-title: Plant Cell doi: 10.1105/tpc.112.096313 – volume: 160 start-page: 749 year: 2012 ident: B77 article-title: Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation publication-title: Plant Physiol. doi: 10.1104/pp.112.198341 – volume: 120 start-page: 2475 year: 1994 ident: B96 article-title: Embryonic origin of the Arabidopsis primary root and root meristem initials publication-title: Development doi: 10.1242/dev.120.9.2475 – volume: 17 start-page: 96 year: 2016 ident: B75 article-title: Identification of genes regulated by histone acetylation during root development in Populus trichocarpa publication-title: BMC Genomics doi: 10.1186/s12864-016-2407-x – volume: 171 start-page: 483 year: 2016 ident: B117 article-title: TOPOISOMERASE1alpha acts through two distinct mechanisms to regulate stele and columella stem cell maintenance publication-title: Plant Physiol. doi: 10.1104/pp.15.01754 – volume: 13 start-page: 843 year: 2001 ident: B12 article-title: Auxin transport promotes Arabidopsis lateral root initiation publication-title: Plant Cell doi: 10.1105/tpc.13.4.843 – volume: 15 start-page: 523 year: 2012 ident: B4 article-title: Dynamic regulation of Polycomb group activity during plant development publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2012.09.006 – volume: 14 start-page: 76 year: 2014 ident: B34 article-title: Over-expression of arabidopsis AtCHR23 chromatin remodeling ATPase results in increased variability of growth and gene expression publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-14-76 – volume: 26 start-page: 2803 year: 2014 ident: B72 article-title: DNA topoisomerase I affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.114.124941 – volume: 28 start-page: 2616 year: 2016 ident: B25 article-title: Transcriptional regulation of arabidopsis polycomb repressive complex 2 coordinates cell-type proliferation and differentiation publication-title: Plant Cell doi: 10.1105/tpc.15.00744 – volume: 57 start-page: 1689 year: 2016 ident: B20 article-title: HSI2 Repressor recruits MED13 and HDA6 to down-regulate seed maturation gene expression directly during arabidopsis early seedling growth publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw095 – volume: 128 start-page: 4847 year: 2001 ident: B37 article-title: Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. publication-title: Development doi: 10.1242/dev.128.23.4847 – volume: 23 start-page: 1047 year: 2011 ident: B2 article-title: The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root publication-title: Plant Cell doi: 10.1105/tpc.111.083352 – volume: 48 start-page: 380 year: 2006 ident: B36 article-title: PICKLE is required for solitary-root/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02882.x – volume: 13 start-page: 654 year: 2010 ident: B10 article-title: Developmental control of endocycles and cell growth in plants publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2010.10.006 – volume: 32 start-page: 42 year: 2016 ident: B65 article-title: Lateral Thinking: how histone modifications regulate gene expression publication-title: Trends Genet. doi: 10.1016/j.tig.2015.10.007 – volume: 19 start-page: 489 year: 2018 ident: B114 article-title: Dynamics and function of DNA methylation in plants publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0016-z – volume: 29 start-page: 2183 year: 2017 ident: B68 article-title: Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2-OXIDASE2 expression to control arabidopsis root meristem cell number publication-title: Plant Cell doi: 10.1105/tpc.17.00366 – volume: 14 start-page: 399 year: 2009 ident: B91 article-title: Arabidopsis lateral root development: an emerging story publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.05.002 – reference: 19820181 - Development. 2009 Nov;136(21):3531-42 – reference: 11762168 - Planta. 2001 Nov;214(1):30-6 – reference: 18005227 - Plant J. 2008 Mar;53(5):705-16 – reference: 26704082 - Trends Genet. 2016 Jan;32(1):42-56 – reference: 20703330 - Adv Bot Res. 2010 Jan 1;53:1-22 – reference: 20684877 - Curr Opin Genet Dev. 2010 Oct;20(5):541-7 – reference: 26847576 - BMC Genomics. 2016 Feb 04;17:96 – reference: 15955927 - Plant Physiol. 2005 Jun;138(2):636-40 – reference: 25303536 - Cell. 2014 Oct 9;159(2):458-458.e1 – reference: 9006065 - Development. 1997 Jan;124(1):33-44 – reference: 11882541 - EMBO Rep. 2002 Mar;3(3):224-9 – reference: 17450124 - Nature. 2007 May 10;447(7141):213-7 – reference: 23362207 - Plant Cell. 2013 Jan;25(1):134-48 – reference: 21060339 - Cell Res. 2010 Dec;20(12):1332-44 – reference: 23929338 - Nat Biotechnol. 2013 Aug;31(8):686-8 – reference: 25991732 - Plant Cell. 2015 Jun;27(6):1670-80 – reference: 22425673 - Biochim Biophys Acta. 2012 Aug;1819(8):863-8 – reference: 17010112 - Plant J. 2006 Nov;48(3):380-9 – reference: 21522130 - EMBO J. 2011 May 18;30(10):1939-52 – reference: 21423668 - PLoS Genet. 2011 Mar;7(3):e1002014 – reference: 23209114 - Plant Cell. 2012 Dec;24(12):4892-906 – reference: 25034019 - Plant Physiol. 2014 Oct;166(2):632-43 – reference: 10570159 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13839-44 – reference: 24666886 - BMC Plant Biol. 2014 Mar 25;14:76 – reference: 19228333 - Plant J. 2009 Jun;58(6):1016-27 – reference: 28487409 - Plant Cell. 2017 May;29(5):1088-1104 – reference: 22837358 - Plant Physiol. 2012 Oct;160(2):749-62 – reference: 23531693 - Plant Signal Behav. 2013 Jun;8(6):e24381 – reference: 22451926 - Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5773-8 – reference: 25631790 - Nat Commun. 2015 Jan 29;6:6003 – reference: 23432399 - New Phytol. 2013 May;198(3):709-20 – reference: 29784956 - Nat Rev Mol Cell Biol. 2018 Aug;19(8):489-506 – reference: 25205583 - J Exp Bot. 2014 Dec;65(22):6373-84 – reference: 26826786 - Curr Opin Plant Biol. 2016 Feb;29:169-78 – reference: 26025051 - Plant Physiol. 2015 Jul;168(3):1013-24 – reference: 23770592 - Plant Physiol Biochem. 2013 Sep;70:33-42 – reference: 24758373 - BMC Plant Biol. 2014 Apr 23;14:105 – reference: 12581311 - Plant J. 2003 Feb;33(3):531-41 – reference: 24711289 - Mol Plant. 2014 Jun;7(6):977-988 – reference: 18024558 - Plant Physiol. 2008 Jan;146(1):149-61 – reference: 11283340 - Plant Cell. 2001 Apr;13(4):843-52 – reference: 10664614 - Trends Plant Sci. 2000 Feb;5(2):56-60 – reference: 28855334 - Plant Cell. 2017 Sep;29(9):2183-2196 – reference: 21490956 - PLoS Genet. 2011 Apr;7(4):e1002040 – reference: 16738128 - Nucleic Acids Res. 2006 May 31;34(10):2887-905 – reference: 24465219 - PLoS Genet. 2014 Jan;10(1):e1004091 – reference: 23820978 - Plant Cell Rep. 2013 Oct;32(10):1625-36 – reference: 19559642 - Trends Plant Sci. 2009 Jul;14(7):399-408 – reference: 19680533 - PLoS Genet. 2009 Aug;5(8):e1000605 – reference: 23062007 - Plant J. 2012 Dec;72(6):1000-14 – reference: 25324849 - Front Plant Sci. 2014 Sep 29;5:495 – reference: 16176989 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14469-74 – reference: 14731261 - Plant J. 2004 Feb;37(3):426-38 – reference: 22940470 - Curr Biol. 2012 Oct 9;22(19):1825-30 – reference: 16957776 - EMBO J. 2006 Oct 4;25(19):4638-49 – reference: 23810531 - Curr Biol. 2013 Jul 22;23(14):1324-9 – reference: 26689639 - Plant Signal Behav. 2016;11(2):e1131373 – reference: 26969721 - Plant Physiol. 2016 May;171(1):483-93 – reference: 19097900 - Curr Biol. 2008 Dec 23;18(24):1966-71 – reference: 18713398 - J Integr Plant Biol. 2008 Jul;50(7):875-85 – reference: 28007029 - BMC Biol. 2016 Dec 22;14(1):112 – reference: 26729480 - Planta. 2016 Apr;243(4):825-46 – reference: 29475938 - Plant Cell. 2018 Mar;30(3):600-619 – reference: 28138058 - Plant Cell Physiol. 2017 Mar 1;58(3):607-621 – reference: 26398683 - PLoS One. 2015 Sep 23;10(9):e0138934 – reference: 22404469 - Annu Rev Plant Biol. 2012;63:615-36 – reference: 27243651 - Nat Plants. 2016 Apr 29;2(5):16058 – reference: 21441433 - Plant Cell. 2011 Mar;23(3):1047-60 – reference: 25977075 - Plant J. 2015 Jul;83(1):62-77 – reference: 23287718 - Science. 2013 Feb 15;339(6121):819-23 – reference: 18786849 - Trends Plant Sci. 2008 Oct;13(10):557-65 – reference: 26457678 - PLoS One. 2015 Oct 12;10(10):e0138276 – reference: 27650334 - Plant Cell. 2016 Oct;28(10):2616-2631 – reference: 28057895 - Plant Physiol. 2017 Feb;173(2):1463-1474 – reference: 17362198 - Annu Rev Biochem. 2007;76:75-100 – reference: 17158584 - Plant Physiol. 2007 Feb;143(2):902-11 – reference: 21037105 - Plant Cell. 2010 Oct;22(10):3232-48 – reference: 17921315 - Plant Cell. 2007 Oct;19(10):2975-87 – reference: 11909519 - Cell. 2002 Feb 22;108(4):475-87 – reference: 12032298 - Proc Natl Acad Sci U S A. 2002 May 28;99(11):7420-5 – reference: 25070639 - Plant Cell. 2014 Jul;26(7):2803-17 – reference: 19453457 - Plant J. 2009 Sep;59(5):764-76 – reference: 27335347 - Plant Cell Physiol. 2016 Aug;57(8):1689-706 – reference: 9305837 - Nature. 1997 Sep 18;389(6648):251-60 – reference: 26704384 - Plant Cell. 2016 Jan;28(1):42-54 – reference: 27108205 - Plant Physiol Biochem. 2016 Aug;105:185-194 – reference: 11731464 - Development. 2001 Dec;128(23):4847-58 – reference: 18835563 - J Mol Biol. 2009 Jan 9;385(1):45-50 – reference: 23778966 - EMBO J. 2013 Jul 17;32(14):2073-85 – reference: 20933424 - Curr Biol. 2010 Oct 26;20(20):1853-9 – reference: 12466527 - Nucleic Acids Res. 2002 Dec 1;30(23):5036-55 – reference: 27250255 - Nat Plants. 2015 Jun 29;1:15089 – reference: 12615937 - Plant Cell. 2003 Mar;15(3):626-38 – reference: 9052779 - Nature. 1997 Mar 6;386(6620):44-51 – reference: 22999383 - Curr Opin Plant Biol. 2012 Nov;15(5):523-9 – reference: 21094078 - Curr Opin Plant Biol. 2010 Dec;13(6):654-60 – reference: 26028217 - Dev Cell. 2015 Jun 8;33(5):576-88 – reference: 23911317 - Cell. 2013 Aug 1;154(3):490-503 – reference: 28596781 - Front Plant Sci. 2017 May 24;8:867 – reference: 21347358 - PLoS One. 2011 Feb 10;6(2):e16070 – reference: 17512990 - Biochim Biophys Acta. 2007 May-Jun;1769(5-6):316-29 – reference: 17320510 - Cell. 2007 Feb 23;128(4):735-45 – reference: 8275865 - Development. 1993 Sep;119(1):71-84 – reference: 23362208 - Plant Cell. 2013 Jan;25(1):257-69 – reference: 27819666 - Nat Genet. 2016 Dec;48(12):1527-1534 – reference: 16821138 - Chromosome Res. 2006;14(4):433-49 – reference: 21530367 - Curr Opin Plant Biol. 2011 Jun;14(3):310-7 – reference: 19355820 - Annu Rev Biochem. 2009;78:273-304 – reference: 28115583 - Plant Physiol. 2017 Mar;173(3):1574-1582 – reference: 29234344 - Front Plant Sci. 2017 Nov 28;8:2041 – reference: 23483879 - PLoS One. 2013;8(2):e56537 – reference: 19376933 - Plant Cell. 2009 Apr;21(4):1070-9 – reference: 26143251 - Plant Physiol. 2015 Aug;168(4):1448-58 – reference: 18948541 - Science. 2008 Oct 24;322(5901):594-7 – reference: 20142834 - Nat Rev Genet. 2010 Mar;11(3):204-20 – reference: 11102443 - J Biol Chem. 2001 Mar 2;276(9):6817-24 – reference: 23123304 - Trends Plant Sci. 2013 May;18(5):237-43 – reference: 26217359 - Front Plant Sci. 2015 Jul 06;6:505 – reference: 17320508 - Cell. 2007 Feb 23;128(4):707-19 |
SSID | ssj0000500997 |
Score | 2.293136 |
SecondaryResourceType | review_article |
Snippet | Plant is endowed with sessile habit and nutrient acquisition mainly through the root organ, which also provides an excellent model to study stem cell fate and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1509 |
SubjectTerms | chromatin remodeling chromatin structure histone modification Plant Science Polycomb SDG family TrxG |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPHgRf1t_UcGDl25NkybN0YljCHoYDnYrSZqiMFqR7uB_73ttN1pRvHht0yb9XpPvezT9HiE3GdavjpkIUEsH3MBrrELGg4w7pyJh80jg38hPz2I654-LeNEp9YV7whp74Aa4UcZiqZzmOnRA9jLXzjGtDY1zExouLa6-wHmdZKpx9UbpIxsvH8jC1Ch_X6I7N02GmOOrHg3Vbv0_SczvOyU71DPZI7utZvTvmrHuky1XHJDtcQm67vOQcPS3Rd1ZBGOgpMyfNeXlAXC_zH2sSlT5s7Ks_M4GoSMynzy83E-DthZCYHmsqkAILoGubZwkGTXcwEMkQsjIaqGtstRRaUAsJZSaPGTK1rVbaA4MrmESC8uOyaAoC3dK_MRGDC6LE7gJN5IaloOKyDLBtLJOZR4ZrqFJbWsUjvUqlikkDIhlilimiGVaY-mR280F741Hxu9Nx4j1phmaW9cHIORpG_L0r5B75HodqRQmA37h0IUrV9ARqJcYVi0lPXLSRG7TFXB1IphgHpG9mPbG0j9TvL3WhtuQZIJMY2f_MfhzsoNwIP1RcUEG1cfKXYKuqcxV_Qp_Aear9fM priority: 102 providerName: Directory of Open Access Journals |
Title | Chromatin-Based Regulation of Plant Root Development |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30386363 https://www.proquest.com/docview/2129530797 https://pubmed.ncbi.nlm.nih.gov/PMC6198463 https://doaj.org/article/d3579ea4a0e5457faee3aab15fb0b47c |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3PT9swFH4aHUJcpsEYZGxVkDjskq6OHTs-TGid-CEkOCAq9RbZjgNIVQIlSPDf770kLXQqlxwS24nfs_2-lzjfB3CYk351wmVEWDoSFoexHnIR5cJ7HUtXxJL-Rr64lGdjcT5JJq9yQJ0BH1emdqQnNZ5NB88PL0c44X9Txonx9ldxPyXibZYOKH3Xa_ARw5IiOYOLDuu3RN-EhhqxFSlFJGQ8aal-VrWxCRu4tqeSS74UsBpe_1Vg9P89lW-C1Mln-NShy_BPOxy24IMvt2F9VCECfPkCgphwCaGW0QiDVx5etUL06JqwKkLSL6rDq6qqwzdbiXZgfHJ8_fcs6lQTIicSXUfYOYWB3SVpmjMrLPYnlVLFzkjjtGOeKYuwKmXMFkOuXaPywgqM9Qanu3T8K_TKqvR7EKYu5lgtSbERYRWzvEC8keeSG-28zgMYzE2TuY5SnJQtphmmFmTWjMyakVmzxqwB_FxUuG_ZNN4vOiJbL4oRDXZzoprdZN2synKeKO2NMEOPSFAVxntujGVJYYdWKBfAwdxTGU4b-hZiSl894Y0Q5yS4vmkVwG7rucWt5p4PQC35dOlZlq-Ud7cNNTemowjo-Ld329yHTeojRT8mv0Ovnj35HwhrattvXgfg8XTC-s3Q_QdRs_Lu |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromatin-Based+Regulation+of+Plant+Root+Development&rft.jtitle=Frontiers+in+plant+science&rft.au=Chen%2C+Dong-Hong&rft.au=Huang%2C+Yong&rft.au=Jiang%2C+Changhua&rft.au=Si%2C+Jin-Ping&rft.date=2018-10-16&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=9&rft.spage=1509&rft_id=info:doi/10.3389%2Ffpls.2018.01509&rft_id=info%3Apmid%2F30386363&rft.externalDocID=30386363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |