Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines
Abstract Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using seve...
Saved in:
Published in | International immunology Vol. 35; no. 5; pp. 213 - 220 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
UK
Oxford University Press
08.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines.
The immune responses triggered by COVID-19 mRNA vaccines
Graphical abstract
Graphical Abstract |
---|---|
AbstractList | Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines.Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines. Abstract Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines. The immune responses triggered by COVID-19 mRNA vaccines Graphical abstract Graphical Abstract Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines. |
Author | Matsumura, Takayuki Takahashi, Yoshimasa Takano, Tomohiro |
Author_xml | – sequence: 1 givenname: Takayuki orcidid: 0000-0003-1760-3484 surname: Matsumura fullname: Matsumura, Takayuki email: matt@niid.go.jp – sequence: 2 givenname: Tomohiro surname: Takano fullname: Takano, Tomohiro – sequence: 3 givenname: Yoshimasa surname: Takahashi fullname: Takahashi, Yoshimasa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36566501$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtLxDAQh4OsuA-9epQe9dDdpOkrx2V9LSwuiHrxUNJkqpE2qU0q7n9vl64PBPE0w8z3m4FvjAbaaEDomOApwYzOlHaqqmbynQsch3toRMIY-wFNksGPfojG1r5gjGnA6AEa0jiK4wiTEXpcVlWrwWvA1kZbsF1XcgfSc8Zzz-Cp7d48gVZCuY3HtewILtz3yBTeYv2wPPcJ86rbm7n3xoVQGuwh2i94aeFoVyfo_vLibnHtr9ZXy8V85YswYs6PCSsSJjAmAgepTCORFmlcMEEigCBPc4ITFkYBZlIS3s0gjERBpUzykJIwoBN02t-tG_PagnVZpayAsuQaTGuzIIlSQgIa0w492aFtXoHM6kZVvNlkn0I6YNoDojHWNlB8IQRnW-NZbzzbGe8C4a9AJ4U7ZbRruCr_jp31MdPW_734AFHZlj0 |
CitedBy_id | crossref_primary_10_1111_jdv_19401 crossref_primary_10_3390_biom15030359 crossref_primary_10_1093_bjrcr_uaae048 crossref_primary_10_3390_ph16081088 crossref_primary_10_3390_vaccines12070802 crossref_primary_10_3389_fimmu_2024_1403784 crossref_primary_10_1248_bpb_b23_00689 crossref_primary_10_3389_fpubh_2024_1429265 crossref_primary_10_1089_mab_2023_29016_editorial crossref_primary_10_3389_fcimb_2023_1233148 crossref_primary_10_3390_vaccines11081334 crossref_primary_10_1038_s41598_025_85234_5 crossref_primary_10_1002_advs_202307541 |
Cites_doi | 10.1126/science.8097338 10.1038/ni1254 10.1056/NEJMoa2109072 10.1056/NEJMoa2114114 10.1038/mt.2008.200 10.1016/j.it.2015.07.004 10.1038/d41586-020-01221-y 10.1038/s41590-022-01163-9 10.1016/j.ymthe.2017.08.006 10.3389/fimmu.2017.00943 10.3390/vaccines9080848 10.1038/d41573-020-00073-5 10.1073/pnas.1811276115 10.1038/s41586-021-04387-1 10.1016/j.ymthe.2022.07.007 10.1038/d41573-020-00151-8 10.1073/pnas.2207841119 10.1016/j.xcrm.2022.100631 10.3390/vaccines9070742 10.1016/j.celrep.2019.11.042 10.1038/ni1138 10.1016/j.cell.2021.12.046 10.1038/s41590-022-01160-y 10.1056/NEJMoa2034577 10.1038/s41586-021-03324-6 10.1126/scitranslmed.abm2311 10.1038/s41586-021-04385-3 10.1038/ni.1688 10.1038/s41586-021-03693-y 10.1126/sciimmunol.abn8590 10.1073/pnas.1610630114 10.1002/jcla.23937 10.1038/s41586-021-04389-z 10.1016/S1473-3099(21)00224-3 10.1038/s41577-021-00657-1 10.1016/j.immuni.2005.06.008 10.1038/s41586-022-04399-5 10.1038/s41564-022-01123-x 10.1016/j.chom.2022.01.003 10.3389/fimmu.2021.645210 10.1016/j.cell.2021.05.039 10.1016/j.immuni.2021.08.001 10.1126/sciimmunol.abl5344 10.1016/j.immuni.2020.11.009 10.1016/j.cell.2022.01.015 10.1016/j.immuni.2020.07.019 10.1038/s41586-022-04778-y 10.1038/s41586-020-03041-6 10.1038/s41591-021-01556-7 10.1016/j.vaccine.2019.02.015 10.1038/s41586-022-04527-1 10.1016/j.immuni.2015.11.012 10.1016/j.vaccine.2021.05.063 10.1084/jem.20171450 10.1038/s41590-022-01168-4 10.1038/s41591-021-01377-8 10.1126/science.aag3009 10.1371/journal.pbio.3001643 10.3390/vaccines8010004 10.1093/intimm/dxac031 10.1038/s41586-021-03653-6 10.1016/j.immuni.2021.11.001 10.1126/science.abm0829 10.1016/j.immuni.2020.06.002 10.1001/jama.2021.15072 10.1038/s41541-019-0132-6 10.1038/s41551-019-0378-3 10.1016/j.celrep.2019.01.104 10.1038/s41467-022-32989-4 10.1016/j.cell.2022.04.009 10.1016/j.xcrm.2022.100603 10.1016/j.celrep.2018.02.044 10.1016/j.xcrm.2021.100355 10.1016/j.molmed.2022.04.007 10.1016/j.immuni.2017.11.001 10.1056/NEJMoa2110475 10.1016/j.cell.2012.11.048 10.1126/science.aah4573 10.1038/s41573-021-00283-5 10.1016/j.celrep.2021.109504 10.1084/jem.177.4.1199 10.1038/s41551-021-00786-x 10.1016/j.cell.2021.03.036 10.1016/j.clim.2021.108786 10.1038/s41586-021-03738-2 10.1038/s41586-021-03791-x 10.1038/s41586-021-04388-0 10.1056/NEJMoa2035389 10.1056/NEJMoa2114228 10.1056/NEJMoa2027906 10.1038/s41586-021-04060-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/intimm/dxac064 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2377 |
EndPage | 220 |
ExternalDocumentID | 36566501 10_1093_intimm_dxac064 10.1093/intimm/dxac064 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -E4 .2P .55 .GJ .I3 .ZR 0R~ 18M 1TH 29J 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6.Y 70D A8Z AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABEJV ABEUO ABIXL ABJNI ABKDP ABMNT ABNHQ ABNKS ABOCM ABPTD ABQLI ABQNK ABQTQ ABSAR ABSMQ ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACIWK ACMRT ACPQN ACPRK ACUFI ACUTJ ACUTO ACYHN ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFXAL AFXEN AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AGUTN AHMBA AHXPO AI. AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBD EBS EE~ EIHJH EJD ELUNK EMOBN ENERS ESTFP F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK FRP GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IH2 IOX J21 J8S JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 MBLQV MBTAY MHKGH N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO SV3 TCN TEORI TJX TLC TMA TR2 UDS VH1 W8F WOQ X7H X7M Y6R YAYTL YHZ YKOAZ YXANX ZKX ~91 AAYXX ABDFA ABGNP ABPQP ABVGC ABXZS ADNBA AEMQT AGORE AHGBF AHMMS AJBYB AJNCP ALXQX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c459t-619f79c001c028d85c8f86f9c15ee2b8b107945209dd1a5eee45cf3dd7b431423 |
ISSN | 1460-2377 |
IngestDate | Fri Jul 11 10:59:12 EDT 2025 Thu Apr 03 07:03:18 EDT 2025 Tue Jul 01 00:40:41 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Tue Nov 26 05:59:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | acquired immunity adverse event lipid nanoparticle SARS-CoV-2 spike protein innate immunity |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-619f79c001c028d85c8f86f9c15ee2b8b107945209dd1a5eee45cf3dd7b431423 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0003-1760-3484 |
OpenAccessLink | https://academic.oup.com/intimm/advance-article-pdf/doi/10.1093/intimm/dxac064/49118998/dxac064.pdf |
PMID | 36566501 |
PQID | 2758112363 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2758112363 pubmed_primary_36566501 crossref_primary_10_1093_intimm_dxac064 crossref_citationtrail_10_1093_intimm_dxac064 oup_primary_10_1093_intimm_dxac064 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-08 |
PublicationDateYYYYMMDD | 2023-05-08 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | UK |
PublicationPlace_xml | – name: UK – name: England |
PublicationTitle | International immunology |
PublicationTitleAlternate | Int Immunol |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Takano (2023050806120022800_CIT0070) 2022; 3 Bevers (2023050806120022800_CIT0092) 2022; 30 Liang (2023050806120022800_CIT0007) 2017; 25 Morales-Nunez (2023050806120022800_CIT0064) 2021; 9 Trougakos (2023050806120022800_CIT0066) 2022; 28 Kotaki (2023050806120022800_CIT0050) 2022; 7 Hoffmann (2023050806120022800_CIT0032) 2021; 184 Alameh (2023050806120022800_CIT0044) 2021; 54 Tarke (2023050806120022800_CIT0055) 2022; 185 Wimmers (2023050806120022800_CIT0072) 2021; 184 Villani (2023050806120022800_CIT0085) 2017; 356 Xu (2023050806120022800_CIT0005) 2022; 34 World_Health_Organization (2023050806120022800_CIT0006) 2022 Jung (2023050806120022800_CIT0056) 2022; 7 Zhang (2023050806120022800_CIT0084) 2017; 114 Bergamaschi (2023050806120022800_CIT0069) 2021; 36 Kim (2023050806120022800_CIT0045) 2022; 604 Cho (2023050806120022800_CIT0048) 2021; 600 Kaplonek (2023050806120022800_CIT0020) 2022; 14 Patone (2023050806120022800_CIT0025) 2021; 27 Burny (2023050806120022800_CIT0067) 2017; 8 Chen (2023050806120022800_CIT0089) 2022; 119 Wang (2023050806120022800_CIT0047) 2021; 592 McMahan (2023050806120022800_CIT0059) 2021; 590 Polack (2023050806120022800_CIT0014) 2020; 383 Han (2023050806120022800_CIT0004) 2021; 35 Herve (2023050806120022800_CIT0026) 2019; 4 Burny (2023050806120022800_CIT0068) 2019; 37 Sago (2023050806120022800_CIT0091) 2018; 115 Martin-Fontecha (2023050806120022800_CIT0077) 2004; 5 Manetti (2023050806120022800_CIT0080) 1993; 177 Natrajan (2023050806120022800_CIT0074) 2019; 8 Cele (2023050806120022800_CIT0033) 2022; 602 Li (2023050806120022800_CIT0060) 2022; 23 Painter (2023050806120022800_CIT0018) 2021; 54 Tahtinen (2023050806120022800_CIT0062) 2022; 23 Sahin (2023050806120022800_CIT0015) 2021; 595 See (2023050806120022800_CIT0086) 2017; 356 Planas (2023050806120022800_CIT0037) 2022; 602 Bergwerk (2023050806120022800_CIT0040) 2021; 385 Takano (2023050806120022800_CIT0075) 2022 Dejnirattisai (2023050806120022800_CIT0038) 2022; 185 Mantus (2023050806120022800_CIT0053) 2022; 3 Alcantara-Hernandez (2023050806120022800_CIT0087) 2017; 47 Kuse (2023050806120022800_CIT0057) 2022; 13 Rosenbaum (2023050806120022800_CIT0093) 2021; 12 Guerrera (2023050806120022800_CIT0054) 2021; 6 Goel (2023050806120022800_CIT0049) 2021; 374 Goel (2023050806120022800_CIT0046) 2022; 185 Rydyznski (2023050806120022800_CIT0078) 2015; 36 Arunachalam (2023050806120022800_CIT0017) 2021; 596 Cao (2023050806120022800_CIT0034) 2022; 602 Laidlaw (2023050806120022800_CIT0043) 2022; 22 Menni (2023050806120022800_CIT0063) 2021; 21 Thanh Le (2023050806120022800_CIT0002) 2020; 19 Kariko (2023050806120022800_CIT0029) 2008; 16 Muecksch (2023050806120022800_CIT0052) 2022; 607 Lederer (2023050806120022800_CIT0011) 2020; 53 Syenina (2023050806120022800_CIT0065) 2022; 20 Turner (2023050806120022800_CIT0012) 2021; 596 Garcia-Grimshaw (2023050806120022800_CIT0022) 2021; 229 Chemaitelly (2023050806120022800_CIT0058) 2021; 385 Wu (2023050806120022800_CIT0061) 2013; 152 Bourdely (2023050806120022800_CIT0079) 2020; 53 Pardi (2023050806120022800_CIT0009) 2018; 215 Hsieh (2023050806120022800_CIT0081) 1993; 260 Laczko (2023050806120022800_CIT0010) 2020; 53 Kariko (2023050806120022800_CIT0028) 2005; 23 Terreri (2023050806120022800_CIT0051) 2022; 30 Nakaya (2023050806120022800_CIT0071) 2015; 43 Lokugamage (2023050806120022800_CIT0090) 2021; 5 Callaway (2023050806120022800_CIT0001) 2020; 580 Liu (2023050806120022800_CIT0036) 2022; 602 Querec (2023050806120022800_CIT0073) 2009; 10 Earle (2023050806120022800_CIT0041) 2021; 39 Goldberg (2023050806120022800_CIT0042) 2021; 385 Walsh (2023050806120022800_CIT0013) 2020; 383 Farsakoglu (2023050806120022800_CIT0076) 2019; 26 Harrington (2023050806120022800_CIT0082) 2005; 6 Liu (2023050806120022800_CIT0016) 2021; 596 Carreno (2023050806120022800_CIT0035) 2022; 602 Barda (2023050806120022800_CIT0023) 2021; 385 Le (2023050806120022800_CIT0003) 2020; 19 Kobiyama (2023050806120022800_CIT0030) 2022; 23 Chaudhary (2023050806120022800_CIT0027) 2021; 20 Lindsay (2023050806120022800_CIT0008) 2019; 3 Klein (2023050806120022800_CIT0024) 2021; 326 Revu (2023050806120022800_CIT0083) 2018; 22 Tarke (2023050806120022800_CIT0019) 2021; 2 Khoury (2023050806120022800_CIT0039) 2021; 27 Leylek (2023050806120022800_CIT0088) 2019; 29 Baden (2023050806120022800_CIT0021) 2021; 384 Rijkers (2023050806120022800_CIT0031) 2021; 9 |
References_xml | – volume: 260 start-page: 547 year: 1993 ident: 2023050806120022800_CIT0081 article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages publication-title: Science doi: 10.1126/science.8097338 – volume: 6 start-page: 1123 year: 2005 ident: 2023050806120022800_CIT0082 article-title: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages publication-title: Nat. Immunol. doi: 10.1038/ni1254 – volume: 385 start-page: 1474 year: 2021 ident: 2023050806120022800_CIT0040 article-title: Covid-19 breakthrough infections in vaccinated health care workers publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2109072 – volume: 385 start-page: e83 year: 2021 ident: 2023050806120022800_CIT0058 article-title: Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2114114 – volume: 16 start-page: 1833 year: 2008 ident: 2023050806120022800_CIT0029 article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability publication-title: Mol. Ther. doi: 10.1038/mt.2008.200 – volume: 36 start-page: 536 year: 2015 ident: 2023050806120022800_CIT0078 article-title: Boosting vaccine efficacy the natural (killer) way publication-title: Trends Immunol. doi: 10.1016/j.it.2015.07.004 – volume: 580 start-page: 576 year: 2020 ident: 2023050806120022800_CIT0001 article-title: The race for coronavirus vaccines: a graphical guide publication-title: Nature doi: 10.1038/d41586-020-01221-y – volume: 23 start-page: 543 year: 2022 ident: 2023050806120022800_CIT0060 article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01163-9 – volume: 25 start-page: 2635 year: 2017 ident: 2023050806120022800_CIT0007 article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.08.006 – volume: 8 start-page: 943 year: 2017 ident: 2023050806120022800_CIT0067 article-title: Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans publication-title: Front. Immunol. doi: 10.3389/fimmu.2017.00943 – volume: 9 start-page: 848 year: 2021 ident: 2023050806120022800_CIT0031 article-title: Antigen presentation of mRNA-based and virus-vectored SARS-CoV-2 vaccines publication-title: Vaccines (Basel) doi: 10.3390/vaccines9080848 – volume: 19 start-page: 305 year: 2020 ident: 2023050806120022800_CIT0002 article-title: The COVID-19 vaccine development landscape publication-title: Nat. Rev. Drug Discov. doi: 10.1038/d41573-020-00073-5 – volume: 115 start-page: E9944 year: 2018 ident: 2023050806120022800_CIT0091 article-title: High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing publication-title: Proc. Natl Acad. Sci. U. S. A. doi: 10.1073/pnas.1811276115 – volume: 602 start-page: 654 year: 2022 ident: 2023050806120022800_CIT0033 article-title: Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization publication-title: Nature doi: 10.1038/s41586-021-04387-1 – volume: 30 start-page: 3078 year: 2022 ident: 2023050806120022800_CIT0092 article-title: mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.07.007 – volume: 19 start-page: 667 year: 2020 ident: 2023050806120022800_CIT0003 article-title: Evolution of the COVID-19 vaccine development landscape publication-title: Nat. Rev. Drug Discov. doi: 10.1038/d41573-020-00151-8 – volume: 119 start-page: e2207841119 year: 2022 ident: 2023050806120022800_CIT0089 article-title: Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response publication-title: Proc. Natl Acad. Sci. U. S. A. doi: 10.1073/pnas.2207841119 – volume: 3 start-page: 100631 year: 2022 ident: 2023050806120022800_CIT0070 article-title: Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100631 – year: 2022 ident: 2023050806120022800_CIT0075 article-title: Heterologous booster immunization with SARS-CoV-2 spike protein after mRNA vaccine elicits durable and broad antibody responses publication-title: Res Sq. – volume: 9 start-page: 742 year: 2021 ident: 2023050806120022800_CIT0064 article-title: Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 infection publication-title: Vaccines (Basel) doi: 10.3390/vaccines9070742 – volume: 29 start-page: 3736 year: 2019 ident: 2023050806120022800_CIT0088 article-title: Integrated cross-species analysis identifies a conserved transitional dendritic cell population publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.11.042 – volume: 5 start-page: 1260 year: 2004 ident: 2023050806120022800_CIT0077 article-title: Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming publication-title: Nat. Immunol. doi: 10.1038/ni1138 – volume: 185 start-page: 467 year: 2022 ident: 2023050806120022800_CIT0038 article-title: SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses publication-title: Cell doi: 10.1016/j.cell.2021.12.046 – volume: 23 start-page: 532 year: 2022 ident: 2023050806120022800_CIT0062 article-title: IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01160-y – volume: 383 start-page: 2603 year: 2020 ident: 2023050806120022800_CIT0014 article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 – volume: 592 start-page: 616 year: 2021 ident: 2023050806120022800_CIT0047 article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants publication-title: Nature doi: 10.1038/s41586-021-03324-6 – volume: 14 start-page: eabm2311 year: 2022 ident: 2023050806120022800_CIT0020 article-title: mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abm2311 – volume: 602 start-page: 657 year: 2022 ident: 2023050806120022800_CIT0034 article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-04385-3 – volume: 10 start-page: 116 year: 2009 ident: 2023050806120022800_CIT0073 article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans publication-title: Nat. Immunol. doi: 10.1038/ni.1688 – volume: 596 start-page: 273 year: 2021 ident: 2023050806120022800_CIT0016 article-title: BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants publication-title: Nature doi: 10.1038/s41586-021-03693-y – volume: 7 start-page: eabn8590 year: 2022 ident: 2023050806120022800_CIT0050 article-title: SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abn8590 – volume: 114 start-page: 1988 year: 2017 ident: 2023050806120022800_CIT0084 article-title: A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes publication-title: Proc. Natl Acad. Sci. U. S. A. doi: 10.1073/pnas.1610630114 – volume: 35 start-page: e23937 year: 2021 ident: 2023050806120022800_CIT0004 article-title: Analysis of COVID-19 vaccines: Types, thoughts, and application publication-title: J. Clin. Lab. Anal. doi: 10.1002/jcla.23937 – volume: 602 start-page: 671 year: 2022 ident: 2023050806120022800_CIT0037 article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization publication-title: Nature doi: 10.1038/s41586-021-04389-z – volume: 21 start-page: 939 year: 2021 ident: 2023050806120022800_CIT0063 article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(21)00224-3 – volume: 22 start-page: 7 year: 2022 ident: 2023050806120022800_CIT0043 article-title: The germinal centre B cell response to SARS-CoV-2 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00657-1 – volume: 23 start-page: 165 year: 2005 ident: 2023050806120022800_CIT0028 article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA publication-title: Immunity doi: 10.1016/j.immuni.2005.06.008 – volume: 602 start-page: 682 year: 2022 ident: 2023050806120022800_CIT0035 article-title: Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron publication-title: Nature doi: 10.1038/s41586-022-04399-5 – volume: 7 start-page: 909 year: 2022 ident: 2023050806120022800_CIT0056 article-title: BNT162b2-induced memory T cells respond to the Omicron variant with preserved polyfunctionality publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01123-x – volume: 30 start-page: 400 year: 2022 ident: 2023050806120022800_CIT0051 article-title: Persistent B cell memory after SARS-CoV-2 vaccination is functional during breakthrough infections publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.01.003 – volume: 12 start-page: 645210 year: 2021 ident: 2023050806120022800_CIT0093 article-title: Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.645210 – volume: 184 start-page: 3915 year: 2021 ident: 2023050806120022800_CIT0072 article-title: The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination publication-title: Cell doi: 10.1016/j.cell.2021.05.039 – volume: 54 start-page: 2133 year: 2021 ident: 2023050806120022800_CIT0018 article-title: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination publication-title: Immunity doi: 10.1016/j.immuni.2021.08.001 – volume: 6 start-page: eabl5344 year: 2021 ident: 2023050806120022800_CIT0054 article-title: BNT162b2 vaccination induces durable SARS-CoV-2-specific T cells with a stem cell memory phenotype publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abl5344 – volume: 53 start-page: 1281 year: 2020 ident: 2023050806120022800_CIT0011 article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation publication-title: Immunity doi: 10.1016/j.immuni.2020.11.009 – volume: 185 start-page: 847 year: 2022 ident: 2023050806120022800_CIT0055 article-title: SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron publication-title: Cell doi: 10.1016/j.cell.2022.01.015 – volume: 53 start-page: 724 year: 2020 ident: 2023050806120022800_CIT0010 article-title: A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice publication-title: Immunity doi: 10.1016/j.immuni.2020.07.019 – volume: 607 start-page: 128 year: 2022 ident: 2023050806120022800_CIT0052 article-title: Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost publication-title: Nature doi: 10.1038/s41586-022-04778-y – volume: 590 start-page: 630 year: 2021 ident: 2023050806120022800_CIT0059 article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques publication-title: Nature doi: 10.1038/s41586-020-03041-6 – volume: 27 start-page: 2144 year: 2021 ident: 2023050806120022800_CIT0025 article-title: Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-021-01556-7 – volume: 37 start-page: 2004 year: 2019 ident: 2023050806120022800_CIT0068 article-title: Inflammatory parameters associated with systemic reactogenicity following vaccination with adjuvanted hepatitis B vaccines in humans publication-title: Vaccine doi: 10.1016/j.vaccine.2019.02.015 – volume: 604 start-page: 141 year: 2022 ident: 2023050806120022800_CIT0045 article-title: Germinal centre-driven maturation of B cell response to mRNA vaccination publication-title: Nature doi: 10.1038/s41586-022-04527-1 – volume: 43 start-page: 1186 year: 2015 ident: 2023050806120022800_CIT0071 article-title: Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures publication-title: Immunity doi: 10.1016/j.immuni.2015.11.012 – volume: 39 start-page: 4423 year: 2021 ident: 2023050806120022800_CIT0041 article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines publication-title: Vaccine doi: 10.1016/j.vaccine.2021.05.063 – volume: 215 start-page: 1571 year: 2018 ident: 2023050806120022800_CIT0009 article-title: Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses publication-title: J. Exp. Med. doi: 10.1084/jem.20171450 – volume: 23 start-page: 474 year: 2022 ident: 2023050806120022800_CIT0030 article-title: Making innate sense of mRNA vaccine adjuvanticity publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01168-4 – volume: 27 start-page: 1205 year: 2021 ident: 2023050806120022800_CIT0039 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 356 start-page: eaag3009 year: 2017 ident: 2023050806120022800_CIT0086 article-title: Mapping the human DC lineage through the integration of high-dimensional techniques publication-title: Science doi: 10.1126/science.aag3009 – volume: 20 start-page: e3001643 year: 2022 ident: 2023050806120022800_CIT0065 article-title: Adverse effects following anti-COVID-19 vaccination with mRNA-based BNT162b2 are alleviated by altering the route of administration and correlate with baseline enrichment of T and NK cell genes publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001643 – volume: 8 start-page: 4 year: 2019 ident: 2023050806120022800_CIT0074 article-title: Systems vaccinology for a live attenuated tularemia vaccine reveals unique transcriptional signatures that predict humoral and cellular immune responses publication-title: Vaccines (Basel) doi: 10.3390/vaccines8010004 – volume: 34 year: 2022 ident: 2023050806120022800_CIT0005 article-title: Immunogenicity, efficacy and safety of COVID-19 vaccines: an update of data published by 31 December 2021 publication-title: Int. Immunol. doi: 10.1093/intimm/dxac031 – volume: 595 start-page: 572 year: 2021 ident: 2023050806120022800_CIT0015 article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans publication-title: Nature doi: 10.1038/s41586-021-03653-6 – volume: 54 start-page: 2877 year: 2021 ident: 2023050806120022800_CIT0044 article-title: Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses publication-title: Immunity doi: 10.1016/j.immuni.2021.11.001 – volume: 374 start-page: abm0829 year: 2021 ident: 2023050806120022800_CIT0049 article-title: mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern publication-title: Science doi: 10.1126/science.abm0829 – volume: 53 start-page: 335 year: 2020 ident: 2023050806120022800_CIT0079 article-title: Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells publication-title: Immunity doi: 10.1016/j.immuni.2020.06.002 – volume: 326 start-page: 1390 year: 2021 ident: 2023050806120022800_CIT0024 article-title: Surveillance for adverse events after COVID-19 mRNA vaccination publication-title: JAMA doi: 10.1001/jama.2021.15072 – volume: 4 start-page: 39 year: 2019 ident: 2023050806120022800_CIT0026 article-title: The how’s and what’s of vaccine reactogenicity publication-title: npj Vaccines doi: 10.1038/s41541-019-0132-6 – volume: 3 start-page: 371 year: 2019 ident: 2023050806120022800_CIT0008 article-title: Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-019-0378-3 – volume: 26 start-page: 2307 year: 2019 ident: 2023050806120022800_CIT0076 article-title: Influenza vaccination Induces NK-cell-mediated type-II IFN response that regulates humoral immunity in an IL-6-dependent manner publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.104 – volume: 13 start-page: 5251 year: 2022 ident: 2023050806120022800_CIT0057 article-title: Long-term memory CD8(+) T cells specific for SARS-CoV-2 in individuals who received the BNT162b2 mRNA vaccine publication-title: Nat. Commun. doi: 10.1038/s41467-022-32989-4 – volume: 185 start-page: 1875 year: 2022 ident: 2023050806120022800_CIT0046 article-title: Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine publication-title: Cell doi: 10.1016/j.cell.2022.04.009 – volume: 3 start-page: 100603 year: 2022 ident: 2023050806120022800_CIT0053 article-title: Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100603 – volume: 22 start-page: 2642 year: 2018 ident: 2023050806120022800_CIT0083 article-title: IL-23 and IL-1beta drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.02.044 – volume: 2 start-page: 100355 year: 2021 ident: 2023050806120022800_CIT0019 article-title: Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2021.100355 – volume: 28 start-page: 542 year: 2022 ident: 2023050806120022800_CIT0066 article-title: Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2022.04.007 – volume: 47 start-page: 1037 year: 2017 ident: 2023050806120022800_CIT0087 article-title: High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization publication-title: Immunity doi: 10.1016/j.immuni.2017.11.001 – volume: 385 start-page: 1078 year: 2021 ident: 2023050806120022800_CIT0023 article-title: Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2110475 – volume: 152 start-page: 276 year: 2013 ident: 2023050806120022800_CIT0061 article-title: Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5 publication-title: Cell doi: 10.1016/j.cell.2012.11.048 – volume: 356 start-page: eaah4573 year: 2017 ident: 2023050806120022800_CIT0085 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science doi: 10.1126/science.aah4573 – volume: 20 start-page: 817 year: 2021 ident: 2023050806120022800_CIT0027 article-title: mRNA vaccines for infectious diseases: principles, delivery and clinical translation publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-021-00283-5 – volume: 36 start-page: 109504 year: 2021 ident: 2023050806120022800_CIT0069 article-title: Systemic IL-15, IFN-gamma, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109504 – volume: 177 start-page: 1199 year: 1993 ident: 2023050806120022800_CIT0080 article-title: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells publication-title: J. Exp. Med. doi: 10.1084/jem.177.4.1199 – volume: 5 start-page: 1059 year: 2021 ident: 2023050806120022800_CIT0090 article-title: Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00786-x – volume: 184 start-page: 2384 year: 2021 ident: 2023050806120022800_CIT0032 article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies publication-title: Cell doi: 10.1016/j.cell.2021.03.036 – volume: 229 start-page: 108786 year: 2021 ident: 2023050806120022800_CIT0022 article-title: Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: a nationwide descriptive study publication-title: Clin. Immunol. doi: 10.1016/j.clim.2021.108786 – volume: 596 start-page: 109 year: 2021 ident: 2023050806120022800_CIT0012 article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses publication-title: Nature doi: 10.1038/s41586-021-03738-2 – volume: 596 start-page: 410 year: 2021 ident: 2023050806120022800_CIT0017 article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans publication-title: Nature doi: 10.1038/s41586-021-03791-x – volume: 602 start-page: 676 year: 2022 ident: 2023050806120022800_CIT0036 article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-021-04388-0 – year: 2022 ident: 2023050806120022800_CIT0006 – volume: 384 start-page: 403 year: 2021 ident: 2023050806120022800_CIT0021 article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 – volume: 385 start-page: e85 year: 2021 ident: 2023050806120022800_CIT0042 article-title: Waning immunity after the BNT162b2 vaccine in Israel publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2114228 – volume: 383 start-page: 2439 year: 2020 ident: 2023050806120022800_CIT0013 article-title: Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2027906 – volume: 600 start-page: 517 year: 2021 ident: 2023050806120022800_CIT0048 article-title: Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination publication-title: Nature doi: 10.1038/s41586-021-04060-7 |
SSID | ssj0003293 |
Score | 2.471789 |
SecondaryResourceType | review_article |
Snippet | Abstract
Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising... Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 213 |
SubjectTerms | Antibodies, Viral COVID-19 - prevention & control COVID-19 Vaccines - adverse effects Humans mRNA Vaccines RNA, Messenger - genetics SARS-CoV-2 |
Title | Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36566501 https://www.proquest.com/docview/2758112363 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIhAXBAVKeckgJA4r09hOssmx4qEuaIuEtqgSh8hxbDVaNkHdBFEu_HXGj00TuojCJbIc27IzX8Yz9jwQeq7TXKdxkZJ8kkoSSh2SRLGIMCW4YBOdi8Q4Cs8O44Oj8N1xdDwa_exZLbVN_lL-2OhX8j9UhTqgq_GS_QfKdoNCBZSBvvAECsPzUjSeGucOk_fE2rmqlfNMARHSC5SleV9D91IaYduakiuTYKerMsYYHz5NXxOajpcfD_fH34Q0V-2rvtA6PDV0g_YP42eigVW3NmPReC4W4qxdlOdHAgth03uP5_WyPilP6_6bE5PLyW4DNRSWYiX6xxDMGf31OWcYB4Rxn5NFbajz7NZFJ_Gwiga8k_e2YWZ95C5yeBf9qqwaWC0Uiu9CBi4O-jCY9m-bXGd66C7deeZGyHz_K-gqAz3D6uTT991WzpmN2tyto4v6yfdc_z3ffyDVDDwlLygsVnCZ30I3vcaB9x18bqORqrbRNZeD9GwbXZ9564o76LPDE-7whD2ecFNjwBMe4gkDnvAQT7jWeI0nbPCE13i6i47evpm_OiA--QaRYZQ2BBRrDb8vSDESRNAiiWSik1inkkZKsTzJaQCs3BhRFQUVUKfCSGpeFJMcZFIQ0u-hraqu1H2EQaunXAdhGBU59JAip9wkhuSUxjIt-C4i64-XSR-Z3iRI-ZJtJtYuetG1_-pisvyx5TOgxV8bPV2TKgPeai7MRKXqdpUxUKapCU8EU9xxNOzG4kYRigL64NKTeYhunP84j9BWc9qqxyDRNvkTi7pfSrCn_Q |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+responses+related+to+the+immunogenicity+and+reactogenicity+of+COVID-19+mRNA+vaccines&rft.jtitle=International+immunology&rft.au=Matsumura%2C+Takayuki&rft.au=Takano%2C+Tomohiro&rft.au=Takahashi%2C+Yoshimasa&rft.date=2023-05-08&rft.issn=1460-2377&rft.eissn=1460-2377&rft.volume=35&rft.issue=5&rft.spage=213&rft.epage=220&rft_id=info:doi/10.1093%2Fintimm%2Fdxac064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_intimm_dxac064 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2377&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2377&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2377&client=summon |