Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines

Abstract Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using seve...

Full description

Saved in:
Bibliographic Details
Published inInternational immunology Vol. 35; no. 5; pp. 213 - 220
Main Authors Matsumura, Takayuki, Takano, Tomohiro, Takahashi, Yoshimasa
Format Journal Article
LanguageEnglish
Published UK Oxford University Press 08.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines. The immune responses triggered by COVID-19 mRNA vaccines Graphical abstract Graphical Abstract
AbstractList Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines.Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines.
Abstract Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines. The immune responses triggered by COVID-19 mRNA vaccines Graphical abstract Graphical Abstract
Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to control the pandemic of coronavirus disease 2019 (COVID-19). Although various COVID-19 vaccines have been developed worldwide using several modalities, the vaccines that have shown the highest efficacy to date are mRNA vaccines. Despite their extensive usage, the mechanisms that stimulate the immune responses associated with their immunogenicity and reactogenicity remain largely unknown. In this review, we summarize and discuss current knowledge on immune responses to COVID-19 mRNA vaccines, including potential immune responses and correlating factors underlying the immunogenicity and reactogenicity of mRNA vaccines. We also describe recent trends in the optimization of lipid nanoparticles and vaccination routes. Further understanding of vaccine-elicited immune responses will guide the development of more effective and safe vaccines.
Author Matsumura, Takayuki
Takahashi, Yoshimasa
Takano, Tomohiro
Author_xml – sequence: 1
  givenname: Takayuki
  orcidid: 0000-0003-1760-3484
  surname: Matsumura
  fullname: Matsumura, Takayuki
  email: matt@niid.go.jp
– sequence: 2
  givenname: Tomohiro
  surname: Takano
  fullname: Takano, Tomohiro
– sequence: 3
  givenname: Yoshimasa
  surname: Takahashi
  fullname: Takahashi, Yoshimasa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36566501$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtLxDAQh4OsuA-9epQe9dDdpOkrx2V9LSwuiHrxUNJkqpE2qU0q7n9vl64PBPE0w8z3m4FvjAbaaEDomOApwYzOlHaqqmbynQsch3toRMIY-wFNksGPfojG1r5gjGnA6AEa0jiK4wiTEXpcVlWrwWvA1kZbsF1XcgfSc8Zzz-Cp7d48gVZCuY3HtewILtz3yBTeYv2wPPcJ86rbm7n3xoVQGuwh2i94aeFoVyfo_vLibnHtr9ZXy8V85YswYs6PCSsSJjAmAgepTCORFmlcMEEigCBPc4ITFkYBZlIS3s0gjERBpUzykJIwoBN02t-tG_PagnVZpayAsuQaTGuzIIlSQgIa0w492aFtXoHM6kZVvNlkn0I6YNoDojHWNlB8IQRnW-NZbzzbGe8C4a9AJ4U7ZbRruCr_jp31MdPW_734AFHZlj0
CitedBy_id crossref_primary_10_1111_jdv_19401
crossref_primary_10_3390_biom15030359
crossref_primary_10_1093_bjrcr_uaae048
crossref_primary_10_3390_ph16081088
crossref_primary_10_3390_vaccines12070802
crossref_primary_10_3389_fimmu_2024_1403784
crossref_primary_10_1248_bpb_b23_00689
crossref_primary_10_3389_fpubh_2024_1429265
crossref_primary_10_1089_mab_2023_29016_editorial
crossref_primary_10_3389_fcimb_2023_1233148
crossref_primary_10_3390_vaccines11081334
crossref_primary_10_1038_s41598_025_85234_5
crossref_primary_10_1002_advs_202307541
Cites_doi 10.1126/science.8097338
10.1038/ni1254
10.1056/NEJMoa2109072
10.1056/NEJMoa2114114
10.1038/mt.2008.200
10.1016/j.it.2015.07.004
10.1038/d41586-020-01221-y
10.1038/s41590-022-01163-9
10.1016/j.ymthe.2017.08.006
10.3389/fimmu.2017.00943
10.3390/vaccines9080848
10.1038/d41573-020-00073-5
10.1073/pnas.1811276115
10.1038/s41586-021-04387-1
10.1016/j.ymthe.2022.07.007
10.1038/d41573-020-00151-8
10.1073/pnas.2207841119
10.1016/j.xcrm.2022.100631
10.3390/vaccines9070742
10.1016/j.celrep.2019.11.042
10.1038/ni1138
10.1016/j.cell.2021.12.046
10.1038/s41590-022-01160-y
10.1056/NEJMoa2034577
10.1038/s41586-021-03324-6
10.1126/scitranslmed.abm2311
10.1038/s41586-021-04385-3
10.1038/ni.1688
10.1038/s41586-021-03693-y
10.1126/sciimmunol.abn8590
10.1073/pnas.1610630114
10.1002/jcla.23937
10.1038/s41586-021-04389-z
10.1016/S1473-3099(21)00224-3
10.1038/s41577-021-00657-1
10.1016/j.immuni.2005.06.008
10.1038/s41586-022-04399-5
10.1038/s41564-022-01123-x
10.1016/j.chom.2022.01.003
10.3389/fimmu.2021.645210
10.1016/j.cell.2021.05.039
10.1016/j.immuni.2021.08.001
10.1126/sciimmunol.abl5344
10.1016/j.immuni.2020.11.009
10.1016/j.cell.2022.01.015
10.1016/j.immuni.2020.07.019
10.1038/s41586-022-04778-y
10.1038/s41586-020-03041-6
10.1038/s41591-021-01556-7
10.1016/j.vaccine.2019.02.015
10.1038/s41586-022-04527-1
10.1016/j.immuni.2015.11.012
10.1016/j.vaccine.2021.05.063
10.1084/jem.20171450
10.1038/s41590-022-01168-4
10.1038/s41591-021-01377-8
10.1126/science.aag3009
10.1371/journal.pbio.3001643
10.3390/vaccines8010004
10.1093/intimm/dxac031
10.1038/s41586-021-03653-6
10.1016/j.immuni.2021.11.001
10.1126/science.abm0829
10.1016/j.immuni.2020.06.002
10.1001/jama.2021.15072
10.1038/s41541-019-0132-6
10.1038/s41551-019-0378-3
10.1016/j.celrep.2019.01.104
10.1038/s41467-022-32989-4
10.1016/j.cell.2022.04.009
10.1016/j.xcrm.2022.100603
10.1016/j.celrep.2018.02.044
10.1016/j.xcrm.2021.100355
10.1016/j.molmed.2022.04.007
10.1016/j.immuni.2017.11.001
10.1056/NEJMoa2110475
10.1016/j.cell.2012.11.048
10.1126/science.aah4573
10.1038/s41573-021-00283-5
10.1016/j.celrep.2021.109504
10.1084/jem.177.4.1199
10.1038/s41551-021-00786-x
10.1016/j.cell.2021.03.036
10.1016/j.clim.2021.108786
10.1038/s41586-021-03738-2
10.1038/s41586-021-03791-x
10.1038/s41586-021-04388-0
10.1056/NEJMoa2035389
10.1056/NEJMoa2114228
10.1056/NEJMoa2027906
10.1038/s41586-021-04060-7
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/intimm/dxac064
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2377
EndPage 220
ExternalDocumentID 36566501
10_1093_intimm_dxac064
10.1093/intimm/dxac064
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-E4
.2P
.55
.GJ
.I3
.ZR
0R~
18M
1TH
29J
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6.Y
70D
A8Z
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABEJV
ABEUO
ABIXL
ABJNI
ABKDP
ABMNT
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABQNK
ABQTQ
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACMRT
ACPQN
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXAL
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
ESTFP
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
J8S
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBLQV
MBTAY
MHKGH
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SV3
TCN
TEORI
TJX
TLC
TMA
TR2
UDS
VH1
W8F
WOQ
X7H
X7M
Y6R
YAYTL
YHZ
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AEMQT
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c459t-619f79c001c028d85c8f86f9c15ee2b8b107945209dd1a5eee45cf3dd7b431423
ISSN 1460-2377
IngestDate Fri Jul 11 10:59:12 EDT 2025
Thu Apr 03 07:03:18 EDT 2025
Tue Jul 01 00:40:41 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Tue Nov 26 05:59:58 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords acquired immunity
adverse event
lipid nanoparticle
SARS-CoV-2 spike protein
innate immunity
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2022. Published by Oxford University Press on behalf of The Japanese Society for Immunology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-619f79c001c028d85c8f86f9c15ee2b8b107945209dd1a5eee45cf3dd7b431423
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0003-1760-3484
OpenAccessLink https://academic.oup.com/intimm/advance-article-pdf/doi/10.1093/intimm/dxac064/49118998/dxac064.pdf
PMID 36566501
PQID 2758112363
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2758112363
pubmed_primary_36566501
crossref_primary_10_1093_intimm_dxac064
crossref_citationtrail_10_1093_intimm_dxac064
oup_primary_10_1093_intimm_dxac064
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-08
PublicationDateYYYYMMDD 2023-05-08
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-08
  day: 08
PublicationDecade 2020
PublicationPlace UK
PublicationPlace_xml – name: UK
– name: England
PublicationTitle International immunology
PublicationTitleAlternate Int Immunol
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Takano (2023050806120022800_CIT0070) 2022; 3
Bevers (2023050806120022800_CIT0092) 2022; 30
Liang (2023050806120022800_CIT0007) 2017; 25
Morales-Nunez (2023050806120022800_CIT0064) 2021; 9
Trougakos (2023050806120022800_CIT0066) 2022; 28
Kotaki (2023050806120022800_CIT0050) 2022; 7
Hoffmann (2023050806120022800_CIT0032) 2021; 184
Alameh (2023050806120022800_CIT0044) 2021; 54
Tarke (2023050806120022800_CIT0055) 2022; 185
Wimmers (2023050806120022800_CIT0072) 2021; 184
Villani (2023050806120022800_CIT0085) 2017; 356
Xu (2023050806120022800_CIT0005) 2022; 34
World_Health_Organization (2023050806120022800_CIT0006) 2022
Jung (2023050806120022800_CIT0056) 2022; 7
Zhang (2023050806120022800_CIT0084) 2017; 114
Bergamaschi (2023050806120022800_CIT0069) 2021; 36
Kim (2023050806120022800_CIT0045) 2022; 604
Cho (2023050806120022800_CIT0048) 2021; 600
Kaplonek (2023050806120022800_CIT0020) 2022; 14
Patone (2023050806120022800_CIT0025) 2021; 27
Burny (2023050806120022800_CIT0067) 2017; 8
Chen (2023050806120022800_CIT0089) 2022; 119
Wang (2023050806120022800_CIT0047) 2021; 592
McMahan (2023050806120022800_CIT0059) 2021; 590
Polack (2023050806120022800_CIT0014) 2020; 383
Han (2023050806120022800_CIT0004) 2021; 35
Herve (2023050806120022800_CIT0026) 2019; 4
Burny (2023050806120022800_CIT0068) 2019; 37
Sago (2023050806120022800_CIT0091) 2018; 115
Martin-Fontecha (2023050806120022800_CIT0077) 2004; 5
Manetti (2023050806120022800_CIT0080) 1993; 177
Natrajan (2023050806120022800_CIT0074) 2019; 8
Cele (2023050806120022800_CIT0033) 2022; 602
Li (2023050806120022800_CIT0060) 2022; 23
Painter (2023050806120022800_CIT0018) 2021; 54
Tahtinen (2023050806120022800_CIT0062) 2022; 23
Sahin (2023050806120022800_CIT0015) 2021; 595
See (2023050806120022800_CIT0086) 2017; 356
Planas (2023050806120022800_CIT0037) 2022; 602
Bergwerk (2023050806120022800_CIT0040) 2021; 385
Takano (2023050806120022800_CIT0075) 2022
Dejnirattisai (2023050806120022800_CIT0038) 2022; 185
Mantus (2023050806120022800_CIT0053) 2022; 3
Alcantara-Hernandez (2023050806120022800_CIT0087) 2017; 47
Kuse (2023050806120022800_CIT0057) 2022; 13
Rosenbaum (2023050806120022800_CIT0093) 2021; 12
Guerrera (2023050806120022800_CIT0054) 2021; 6
Goel (2023050806120022800_CIT0049) 2021; 374
Goel (2023050806120022800_CIT0046) 2022; 185
Rydyznski (2023050806120022800_CIT0078) 2015; 36
Arunachalam (2023050806120022800_CIT0017) 2021; 596
Cao (2023050806120022800_CIT0034) 2022; 602
Laidlaw (2023050806120022800_CIT0043) 2022; 22
Menni (2023050806120022800_CIT0063) 2021; 21
Thanh Le (2023050806120022800_CIT0002) 2020; 19
Kariko (2023050806120022800_CIT0029) 2008; 16
Muecksch (2023050806120022800_CIT0052) 2022; 607
Lederer (2023050806120022800_CIT0011) 2020; 53
Syenina (2023050806120022800_CIT0065) 2022; 20
Turner (2023050806120022800_CIT0012) 2021; 596
Garcia-Grimshaw (2023050806120022800_CIT0022) 2021; 229
Chemaitelly (2023050806120022800_CIT0058) 2021; 385
Wu (2023050806120022800_CIT0061) 2013; 152
Bourdely (2023050806120022800_CIT0079) 2020; 53
Pardi (2023050806120022800_CIT0009) 2018; 215
Hsieh (2023050806120022800_CIT0081) 1993; 260
Laczko (2023050806120022800_CIT0010) 2020; 53
Kariko (2023050806120022800_CIT0028) 2005; 23
Terreri (2023050806120022800_CIT0051) 2022; 30
Nakaya (2023050806120022800_CIT0071) 2015; 43
Lokugamage (2023050806120022800_CIT0090) 2021; 5
Callaway (2023050806120022800_CIT0001) 2020; 580
Liu (2023050806120022800_CIT0036) 2022; 602
Querec (2023050806120022800_CIT0073) 2009; 10
Earle (2023050806120022800_CIT0041) 2021; 39
Goldberg (2023050806120022800_CIT0042) 2021; 385
Walsh (2023050806120022800_CIT0013) 2020; 383
Farsakoglu (2023050806120022800_CIT0076) 2019; 26
Harrington (2023050806120022800_CIT0082) 2005; 6
Liu (2023050806120022800_CIT0016) 2021; 596
Carreno (2023050806120022800_CIT0035) 2022; 602
Barda (2023050806120022800_CIT0023) 2021; 385
Le (2023050806120022800_CIT0003) 2020; 19
Kobiyama (2023050806120022800_CIT0030) 2022; 23
Chaudhary (2023050806120022800_CIT0027) 2021; 20
Lindsay (2023050806120022800_CIT0008) 2019; 3
Klein (2023050806120022800_CIT0024) 2021; 326
Revu (2023050806120022800_CIT0083) 2018; 22
Tarke (2023050806120022800_CIT0019) 2021; 2
Khoury (2023050806120022800_CIT0039) 2021; 27
Leylek (2023050806120022800_CIT0088) 2019; 29
Baden (2023050806120022800_CIT0021) 2021; 384
Rijkers (2023050806120022800_CIT0031) 2021; 9
References_xml – volume: 260
  start-page: 547
  year: 1993
  ident: 2023050806120022800_CIT0081
  article-title: Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages
  publication-title: Science
  doi: 10.1126/science.8097338
– volume: 6
  start-page: 1123
  year: 2005
  ident: 2023050806120022800_CIT0082
  article-title: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1254
– volume: 385
  start-page: 1474
  year: 2021
  ident: 2023050806120022800_CIT0040
  article-title: Covid-19 breakthrough infections in vaccinated health care workers
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2109072
– volume: 385
  start-page: e83
  year: 2021
  ident: 2023050806120022800_CIT0058
  article-title: Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2114114
– volume: 16
  start-page: 1833
  year: 2008
  ident: 2023050806120022800_CIT0029
  article-title: Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2008.200
– volume: 36
  start-page: 536
  year: 2015
  ident: 2023050806120022800_CIT0078
  article-title: Boosting vaccine efficacy the natural (killer) way
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.07.004
– volume: 580
  start-page: 576
  year: 2020
  ident: 2023050806120022800_CIT0001
  article-title: The race for coronavirus vaccines: a graphical guide
  publication-title: Nature
  doi: 10.1038/d41586-020-01221-y
– volume: 23
  start-page: 543
  year: 2022
  ident: 2023050806120022800_CIT0060
  article-title: Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01163-9
– volume: 25
  start-page: 2635
  year: 2017
  ident: 2023050806120022800_CIT0007
  article-title: Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.08.006
– volume: 8
  start-page: 943
  year: 2017
  ident: 2023050806120022800_CIT0067
  article-title: Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00943
– volume: 9
  start-page: 848
  year: 2021
  ident: 2023050806120022800_CIT0031
  article-title: Antigen presentation of mRNA-based and virus-vectored SARS-CoV-2 vaccines
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines9080848
– volume: 19
  start-page: 305
  year: 2020
  ident: 2023050806120022800_CIT0002
  article-title: The COVID-19 vaccine development landscape
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/d41573-020-00073-5
– volume: 115
  start-page: E9944
  year: 2018
  ident: 2023050806120022800_CIT0091
  article-title: High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing
  publication-title: Proc. Natl Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1811276115
– volume: 602
  start-page: 654
  year: 2022
  ident: 2023050806120022800_CIT0033
  article-title: Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization
  publication-title: Nature
  doi: 10.1038/s41586-021-04387-1
– volume: 30
  start-page: 3078
  year: 2022
  ident: 2023050806120022800_CIT0092
  article-title: mRNA-LNP vaccines tuned for systemic immunization induce strong antitumor immunity by engaging splenic immune cells
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2022.07.007
– volume: 19
  start-page: 667
  year: 2020
  ident: 2023050806120022800_CIT0003
  article-title: Evolution of the COVID-19 vaccine development landscape
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/d41573-020-00151-8
– volume: 119
  start-page: e2207841119
  year: 2022
  ident: 2023050806120022800_CIT0089
  article-title: Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response
  publication-title: Proc. Natl Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2207841119
– volume: 3
  start-page: 100631
  year: 2022
  ident: 2023050806120022800_CIT0070
  article-title: Distinct immune cell dynamics correlate with the immunogenicity and reactogenicity of SARS-CoV-2 mRNA vaccine
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100631
– year: 2022
  ident: 2023050806120022800_CIT0075
  article-title: Heterologous booster immunization with SARS-CoV-2 spike protein after mRNA vaccine elicits durable and broad antibody responses
  publication-title: Res Sq.
– volume: 9
  start-page: 742
  year: 2021
  ident: 2023050806120022800_CIT0064
  article-title: Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 infection
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines9070742
– volume: 29
  start-page: 3736
  year: 2019
  ident: 2023050806120022800_CIT0088
  article-title: Integrated cross-species analysis identifies a conserved transitional dendritic cell population
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.11.042
– volume: 5
  start-page: 1260
  year: 2004
  ident: 2023050806120022800_CIT0077
  article-title: Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1138
– volume: 185
  start-page: 467
  year: 2022
  ident: 2023050806120022800_CIT0038
  article-title: SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.046
– volume: 23
  start-page: 532
  year: 2022
  ident: 2023050806120022800_CIT0062
  article-title: IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01160-y
– volume: 383
  start-page: 2603
  year: 2020
  ident: 2023050806120022800_CIT0014
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2034577
– volume: 592
  start-page: 616
  year: 2021
  ident: 2023050806120022800_CIT0047
  article-title: mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants
  publication-title: Nature
  doi: 10.1038/s41586-021-03324-6
– volume: 14
  start-page: eabm2311
  year: 2022
  ident: 2023050806120022800_CIT0020
  article-title: mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abm2311
– volume: 602
  start-page: 657
  year: 2022
  ident: 2023050806120022800_CIT0034
  article-title: Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-04385-3
– volume: 10
  start-page: 116
  year: 2009
  ident: 2023050806120022800_CIT0073
  article-title: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1688
– volume: 596
  start-page: 273
  year: 2021
  ident: 2023050806120022800_CIT0016
  article-title: BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants
  publication-title: Nature
  doi: 10.1038/s41586-021-03693-y
– volume: 7
  start-page: eabn8590
  year: 2022
  ident: 2023050806120022800_CIT0050
  article-title: SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abn8590
– volume: 114
  start-page: 1988
  year: 2017
  ident: 2023050806120022800_CIT0084
  article-title: A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes
  publication-title: Proc. Natl Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1610630114
– volume: 35
  start-page: e23937
  year: 2021
  ident: 2023050806120022800_CIT0004
  article-title: Analysis of COVID-19 vaccines: Types, thoughts, and application
  publication-title: J. Clin. Lab. Anal.
  doi: 10.1002/jcla.23937
– volume: 602
  start-page: 671
  year: 2022
  ident: 2023050806120022800_CIT0037
  article-title: Considerable escape of SARS-CoV-2 Omicron to antibody neutralization
  publication-title: Nature
  doi: 10.1038/s41586-021-04389-z
– volume: 21
  start-page: 939
  year: 2021
  ident: 2023050806120022800_CIT0063
  article-title: Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(21)00224-3
– volume: 22
  start-page: 7
  year: 2022
  ident: 2023050806120022800_CIT0043
  article-title: The germinal centre B cell response to SARS-CoV-2
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00657-1
– volume: 23
  start-page: 165
  year: 2005
  ident: 2023050806120022800_CIT0028
  article-title: Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.06.008
– volume: 602
  start-page: 682
  year: 2022
  ident: 2023050806120022800_CIT0035
  article-title: Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron
  publication-title: Nature
  doi: 10.1038/s41586-022-04399-5
– volume: 7
  start-page: 909
  year: 2022
  ident: 2023050806120022800_CIT0056
  article-title: BNT162b2-induced memory T cells respond to the Omicron variant with preserved polyfunctionality
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-022-01123-x
– volume: 30
  start-page: 400
  year: 2022
  ident: 2023050806120022800_CIT0051
  article-title: Persistent B cell memory after SARS-CoV-2 vaccination is functional during breakthrough infections
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2022.01.003
– volume: 12
  start-page: 645210
  year: 2021
  ident: 2023050806120022800_CIT0093
  article-title: Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.645210
– volume: 184
  start-page: 3915
  year: 2021
  ident: 2023050806120022800_CIT0072
  article-title: The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.039
– volume: 54
  start-page: 2133
  year: 2021
  ident: 2023050806120022800_CIT0018
  article-title: Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.08.001
– volume: 6
  start-page: eabl5344
  year: 2021
  ident: 2023050806120022800_CIT0054
  article-title: BNT162b2 vaccination induces durable SARS-CoV-2-specific T cells with a stem cell memory phenotype
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abl5344
– volume: 53
  start-page: 1281
  year: 2020
  ident: 2023050806120022800_CIT0011
  article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.11.009
– volume: 185
  start-page: 847
  year: 2022
  ident: 2023050806120022800_CIT0055
  article-title: SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron
  publication-title: Cell
  doi: 10.1016/j.cell.2022.01.015
– volume: 53
  start-page: 724
  year: 2020
  ident: 2023050806120022800_CIT0010
  article-title: A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.07.019
– volume: 607
  start-page: 128
  year: 2022
  ident: 2023050806120022800_CIT0052
  article-title: Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost
  publication-title: Nature
  doi: 10.1038/s41586-022-04778-y
– volume: 590
  start-page: 630
  year: 2021
  ident: 2023050806120022800_CIT0059
  article-title: Correlates of protection against SARS-CoV-2 in rhesus macaques
  publication-title: Nature
  doi: 10.1038/s41586-020-03041-6
– volume: 27
  start-page: 2144
  year: 2021
  ident: 2023050806120022800_CIT0025
  article-title: Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01556-7
– volume: 37
  start-page: 2004
  year: 2019
  ident: 2023050806120022800_CIT0068
  article-title: Inflammatory parameters associated with systemic reactogenicity following vaccination with adjuvanted hepatitis B vaccines in humans
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2019.02.015
– volume: 604
  start-page: 141
  year: 2022
  ident: 2023050806120022800_CIT0045
  article-title: Germinal centre-driven maturation of B cell response to mRNA vaccination
  publication-title: Nature
  doi: 10.1038/s41586-022-04527-1
– volume: 43
  start-page: 1186
  year: 2015
  ident: 2023050806120022800_CIT0071
  article-title: Systems analysis of immunity to influenza vaccination across multiple years and in diverse populations reveals shared molecular signatures
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.012
– volume: 39
  start-page: 4423
  year: 2021
  ident: 2023050806120022800_CIT0041
  article-title: Evidence for antibody as a protective correlate for COVID-19 vaccines
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.05.063
– volume: 215
  start-page: 1571
  year: 2018
  ident: 2023050806120022800_CIT0009
  article-title: Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20171450
– volume: 23
  start-page: 474
  year: 2022
  ident: 2023050806120022800_CIT0030
  article-title: Making innate sense of mRNA vaccine adjuvanticity
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01168-4
– volume: 27
  start-page: 1205
  year: 2021
  ident: 2023050806120022800_CIT0039
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 356
  start-page: eaag3009
  year: 2017
  ident: 2023050806120022800_CIT0086
  article-title: Mapping the human DC lineage through the integration of high-dimensional techniques
  publication-title: Science
  doi: 10.1126/science.aag3009
– volume: 20
  start-page: e3001643
  year: 2022
  ident: 2023050806120022800_CIT0065
  article-title: Adverse effects following anti-COVID-19 vaccination with mRNA-based BNT162b2 are alleviated by altering the route of administration and correlate with baseline enrichment of T and NK cell genes
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001643
– volume: 8
  start-page: 4
  year: 2019
  ident: 2023050806120022800_CIT0074
  article-title: Systems vaccinology for a live attenuated tularemia vaccine reveals unique transcriptional signatures that predict humoral and cellular immune responses
  publication-title: Vaccines (Basel)
  doi: 10.3390/vaccines8010004
– volume: 34
  year: 2022
  ident: 2023050806120022800_CIT0005
  article-title: Immunogenicity, efficacy and safety of COVID-19 vaccines: an update of data published by 31 December 2021
  publication-title: Int. Immunol.
  doi: 10.1093/intimm/dxac031
– volume: 595
  start-page: 572
  year: 2021
  ident: 2023050806120022800_CIT0015
  article-title: BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03653-6
– volume: 54
  start-page: 2877
  year: 2021
  ident: 2023050806120022800_CIT0044
  article-title: Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.11.001
– volume: 374
  start-page: abm0829
  year: 2021
  ident: 2023050806120022800_CIT0049
  article-title: mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern
  publication-title: Science
  doi: 10.1126/science.abm0829
– volume: 53
  start-page: 335
  year: 2020
  ident: 2023050806120022800_CIT0079
  article-title: Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.06.002
– volume: 326
  start-page: 1390
  year: 2021
  ident: 2023050806120022800_CIT0024
  article-title: Surveillance for adverse events after COVID-19 mRNA vaccination
  publication-title: JAMA
  doi: 10.1001/jama.2021.15072
– volume: 4
  start-page: 39
  year: 2019
  ident: 2023050806120022800_CIT0026
  article-title: The how’s and what’s of vaccine reactogenicity
  publication-title: npj Vaccines
  doi: 10.1038/s41541-019-0132-6
– volume: 3
  start-page: 371
  year: 2019
  ident: 2023050806120022800_CIT0008
  article-title: Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-019-0378-3
– volume: 26
  start-page: 2307
  year: 2019
  ident: 2023050806120022800_CIT0076
  article-title: Influenza vaccination Induces NK-cell-mediated type-II IFN response that regulates humoral immunity in an IL-6-dependent manner
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.01.104
– volume: 13
  start-page: 5251
  year: 2022
  ident: 2023050806120022800_CIT0057
  article-title: Long-term memory CD8(+) T cells specific for SARS-CoV-2 in individuals who received the BNT162b2 mRNA vaccine
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32989-4
– volume: 185
  start-page: 1875
  year: 2022
  ident: 2023050806120022800_CIT0046
  article-title: Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.009
– volume: 3
  start-page: 100603
  year: 2022
  ident: 2023050806120022800_CIT0053
  article-title: Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100603
– volume: 22
  start-page: 2642
  year: 2018
  ident: 2023050806120022800_CIT0083
  article-title: IL-23 and IL-1beta drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.02.044
– volume: 2
  start-page: 100355
  year: 2021
  ident: 2023050806120022800_CIT0019
  article-title: Impact of SARS-CoV-2 variants on the total CD4(+) and CD8(+) T cell reactivity in infected or vaccinated individuals
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100355
– volume: 28
  start-page: 542
  year: 2022
  ident: 2023050806120022800_CIT0066
  article-title: Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2022.04.007
– volume: 47
  start-page: 1037
  year: 2017
  ident: 2023050806120022800_CIT0087
  article-title: High-dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.001
– volume: 385
  start-page: 1078
  year: 2021
  ident: 2023050806120022800_CIT0023
  article-title: Safety of the BNT162b2 mRNA Covid-19 vaccine in a nationwide setting
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2110475
– volume: 152
  start-page: 276
  year: 2013
  ident: 2023050806120022800_CIT0061
  article-title: Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.048
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: 2023050806120022800_CIT0085
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
  doi: 10.1126/science.aah4573
– volume: 20
  start-page: 817
  year: 2021
  ident: 2023050806120022800_CIT0027
  article-title: mRNA vaccines for infectious diseases: principles, delivery and clinical translation
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-021-00283-5
– volume: 36
  start-page: 109504
  year: 2021
  ident: 2023050806120022800_CIT0069
  article-title: Systemic IL-15, IFN-gamma, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109504
– volume: 177
  start-page: 1199
  year: 1993
  ident: 2023050806120022800_CIT0080
  article-title: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.177.4.1199
– volume: 5
  start-page: 1059
  year: 2021
  ident: 2023050806120022800_CIT0090
  article-title: Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00786-x
– volume: 184
  start-page: 2384
  year: 2021
  ident: 2023050806120022800_CIT0032
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.036
– volume: 229
  start-page: 108786
  year: 2021
  ident: 2023050806120022800_CIT0022
  article-title: Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: a nationwide descriptive study
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2021.108786
– volume: 596
  start-page: 109
  year: 2021
  ident: 2023050806120022800_CIT0012
  article-title: SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
  publication-title: Nature
  doi: 10.1038/s41586-021-03738-2
– volume: 596
  start-page: 410
  year: 2021
  ident: 2023050806120022800_CIT0017
  article-title: Systems vaccinology of the BNT162b2 mRNA vaccine in humans
  publication-title: Nature
  doi: 10.1038/s41586-021-03791-x
– volume: 602
  start-page: 676
  year: 2022
  ident: 2023050806120022800_CIT0036
  article-title: Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-021-04388-0
– year: 2022
  ident: 2023050806120022800_CIT0006
– volume: 384
  start-page: 403
  year: 2021
  ident: 2023050806120022800_CIT0021
  article-title: Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2035389
– volume: 385
  start-page: e85
  year: 2021
  ident: 2023050806120022800_CIT0042
  article-title: Waning immunity after the BNT162b2 vaccine in Israel
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2114228
– volume: 383
  start-page: 2439
  year: 2020
  ident: 2023050806120022800_CIT0013
  article-title: Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2027906
– volume: 600
  start-page: 517
  year: 2021
  ident: 2023050806120022800_CIT0048
  article-title: Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination
  publication-title: Nature
  doi: 10.1038/s41586-021-04060-7
SSID ssj0003293
Score 2.471789
SecondaryResourceType review_article
Snippet Abstract Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising...
Vaccination for the prevention of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection is considered the most promising approach to...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms Antibodies, Viral
COVID-19 - prevention & control
COVID-19 Vaccines - adverse effects
Humans
mRNA Vaccines
RNA, Messenger - genetics
SARS-CoV-2
Title Immune responses related to the immunogenicity and reactogenicity of COVID-19 mRNA vaccines
URI https://www.ncbi.nlm.nih.gov/pubmed/36566501
https://www.proquest.com/docview/2758112363
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIhAXBAVKeckgJA4r09hOssmx4qEuaIuEtqgSh8hxbDVaNkHdBFEu_HXGj00TuojCJbIc27IzX8Yz9jwQeq7TXKdxkZJ8kkoSSh2SRLGIMCW4YBOdi8Q4Cs8O44Oj8N1xdDwa_exZLbVN_lL-2OhX8j9UhTqgq_GS_QfKdoNCBZSBvvAECsPzUjSeGucOk_fE2rmqlfNMARHSC5SleV9D91IaYduakiuTYKerMsYYHz5NXxOajpcfD_fH34Q0V-2rvtA6PDV0g_YP42eigVW3NmPReC4W4qxdlOdHAgth03uP5_WyPilP6_6bE5PLyW4DNRSWYiX6xxDMGf31OWcYB4Rxn5NFbajz7NZFJ_Gwiga8k_e2YWZ95C5yeBf9qqwaWC0Uiu9CBi4O-jCY9m-bXGd66C7deeZGyHz_K-gqAz3D6uTT991WzpmN2tyto4v6yfdc_z3ffyDVDDwlLygsVnCZ30I3vcaB9x18bqORqrbRNZeD9GwbXZ9564o76LPDE-7whD2ecFNjwBMe4gkDnvAQT7jWeI0nbPCE13i6i47evpm_OiA--QaRYZQ2BBRrDb8vSDESRNAiiWSik1inkkZKsTzJaQCs3BhRFQUVUKfCSGpeFJMcZFIQ0u-hraqu1H2EQaunXAdhGBU59JAip9wkhuSUxjIt-C4i64-XSR-Z3iRI-ZJtJtYuetG1_-pisvyx5TOgxV8bPV2TKgPeai7MRKXqdpUxUKapCU8EU9xxNOzG4kYRigL64NKTeYhunP84j9BWc9qqxyDRNvkTi7pfSrCn_Q
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+responses+related+to+the+immunogenicity+and+reactogenicity+of+COVID-19+mRNA+vaccines&rft.jtitle=International+immunology&rft.au=Matsumura%2C+Takayuki&rft.au=Takano%2C+Tomohiro&rft.au=Takahashi%2C+Yoshimasa&rft.date=2023-05-08&rft.issn=1460-2377&rft.eissn=1460-2377&rft.volume=35&rft.issue=5&rft.spage=213&rft.epage=220&rft_id=info:doi/10.1093%2Fintimm%2Fdxac064&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_intimm_dxac064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2377&client=summon