ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies

The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immu...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 377; no. 6607; pp. 735 - 742
Main Authors Low, Jun Siong, Jerak, Josipa, Tortorici, M. Alejandra, McCallum, Matthew, Pinto, Dora, Cassotta, Antonino, Foglierini, Mathilde, Mele, Federico, Abdelnabi, Rana, Weynand, Birgit, Noack, Julia, Montiel-Ruiz, Martin, Bianchi, Siro, Benigni, Fabio, Sprugasci, Nicole, Joshi, Anshu, Bowen, John E., Stewart, Cameron, Rexhepaj, Megi, Walls, Alexandra C., Jarrossay, David, Morone, Diego, Paparoditis, Philipp, Garzoni, Christian, Ferrari, Paolo, Ceschi, Alessandro, Neyts, Johan, Purcell, Lisa A., Snell, Gyorgy, Corti, Davide, Lanzavecchia, Antonio, Veesler, David, Sallusto, Federica
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 12.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide–specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs. Seven coronaviruses cause human disease, and three have caused serious outbreaks in the past 20 years. The potential for future coronavirus outbreaks in humans and the ongoing resistance of severe acute syndrome coronavirus 2 (SARS-CoV-2) variants to existing antibodies make it important to identify cross-reactive antibodies that can be the basis of therapeutics and can guide vaccine design. Low et al . and Dacon et al . isolated antibodies from convalescent individuals that show broad neutralizing activity against a range of coronaviruses, including Omicron variants of SARS-CoV-2. The antibodies target a conserved region of the viral spike protein known as the fusion peptide and may act by preventing the cell fusion that is required for infection of new host cells. —VV A class of broadly reactive antibodies target a cryptic fusion peptide epitope exposed upon coronavirus spike protein binding to ACE2.
AbstractList The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.
The coronavirus spike (S) glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus S proteins. This class of mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and beta-coronaviruses, including animal coronavirus WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses show that the fusion peptide-specific mAbs bind with different modalities to a cryptic epitope, which is hidden in prefusion stabilized S, and becomes exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.
The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide–specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs. Seven coronaviruses cause human disease, and three have caused serious outbreaks in the past 20 years. The potential for future coronavirus outbreaks in humans and the ongoing resistance of severe acute syndrome coronavirus 2 (SARS-CoV-2) variants to existing antibodies make it important to identify cross-reactive antibodies that can be the basis of therapeutics and can guide vaccine design. Low et al . and Dacon et al . isolated antibodies from convalescent individuals that show broad neutralizing activity against a range of coronaviruses, including Omicron variants of SARS-CoV-2. The antibodies target a conserved region of the viral spike protein known as the fusion peptide and may act by preventing the cell fusion that is required for infection of new host cells. —VV A class of broadly reactive antibodies target a cryptic fusion peptide epitope exposed upon coronavirus spike protein binding to ACE2.
The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.
Author Snell, Gyorgy
Lanzavecchia, Antonio
Montiel-Ruiz, Martin
Veesler, David
Walls, Alexandra C.
Jerak, Josipa
Tortorici, M. Alejandra
Bianchi, Siro
Sprugasci, Nicole
Joshi, Anshu
Bowen, John E.
Rexhepaj, Megi
Benigni, Fabio
Sallusto, Federica
Noack, Julia
Neyts, Johan
Ceschi, Alessandro
Stewart, Cameron
Foglierini, Mathilde
Abdelnabi, Rana
Paparoditis, Philipp
Ferrari, Paolo
Morone, Diego
McCallum, Matthew
Pinto, Dora
Jarrossay, David
Weynand, Birgit
Cassotta, Antonino
Corti, Davide
Purcell, Lisa A.
Garzoni, Christian
Low, Jun Siong
Mele, Federico
Author_xml – sequence: 1
  givenname: Jun Siong
  orcidid: 0000-0002-1775-0778
  surname: Low
  fullname: Low, Jun Siong
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland., Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
– sequence: 2
  givenname: Josipa
  orcidid: 0000-0001-5358-5055
  surname: Jerak
  fullname: Jerak, Josipa
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland., Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
– sequence: 3
  givenname: M. Alejandra
  orcidid: 0000-0002-2260-2577
  surname: Tortorici
  fullname: Tortorici, M. Alejandra
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: Matthew
  orcidid: 0000-0001-8398-8330
  surname: McCallum
  fullname: McCallum, Matthew
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 5
  givenname: Dora
  surname: Pinto
  fullname: Pinto, Dora
  organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
– sequence: 6
  givenname: Antonino
  orcidid: 0000-0001-8674-4294
  surname: Cassotta
  fullname: Cassotta, Antonino
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
– sequence: 7
  givenname: Mathilde
  orcidid: 0000-0001-7538-4262
  surname: Foglierini
  fullname: Foglierini, Mathilde
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
– sequence: 8
  givenname: Federico
  orcidid: 0000-0003-0455-4687
  surname: Mele
  fullname: Mele, Federico
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
– sequence: 9
  givenname: Rana
  orcidid: 0000-0001-9771-7312
  surname: Abdelnabi
  fullname: Abdelnabi, Rana
  organization: KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
– sequence: 10
  givenname: Birgit
  orcidid: 0000-0003-4246-6303
  surname: Weynand
  fullname: Weynand, Birgit
  organization: KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, B-3000 Leuven, Belgium
– sequence: 11
  givenname: Julia
  orcidid: 0000-0002-9113-8181
  surname: Noack
  fullname: Noack, Julia
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 12
  givenname: Martin
  orcidid: 0000-0001-6200-9578
  surname: Montiel-Ruiz
  fullname: Montiel-Ruiz, Martin
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 13
  givenname: Siro
  orcidid: 0000-0002-5100-8905
  surname: Bianchi
  fullname: Bianchi, Siro
  organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
– sequence: 14
  givenname: Fabio
  orcidid: 0000-0002-1974-5606
  surname: Benigni
  fullname: Benigni, Fabio
  organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
– sequence: 15
  givenname: Nicole
  orcidid: 0000-0003-3258-5552
  surname: Sprugasci
  fullname: Sprugasci, Nicole
  organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
– sequence: 16
  givenname: Anshu
  surname: Joshi
  fullname: Joshi, Anshu
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 17
  givenname: John E.
  orcidid: 0000-0003-3590-9727
  surname: Bowen
  fullname: Bowen, John E.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 18
  givenname: Cameron
  orcidid: 0000-0002-2786-6256
  surname: Stewart
  fullname: Stewart, Cameron
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 19
  givenname: Megi
  orcidid: 0000-0002-8107-7231
  surname: Rexhepaj
  fullname: Rexhepaj, Megi
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 20
  givenname: Alexandra C.
  orcidid: 0000-0002-9636-8330
  surname: Walls
  fullname: Walls, Alexandra C.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Howard Hughes Medical Institute, Seattle, WA 98195, USA
– sequence: 21
  givenname: David
  orcidid: 0000-0002-0924-6395
  surname: Jarrossay
  fullname: Jarrossay, David
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
– sequence: 22
  givenname: Diego
  surname: Morone
  fullname: Morone, Diego
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
– sequence: 23
  givenname: Philipp
  surname: Paparoditis
  fullname: Paparoditis, Philipp
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
– sequence: 24
  givenname: Christian
  orcidid: 0000-0002-0832-2376
  surname: Garzoni
  fullname: Garzoni, Christian
  organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland
– sequence: 25
  givenname: Paolo
  orcidid: 0000-0002-9619-3104
  surname: Ferrari
  fullname: Ferrari, Paolo
  organization: Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland., Department of Internal Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland., Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
– sequence: 26
  givenname: Alessandro
  orcidid: 0000-0002-4308-0405
  surname: Ceschi
  fullname: Ceschi, Alessandro
  organization: Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland., Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland., Clinical Trial Unit, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland., Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
– sequence: 27
  givenname: Johan
  orcidid: 0000-0002-0033-7514
  surname: Neyts
  fullname: Neyts, Johan
  organization: KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium., Global Virus Network, Baltimore, MD 21201, USA
– sequence: 28
  givenname: Lisa A.
  orcidid: 0000-0002-9565-2030
  surname: Purcell
  fullname: Purcell, Lisa A.
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 29
  givenname: Gyorgy
  orcidid: 0000-0003-1475-659X
  surname: Snell
  fullname: Snell, Gyorgy
  organization: Vir Biotechnology, San Francisco, CA 94158, USA
– sequence: 30
  givenname: Davide
  orcidid: 0000-0002-5797-1364
  surname: Corti
  fullname: Corti, Davide
  organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland
– sequence: 31
  givenname: Antonio
  orcidid: 0000-0002-3041-7240
  surname: Lanzavecchia
  fullname: Lanzavecchia, Antonio
  organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland., National Institute of Molecular Genetics, 20122 Milano, Italy
– sequence: 32
  givenname: David
  orcidid: 0000-0002-6019-8675
  surname: Veesler
  fullname: Veesler, David
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Howard Hughes Medical Institute, Seattle, WA 98195, USA
– sequence: 33
  givenname: Federica
  orcidid: 0000-0003-3750-2752
  surname: Sallusto
  fullname: Sallusto, Federica
  organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland., Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35857703$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1LHTEUDcVSn7br7kqW3YxmksnXpvB4aFsQCirdhkxyR1PmJWOSEfXXdx6-SltwdRfn63LOETqIKQJCH1ty0rZUnBYXIDo4sf0dFVK_QauWaN5oStgBWhHCRKOI5IfoqJRfhCyYZu_QIeOKS0nYCtn15ow2fYg-xBsMD1MqUHC9BXy1vrxqNulnQ_Ewl5AinmCqwQOuCfc5WT8-4ghzzXYMTzu1SzlFex_yXLCNNfTJByjv0dvBjgU-7O8xuj4_u958ay5-fP2-WV80ruO6NtxrsITxwSpwyrveCdcLNlihPPTcM6cVU8wCHbpWOuGpUsBo5-QgtO7YMfrybDvN_Ra8g7h7zEw5bG1-NMkG8y8Sw625SfdGs05JzheDz3uDnO5mKNVsQ3EwjjZCmouhYmlVUqnbhfrp76yXkD-1LoTTZ4LLqZQMwwulJWY3nNkPZ_bDLQr-n8KFautS-_JsGF_V_QZMBqMp
CitedBy_id crossref_primary_10_1128_jvi_01223_24
crossref_primary_10_4049_jimmunol_2300315
crossref_primary_10_1016_j_str_2024_08_022
crossref_primary_10_1126_science_adg6261
crossref_primary_10_2174_0109298665257646231020054036
crossref_primary_10_1016_j_chembiol_2023_07_011
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_3390_polym16091270
crossref_primary_10_1038_s41392_023_01472_x
crossref_primary_10_1038_s41467_024_48104_8
crossref_primary_10_1038_s41467_024_53356_5
crossref_primary_10_31083_j_fbl2804067
crossref_primary_10_1038_s41467_023_43638_9
crossref_primary_10_1073_pnas_2317222121
crossref_primary_10_1021_acsinfecdis_3c00010
crossref_primary_10_1371_journal_ppat_1011789
crossref_primary_10_1111_imr_13431
crossref_primary_10_1038_s41422_023_00781_8
crossref_primary_10_1016_j_xcrm_2024_101850
crossref_primary_10_1016_j_cell_2023_01_039
crossref_primary_10_7554_eLife_83710
crossref_primary_10_3390_vaccines11111644
crossref_primary_10_1128_mbio_02250_23
crossref_primary_10_1016_j_ijbiomac_2024_134012
crossref_primary_10_1038_s41467_024_49461_0
crossref_primary_10_1016_j_coviro_2023_101332
crossref_primary_10_1039_D1CS01170G
crossref_primary_10_1016_j_jgg_2023_10_003
crossref_primary_10_3389_fimmu_2023_1201136
crossref_primary_10_3390_vaccines10101698
crossref_primary_10_1038_s41467_024_45404_x
crossref_primary_10_1038_s41586_023_06273_4
crossref_primary_10_1128_mbio_00902_23
crossref_primary_10_1038_s41586_024_08121_5
crossref_primary_10_1111_imr_70000
crossref_primary_10_1073_pnas_2404892121
crossref_primary_10_1073_pnas_2220948120
crossref_primary_10_1172_JCI183776
crossref_primary_10_3389_fimmu_2023_1192395
crossref_primary_10_1248_bpb_b23_00639
crossref_primary_10_3389_fimmu_2023_1111385
crossref_primary_10_3390_ijms25158180
crossref_primary_10_1126_sciimmunol_ade0958
crossref_primary_10_1016_j_celrep_2024_114265
crossref_primary_10_3390_microorganisms10101996
crossref_primary_10_1016_j_str_2023_01_013
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1016_j_isci_2024_111632
crossref_primary_10_1073_pnas_2220320120
crossref_primary_10_1038_s41577_022_00784_3
crossref_primary_10_1080_14712598_2024_2388186
crossref_primary_10_3389_fimmu_2023_1160065
crossref_primary_10_1126_sciadv_adq4545
crossref_primary_10_1126_science_adc9498
crossref_primary_10_1038_s41467_024_55358_9
crossref_primary_10_1038_s41467_024_45043_2
crossref_primary_10_1016_j_celrep_2024_114922
crossref_primary_10_1128_mbio_00171_23
crossref_primary_10_1016_j_ijbiomac_2023_125997
crossref_primary_10_1080_22221751_2024_2404166
crossref_primary_10_3390_ijms241310583
crossref_primary_10_14336_AD_2023_0501
crossref_primary_10_1016_j_antiviral_2024_105834
crossref_primary_10_1038_s41467_024_49656_5
crossref_primary_10_1016_j_cell_2024_09_026
crossref_primary_10_1186_s12985_025_02667_0
crossref_primary_10_1002_eji_202451045
crossref_primary_10_1038_s41422_022_00746_3
crossref_primary_10_1016_j_cell_2024_12_032
crossref_primary_10_1080_22221751_2023_2220582
crossref_primary_10_1146_annurev_virology_111821_093413
crossref_primary_10_1126_scitranslmed_adg7404
crossref_primary_10_1038_s41586_024_07636_1
crossref_primary_10_1038_s41392_023_01615_0
crossref_primary_10_3390_life13020386
crossref_primary_10_1016_j_celrep_2024_114530
crossref_primary_10_3390_v16060900
crossref_primary_10_1016_j_virol_2023_04_014
crossref_primary_10_1002_mco2_361
crossref_primary_10_1016_j_isci_2024_110354
crossref_primary_10_1016_S1473_3099_24_00423_7
crossref_primary_10_1371_journal_ppat_1012383
crossref_primary_10_1186_s12865_022_00532_1
crossref_primary_10_3389_fimmu_2023_1056525
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_1021_acs_jpcb_3c07863
crossref_primary_10_1016_j_coviro_2023_101349
crossref_primary_10_1016_j_immuni_2024_10_001
crossref_primary_10_1038_s41467_023_42408_x
crossref_primary_10_3892_mmr_2024_13272
crossref_primary_10_1016_j_chom_2023_05_017
crossref_primary_10_1038_s42003_022_04160_8
crossref_primary_10_1038_s41594_023_01062_z
crossref_primary_10_1038_s41586_022_05513_3
crossref_primary_10_1038_s41577_022_00809_x
crossref_primary_10_1093_intimm_dxae027
crossref_primary_10_1126_sciadv_ade3470
crossref_primary_10_1016_j_immuni_2024_02_016
crossref_primary_10_1016_j_jinf_2024_106208
crossref_primary_10_3390_pharmaceutics15051412
crossref_primary_10_3389_fmolb_2025_1512788
crossref_primary_10_1038_s41423_023_01116_8
crossref_primary_10_1016_j_celrep_2022_111845
crossref_primary_10_12688_openreseurope_17620_1
crossref_primary_10_1002_advs_202409919
Cites_doi 10.1637/0005-2086(2007)051[0045:HSIASA]2.0.CO;2
10.1038/s41586-020-2349-y
10.1126/scitranslmed.abi9215
10.1016/j.cell.2018.12.028
10.1038/s41591-020-1118-7
10.1107/S0907444904016427
10.1126/science.abd4250
10.1126/scitranslmed.abj7125
10.1126/science.abj3321
10.1107/S0907444910048675
10.1038/s41586-021-03807-6
10.1038/s41586-021-03817-4
10.1038/nature02145
10.1038/nature12005
10.1073/pnas.1707304114
10.1016/j.jviromet.2009.02.014
10.1038/nature16988
10.1073/pnas.2014441117
10.1111/imr.12509
10.1073/pnas.1608147113
10.1107/S0907444909042073
10.1126/science.abd0826
10.1038/s41598-020-59711-y
10.1038/s41467-020-16638-2
10.1016/j.jsb.2005.03.010
10.1038/nm.3927
10.1107/S0907444910007493
10.1126/science.abg8985
10.1093/cid/ciab456
10.1038/357420a0
10.1107/S0907444909047337
10.1073/pnas.0409465102
10.1371/journal.pone.0215163
10.1073/pnas.2111199119
10.1128/JVI.00854-15
10.1126/science.abm8143
10.1073/pnas.0809524106
10.1073/pnas.1906020116
10.7554/eLife.63646
10.1038/s41591-018-0042-6
10.1038/s41467-021-21968-w
10.1038/nature11544
10.1126/science.aae0474
10.1038/s41590-018-0235-7
10.1128/JVI.78.17.9007-9015.2004
10.1016/j.molcel.2020.04.022
10.1038/nm.4513
10.1016/j.cell.2020.02.058
10.1016/j.ebiom.2021.103403
10.1038/s41594-019-0308-9
10.1016/j.jim.2007.09.017
10.1126/science.abe1107
10.1038/s41586-021-03925-1
10.1038/s41467-020-19684-y
10.1038/s41586-021-03237-4
10.1182/blood-2012-09-459289
10.1107/S0021889807021206
10.1093/nar/gkt382
10.1002/eji.200839129
10.1038/s41586-021-04111-z
10.1038/nature12711
10.1073/pnas.85.12.4526
10.1126/science.1207227
10.1016/j.celrep.2022.110786
10.1093/oxfordjournals.aje.a118408
10.1099/vir.0.81651-0
10.1002/pro.3235
10.1038/nature12053
10.1016/j.cell.2020.02.052
10.1128/JVI.02519-09
10.1107/S0907444913000061
10.1038/s41577-018-0103-6
10.1126/science.1205669
10.1016/j.cell.2020.09.037
10.1016/j.cell.2022.01.011
10.1101/2021.12.19.473391
10.1016/j.cell.2021.02.010
10.1016/j.cell.2022.05.019
10.1016/0166-3542(90)90001-N
10.1128/jvi.67.3.1185-1194.1993
10.1038/s41586-020-3035-9
10.1016/j.chom.2020.11.007
10.1016/j.cell.2018.03.061
10.1073/pnas.1407087111
10.1126/science.aac7263
10.1126/science.1222908
10.1126/science.abe3354
10.1126/science.abb2507
10.1128/JVI.78.13.6938-6945.2004
10.1126/science.abc7424
10.1107/S2059798319011471
10.1038/s41467-021-23074-3
10.1038/s41467-022-28354-0
10.1073/pnas.1802879115
10.1101/2022.03.04.479488
10.1146/annurev-immunol-032712-095916
10.3390/v12050513
10.1016/j.celrep.2021.109760
10.1016/j.molcel.2022.03.028
10.1002/jcc.20084
10.1038/s41594-021-00596-4
10.1101/2021.05.06.441046
10.1101/2022.01.24.477490
10.1073/pnas.1708727114
10.1128/JVI.00079-09
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1126/science.abq2679
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 742
ExternalDocumentID PMC9348755
35857703
10_1126_science_abq2679
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P30 GM138396
– fundername: NIGMS NIH HHS
  grantid: P30 GM133894
– fundername: NIAID NIH HHS
  grantid: R01 AI132317
– fundername: ;
  grantid: NA
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-5d9ea035fa8ec8dcbc6cb63fa68deb5d3c98383ae2f417c6d288e324c7f69943
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 14:17:35 EDT 2025
Fri Jul 11 03:33:30 EDT 2025
Mon Jul 21 05:59:39 EDT 2025
Tue Jul 01 02:24:12 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6607
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-5d9ea035fa8ec8dcbc6cb63fa68deb5d3c98383ae2f417c6d288e324c7f69943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3750-2752
0000-0003-3590-9727
0000-0001-6200-9578
0000-0002-1974-5606
0000-0002-1775-0778
0000-0001-9771-7312
0000-0002-2260-2577
0000-0002-3041-7240
0000-0003-0455-4687
0000-0002-9619-3104
0000-0002-9565-2030
0000-0001-8398-8330
0000-0002-9636-8330
0000-0001-8674-4294
0000-0002-5100-8905
0000-0001-7538-4262
0000-0002-5797-1364
0000-0003-4246-6303
0000-0003-3258-5552
0000-0002-9113-8181
0000-0002-8107-7231
0000-0003-1475-659X
0000-0002-6019-8675
0000-0002-2786-6256
0000-0002-0924-6395
0000-0001-5358-5055
0000-0002-4308-0405
0000-0002-0832-2376
0000-0002-0033-7514
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9348755
PMID 35857703
PQID 2692072791
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9348755
proquest_miscellaneous_2692072791
pubmed_primary_35857703
crossref_primary_10_1126_science_abq2679
crossref_citationtrail_10_1126_science_abq2679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-12
PublicationDateYYYYMMDD 2022-08-12
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
References_xml – ident: e_1_3_2_105_2
  doi: 10.1637/0005-2086(2007)051[0045:HSIASA]2.0.CO;2
– ident: e_1_3_2_10_2
  doi: 10.1038/s41586-020-2349-y
– ident: e_1_3_2_20_2
  doi: 10.1126/scitranslmed.abi9215
– ident: e_1_3_2_53_2
  doi: 10.1016/j.cell.2018.12.028
– ident: e_1_3_2_65_2
  doi: 10.1038/s41591-020-1118-7
– ident: e_1_3_2_89_2
  doi: 10.1107/S0907444904016427
– ident: e_1_3_2_35_2
  doi: 10.1126/science.abd4250
– ident: e_1_3_2_15_2
  doi: 10.1126/scitranslmed.abj7125
– ident: e_1_3_2_16_2
  doi: 10.1126/science.abj3321
– ident: e_1_3_2_84_2
  doi: 10.1107/S0907444910048675
– ident: e_1_3_2_11_2
  doi: 10.1038/s41586-021-03807-6
– ident: e_1_3_2_13_2
  doi: 10.1038/s41586-021-03817-4
– ident: e_1_3_2_48_2
  doi: 10.1038/nature02145
– ident: e_1_3_2_49_2
  doi: 10.1038/nature12005
– ident: e_1_3_2_75_2
  doi: 10.1073/pnas.1707304114
– ident: e_1_3_2_76_2
  doi: 10.1016/j.jviromet.2009.02.014
– ident: e_1_3_2_40_2
  doi: 10.1038/nature16988
– ident: e_1_3_2_93_2
  doi: 10.1073/pnas.2014441117
– ident: e_1_3_2_55_2
  doi: 10.1111/imr.12509
– ident: e_1_3_2_56_2
  doi: 10.1073/pnas.1608147113
– ident: e_1_3_2_99_2
  doi: 10.1107/S0907444909042073
– ident: e_1_3_2_34_2
  doi: 10.1126/science.abd0826
– ident: e_1_3_2_64_2
  doi: 10.1038/s41598-020-59711-y
– ident: e_1_3_2_37_2
  doi: 10.1038/s41467-020-16638-2
– ident: e_1_3_2_80_2
  doi: 10.1016/j.jsb.2005.03.010
– ident: e_1_3_2_66_2
  doi: 10.1038/nm.3927
– ident: e_1_3_2_87_2
  doi: 10.1107/S0907444910007493
– ident: e_1_3_2_70_2
  doi: 10.1126/science.abg8985
– ident: e_1_3_2_2_2
  doi: 10.1093/cid/ciab456
– ident: e_1_3_2_51_2
  doi: 10.1038/357420a0
– ident: e_1_3_2_83_2
  doi: 10.1107/S0907444909047337
– ident: e_1_3_2_50_2
  doi: 10.1073/pnas.0409465102
– ident: e_1_3_2_61_2
  doi: 10.1371/journal.pone.0215163
– ident: e_1_3_2_59_2
  doi: 10.1073/pnas.2111199119
– ident: e_1_3_2_104_2
  doi: 10.1128/JVI.00854-15
– ident: e_1_3_2_14_2
  doi: 10.1126/science.abm8143
– ident: e_1_3_2_68_2
  doi: 10.1073/pnas.0809524106
– ident: e_1_3_2_79_2
  doi: 10.1073/pnas.1906020116
– ident: e_1_3_2_58_2
  doi: 10.7554/eLife.63646
– ident: e_1_3_2_62_2
  doi: 10.1038/s41591-018-0042-6
– ident: e_1_3_2_17_2
  doi: 10.1038/s41467-021-21968-w
– ident: e_1_3_2_26_2
  doi: 10.1038/nature11544
– ident: e_1_3_2_78_2
– ident: e_1_3_2_63_2
  doi: 10.1126/science.aae0474
– ident: e_1_3_2_28_2
  doi: 10.1038/s41590-018-0235-7
– ident: e_1_3_2_90_2
  doi: 10.1128/JVI.78.17.9007-9015.2004
– ident: e_1_3_2_46_2
  doi: 10.1016/j.molcel.2020.04.022
– ident: e_1_3_2_96_2
  doi: 10.1038/nm.4513
– ident: e_1_3_2_5_2
  doi: 10.1016/j.cell.2020.02.058
– ident: e_1_3_2_97_2
  doi: 10.1016/j.ebiom.2021.103403
– ident: e_1_3_2_43_2
  doi: 10.1038/s41594-019-0308-9
– ident: e_1_3_2_72_2
  doi: 10.1016/j.jim.2007.09.017
– ident: e_1_3_2_36_2
  doi: 10.1126/science.abe1107
– ident: e_1_3_2_42_2
  doi: 10.1038/s41586-021-03925-1
– ident: e_1_3_2_91_2
  doi: 10.1038/s41467-020-19684-y
– ident: e_1_3_2_45_2
  doi: 10.1038/s41586-021-03237-4
– ident: e_1_3_2_101_2
  doi: 10.1182/blood-2012-09-459289
– ident: e_1_3_2_86_2
  doi: 10.1107/S0021889807021206
– ident: e_1_3_2_77_2
  doi: 10.1093/nar/gkt382
– ident: e_1_3_2_30_2
  doi: 10.1002/eji.200839129
– ident: e_1_3_2_3_2
  doi: 10.1038/s41586-021-04111-z
– ident: e_1_3_2_102_2
  doi: 10.1038/nature12711
– ident: e_1_3_2_103_2
  doi: 10.1073/pnas.85.12.4526
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1207227
– ident: e_1_3_2_60_2
  doi: 10.1016/j.celrep.2022.110786
– ident: e_1_3_2_95_2
  doi: 10.1093/oxfordjournals.aje.a118408
– ident: e_1_3_2_106_2
  doi: 10.1099/vir.0.81651-0
– ident: e_1_3_2_100_2
  doi: 10.1002/pro.3235
– ident: e_1_3_2_24_2
  doi: 10.1038/nature12053
– ident: e_1_3_2_33_2
  doi: 10.1016/j.cell.2020.02.052
– ident: e_1_3_2_82_2
  doi: 10.1128/JVI.02519-09
– ident: e_1_3_2_85_2
  doi: 10.1107/S0907444913000061
– ident: e_1_3_2_54_2
  doi: 10.1038/s41577-018-0103-6
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1205669
– ident: e_1_3_2_7_2
  doi: 10.1016/j.cell.2020.09.037
– ident: e_1_3_2_31_2
  doi: 10.1016/j.cell.2022.01.011
– ident: e_1_3_2_73_2
  doi: 10.1101/2021.12.19.473391
– ident: e_1_3_2_32_2
  doi: 10.1016/j.cell.2021.02.010
– ident: e_1_3_2_4_2
  doi: 10.1016/j.cell.2022.05.019
– ident: e_1_3_2_71_2
  doi: 10.1016/0166-3542(90)90001-N
– ident: e_1_3_2_38_2
  doi: 10.1128/jvi.67.3.1185-1194.1993
– ident: e_1_3_2_92_2
  doi: 10.1038/s41586-020-3035-9
– ident: e_1_3_2_8_2
  doi: 10.1016/j.chom.2020.11.007
– ident: e_1_3_2_23_2
  doi: 10.1016/j.cell.2018.03.061
– ident: e_1_3_2_57_2
  doi: 10.1073/pnas.1407087111
– ident: e_1_3_2_67_2
  doi: 10.1126/science.aac7263
– ident: e_1_3_2_27_2
  doi: 10.1126/science.1222908
– ident: e_1_3_2_52_2
  doi: 10.1126/science.abe3354
– ident: e_1_3_2_6_2
  doi: 10.1126/science.abb2507
– ident: e_1_3_2_39_2
  doi: 10.1128/JVI.78.13.6938-6945.2004
– ident: e_1_3_2_9_2
  doi: 10.1126/science.abc7424
– ident: e_1_3_2_88_2
  doi: 10.1107/S2059798319011471
– ident: e_1_3_2_18_2
  doi: 10.1038/s41467-021-23074-3
– ident: e_1_3_2_94_2
  doi: 10.1038/s41467-022-28354-0
– ident: e_1_3_2_107_2
  doi: 10.1073/pnas.1802879115
– ident: e_1_3_2_21_2
  doi: 10.1101/2022.03.04.479488
– ident: e_1_3_2_29_2
  doi: 10.1146/annurev-immunol-032712-095916
– ident: e_1_3_2_81_2
  doi: 10.3390/v12050513
– ident: e_1_3_2_12_2
  doi: 10.1016/j.celrep.2021.109760
– ident: e_1_3_2_47_2
  doi: 10.1016/j.molcel.2022.03.028
– ident: e_1_3_2_98_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_2_19_2
  doi: 10.1038/s41594-021-00596-4
– ident: e_1_3_2_74_2
  doi: 10.1101/2021.05.06.441046
– ident: e_1_3_2_41_2
  doi: 10.1101/2022.01.24.477490
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.1708727114
– ident: e_1_3_2_69_2
  doi: 10.1128/JVI.00079-09
SSID ssj0009593
Score 2.6534479
Snippet The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal...
The coronavirus spike (S) glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated from severe acute...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 735
SubjectTerms Angiotensin-Converting Enzyme 2 - chemistry
Animals
Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - isolation & purification
Antibodies, Viral - immunology
Antibodies, Viral - isolation & purification
Biochem
Broadly Neutralizing Antibodies - immunology
COVID-19 - immunology
Humans
Microbio
Peptides - immunology
Protein Binding
SARS-CoV-2 - immunology
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - immunology
Title ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies
URI https://www.ncbi.nlm.nih.gov/pubmed/35857703
https://www.proquest.com/docview/2692072791
https://pubmed.ncbi.nlm.nih.gov/PMC9348755
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBtf5UtG4mGoStXaiZM8dqXVNLVDYh3qW2Q7DhSmpKQNYvtD-Hs5x06abkMavESVYydVfpfL3fnudwi9ozIgru-5TswEd1wZxE4gSOyE0mNc8tilUtcOz07Z8bl7svAWrdbvRtZSsRE9eXVrXcn_oApjgKuukv0HZOuLwgD8BnzhCAjD8U4YD0djol3bsjBF_Vpla03YAMCfDT-dOaPss0O6SaHjYd2Vzl6Jyz4ZIs94fHHZTVVRhjmuTN1tDjb5z2VeaNLmzVJkdXqhNV0rLQAmab3N0wC3zlccmqyCKsnALmtEHKZmO-mkAM0CC7_USTwq59_trkTVBr2Mf-clkUmZdjDTFTnfeBrn9fmZHPGqXbPtXt4MZYAXrKllG9HNQV83jiR9o_HULWNWZVPb-sXIJmOmca7Vwb7hP7n5bWh0s1Q9Ln4QZvrY7LJwn36MJufTaTQfL-b30B4B94O00d7w6MPR5Dqdc_3nLGlUoxyrusGuvXPDibmei9swbuaP0EPrleChEbF91FLpAbpv-pReHqB9C-IaH1qa8vePEW9KH7bSh-Hx4630YSN92Eof3mTYSh9uSh9uSB_eSt8TNJ-M56NjxzbscKTrhRvHi0PF-9RLeKDgrZdCMikYTTgLYiW8mMowoAHliiTuwJcsJkGgwKKXfsLC0KVPUTvNUvUcYZ_ESTgIQpimUwkCAWb0IOlTX3A3AAuqg3rVU42kJbPXPVUuotKpJSyyMEQWhg46rBesDI_L36e-rWCKQNfqDTSeqqxYR4QB1mDwh4MOemZgqy9Gwe_24fPZQf4OoPUEzeO-eyZdfi353EOqowbeizvc9yV6sH1xXqH2Ji_Ua7CKN-KNFdE_hPLAoA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACE2-binding+exposes+the+SARS-CoV-2+fusion+peptide+to+broadly+neutralizing+coronavirus+antibodies&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Low%2C+Jun+Siong&rft.au=Jerak%2C+Josipa&rft.au=Tortorici%2C+M+Alejandra&rft.au=McCallum%2C+Matthew&rft.date=2022-08-12&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=377&rft.issue=6607&rft.spage=735&rft_id=info:doi/10.1126%2Fscience.abq2679&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon