ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies
The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immu...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 377; no. 6607; pp. 735 - 742 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
12.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide–specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.
Seven coronaviruses cause human disease, and three have caused serious outbreaks in the past 20 years. The potential for future coronavirus outbreaks in humans and the ongoing resistance of severe acute syndrome coronavirus 2 (SARS-CoV-2) variants to existing antibodies make it important to identify cross-reactive antibodies that can be the basis of therapeutics and can guide vaccine design. Low
et al
. and Dacon
et al
. isolated antibodies from convalescent individuals that show broad neutralizing activity against a range of coronaviruses, including Omicron variants of SARS-CoV-2. The antibodies target a conserved region of the viral spike protein known as the fusion peptide and may act by preventing the cell fusion that is required for infection of new host cells. —VV
A class of broadly reactive antibodies target a cryptic fusion peptide epitope exposed upon coronavirus spike protein binding to ACE2. |
---|---|
AbstractList | The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs. The coronavirus spike (S) glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus S proteins. This class of mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and beta-coronaviruses, including animal coronavirus WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses show that the fusion peptide-specific mAbs bind with different modalities to a cryptic epitope, which is hidden in prefusion stabilized S, and becomes exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs. The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide–specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs. Seven coronaviruses cause human disease, and three have caused serious outbreaks in the past 20 years. The potential for future coronavirus outbreaks in humans and the ongoing resistance of severe acute syndrome coronavirus 2 (SARS-CoV-2) variants to existing antibodies make it important to identify cross-reactive antibodies that can be the basis of therapeutics and can guide vaccine design. Low et al . and Dacon et al . isolated antibodies from convalescent individuals that show broad neutralizing activity against a range of coronaviruses, including Omicron variants of SARS-CoV-2. The antibodies target a conserved region of the viral spike protein known as the fusion peptide and may act by preventing the cell fusion that is required for infection of new host cells. —VV A class of broadly reactive antibodies target a cryptic fusion peptide epitope exposed upon coronavirus spike protein binding to ACE2. The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs.The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide-specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs. |
Author | Snell, Gyorgy Lanzavecchia, Antonio Montiel-Ruiz, Martin Veesler, David Walls, Alexandra C. Jerak, Josipa Tortorici, M. Alejandra Bianchi, Siro Sprugasci, Nicole Joshi, Anshu Bowen, John E. Rexhepaj, Megi Benigni, Fabio Sallusto, Federica Noack, Julia Neyts, Johan Ceschi, Alessandro Stewart, Cameron Foglierini, Mathilde Abdelnabi, Rana Paparoditis, Philipp Ferrari, Paolo Morone, Diego McCallum, Matthew Pinto, Dora Jarrossay, David Weynand, Birgit Cassotta, Antonino Corti, Davide Purcell, Lisa A. Garzoni, Christian Low, Jun Siong Mele, Federico |
Author_xml | – sequence: 1 givenname: Jun Siong orcidid: 0000-0002-1775-0778 surname: Low fullname: Low, Jun Siong organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland., Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland – sequence: 2 givenname: Josipa orcidid: 0000-0001-5358-5055 surname: Jerak fullname: Jerak, Josipa organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland., Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland – sequence: 3 givenname: M. Alejandra orcidid: 0000-0002-2260-2577 surname: Tortorici fullname: Tortorici, M. Alejandra organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: Matthew orcidid: 0000-0001-8398-8330 surname: McCallum fullname: McCallum, Matthew organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 5 givenname: Dora surname: Pinto fullname: Pinto, Dora organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland – sequence: 6 givenname: Antonino orcidid: 0000-0001-8674-4294 surname: Cassotta fullname: Cassotta, Antonino organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland – sequence: 7 givenname: Mathilde orcidid: 0000-0001-7538-4262 surname: Foglierini fullname: Foglierini, Mathilde organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland – sequence: 8 givenname: Federico orcidid: 0000-0003-0455-4687 surname: Mele fullname: Mele, Federico organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland – sequence: 9 givenname: Rana orcidid: 0000-0001-9771-7312 surname: Abdelnabi fullname: Abdelnabi, Rana organization: KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium – sequence: 10 givenname: Birgit orcidid: 0000-0003-4246-6303 surname: Weynand fullname: Weynand, Birgit organization: KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, B-3000 Leuven, Belgium – sequence: 11 givenname: Julia orcidid: 0000-0002-9113-8181 surname: Noack fullname: Noack, Julia organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 12 givenname: Martin orcidid: 0000-0001-6200-9578 surname: Montiel-Ruiz fullname: Montiel-Ruiz, Martin organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 13 givenname: Siro orcidid: 0000-0002-5100-8905 surname: Bianchi fullname: Bianchi, Siro organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland – sequence: 14 givenname: Fabio orcidid: 0000-0002-1974-5606 surname: Benigni fullname: Benigni, Fabio organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland – sequence: 15 givenname: Nicole orcidid: 0000-0003-3258-5552 surname: Sprugasci fullname: Sprugasci, Nicole organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland – sequence: 16 givenname: Anshu surname: Joshi fullname: Joshi, Anshu organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 17 givenname: John E. orcidid: 0000-0003-3590-9727 surname: Bowen fullname: Bowen, John E. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 18 givenname: Cameron orcidid: 0000-0002-2786-6256 surname: Stewart fullname: Stewart, Cameron organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 19 givenname: Megi orcidid: 0000-0002-8107-7231 surname: Rexhepaj fullname: Rexhepaj, Megi organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 20 givenname: Alexandra C. orcidid: 0000-0002-9636-8330 surname: Walls fullname: Walls, Alexandra C. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Howard Hughes Medical Institute, Seattle, WA 98195, USA – sequence: 21 givenname: David orcidid: 0000-0002-0924-6395 surname: Jarrossay fullname: Jarrossay, David organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland – sequence: 22 givenname: Diego surname: Morone fullname: Morone, Diego organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland – sequence: 23 givenname: Philipp surname: Paparoditis fullname: Paparoditis, Philipp organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland – sequence: 24 givenname: Christian orcidid: 0000-0002-0832-2376 surname: Garzoni fullname: Garzoni, Christian organization: Clinic of Internal Medicine and Infectious Diseases, Clinica Luganese Moncucco, 6900 Lugano, Switzerland – sequence: 25 givenname: Paolo orcidid: 0000-0002-9619-3104 surname: Ferrari fullname: Ferrari, Paolo organization: Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland., Department of Internal Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland., Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia – sequence: 26 givenname: Alessandro orcidid: 0000-0002-4308-0405 surname: Ceschi fullname: Ceschi, Alessandro organization: Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland., Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland., Clinical Trial Unit, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland., Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland – sequence: 27 givenname: Johan orcidid: 0000-0002-0033-7514 surname: Neyts fullname: Neyts, Johan organization: KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium., Global Virus Network, Baltimore, MD 21201, USA – sequence: 28 givenname: Lisa A. orcidid: 0000-0002-9565-2030 surname: Purcell fullname: Purcell, Lisa A. organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 29 givenname: Gyorgy orcidid: 0000-0003-1475-659X surname: Snell fullname: Snell, Gyorgy organization: Vir Biotechnology, San Francisco, CA 94158, USA – sequence: 30 givenname: Davide orcidid: 0000-0002-5797-1364 surname: Corti fullname: Corti, Davide organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland – sequence: 31 givenname: Antonio orcidid: 0000-0002-3041-7240 surname: Lanzavecchia fullname: Lanzavecchia, Antonio organization: Humabs BioMed SA (subsidiary of Vir Biotechnology), 6500 Bellinzona, Switzerland., National Institute of Molecular Genetics, 20122 Milano, Italy – sequence: 32 givenname: David orcidid: 0000-0002-6019-8675 surname: Veesler fullname: Veesler, David organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Howard Hughes Medical Institute, Seattle, WA 98195, USA – sequence: 33 givenname: Federica orcidid: 0000-0003-3750-2752 surname: Sallusto fullname: Sallusto, Federica organization: Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland., Institute of Microbiology, ETH Zürich, 8093 Zurich, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35857703$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1LHTEUDcVSn7br7kqW3YxmksnXpvB4aFsQCirdhkxyR1PmJWOSEfXXdx6-SltwdRfn63LOETqIKQJCH1ty0rZUnBYXIDo4sf0dFVK_QauWaN5oStgBWhHCRKOI5IfoqJRfhCyYZu_QIeOKS0nYCtn15ow2fYg-xBsMD1MqUHC9BXy1vrxqNulnQ_Ewl5AinmCqwQOuCfc5WT8-4ghzzXYMTzu1SzlFex_yXLCNNfTJByjv0dvBjgU-7O8xuj4_u958ay5-fP2-WV80ruO6NtxrsITxwSpwyrveCdcLNlihPPTcM6cVU8wCHbpWOuGpUsBo5-QgtO7YMfrybDvN_Ra8g7h7zEw5bG1-NMkG8y8Sw625SfdGs05JzheDz3uDnO5mKNVsQ3EwjjZCmouhYmlVUqnbhfrp76yXkD-1LoTTZ4LLqZQMwwulJWY3nNkPZ_bDLQr-n8KFautS-_JsGF_V_QZMBqMp |
CitedBy_id | crossref_primary_10_1128_jvi_01223_24 crossref_primary_10_4049_jimmunol_2300315 crossref_primary_10_1016_j_str_2024_08_022 crossref_primary_10_1126_science_adg6261 crossref_primary_10_2174_0109298665257646231020054036 crossref_primary_10_1016_j_chembiol_2023_07_011 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_3390_polym16091270 crossref_primary_10_1038_s41392_023_01472_x crossref_primary_10_1038_s41467_024_48104_8 crossref_primary_10_1038_s41467_024_53356_5 crossref_primary_10_31083_j_fbl2804067 crossref_primary_10_1038_s41467_023_43638_9 crossref_primary_10_1073_pnas_2317222121 crossref_primary_10_1021_acsinfecdis_3c00010 crossref_primary_10_1371_journal_ppat_1011789 crossref_primary_10_1111_imr_13431 crossref_primary_10_1038_s41422_023_00781_8 crossref_primary_10_1016_j_xcrm_2024_101850 crossref_primary_10_1016_j_cell_2023_01_039 crossref_primary_10_7554_eLife_83710 crossref_primary_10_3390_vaccines11111644 crossref_primary_10_1128_mbio_02250_23 crossref_primary_10_1016_j_ijbiomac_2024_134012 crossref_primary_10_1038_s41467_024_49461_0 crossref_primary_10_1016_j_coviro_2023_101332 crossref_primary_10_1039_D1CS01170G crossref_primary_10_1016_j_jgg_2023_10_003 crossref_primary_10_3389_fimmu_2023_1201136 crossref_primary_10_3390_vaccines10101698 crossref_primary_10_1038_s41467_024_45404_x crossref_primary_10_1038_s41586_023_06273_4 crossref_primary_10_1128_mbio_00902_23 crossref_primary_10_1038_s41586_024_08121_5 crossref_primary_10_1111_imr_70000 crossref_primary_10_1073_pnas_2404892121 crossref_primary_10_1073_pnas_2220948120 crossref_primary_10_1172_JCI183776 crossref_primary_10_3389_fimmu_2023_1192395 crossref_primary_10_1248_bpb_b23_00639 crossref_primary_10_3389_fimmu_2023_1111385 crossref_primary_10_3390_ijms25158180 crossref_primary_10_1126_sciimmunol_ade0958 crossref_primary_10_1016_j_celrep_2024_114265 crossref_primary_10_3390_microorganisms10101996 crossref_primary_10_1016_j_str_2023_01_013 crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1016_j_isci_2024_111632 crossref_primary_10_1073_pnas_2220320120 crossref_primary_10_1038_s41577_022_00784_3 crossref_primary_10_1080_14712598_2024_2388186 crossref_primary_10_3389_fimmu_2023_1160065 crossref_primary_10_1126_sciadv_adq4545 crossref_primary_10_1126_science_adc9498 crossref_primary_10_1038_s41467_024_55358_9 crossref_primary_10_1038_s41467_024_45043_2 crossref_primary_10_1016_j_celrep_2024_114922 crossref_primary_10_1128_mbio_00171_23 crossref_primary_10_1016_j_ijbiomac_2023_125997 crossref_primary_10_1080_22221751_2024_2404166 crossref_primary_10_3390_ijms241310583 crossref_primary_10_14336_AD_2023_0501 crossref_primary_10_1016_j_antiviral_2024_105834 crossref_primary_10_1038_s41467_024_49656_5 crossref_primary_10_1016_j_cell_2024_09_026 crossref_primary_10_1186_s12985_025_02667_0 crossref_primary_10_1002_eji_202451045 crossref_primary_10_1038_s41422_022_00746_3 crossref_primary_10_1016_j_cell_2024_12_032 crossref_primary_10_1080_22221751_2023_2220582 crossref_primary_10_1146_annurev_virology_111821_093413 crossref_primary_10_1126_scitranslmed_adg7404 crossref_primary_10_1038_s41586_024_07636_1 crossref_primary_10_1038_s41392_023_01615_0 crossref_primary_10_3390_life13020386 crossref_primary_10_1016_j_celrep_2024_114530 crossref_primary_10_3390_v16060900 crossref_primary_10_1016_j_virol_2023_04_014 crossref_primary_10_1002_mco2_361 crossref_primary_10_1016_j_isci_2024_110354 crossref_primary_10_1016_S1473_3099_24_00423_7 crossref_primary_10_1371_journal_ppat_1012383 crossref_primary_10_1186_s12865_022_00532_1 crossref_primary_10_3389_fimmu_2023_1056525 crossref_primary_10_1016_j_celrep_2024_115036 crossref_primary_10_1021_acs_jpcb_3c07863 crossref_primary_10_1016_j_coviro_2023_101349 crossref_primary_10_1016_j_immuni_2024_10_001 crossref_primary_10_1038_s41467_023_42408_x crossref_primary_10_3892_mmr_2024_13272 crossref_primary_10_1016_j_chom_2023_05_017 crossref_primary_10_1038_s42003_022_04160_8 crossref_primary_10_1038_s41594_023_01062_z crossref_primary_10_1038_s41586_022_05513_3 crossref_primary_10_1038_s41577_022_00809_x crossref_primary_10_1093_intimm_dxae027 crossref_primary_10_1126_sciadv_ade3470 crossref_primary_10_1016_j_immuni_2024_02_016 crossref_primary_10_1016_j_jinf_2024_106208 crossref_primary_10_3390_pharmaceutics15051412 crossref_primary_10_3389_fmolb_2025_1512788 crossref_primary_10_1038_s41423_023_01116_8 crossref_primary_10_1016_j_celrep_2022_111845 crossref_primary_10_12688_openreseurope_17620_1 crossref_primary_10_1002_advs_202409919 |
Cites_doi | 10.1637/0005-2086(2007)051[0045:HSIASA]2.0.CO;2 10.1038/s41586-020-2349-y 10.1126/scitranslmed.abi9215 10.1016/j.cell.2018.12.028 10.1038/s41591-020-1118-7 10.1107/S0907444904016427 10.1126/science.abd4250 10.1126/scitranslmed.abj7125 10.1126/science.abj3321 10.1107/S0907444910048675 10.1038/s41586-021-03807-6 10.1038/s41586-021-03817-4 10.1038/nature02145 10.1038/nature12005 10.1073/pnas.1707304114 10.1016/j.jviromet.2009.02.014 10.1038/nature16988 10.1073/pnas.2014441117 10.1111/imr.12509 10.1073/pnas.1608147113 10.1107/S0907444909042073 10.1126/science.abd0826 10.1038/s41598-020-59711-y 10.1038/s41467-020-16638-2 10.1016/j.jsb.2005.03.010 10.1038/nm.3927 10.1107/S0907444910007493 10.1126/science.abg8985 10.1093/cid/ciab456 10.1038/357420a0 10.1107/S0907444909047337 10.1073/pnas.0409465102 10.1371/journal.pone.0215163 10.1073/pnas.2111199119 10.1128/JVI.00854-15 10.1126/science.abm8143 10.1073/pnas.0809524106 10.1073/pnas.1906020116 10.7554/eLife.63646 10.1038/s41591-018-0042-6 10.1038/s41467-021-21968-w 10.1038/nature11544 10.1126/science.aae0474 10.1038/s41590-018-0235-7 10.1128/JVI.78.17.9007-9015.2004 10.1016/j.molcel.2020.04.022 10.1038/nm.4513 10.1016/j.cell.2020.02.058 10.1016/j.ebiom.2021.103403 10.1038/s41594-019-0308-9 10.1016/j.jim.2007.09.017 10.1126/science.abe1107 10.1038/s41586-021-03925-1 10.1038/s41467-020-19684-y 10.1038/s41586-021-03237-4 10.1182/blood-2012-09-459289 10.1107/S0021889807021206 10.1093/nar/gkt382 10.1002/eji.200839129 10.1038/s41586-021-04111-z 10.1038/nature12711 10.1073/pnas.85.12.4526 10.1126/science.1207227 10.1016/j.celrep.2022.110786 10.1093/oxfordjournals.aje.a118408 10.1099/vir.0.81651-0 10.1002/pro.3235 10.1038/nature12053 10.1016/j.cell.2020.02.052 10.1128/JVI.02519-09 10.1107/S0907444913000061 10.1038/s41577-018-0103-6 10.1126/science.1205669 10.1016/j.cell.2020.09.037 10.1016/j.cell.2022.01.011 10.1101/2021.12.19.473391 10.1016/j.cell.2021.02.010 10.1016/j.cell.2022.05.019 10.1016/0166-3542(90)90001-N 10.1128/jvi.67.3.1185-1194.1993 10.1038/s41586-020-3035-9 10.1016/j.chom.2020.11.007 10.1016/j.cell.2018.03.061 10.1073/pnas.1407087111 10.1126/science.aac7263 10.1126/science.1222908 10.1126/science.abe3354 10.1126/science.abb2507 10.1128/JVI.78.13.6938-6945.2004 10.1126/science.abc7424 10.1107/S2059798319011471 10.1038/s41467-021-23074-3 10.1038/s41467-022-28354-0 10.1073/pnas.1802879115 10.1101/2022.03.04.479488 10.1146/annurev-immunol-032712-095916 10.3390/v12050513 10.1016/j.celrep.2021.109760 10.1016/j.molcel.2022.03.028 10.1002/jcc.20084 10.1038/s41594-021-00596-4 10.1101/2021.05.06.441046 10.1101/2022.01.24.477490 10.1073/pnas.1708727114 10.1128/JVI.00079-09 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1126/science.abq2679 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 742 |
ExternalDocumentID | PMC9348755 35857703 10_1126_science_abq2679 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P30 GM138396 – fundername: NIGMS NIH HHS grantid: P30 GM133894 – fundername: NIAID NIH HHS grantid: R01 AI132317 – fundername: ; grantid: NA |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c459t-5d9ea035fa8ec8dcbc6cb63fa68deb5d3c98383ae2f417c6d288e324c7f69943 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 14:17:35 EDT 2025 Fri Jul 11 03:33:30 EDT 2025 Mon Jul 21 05:59:39 EDT 2025 Tue Jul 01 02:24:12 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6607 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-5d9ea035fa8ec8dcbc6cb63fa68deb5d3c98383ae2f417c6d288e324c7f69943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3750-2752 0000-0003-3590-9727 0000-0001-6200-9578 0000-0002-1974-5606 0000-0002-1775-0778 0000-0001-9771-7312 0000-0002-2260-2577 0000-0002-3041-7240 0000-0003-0455-4687 0000-0002-9619-3104 0000-0002-9565-2030 0000-0001-8398-8330 0000-0002-9636-8330 0000-0001-8674-4294 0000-0002-5100-8905 0000-0001-7538-4262 0000-0002-5797-1364 0000-0003-4246-6303 0000-0003-3258-5552 0000-0002-9113-8181 0000-0002-8107-7231 0000-0003-1475-659X 0000-0002-6019-8675 0000-0002-2786-6256 0000-0002-0924-6395 0000-0001-5358-5055 0000-0002-4308-0405 0000-0002-0832-2376 0000-0002-0033-7514 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9348755 |
PMID | 35857703 |
PQID | 2692072791 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9348755 proquest_miscellaneous_2692072791 pubmed_primary_35857703 crossref_primary_10_1126_science_abq2679 crossref_citationtrail_10_1126_science_abq2679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-12 |
PublicationDateYYYYMMDD | 2022-08-12 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_70_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 |
References_xml | – ident: e_1_3_2_105_2 doi: 10.1637/0005-2086(2007)051[0045:HSIASA]2.0.CO;2 – ident: e_1_3_2_10_2 doi: 10.1038/s41586-020-2349-y – ident: e_1_3_2_20_2 doi: 10.1126/scitranslmed.abi9215 – ident: e_1_3_2_53_2 doi: 10.1016/j.cell.2018.12.028 – ident: e_1_3_2_65_2 doi: 10.1038/s41591-020-1118-7 – ident: e_1_3_2_89_2 doi: 10.1107/S0907444904016427 – ident: e_1_3_2_35_2 doi: 10.1126/science.abd4250 – ident: e_1_3_2_15_2 doi: 10.1126/scitranslmed.abj7125 – ident: e_1_3_2_16_2 doi: 10.1126/science.abj3321 – ident: e_1_3_2_84_2 doi: 10.1107/S0907444910048675 – ident: e_1_3_2_11_2 doi: 10.1038/s41586-021-03807-6 – ident: e_1_3_2_13_2 doi: 10.1038/s41586-021-03817-4 – ident: e_1_3_2_48_2 doi: 10.1038/nature02145 – ident: e_1_3_2_49_2 doi: 10.1038/nature12005 – ident: e_1_3_2_75_2 doi: 10.1073/pnas.1707304114 – ident: e_1_3_2_76_2 doi: 10.1016/j.jviromet.2009.02.014 – ident: e_1_3_2_40_2 doi: 10.1038/nature16988 – ident: e_1_3_2_93_2 doi: 10.1073/pnas.2014441117 – ident: e_1_3_2_55_2 doi: 10.1111/imr.12509 – ident: e_1_3_2_56_2 doi: 10.1073/pnas.1608147113 – ident: e_1_3_2_99_2 doi: 10.1107/S0907444909042073 – ident: e_1_3_2_34_2 doi: 10.1126/science.abd0826 – ident: e_1_3_2_64_2 doi: 10.1038/s41598-020-59711-y – ident: e_1_3_2_37_2 doi: 10.1038/s41467-020-16638-2 – ident: e_1_3_2_80_2 doi: 10.1016/j.jsb.2005.03.010 – ident: e_1_3_2_66_2 doi: 10.1038/nm.3927 – ident: e_1_3_2_87_2 doi: 10.1107/S0907444910007493 – ident: e_1_3_2_70_2 doi: 10.1126/science.abg8985 – ident: e_1_3_2_2_2 doi: 10.1093/cid/ciab456 – ident: e_1_3_2_51_2 doi: 10.1038/357420a0 – ident: e_1_3_2_83_2 doi: 10.1107/S0907444909047337 – ident: e_1_3_2_50_2 doi: 10.1073/pnas.0409465102 – ident: e_1_3_2_61_2 doi: 10.1371/journal.pone.0215163 – ident: e_1_3_2_59_2 doi: 10.1073/pnas.2111199119 – ident: e_1_3_2_104_2 doi: 10.1128/JVI.00854-15 – ident: e_1_3_2_14_2 doi: 10.1126/science.abm8143 – ident: e_1_3_2_68_2 doi: 10.1073/pnas.0809524106 – ident: e_1_3_2_79_2 doi: 10.1073/pnas.1906020116 – ident: e_1_3_2_58_2 doi: 10.7554/eLife.63646 – ident: e_1_3_2_62_2 doi: 10.1038/s41591-018-0042-6 – ident: e_1_3_2_17_2 doi: 10.1038/s41467-021-21968-w – ident: e_1_3_2_26_2 doi: 10.1038/nature11544 – ident: e_1_3_2_78_2 – ident: e_1_3_2_63_2 doi: 10.1126/science.aae0474 – ident: e_1_3_2_28_2 doi: 10.1038/s41590-018-0235-7 – ident: e_1_3_2_90_2 doi: 10.1128/JVI.78.17.9007-9015.2004 – ident: e_1_3_2_46_2 doi: 10.1016/j.molcel.2020.04.022 – ident: e_1_3_2_96_2 doi: 10.1038/nm.4513 – ident: e_1_3_2_5_2 doi: 10.1016/j.cell.2020.02.058 – ident: e_1_3_2_97_2 doi: 10.1016/j.ebiom.2021.103403 – ident: e_1_3_2_43_2 doi: 10.1038/s41594-019-0308-9 – ident: e_1_3_2_72_2 doi: 10.1016/j.jim.2007.09.017 – ident: e_1_3_2_36_2 doi: 10.1126/science.abe1107 – ident: e_1_3_2_42_2 doi: 10.1038/s41586-021-03925-1 – ident: e_1_3_2_91_2 doi: 10.1038/s41467-020-19684-y – ident: e_1_3_2_45_2 doi: 10.1038/s41586-021-03237-4 – ident: e_1_3_2_101_2 doi: 10.1182/blood-2012-09-459289 – ident: e_1_3_2_86_2 doi: 10.1107/S0021889807021206 – ident: e_1_3_2_77_2 doi: 10.1093/nar/gkt382 – ident: e_1_3_2_30_2 doi: 10.1002/eji.200839129 – ident: e_1_3_2_3_2 doi: 10.1038/s41586-021-04111-z – ident: e_1_3_2_102_2 doi: 10.1038/nature12711 – ident: e_1_3_2_103_2 doi: 10.1073/pnas.85.12.4526 – ident: e_1_3_2_25_2 doi: 10.1126/science.1207227 – ident: e_1_3_2_60_2 doi: 10.1016/j.celrep.2022.110786 – ident: e_1_3_2_95_2 doi: 10.1093/oxfordjournals.aje.a118408 – ident: e_1_3_2_106_2 doi: 10.1099/vir.0.81651-0 – ident: e_1_3_2_100_2 doi: 10.1002/pro.3235 – ident: e_1_3_2_24_2 doi: 10.1038/nature12053 – ident: e_1_3_2_33_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_3_2_82_2 doi: 10.1128/JVI.02519-09 – ident: e_1_3_2_85_2 doi: 10.1107/S0907444913000061 – ident: e_1_3_2_54_2 doi: 10.1038/s41577-018-0103-6 – ident: e_1_3_2_22_2 doi: 10.1126/science.1205669 – ident: e_1_3_2_7_2 doi: 10.1016/j.cell.2020.09.037 – ident: e_1_3_2_31_2 doi: 10.1016/j.cell.2022.01.011 – ident: e_1_3_2_73_2 doi: 10.1101/2021.12.19.473391 – ident: e_1_3_2_32_2 doi: 10.1016/j.cell.2021.02.010 – ident: e_1_3_2_4_2 doi: 10.1016/j.cell.2022.05.019 – ident: e_1_3_2_71_2 doi: 10.1016/0166-3542(90)90001-N – ident: e_1_3_2_38_2 doi: 10.1128/jvi.67.3.1185-1194.1993 – ident: e_1_3_2_92_2 doi: 10.1038/s41586-020-3035-9 – ident: e_1_3_2_8_2 doi: 10.1016/j.chom.2020.11.007 – ident: e_1_3_2_23_2 doi: 10.1016/j.cell.2018.03.061 – ident: e_1_3_2_57_2 doi: 10.1073/pnas.1407087111 – ident: e_1_3_2_67_2 doi: 10.1126/science.aac7263 – ident: e_1_3_2_27_2 doi: 10.1126/science.1222908 – ident: e_1_3_2_52_2 doi: 10.1126/science.abe3354 – ident: e_1_3_2_6_2 doi: 10.1126/science.abb2507 – ident: e_1_3_2_39_2 doi: 10.1128/JVI.78.13.6938-6945.2004 – ident: e_1_3_2_9_2 doi: 10.1126/science.abc7424 – ident: e_1_3_2_88_2 doi: 10.1107/S2059798319011471 – ident: e_1_3_2_18_2 doi: 10.1038/s41467-021-23074-3 – ident: e_1_3_2_94_2 doi: 10.1038/s41467-022-28354-0 – ident: e_1_3_2_107_2 doi: 10.1073/pnas.1802879115 – ident: e_1_3_2_21_2 doi: 10.1101/2022.03.04.479488 – ident: e_1_3_2_29_2 doi: 10.1146/annurev-immunol-032712-095916 – ident: e_1_3_2_81_2 doi: 10.3390/v12050513 – ident: e_1_3_2_12_2 doi: 10.1016/j.celrep.2021.109760 – ident: e_1_3_2_47_2 doi: 10.1016/j.molcel.2022.03.028 – ident: e_1_3_2_98_2 doi: 10.1002/jcc.20084 – ident: e_1_3_2_19_2 doi: 10.1038/s41594-021-00596-4 – ident: e_1_3_2_74_2 doi: 10.1101/2021.05.06.441046 – ident: e_1_3_2_41_2 doi: 10.1101/2022.01.24.477490 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.1708727114 – ident: e_1_3_2_69_2 doi: 10.1128/JVI.00079-09 |
SSID | ssj0009593 |
Score | 2.6534479 |
Snippet | The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal... The coronavirus spike (S) glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated from severe acute... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 735 |
SubjectTerms | Angiotensin-Converting Enzyme 2 - chemistry Animals Antibodies, Monoclonal - immunology Antibodies, Monoclonal - isolation & purification Antibodies, Viral - immunology Antibodies, Viral - isolation & purification Biochem Broadly Neutralizing Antibodies - immunology COVID-19 - immunology Humans Microbio Peptides - immunology Protein Binding SARS-CoV-2 - immunology Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - immunology |
Title | ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35857703 https://www.proquest.com/docview/2692072791 https://pubmed.ncbi.nlm.nih.gov/PMC9348755 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBtf5UtG4mGoStXaiZM8dqXVNLVDYh3qW2Q7DhSmpKQNYvtD-Hs5x06abkMavESVYydVfpfL3fnudwi9ozIgru-5TswEd1wZxE4gSOyE0mNc8tilUtcOz07Z8bl7svAWrdbvRtZSsRE9eXVrXcn_oApjgKuukv0HZOuLwgD8BnzhCAjD8U4YD0djol3bsjBF_Vpla03YAMCfDT-dOaPss0O6SaHjYd2Vzl6Jyz4ZIs94fHHZTVVRhjmuTN1tDjb5z2VeaNLmzVJkdXqhNV0rLQAmab3N0wC3zlccmqyCKsnALmtEHKZmO-mkAM0CC7_USTwq59_trkTVBr2Mf-clkUmZdjDTFTnfeBrn9fmZHPGqXbPtXt4MZYAXrKllG9HNQV83jiR9o_HULWNWZVPb-sXIJmOmca7Vwb7hP7n5bWh0s1Q9Ln4QZvrY7LJwn36MJufTaTQfL-b30B4B94O00d7w6MPR5Dqdc_3nLGlUoxyrusGuvXPDibmei9swbuaP0EPrleChEbF91FLpAbpv-pReHqB9C-IaH1qa8vePEW9KH7bSh-Hx4630YSN92Eof3mTYSh9uSh9uSB_eSt8TNJ-M56NjxzbscKTrhRvHi0PF-9RLeKDgrZdCMikYTTgLYiW8mMowoAHliiTuwJcsJkGgwKKXfsLC0KVPUTvNUvUcYZ_ESTgIQpimUwkCAWb0IOlTX3A3AAuqg3rVU42kJbPXPVUuotKpJSyyMEQWhg46rBesDI_L36e-rWCKQNfqDTSeqqxYR4QB1mDwh4MOemZgqy9Gwe_24fPZQf4OoPUEzeO-eyZdfi353EOqowbeizvc9yV6sH1xXqH2Ji_Ua7CKN-KNFdE_hPLAoA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ACE2-binding+exposes+the+SARS-CoV-2+fusion+peptide+to+broadly+neutralizing+coronavirus+antibodies&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Low%2C+Jun+Siong&rft.au=Jerak%2C+Josipa&rft.au=Tortorici%2C+M+Alejandra&rft.au=McCallum%2C+Matthew&rft.date=2022-08-12&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=377&rft.issue=6607&rft.spage=735&rft_id=info:doi/10.1126%2Fscience.abq2679&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |