Subject-Specific Channel Selection Using Time Information for Motor Imagery Brain–Computer Interfaces

Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific cha...

Full description

Saved in:
Bibliographic Details
Published inCognitive computation Vol. 8; no. 3; pp. 505 - 518
Main Authors Yang, Yuan, Bloch, Isabelle, Chevallier, Sylvain, Wiart, Joe
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2016
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1866-9956
1866-9964
DOI10.1007/s12559-015-9379-z

Cover

Loading…
Abstract Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher’s discriminant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels.
AbstractList Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher’s discriminant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels.
Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher's discrimi-nant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels.
Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher’s discriminant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels.
Author Bloch, Isabelle
Chevallier, Sylvain
Yang, Yuan
Wiart, Joe
Author_xml – sequence: 1
  givenname: Yuan
  surname: Yang
  fullname: Yang, Yuan
  email: Y.Yang-2@tudelft.nl
  organization: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Whist Lab, Department of BioMechanical Engineering, Delft University of Technology
– sequence: 2
  givenname: Isabelle
  surname: Bloch
  fullname: Bloch, Isabelle
  organization: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Whist Lab
– sequence: 3
  givenname: Sylvain
  surname: Chevallier
  fullname: Chevallier, Sylvain
  organization: LISV - IUT de Vélizy, Université de Versailles St-Quentin
– sequence: 4
  givenname: Joe
  surname: Wiart
  fullname: Wiart, Joe
  organization: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Whist Lab, Orange Labs R&D
BackLink https://hal.science/hal-01351620$$DView record in HAL
BookMark eNp9UctOwzAQtBBIPD-AWyROHAJ2HDvxESoelYo4FM6W42yKq8QudopUTvwDf8iX4BIeEhJc1qvxzGh2dxdtWmcBoUOCTwjGxWkgGWMixYSlghYifd5AO6TkPBWC55vfPePbaDeEOcacCZbtoNl0Wc1B9-l0Ado0RiejB2UttMkU2ogbZ5P7YOwsuTMdJGPbON-pDzh2yY3rYx13agZ-lZx7Zezby-vIdYtlD_HDxtooDWEfbTWqDXDw-e6h-8uLu9F1Orm9Go_OJqnOmehTVhNcq1owUdSM6krTUihCFVRQ8qyhZcXLHOdMV4rxAgoKTVYrWmAiqpIApnvoePB9UK1ceNMpv5JOGXl9NpFrDBPKCM_wE4nco4G78O5xCaGXc7f0NsaTmSCC8pyWa8diYGnvQvDQSG36jw30cdxWEizXF5DDBaI_k-sLyOeoJL-UX4H-02SDJkSujVv9yfS36B17cpxr
CitedBy_id crossref_primary_10_1016_j_compbiomed_2019_103572
crossref_primary_10_1007_s12559_018_9574_9
crossref_primary_10_1016_j_eswa_2018_08_031
crossref_primary_10_1155_2018_9890132
crossref_primary_10_1051_matecconf_201821403009
crossref_primary_10_1109_TNSRE_2020_3020975
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1109_ACCESS_2019_2950665
crossref_primary_10_12693_APhysPolA_132_423
crossref_primary_10_3389_fnins_2018_00217
crossref_primary_10_1007_s00521_022_07425_9
crossref_primary_10_3390_e20010007
crossref_primary_10_1007_s10916_019_1504_1
crossref_primary_10_3390_e20090660
crossref_primary_10_1007_s12021_020_09473_9
crossref_primary_10_1088_1361_6501_abc205
crossref_primary_10_3389_fnins_2018_00272
crossref_primary_10_1088_1741_2552_ac7d73
crossref_primary_10_1016_j_jneumeth_2020_108833
crossref_primary_10_1142_S0219467823500535
crossref_primary_10_1515_bmt_2023_0407
crossref_primary_10_3390_s18103396
crossref_primary_10_1109_JSEN_2023_3313236
crossref_primary_10_1142_S0129065721500039
crossref_primary_10_1007_s12559_021_09953_3
crossref_primary_10_1088_1757_899X_557_1_012016
crossref_primary_10_1007_s00521_021_06591_6
crossref_primary_10_1016_j_bspc_2017_06_016
crossref_primary_10_3390_s19030522
crossref_primary_10_3389_fnins_2021_749232
crossref_primary_10_1109_TNSRE_2020_3040984
crossref_primary_10_3390_s21062173
crossref_primary_10_1088_1741_2552_ab4dba
crossref_primary_10_1109_TCYB_2021_3052813
Cites_doi 10.1371/journal.pone.0120432
10.1109/MC.2008.409
10.1007/s12559-013-9239-7
10.1109/TBME.2004.827827
10.1002/ima.20285
10.1109/TNSRE.2006.875557
10.1186/s12938-015-0087-4
10.1016/j.neunet.2009.07.020
10.1007/s12559-014-9264-1
10.1016/j.neuroimage.2005.12.003
10.1016/S1388-2457(02)00057-3
10.1109/TBME.2009.2032162
10.1109/MSP.2008.4408441
10.1016/S0013-4694(97)00022-2
10.1109/MC.2008.407
10.1016/S0079-6123(06)59014-4
10.1016/j.neucom.2013.05.005
10.1109/TNSRE.2006.875642
10.1007/s00521-010-0481-6
10.1016/S0079-6123(06)59006-5
10.1109/34.574797
10.1186/1687-6180-2014-38
10.1586/17434440.4.4.463
10.1088/1741-2560/4/2/R01
10.1186/s13634-015-0251-9
10.1155/2015/703768
10.1109/ICASSP.2008.4517635
10.1109/ICASSP.2013.6637856
10.1109/NER.2011.5910558
10.1007/978-3-642-41184-7_57
10.1109/EMBC.2012.6346532
10.1109/IEMBS.2005.1615701
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Springer Science+Business Media New York 2016.
Attribution
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Springer Science+Business Media New York 2016.
– notice: Attribution
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
VOOES
DOI 10.1007/s12559-015-9379-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1866-9964
EndPage 518
ExternalDocumentID oai_HAL_hal_01351620v1
10_1007_s12559_015_9379_z
GrantInformation_xml – fundername: China Scholarship Council (CN)
  grantid: 2010623168
  funderid: http://dx.doi.org/10.13039/501100004543
– fundername: Orange (FR)
  funderid: http://dx.doi.org/10.13039/501100003951
GroupedDBID -56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
203
29F
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
67N
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
AUKKA
AXYYD
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
KPH
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
ZOVNA
~A9
AAFWJ
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
VOOES
ID FETCH-LOGICAL-c459t-5d10dad9597d53cbc389a13aebe862f38b684045cba567e73ef2da37019b81e03
IEDL.DBID BENPR
ISSN 1866-9956
IngestDate Fri May 09 12:44:43 EDT 2025
Fri Jul 25 10:11:34 EDT 2025
Thu Jul 03 08:28:23 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 21 02:31:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fisher’s discriminant analysis
Brain–computer interfaces
Channel reduction
EEG
Time information
channel reduction
Fisher's discriminant analysis
time information
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-5d10dad9597d53cbc389a13aebe862f38b684045cba567e73ef2da37019b81e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3027-8241
0000-0002-8902-5778
0000-0002-6984-1532
OpenAccessLink https://hal.science/hal-01351620
PQID 2919364380
PQPubID 6623279
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01351620v1
proquest_journals_2919364380
crossref_citationtrail_10_1007_s12559_015_9379_z
crossref_primary_10_1007_s12559_015_9379_z
springer_journals_10_1007_s12559_015_9379_z
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Cognitive computation
PublicationTitleAbbrev Cogn Comput
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References Blankertz, Tomioka, Lemm, Kawanabe, Müller (CR7) 2008; 25
Li, Koike (CR17) 2011; 20
Shan, Xu, Zhu, He (CR27) 2015; 14
CR15
CR37
CR36
Vidaurre, Kramer, Blankertz, Schlögl (CR28) 2009; 22
CR35
Blankertz, Dornhege, Krauledat, Müller, Kunzmann, Losch, Curio (CR5) 2006; 14
CR33
CR32
CR30
Gouy-Pailler, Congedo, Brunner, Jutten, Pfurtscheller (CR9) 2010; 57
Pfurtscheller, Brunner, Schlögl, Lopes da Silva (CR25) 2006; 31
Duan, Zhong, Miao, Yang, Ma, Zhang (CR8) 2014; 6
Neuper, Wörtz, Pfurtscheller (CR24) 2006; 159
He, Hu, Li, Li (CR12) 2013; 121
Jasper (CR14) 1958; 10
Müller, Krauledat, Dornhege, Curio, Blankertz (CR21) 2004; 49
Naeem, Brunner, Pfurtscheller (CR22) 2009; 1–8
Alotaiby, El-Samie, Alshebeili, Ahmad (CR2) 2015; 2015
Ansuini, Cavallo, Koul, Jacono, Yang, Becchio (CR3) 2015; 10
CR4
Graimann, Pfurtscheller (CR11) 2006; 159
CR29
Yang, Chevallier, Wiart, Bloch (CR34) 2014; 2014
Lal, Schröder, Hinterberger, Weston, Bogdan, Birbaumer, Schölkopf (CR16) 2004; 51
Allison, Wolpaw, Wolpaw (CR1) 2007; 4
Blankertz, Müller, Krusienski, Schalk, Wolpaw, Schlögl, Pfurtscheller, Millán, Schroder, Birbaumer (CR6) 2006; 14
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (CR31) 2002; 113
Schlögl, Brunner (CR26) 2008; 41
Jain, Zongker (CR13) 1997; 19
McFarland, Wolpaw (CR19) 2008; 41
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (CR18) 2007; 4
Gouy-Pailler, Sebag, Larue, Souloumiac (CR10) 2011; 21
McFarland, McCane, David, Wolpaw (CR20) 1997; 103
Naji, Firoozabadi, Azadfallah (CR23) 2014; 6
Dennis J McFarland (9379_CR20) 1997; 103
9379_CR30
Y Li (9379_CR17) 2011; 20
C Ansuini (9379_CR3) 2015; 10
9379_CR4
C Neuper (9379_CR24) 2006; 159
B Graimann (9379_CR11) 2006; 159
A Jain (9379_CR13) 1997; 19
M Naji (9379_CR23) 2014; 6
KR Müller (9379_CR21) 2004; 49
B Blankertz (9379_CR6) 2006; 14
TN Lal (9379_CR16) 2004; 51
HH Jasper (9379_CR14) 1958; 10
C Gouy-Pailler (9379_CR9) 2010; 57
9379_CR15
9379_CR37
DJ McFarland (9379_CR19) 2008; 41
9379_CR35
F Lotte (9379_CR18) 2007; 4
9379_CR36
9379_CR33
G Pfurtscheller (9379_CR25) 2006; 31
9379_CR32
L He (9379_CR12) 2013; 121
C Gouy-Pailler (9379_CR10) 2011; 21
A Schlögl (9379_CR26) 2008; 41
C Vidaurre (9379_CR28) 2009; 22
B Blankertz (9379_CR7) 2008; 25
L Duan (9379_CR8) 2014; 6
B Blankertz (9379_CR5) 2006; 14
Y Yang (9379_CR34) 2014; 2014
H Shan (9379_CR27) 2015; 14
BZ Allison (9379_CR1) 2007; 4
9379_CR29
JR Wolpaw (9379_CR31) 2002; 113
M Naeem (9379_CR22) 2009; 1–8
T Alotaiby (9379_CR2) 2015; 2015
References_xml – volume: 10
  start-page: e0120432
  issue: 3
  year: 2015
  ident: CR3
  article-title: Predicting object size from hand kinematics: a temporal perspective
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120432
– volume: 41
  start-page: 52
  issue: 10
  year: 2008
  end-page: 56
  ident: CR19
  article-title: Brain–computer interface operation of robotic and prosthetic devices
  publication-title: Computer
  doi: 10.1109/MC.2008.409
– volume: 6
  start-page: 241
  issue: 2
  year: 2014
  end-page: 252
  ident: CR23
  article-title: Classification of music-induced emotions based on information fusion of forehead biosignals and electrocardiogram
  publication-title: Cogn Comput
  doi: 10.1007/s12559-013-9239-7
– volume: 51
  start-page: 1003
  issue: 6
  year: 2004
  end-page: 1010
  ident: CR16
  article-title: Support vector channel selection in BCI
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.827827
– ident: CR4
– volume: 21
  start-page: 148
  issue: 2
  year: 2011
  end-page: 157
  ident: CR10
  article-title: Single trial variability in brain-computer interfaces based on motor imagery: learning in the presence of labeling noise
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20285
– ident: CR37
– volume: 14
  start-page: 147
  issue: 2
  year: 2006
  end-page: 152
  ident: CR5
  article-title: The Berlin brain–computer interface: EEG-based communication without subject training
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2006.875557
– volume: 14
  start-page: 93
  issue: 1
  year: 2015
  ident: CR27
  article-title: A novel channel selection method for optimal classification in different motor imagery BCI paradigms
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-015-0087-4
– volume: 22
  start-page: 1313
  issue: 9
  year: 2009
  end-page: 1319
  ident: CR28
  article-title: Time domain parameters as a feature for EEG-based brain–computer interfaces
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.07.020
– ident: CR30
– volume: 6
  start-page: 477
  issue: 3
  year: 2014
  end-page: 483
  ident: CR8
  article-title: A voting optimized strategy based on ELM for improving classification of motor imagery BCI data
  publication-title: Cogn Comput
  doi: 10.1007/s12559-014-9264-1
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  end-page: 159
  ident: CR25
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  end-page: 791
  ident: CR31
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: CR33
– volume: 57
  start-page: 469
  issue: 2
  year: 2010
  end-page: 478
  ident: CR9
  article-title: Nonstationary brain source separation for multiclass motor imagery
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2032162
– volume: 10
  start-page: 371
  issue: 2
  year: 1958
  end-page: 375
  ident: CR14
  article-title: The ten-twenty electrode system of the International Federation
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  end-page: 56
  ident: CR7
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2008.4408441
– ident: CR35
– ident: CR29
– volume: 103
  start-page: 386
  issue: 3
  year: 1997
  end-page: 394
  ident: CR20
  article-title: Spatial filter selection for EEG-based communication
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(97)00022-2
– volume: 49
  start-page: 11
  issue: 1
  year: 2004
  end-page: 22
  ident: CR21
  article-title: Machine learning techniques for brain-computer interfaces
  publication-title: Biomed Eng Biomed Tech
– volume: 41
  start-page: 44
  issue: 10
  year: 2008
  end-page: 50
  ident: CR26
  article-title: BioSig: a free and open source software library for BCI research
  publication-title: Computer
  doi: 10.1109/MC.2008.407
– volume: 159
  start-page: 211
  year: 2006
  end-page: 222
  ident: CR24
  article-title: ERD/ERS patterns reflecting sensorimotor activation and deactivation
  publication-title: Progr Brain Res
  doi: 10.1016/S0079-6123(06)59014-4
– volume: 121
  start-page: 423
  year: 2013
  end-page: 433
  ident: CR12
  article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.005
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  end-page: 159
  ident: CR6
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2006.875642
– volume: 20
  start-page: 1187
  issue: 8
  year: 2011
  end-page: 1192
  ident: CR17
  article-title: A real-time BCI with a small number of channels based on CSP
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-010-0481-6
– volume: 159
  start-page: 79
  year: 2006
  end-page: 97
  ident: CR11
  article-title: Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain
  publication-title: Progr Brain Res
  doi: 10.1016/S0079-6123(06)59006-5
– volume: 19
  start-page: 153
  issue: 2
  year: 1997
  end-page: 158
  ident: CR13
  article-title: Feature selection: evaluation, application, and small sample performance
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.574797
– ident: CR15
– volume: 2014
  start-page: 38
  issue: 1
  year: 2014
  ident: CR34
  article-title: Time-frequency optimization for discrimination between imagination of right and left hand movements based on two bipolar electroencephalography channels
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/1687-6180-2014-38
– volume: 4
  start-page: 463
  issue: 4
  year: 2007
  end-page: 474
  ident: CR1
  article-title: Brain–computer interface systems: progress and prospects
  publication-title: Expert Rev Med Dev
  doi: 10.1586/17434440.4.4.463
– ident: CR32
– ident: CR36
– volume: 4
  start-page: R1
  year: 2007
  end-page: R14
  ident: CR18
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/4/2/R01
– volume: 2015
  start-page: 1
  issue: 1
  year: 2015
  end-page: 21
  ident: CR2
  article-title: A review of channel selection algorithms for EEG signal processing
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/s13634-015-0251-9
– volume: 1–8
  start-page: 2009
  year: 2009
  ident: CR22
  article-title: Dimensionality reduction and channel selection of motor imagery electroencephalographic data
  publication-title: Comput Intell Neurosci
– ident: 9379_CR29
  doi: 10.1155/2015/703768
– ident: 9379_CR37
  doi: 10.1109/ICASSP.2008.4517635
– volume: 4
  start-page: R1
  year: 2007
  ident: 9379_CR18
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/4/2/R01
– ident: 9379_CR35
  doi: 10.1109/ICASSP.2013.6637856
– volume: 22
  start-page: 1313
  issue: 9
  year: 2009
  ident: 9379_CR28
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2009.07.020
– volume: 20
  start-page: 1187
  issue: 8
  year: 2011
  ident: 9379_CR17
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-010-0481-6
– volume: 2014
  start-page: 38
  issue: 1
  year: 2014
  ident: 9379_CR34
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/1687-6180-2014-38
– volume: 6
  start-page: 477
  issue: 3
  year: 2014
  ident: 9379_CR8
  publication-title: Cogn Comput
  doi: 10.1007/s12559-014-9264-1
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 9379_CR31
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– ident: 9379_CR4
  doi: 10.1109/NER.2011.5910558
– volume: 2015
  start-page: 1
  issue: 1
  year: 2015
  ident: 9379_CR2
  publication-title: EURASIP J Adv Signal Process
  doi: 10.1186/s13634-015-0251-9
– volume: 6
  start-page: 241
  issue: 2
  year: 2014
  ident: 9379_CR23
  publication-title: Cogn Comput
  doi: 10.1007/s12559-013-9239-7
– volume: 41
  start-page: 52
  issue: 10
  year: 2008
  ident: 9379_CR19
  publication-title: Computer
  doi: 10.1109/MC.2008.409
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 9379_CR7
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2008.4408441
– ident: 9379_CR15
  doi: 10.1007/978-3-642-41184-7_57
– volume: 51
  start-page: 1003
  issue: 6
  year: 2004
  ident: 9379_CR16
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.827827
– volume: 57
  start-page: 469
  issue: 2
  year: 2010
  ident: 9379_CR9
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2032162
– volume: 159
  start-page: 211
  year: 2006
  ident: 9379_CR24
  publication-title: Progr Brain Res
  doi: 10.1016/S0079-6123(06)59014-4
– volume: 121
  start-page: 423
  year: 2013
  ident: 9379_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.005
– volume: 49
  start-page: 11
  issue: 1
  year: 2004
  ident: 9379_CR21
  publication-title: Biomed Eng Biomed Tech
– volume: 4
  start-page: 463
  issue: 4
  year: 2007
  ident: 9379_CR1
  publication-title: Expert Rev Med Dev
  doi: 10.1586/17434440.4.4.463
– volume: 14
  start-page: 147
  issue: 2
  year: 2006
  ident: 9379_CR5
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2006.875557
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  ident: 9379_CR25
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  ident: 9379_CR6
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2006.875642
– ident: 9379_CR33
  doi: 10.1109/EMBC.2012.6346532
– volume: 21
  start-page: 148
  issue: 2
  year: 2011
  ident: 9379_CR10
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20285
– ident: 9379_CR36
– volume: 1–8
  start-page: 2009
  year: 2009
  ident: 9379_CR22
  publication-title: Comput Intell Neurosci
– ident: 9379_CR32
– volume: 159
  start-page: 79
  year: 2006
  ident: 9379_CR11
  publication-title: Progr Brain Res
  doi: 10.1016/S0079-6123(06)59006-5
– volume: 41
  start-page: 44
  issue: 10
  year: 2008
  ident: 9379_CR26
  publication-title: Computer
  doi: 10.1109/MC.2008.407
– ident: 9379_CR30
  doi: 10.1109/IEMBS.2005.1615701
– volume: 19
  start-page: 153
  issue: 2
  year: 1997
  ident: 9379_CR13
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.574797
– volume: 10
  start-page: e0120432
  issue: 3
  year: 2015
  ident: 9379_CR3
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0120432
– volume: 10
  start-page: 371
  issue: 2
  year: 1958
  ident: 9379_CR14
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 14
  start-page: 93
  issue: 1
  year: 2015
  ident: 9379_CR27
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-015-0087-4
– volume: 103
  start-page: 386
  issue: 3
  year: 1997
  ident: 9379_CR20
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0013-4694(97)00022-2
SSID ssj0065952
Score 2.2607992
Snippet Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 505
SubjectTerms Algorithms
Artificial Intelligence
Biomedical and Life Sciences
Biomedicine
Brain research
Channels
Classification
Cognitive science
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
Datasets
Discriminant analysis
Electrodes
Electroencephalography
Human-computer interface
Machine Learning
Methods
Neuroscience
Neurosciences
Parameterization
Segments
Signal and Image Processing
Signal processing
Spatial data
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5svfQi_mK0yiKelIX87SY5VrFUsV600FvY3WxUqKnYKrQn38E39Emc2SatigreQrJJYGZ3dmZn5vsIOQwyxY3AmqdMuyz0I4_FvsyZ0pLLPIwiYTCj270SnV540ef9so97VFW7VylJa6kXzW7o_ULoyxlsqQmb1sgyh9Adp3XPb1XmF_HxbIozFoJh22aVyvzpE182o9odlkJ-8jO_pUbtjtNeJSulq0hbM92ukSVTrJPG3GJNNsgtLHs8R2GWRT6_1xSbBQozoNeW3gZkTm1NAMVOD1q2HtnbcEW7Qwi46fkDwlhM6AmSRby_vlU8D9QeFuZYsrVJeu2zm9MOK5kTmA55MmY889xMZglECxkPtNLglkgvkKAxiGDyIFaI8RJyrSQXkYkCk_uZDBCaXcWecYMtUi-GhdkmFOxBbMAQKJhyoZSJCrJEaS_3jauFK5VD3EqEqS5hxZHdYpAuAJFR6ilIPUWpp1OHHM1feZxhavw1-AD0Mh-HaNid1mWK91xkFxS---I5pFmpLS3X4Cj1E3BOBSLqO-S4UuXi8a9_3PnX6F3SAB9KzKrHmqQ-fno2e-CnjNW-nZcfLgXhSw
  priority: 102
  providerName: Springer Nature
Title Subject-Specific Channel Selection Using Time Information for Motor Imagery Brain–Computer Interfaces
URI https://link.springer.com/article/10.1007/s12559-015-9379-z
https://www.proquest.com/docview/2919364380
https://hal.science/hal-01351620
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB415MKlgj7UFIhWVU9UK_zatX2qQpWQtoCqQiQ4WfsyVIIESkCCE_-Bf9hf0pnNOqGV4Gat17a0M56d2Zn5PoCPqdXCSap5sibiWZLHvEhUzbVRQtVZnktHGd29fTkcZd-OxFE4cLsKZZWNTfSG2k4MnZFvJSW6GpLw0T9fXHJijaLsaqDQaEEbTXCBGt7e7u__-NnYYgLL8_nOQkpOPZxNXtM3z5E3jaG04LhFl_zun52pdUp1kY-czv_ypH77GazAy-A3st5M0Kvwwo1fwfLcfN2-hhO0AXSowj2lfP3LMOocGLszduC5blAAzBcIMGr7YKEPyQ_jFdubYPTNvp4TpsUt2ybmiD_3Dw3pA_MnhzXVb72B0aB_-GXIA40CN5kop1zYOLLKlhg6WJEabdBHUXGqUHwYztRpoQnwJRNGKyFzl6euTqxKCaddF7GL0rewNJ6M3TtgaBwKh1ZBo_5lSpU6taU2cZ24yMhI6Q5EzRJWJmCME9XFWbVAR6ZVr3DVK1r16q4Dm_NHLmYAG89N_oBymc8jaOxhb7eisYioBmUS3cQdWG_EVoUf8qpaqE8HPjWiXNx-8ovvn3_ZGiyjByVntWPrsDT9fe020EuZ6i60isFOF9q9nePv_W5QTBwdJb2_8Cjo5w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615UAviKdYKGAhuIAskjh2kgNC5bHs0t1eaKXejF8pSGW30AW0PfEf-B_8KH4JM954F5DorbcocRJlZjL-7Hl8AA-EtzIoynnyLuNlUeW8LkzLrTPStGVVqUAR3fGuGuyXbw7kwRr8TLUwlFaZfGJ01H7qaI_8SdEg1FDUH_3Z8SdOrFEUXU0UGguz2Anzb7hkO3k6fIn6fVgU_Vd7Lwa8YxXgrpTNjEufZ974BpG0l8JZh1O2yYXBr0F034raUv-TUjprpKpCJUJbeCOobbmt85AJfO46XCiFaCiFsO6_Tp6fWvPF6GqtFKeK0RRFjaV6hN1x4S45AoKGn_41D66_pyzMPyDuP1HZONn1L8OlDqWy7YVZXYG1MLkKm0tnOb8Gh-hxaAuHRwL79oNjVKcwCUfsbWTWQXWzmI7AqMiEdVVP8TQesfEU1_ps-JE6aMzZc-Kp-PX9R6KYYHGfsqVsseuwfy7ivQEbk-kk3ASGrqgO6IMsWntpTGOFb6zL2yJkTmXG9iBLItSu62hOxBpHetWLmaSuUeqapK5Pe_Boecvxop3HWYPvo16W46gR92B7pOlcRsSGqsi-5j3YSmrT3e9_olfG2oPHSZWry_99462zH3YPLg72xiM9Gu7u3IZNxG5qkbW2BRuzz1_CHcRHM3s3GiWDd-f9F_wGiDUhRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC5cheAlqEnIxkeakFNCs_PqnpnjqlnWxy6BZMFb069RwYwSR0FP-Q_5h_4Sq-axmwQTyG3o6ZmBqp7qqq6q7wN4HzsjvKSaJ2cDnkRpyLNIF9xYLXSRpKn0lNGdTOV4lhyeiJOW5_S6q3bvUpJNTwOhNJXV4MoVg0XjG3nCGAYLjttrzu97sILWOKSarlk07EwxYeXV6c5MSk4tnF1a86lX_LYx9c6oLPIXn_OPNGm9-4zW4HnrNrJho-d1WPLlBqzOrdfdCzhFE0BnKrxmlC_OLaPGgdJfsC811Q3Kn9X1AYy6PljbhlQP4xWbXGLwzQ6-EaTFHdsl4oiHHz87zgdWHxwWVL71EmajT1_3xrxlUeA2EXnFhQsDp12OkYMTsTUWXRQdxhq1h9FMEWeG8F4SYY0WMvVp7IvI6Zhg2k0W-iB-BcvlZelfA0PbkHk0CgaXX6J1bmKXGxsWkQ-sDLTpQ9CJUNkWYpyYLi7UAhyZpK5Q6oqkru778GH-yFWDr_Gvye9QL_N5hIw9Hh4rGguIaVBGwW3Yh61Obar9H69VlKOjKgldvw8fO1Uubv_1i2_-a_ZbePZ5f6SOD6ZHm7CKrpVsisq2YLn6fuO30X2pzE69RB8BDxToeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Specific+Channel+Selection+Using+Time+Information+for+Motor+Imagery+Brain%E2%80%93Computer+Interfaces&rft.jtitle=Cognitive+computation&rft.au=Yang%2C+Yuan&rft.au=Bloch%2C+Isabelle&rft.au=Chevallier%2C+Sylvain&rft.au=Wiart%2C+Joe&rft.date=2016-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=8&rft.issue=3&rft.spage=505&rft.epage=518&rft_id=info:doi/10.1007%2Fs12559-015-9379-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon