Subject-Specific Channel Selection Using Time Information for Motor Imagery Brain–Computer Interfaces
Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific cha...
Saved in:
Published in | Cognitive computation Vol. 8; no. 3; pp. 505 - 518 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2016
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1866-9956 1866-9964 |
DOI | 10.1007/s12559-015-9379-z |
Cover
Loading…
Abstract | Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called
F
score to realize the parameterization of both time segment and channel positions. The
F
score is a novel simplified measure derived from Fisher’s discriminant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels. |
---|---|
AbstractList | Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher’s discriminant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels. Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher's discrimi-nant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels. Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher’s discriminant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels. |
Author | Bloch, Isabelle Chevallier, Sylvain Yang, Yuan Wiart, Joe |
Author_xml | – sequence: 1 givenname: Yuan surname: Yang fullname: Yang, Yuan email: Y.Yang-2@tudelft.nl organization: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Whist Lab, Department of BioMechanical Engineering, Delft University of Technology – sequence: 2 givenname: Isabelle surname: Bloch fullname: Bloch, Isabelle organization: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Whist Lab – sequence: 3 givenname: Sylvain surname: Chevallier fullname: Chevallier, Sylvain organization: LISV - IUT de Vélizy, Université de Versailles St-Quentin – sequence: 4 givenname: Joe surname: Wiart fullname: Wiart, Joe organization: LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Whist Lab, Orange Labs R&D |
BackLink | https://hal.science/hal-01351620$$DView record in HAL |
BookMark | eNp9UctOwzAQtBBIPD-AWyROHAJ2HDvxESoelYo4FM6W42yKq8QudopUTvwDf8iX4BIeEhJc1qvxzGh2dxdtWmcBoUOCTwjGxWkgGWMixYSlghYifd5AO6TkPBWC55vfPePbaDeEOcacCZbtoNl0Wc1B9-l0Ado0RiejB2UttMkU2ogbZ5P7YOwsuTMdJGPbON-pDzh2yY3rYx13agZ-lZx7Zezby-vIdYtlD_HDxtooDWEfbTWqDXDw-e6h-8uLu9F1Orm9Go_OJqnOmehTVhNcq1owUdSM6krTUihCFVRQ8qyhZcXLHOdMV4rxAgoKTVYrWmAiqpIApnvoePB9UK1ceNMpv5JOGXl9NpFrDBPKCM_wE4nco4G78O5xCaGXc7f0NsaTmSCC8pyWa8diYGnvQvDQSG36jw30cdxWEizXF5DDBaI_k-sLyOeoJL-UX4H-02SDJkSujVv9yfS36B17cpxr |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2019_103572 crossref_primary_10_1007_s12559_018_9574_9 crossref_primary_10_1016_j_eswa_2018_08_031 crossref_primary_10_1155_2018_9890132 crossref_primary_10_1051_matecconf_201821403009 crossref_primary_10_1109_TNSRE_2020_3020975 crossref_primary_10_1088_1741_2552_ad2496 crossref_primary_10_1109_ACCESS_2019_2950665 crossref_primary_10_12693_APhysPolA_132_423 crossref_primary_10_3389_fnins_2018_00217 crossref_primary_10_1007_s00521_022_07425_9 crossref_primary_10_3390_e20010007 crossref_primary_10_1007_s10916_019_1504_1 crossref_primary_10_3390_e20090660 crossref_primary_10_1007_s12021_020_09473_9 crossref_primary_10_1088_1361_6501_abc205 crossref_primary_10_3389_fnins_2018_00272 crossref_primary_10_1088_1741_2552_ac7d73 crossref_primary_10_1016_j_jneumeth_2020_108833 crossref_primary_10_1142_S0219467823500535 crossref_primary_10_1515_bmt_2023_0407 crossref_primary_10_3390_s18103396 crossref_primary_10_1109_JSEN_2023_3313236 crossref_primary_10_1142_S0129065721500039 crossref_primary_10_1007_s12559_021_09953_3 crossref_primary_10_1088_1757_899X_557_1_012016 crossref_primary_10_1007_s00521_021_06591_6 crossref_primary_10_1016_j_bspc_2017_06_016 crossref_primary_10_3390_s19030522 crossref_primary_10_3389_fnins_2021_749232 crossref_primary_10_1109_TNSRE_2020_3040984 crossref_primary_10_3390_s21062173 crossref_primary_10_1088_1741_2552_ab4dba crossref_primary_10_1109_TCYB_2021_3052813 |
Cites_doi | 10.1371/journal.pone.0120432 10.1109/MC.2008.409 10.1007/s12559-013-9239-7 10.1109/TBME.2004.827827 10.1002/ima.20285 10.1109/TNSRE.2006.875557 10.1186/s12938-015-0087-4 10.1016/j.neunet.2009.07.020 10.1007/s12559-014-9264-1 10.1016/j.neuroimage.2005.12.003 10.1016/S1388-2457(02)00057-3 10.1109/TBME.2009.2032162 10.1109/MSP.2008.4408441 10.1016/S0013-4694(97)00022-2 10.1109/MC.2008.407 10.1016/S0079-6123(06)59014-4 10.1016/j.neucom.2013.05.005 10.1109/TNSRE.2006.875642 10.1007/s00521-010-0481-6 10.1016/S0079-6123(06)59006-5 10.1109/34.574797 10.1186/1687-6180-2014-38 10.1586/17434440.4.4.463 10.1088/1741-2560/4/2/R01 10.1186/s13634-015-0251-9 10.1155/2015/703768 10.1109/ICASSP.2008.4517635 10.1109/ICASSP.2013.6637856 10.1109/NER.2011.5910558 10.1007/978-3-642-41184-7_57 10.1109/EMBC.2012.6346532 10.1109/IEMBS.2005.1615701 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Springer Science+Business Media New York 2016. Attribution |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Springer Science+Business Media New York 2016. – notice: Attribution |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 1XC VOOES |
DOI | 10.1007/s12559-015-9379-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology Computer Science |
EISSN | 1866-9964 |
EndPage | 518 |
ExternalDocumentID | oai_HAL_hal_01351620v1 10_1007_s12559_015_9379_z |
GrantInformation_xml | – fundername: China Scholarship Council (CN) grantid: 2010623168 funderid: http://dx.doi.org/10.13039/501100004543 – fundername: Orange (FR) funderid: http://dx.doi.org/10.13039/501100003951 |
GroupedDBID | -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 67N 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS AUKKA AXYYD BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ K7- KOV KPH LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM PT4 QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7X Z83 Z88 ZMTXR ZOVNA ~A9 AAFWJ AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI 1XC VOOES |
ID | FETCH-LOGICAL-c459t-5d10dad9597d53cbc389a13aebe862f38b684045cba567e73ef2da37019b81e03 |
IEDL.DBID | BENPR |
ISSN | 1866-9956 |
IngestDate | Fri May 09 12:44:43 EDT 2025 Fri Jul 25 10:11:34 EDT 2025 Thu Jul 03 08:28:23 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 21 02:31:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fisher’s discriminant analysis Brain–computer interfaces Channel reduction EEG Time information channel reduction Fisher's discriminant analysis time information |
Language | English |
License | Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-5d10dad9597d53cbc389a13aebe862f38b684045cba567e73ef2da37019b81e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3027-8241 0000-0002-8902-5778 0000-0002-6984-1532 |
OpenAccessLink | https://hal.science/hal-01351620 |
PQID | 2919364380 |
PQPubID | 6623279 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_01351620v1 proquest_journals_2919364380 crossref_citationtrail_10_1007_s12559_015_9379_z crossref_primary_10_1007_s12559_015_9379_z springer_journals_10_1007_s12559_015_9379_z |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Cognitive computation |
PublicationTitleAbbrev | Cogn Comput |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | Blankertz, Tomioka, Lemm, Kawanabe, Müller (CR7) 2008; 25 Li, Koike (CR17) 2011; 20 Shan, Xu, Zhu, He (CR27) 2015; 14 CR15 CR37 CR36 Vidaurre, Kramer, Blankertz, Schlögl (CR28) 2009; 22 CR35 Blankertz, Dornhege, Krauledat, Müller, Kunzmann, Losch, Curio (CR5) 2006; 14 CR33 CR32 CR30 Gouy-Pailler, Congedo, Brunner, Jutten, Pfurtscheller (CR9) 2010; 57 Pfurtscheller, Brunner, Schlögl, Lopes da Silva (CR25) 2006; 31 Duan, Zhong, Miao, Yang, Ma, Zhang (CR8) 2014; 6 Neuper, Wörtz, Pfurtscheller (CR24) 2006; 159 He, Hu, Li, Li (CR12) 2013; 121 Jasper (CR14) 1958; 10 Müller, Krauledat, Dornhege, Curio, Blankertz (CR21) 2004; 49 Naeem, Brunner, Pfurtscheller (CR22) 2009; 1–8 Alotaiby, El-Samie, Alshebeili, Ahmad (CR2) 2015; 2015 Ansuini, Cavallo, Koul, Jacono, Yang, Becchio (CR3) 2015; 10 CR4 Graimann, Pfurtscheller (CR11) 2006; 159 CR29 Yang, Chevallier, Wiart, Bloch (CR34) 2014; 2014 Lal, Schröder, Hinterberger, Weston, Bogdan, Birbaumer, Schölkopf (CR16) 2004; 51 Allison, Wolpaw, Wolpaw (CR1) 2007; 4 Blankertz, Müller, Krusienski, Schalk, Wolpaw, Schlögl, Pfurtscheller, Millán, Schroder, Birbaumer (CR6) 2006; 14 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (CR31) 2002; 113 Schlögl, Brunner (CR26) 2008; 41 Jain, Zongker (CR13) 1997; 19 McFarland, Wolpaw (CR19) 2008; 41 Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (CR18) 2007; 4 Gouy-Pailler, Sebag, Larue, Souloumiac (CR10) 2011; 21 McFarland, McCane, David, Wolpaw (CR20) 1997; 103 Naji, Firoozabadi, Azadfallah (CR23) 2014; 6 Dennis J McFarland (9379_CR20) 1997; 103 9379_CR30 Y Li (9379_CR17) 2011; 20 C Ansuini (9379_CR3) 2015; 10 9379_CR4 C Neuper (9379_CR24) 2006; 159 B Graimann (9379_CR11) 2006; 159 A Jain (9379_CR13) 1997; 19 M Naji (9379_CR23) 2014; 6 KR Müller (9379_CR21) 2004; 49 B Blankertz (9379_CR6) 2006; 14 TN Lal (9379_CR16) 2004; 51 HH Jasper (9379_CR14) 1958; 10 C Gouy-Pailler (9379_CR9) 2010; 57 9379_CR15 9379_CR37 DJ McFarland (9379_CR19) 2008; 41 9379_CR35 F Lotte (9379_CR18) 2007; 4 9379_CR36 9379_CR33 G Pfurtscheller (9379_CR25) 2006; 31 9379_CR32 L He (9379_CR12) 2013; 121 C Gouy-Pailler (9379_CR10) 2011; 21 A Schlögl (9379_CR26) 2008; 41 C Vidaurre (9379_CR28) 2009; 22 B Blankertz (9379_CR7) 2008; 25 L Duan (9379_CR8) 2014; 6 B Blankertz (9379_CR5) 2006; 14 Y Yang (9379_CR34) 2014; 2014 H Shan (9379_CR27) 2015; 14 BZ Allison (9379_CR1) 2007; 4 9379_CR29 JR Wolpaw (9379_CR31) 2002; 113 M Naeem (9379_CR22) 2009; 1–8 T Alotaiby (9379_CR2) 2015; 2015 |
References_xml | – volume: 10 start-page: e0120432 issue: 3 year: 2015 ident: CR3 article-title: Predicting object size from hand kinematics: a temporal perspective publication-title: PLoS One doi: 10.1371/journal.pone.0120432 – volume: 41 start-page: 52 issue: 10 year: 2008 end-page: 56 ident: CR19 article-title: Brain–computer interface operation of robotic and prosthetic devices publication-title: Computer doi: 10.1109/MC.2008.409 – volume: 6 start-page: 241 issue: 2 year: 2014 end-page: 252 ident: CR23 article-title: Classification of music-induced emotions based on information fusion of forehead biosignals and electrocardiogram publication-title: Cogn Comput doi: 10.1007/s12559-013-9239-7 – volume: 51 start-page: 1003 issue: 6 year: 2004 end-page: 1010 ident: CR16 article-title: Support vector channel selection in BCI publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.827827 – ident: CR4 – volume: 21 start-page: 148 issue: 2 year: 2011 end-page: 157 ident: CR10 article-title: Single trial variability in brain-computer interfaces based on motor imagery: learning in the presence of labeling noise publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20285 – ident: CR37 – volume: 14 start-page: 147 issue: 2 year: 2006 end-page: 152 ident: CR5 article-title: The Berlin brain–computer interface: EEG-based communication without subject training publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2006.875557 – volume: 14 start-page: 93 issue: 1 year: 2015 ident: CR27 article-title: A novel channel selection method for optimal classification in different motor imagery BCI paradigms publication-title: Biomed Eng Online doi: 10.1186/s12938-015-0087-4 – volume: 22 start-page: 1313 issue: 9 year: 2009 end-page: 1319 ident: CR28 article-title: Time domain parameters as a feature for EEG-based brain–computer interfaces publication-title: Neural Netw doi: 10.1016/j.neunet.2009.07.020 – ident: CR30 – volume: 6 start-page: 477 issue: 3 year: 2014 end-page: 483 ident: CR8 article-title: A voting optimized strategy based on ELM for improving classification of motor imagery BCI data publication-title: Cogn Comput doi: 10.1007/s12559-014-9264-1 – volume: 31 start-page: 153 issue: 1 year: 2006 end-page: 159 ident: CR25 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 113 start-page: 767 issue: 6 year: 2002 end-page: 791 ident: CR31 article-title: Brain–computer interfaces for communication and control publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: CR33 – volume: 57 start-page: 469 issue: 2 year: 2010 end-page: 478 ident: CR9 article-title: Nonstationary brain source separation for multiclass motor imagery publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2032162 – volume: 10 start-page: 371 issue: 2 year: 1958 end-page: 375 ident: CR14 article-title: The ten-twenty electrode system of the International Federation publication-title: Electroencephalogr Clin Neurophysiol – volume: 25 start-page: 41 issue: 1 year: 2008 end-page: 56 ident: CR7 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2008.4408441 – ident: CR35 – ident: CR29 – volume: 103 start-page: 386 issue: 3 year: 1997 end-page: 394 ident: CR20 article-title: Spatial filter selection for EEG-based communication publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0013-4694(97)00022-2 – volume: 49 start-page: 11 issue: 1 year: 2004 end-page: 22 ident: CR21 article-title: Machine learning techniques for brain-computer interfaces publication-title: Biomed Eng Biomed Tech – volume: 41 start-page: 44 issue: 10 year: 2008 end-page: 50 ident: CR26 article-title: BioSig: a free and open source software library for BCI research publication-title: Computer doi: 10.1109/MC.2008.407 – volume: 159 start-page: 211 year: 2006 end-page: 222 ident: CR24 article-title: ERD/ERS patterns reflecting sensorimotor activation and deactivation publication-title: Progr Brain Res doi: 10.1016/S0079-6123(06)59014-4 – volume: 121 start-page: 423 year: 2013 end-page: 433 ident: CR12 article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.005 – volume: 14 start-page: 153 issue: 2 year: 2006 end-page: 159 ident: CR6 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2006.875642 – volume: 20 start-page: 1187 issue: 8 year: 2011 end-page: 1192 ident: CR17 article-title: A real-time BCI with a small number of channels based on CSP publication-title: Neural Comput Appl doi: 10.1007/s00521-010-0481-6 – volume: 159 start-page: 79 year: 2006 end-page: 97 ident: CR11 article-title: Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain publication-title: Progr Brain Res doi: 10.1016/S0079-6123(06)59006-5 – volume: 19 start-page: 153 issue: 2 year: 1997 end-page: 158 ident: CR13 article-title: Feature selection: evaluation, application, and small sample performance publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.574797 – ident: CR15 – volume: 2014 start-page: 38 issue: 1 year: 2014 ident: CR34 article-title: Time-frequency optimization for discrimination between imagination of right and left hand movements based on two bipolar electroencephalography channels publication-title: EURASIP J Adv Signal Process doi: 10.1186/1687-6180-2014-38 – volume: 4 start-page: 463 issue: 4 year: 2007 end-page: 474 ident: CR1 article-title: Brain–computer interface systems: progress and prospects publication-title: Expert Rev Med Dev doi: 10.1586/17434440.4.4.463 – ident: CR32 – ident: CR36 – volume: 4 start-page: R1 year: 2007 end-page: R14 ident: CR18 article-title: A review of classification algorithms for EEG-based brain-computer interfaces publication-title: J Neural Eng doi: 10.1088/1741-2560/4/2/R01 – volume: 2015 start-page: 1 issue: 1 year: 2015 end-page: 21 ident: CR2 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J Adv Signal Process doi: 10.1186/s13634-015-0251-9 – volume: 1–8 start-page: 2009 year: 2009 ident: CR22 article-title: Dimensionality reduction and channel selection of motor imagery electroencephalographic data publication-title: Comput Intell Neurosci – ident: 9379_CR29 doi: 10.1155/2015/703768 – ident: 9379_CR37 doi: 10.1109/ICASSP.2008.4517635 – volume: 4 start-page: R1 year: 2007 ident: 9379_CR18 publication-title: J Neural Eng doi: 10.1088/1741-2560/4/2/R01 – ident: 9379_CR35 doi: 10.1109/ICASSP.2013.6637856 – volume: 22 start-page: 1313 issue: 9 year: 2009 ident: 9379_CR28 publication-title: Neural Netw doi: 10.1016/j.neunet.2009.07.020 – volume: 20 start-page: 1187 issue: 8 year: 2011 ident: 9379_CR17 publication-title: Neural Comput Appl doi: 10.1007/s00521-010-0481-6 – volume: 2014 start-page: 38 issue: 1 year: 2014 ident: 9379_CR34 publication-title: EURASIP J Adv Signal Process doi: 10.1186/1687-6180-2014-38 – volume: 6 start-page: 477 issue: 3 year: 2014 ident: 9379_CR8 publication-title: Cogn Comput doi: 10.1007/s12559-014-9264-1 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 9379_CR31 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – ident: 9379_CR4 doi: 10.1109/NER.2011.5910558 – volume: 2015 start-page: 1 issue: 1 year: 2015 ident: 9379_CR2 publication-title: EURASIP J Adv Signal Process doi: 10.1186/s13634-015-0251-9 – volume: 6 start-page: 241 issue: 2 year: 2014 ident: 9379_CR23 publication-title: Cogn Comput doi: 10.1007/s12559-013-9239-7 – volume: 41 start-page: 52 issue: 10 year: 2008 ident: 9379_CR19 publication-title: Computer doi: 10.1109/MC.2008.409 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 9379_CR7 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2008.4408441 – ident: 9379_CR15 doi: 10.1007/978-3-642-41184-7_57 – volume: 51 start-page: 1003 issue: 6 year: 2004 ident: 9379_CR16 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.827827 – volume: 57 start-page: 469 issue: 2 year: 2010 ident: 9379_CR9 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2032162 – volume: 159 start-page: 211 year: 2006 ident: 9379_CR24 publication-title: Progr Brain Res doi: 10.1016/S0079-6123(06)59014-4 – volume: 121 start-page: 423 year: 2013 ident: 9379_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.005 – volume: 49 start-page: 11 issue: 1 year: 2004 ident: 9379_CR21 publication-title: Biomed Eng Biomed Tech – volume: 4 start-page: 463 issue: 4 year: 2007 ident: 9379_CR1 publication-title: Expert Rev Med Dev doi: 10.1586/17434440.4.4.463 – volume: 14 start-page: 147 issue: 2 year: 2006 ident: 9379_CR5 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2006.875557 – volume: 31 start-page: 153 issue: 1 year: 2006 ident: 9379_CR25 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 14 start-page: 153 issue: 2 year: 2006 ident: 9379_CR6 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2006.875642 – ident: 9379_CR33 doi: 10.1109/EMBC.2012.6346532 – volume: 21 start-page: 148 issue: 2 year: 2011 ident: 9379_CR10 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20285 – ident: 9379_CR36 – volume: 1–8 start-page: 2009 year: 2009 ident: 9379_CR22 publication-title: Comput Intell Neurosci – ident: 9379_CR32 – volume: 159 start-page: 79 year: 2006 ident: 9379_CR11 publication-title: Progr Brain Res doi: 10.1016/S0079-6123(06)59006-5 – volume: 41 start-page: 44 issue: 10 year: 2008 ident: 9379_CR26 publication-title: Computer doi: 10.1109/MC.2008.407 – ident: 9379_CR30 doi: 10.1109/IEMBS.2005.1615701 – volume: 19 start-page: 153 issue: 2 year: 1997 ident: 9379_CR13 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.574797 – volume: 10 start-page: e0120432 issue: 3 year: 2015 ident: 9379_CR3 publication-title: PLoS One doi: 10.1371/journal.pone.0120432 – volume: 10 start-page: 371 issue: 2 year: 1958 ident: 9379_CR14 publication-title: Electroencephalogr Clin Neurophysiol – volume: 14 start-page: 93 issue: 1 year: 2015 ident: 9379_CR27 publication-title: Biomed Eng Online doi: 10.1186/s12938-015-0087-4 – volume: 103 start-page: 386 issue: 3 year: 1997 ident: 9379_CR20 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/S0013-4694(97)00022-2 |
SSID | ssj0065952 |
Score | 2.2607992 |
Snippet | Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 505 |
SubjectTerms | Algorithms Artificial Intelligence Biomedical and Life Sciences Biomedicine Brain research Channels Classification Cognitive science Computation by Abstract Devices Computational Biology/Bioinformatics Computer Science Datasets Discriminant analysis Electrodes Electroencephalography Human-computer interface Machine Learning Methods Neuroscience Neurosciences Parameterization Segments Signal and Image Processing Signal processing Spatial data |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEF5svfQi_mK0yiKelIX87SY5VrFUsV600FvY3WxUqKnYKrQn38E39Emc2SatigreQrJJYGZ3dmZn5vsIOQwyxY3AmqdMuyz0I4_FvsyZ0pLLPIwiYTCj270SnV540ef9so97VFW7VylJa6kXzW7o_ULoyxlsqQmb1sgyh9Adp3XPb1XmF_HxbIozFoJh22aVyvzpE182o9odlkJ-8jO_pUbtjtNeJSulq0hbM92ukSVTrJPG3GJNNsgtLHs8R2GWRT6_1xSbBQozoNeW3gZkTm1NAMVOD1q2HtnbcEW7Qwi46fkDwlhM6AmSRby_vlU8D9QeFuZYsrVJeu2zm9MOK5kTmA55MmY889xMZglECxkPtNLglkgvkKAxiGDyIFaI8RJyrSQXkYkCk_uZDBCaXcWecYMtUi-GhdkmFOxBbMAQKJhyoZSJCrJEaS_3jauFK5VD3EqEqS5hxZHdYpAuAJFR6ilIPUWpp1OHHM1feZxhavw1-AD0Mh-HaNid1mWK91xkFxS---I5pFmpLS3X4Cj1E3BOBSLqO-S4UuXi8a9_3PnX6F3SAB9KzKrHmqQ-fno2e-CnjNW-nZcfLgXhSw priority: 102 providerName: Springer Nature |
Title | Subject-Specific Channel Selection Using Time Information for Motor Imagery Brain–Computer Interfaces |
URI | https://link.springer.com/article/10.1007/s12559-015-9379-z https://www.proquest.com/docview/2919364380 https://hal.science/hal-01351620 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB415MKlgj7UFIhWVU9UK_zatX2qQpWQtoCqQiQ4WfsyVIIESkCCE_-Bf9hf0pnNOqGV4Gat17a0M56d2Zn5PoCPqdXCSap5sibiWZLHvEhUzbVRQtVZnktHGd29fTkcZd-OxFE4cLsKZZWNTfSG2k4MnZFvJSW6GpLw0T9fXHJijaLsaqDQaEEbTXCBGt7e7u__-NnYYgLL8_nOQkpOPZxNXtM3z5E3jaG04LhFl_zun52pdUp1kY-czv_ypH77GazAy-A3st5M0Kvwwo1fwfLcfN2-hhO0AXSowj2lfP3LMOocGLszduC5blAAzBcIMGr7YKEPyQ_jFdubYPTNvp4TpsUt2ybmiD_3Dw3pA_MnhzXVb72B0aB_-GXIA40CN5kop1zYOLLKlhg6WJEabdBHUXGqUHwYztRpoQnwJRNGKyFzl6euTqxKCaddF7GL0rewNJ6M3TtgaBwKh1ZBo_5lSpU6taU2cZ24yMhI6Q5EzRJWJmCME9XFWbVAR6ZVr3DVK1r16q4Dm_NHLmYAG89N_oBymc8jaOxhb7eisYioBmUS3cQdWG_EVoUf8qpaqE8HPjWiXNx-8ovvn3_ZGiyjByVntWPrsDT9fe020EuZ6i60isFOF9q9nePv_W5QTBwdJb2_8Cjo5w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615UAviKdYKGAhuIAskjh2kgNC5bHs0t1eaKXejF8pSGW30AW0PfEf-B_8KH4JM954F5DorbcocRJlZjL-7Hl8AA-EtzIoynnyLuNlUeW8LkzLrTPStGVVqUAR3fGuGuyXbw7kwRr8TLUwlFaZfGJ01H7qaI_8SdEg1FDUH_3Z8SdOrFEUXU0UGguz2Anzb7hkO3k6fIn6fVgU_Vd7Lwa8YxXgrpTNjEufZ974BpG0l8JZh1O2yYXBr0F034raUv-TUjprpKpCJUJbeCOobbmt85AJfO46XCiFaCiFsO6_Tp6fWvPF6GqtFKeK0RRFjaV6hN1x4S45AoKGn_41D66_pyzMPyDuP1HZONn1L8OlDqWy7YVZXYG1MLkKm0tnOb8Gh-hxaAuHRwL79oNjVKcwCUfsbWTWQXWzmI7AqMiEdVVP8TQesfEU1_ps-JE6aMzZc-Kp-PX9R6KYYHGfsqVsseuwfy7ivQEbk-kk3ASGrqgO6IMsWntpTGOFb6zL2yJkTmXG9iBLItSu62hOxBpHetWLmaSuUeqapK5Pe_Boecvxop3HWYPvo16W46gR92B7pOlcRsSGqsi-5j3YSmrT3e9_olfG2oPHSZWry_99462zH3YPLg72xiM9Gu7u3IZNxG5qkbW2BRuzz1_CHcRHM3s3GiWDd-f9F_wGiDUhRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC5cheAlqEnIxkeakFNCs_PqnpnjqlnWxy6BZMFb069RwYwSR0FP-Q_5h_4Sq-axmwQTyG3o6ZmBqp7qqq6q7wN4HzsjvKSaJ2cDnkRpyLNIF9xYLXSRpKn0lNGdTOV4lhyeiJOW5_S6q3bvUpJNTwOhNJXV4MoVg0XjG3nCGAYLjttrzu97sILWOKSarlk07EwxYeXV6c5MSk4tnF1a86lX_LYx9c6oLPIXn_OPNGm9-4zW4HnrNrJho-d1WPLlBqzOrdfdCzhFE0BnKrxmlC_OLaPGgdJfsC811Q3Kn9X1AYy6PljbhlQP4xWbXGLwzQ6-EaTFHdsl4oiHHz87zgdWHxwWVL71EmajT1_3xrxlUeA2EXnFhQsDp12OkYMTsTUWXRQdxhq1h9FMEWeG8F4SYY0WMvVp7IvI6Zhg2k0W-iB-BcvlZelfA0PbkHk0CgaXX6J1bmKXGxsWkQ-sDLTpQ9CJUNkWYpyYLi7UAhyZpK5Q6oqkru778GH-yFWDr_Gvye9QL_N5hIw9Hh4rGguIaVBGwW3Yh61Obar9H69VlKOjKgldvw8fO1Uubv_1i2_-a_ZbePZ5f6SOD6ZHm7CKrpVsisq2YLn6fuO30X2pzE69RB8BDxToeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Specific+Channel+Selection+Using+Time+Information+for+Motor+Imagery+Brain%E2%80%93Computer+Interfaces&rft.jtitle=Cognitive+computation&rft.au=Yang%2C+Yuan&rft.au=Bloch%2C+Isabelle&rft.au=Chevallier%2C+Sylvain&rft.au=Wiart%2C+Joe&rft.date=2016-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1866-9956&rft.eissn=1866-9964&rft.volume=8&rft.issue=3&rft.spage=505&rft.epage=518&rft_id=info:doi/10.1007%2Fs12559-015-9379-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-9956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-9956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-9956&client=summon |