Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation

For a long time, hydrogen sulfide (H S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cro...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 7; p. 1621
Main Authors Li, Zhong-Guang, Min, Xiong, Zhou, Zhi-Hao
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 26.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For a long time, hydrogen sulfide (H S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca , abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H S and cross-adaptation in plant biology, H S homeostasis in plant cells under normal growth conditions; H S signaling triggered by abiotic stress; and H S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed.
AbstractList For a long time, hydrogen sulfide (H2S) has been considered as merely a toxic byproduct of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca2+, abscisic acid (ABA), hydrogen peroxide (H2O2) and nitric oxide (NO), as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins (HSPs), as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H2S and cross-adaptation in plant biology, H2S homeostasis in plant cells under normal growth conditions; H2S signaling triggered by abiotic stress; and H2S-induced cross-adaptation to heavy metal, salt, drought, cold, heat and flooding stress were summarized, and concluded that H2S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed.
For a long time, hydrogen sulfide (H S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca , abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H S and cross-adaptation in plant biology, H S homeostasis in plant cells under normal growth conditions; H S signaling triggered by abiotic stress; and H S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed.
For a long time, hydrogen sulfide (H 2 S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca 2+ , abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H 2 S and cross-adaptation in plant biology, H 2 S homeostasis in plant cells under normal growth conditions; H 2 S signaling triggered by abiotic stress; and H 2 S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H 2 S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed.
Author Zhou, Zhi-Hao
Min, Xiong
Li, Zhong-Guang
AuthorAffiliation 3 Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University Kunming, China
1 School of Life Sciences, Yunnan Normal University Kunming, China
2 Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education Kunming, China
AuthorAffiliation_xml – name: 1 School of Life Sciences, Yunnan Normal University Kunming, China
– name: 2 Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education Kunming, China
– name: 3 Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University Kunming, China
Author_xml – sequence: 1
  givenname: Zhong-Guang
  surname: Li
  fullname: Li, Zhong-Guang
  organization: School of Life Sciences, Yunnan Normal UniversityKunming, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of EducationKunming, China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal UniversityKunming, China
– sequence: 2
  givenname: Xiong
  surname: Min
  fullname: Min, Xiong
  organization: School of Life Sciences, Yunnan Normal UniversityKunming, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of EducationKunming, China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal UniversityKunming, China
– sequence: 3
  givenname: Zhi-Hao
  surname: Zhou
  fullname: Zhou, Zhi-Hao
  organization: School of Life Sciences, Yunnan Normal UniversityKunming, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of EducationKunming, China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal UniversityKunming, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27833636$$D View this record in MEDLINE/PubMed
BookMark eNpVkdtLHDEUxkOxVLv67FuZx77MmnsmhRaWpVXBoqCCbyGTyxrJJttkRvC_76yrooFcOOc7Xw7n9xXspZwcAMcIzgnp5InfxDrHEPH5tDH6BA4Q57SlHN_tvXvvg6NaH-C0GIRSii9gH4uOEE74Afh59mRLXrnUXI_RB-t-NIvmOqySjs3fHJ0Zo2tCaq6iTkOzLLnWdmH1ZtBDyOkQfPY6Vnf0cs_A7Z_fN8uz9uLy9Hy5uGgNZXJombDGQAo1th4z0THOe6kp8RiZHlJkHbEC9r21njBBiSQCUgx9J0mPJGRkBs53vjbrB7UpYa3Lk8o6qOdALiulyxBMdMozYzskOKHC0r7TPefCY-2xs5JiDCevXzuvzdivnTUuDUXHD6YfMyncq1V-VAx2kEy9zcD3F4OS_42uDmodqnFxmpDLY1WoIxJNB-KT9GQnNdvBFeffvkFQbRmqLUO1ZaieGU4V395396Z_JUb-AxdwmL0
CitedBy_id crossref_primary_10_3389_fpls_2019_01072
crossref_primary_10_3390_plants10091928
crossref_primary_10_32615_ps_2023_005
crossref_primary_10_3390_agronomy12020508
crossref_primary_10_1016_j_plaphy_2019_09_016
crossref_primary_10_1093_pcp_pcaa144
crossref_primary_10_1111_aab_12658
crossref_primary_10_1007_s12298_021_00991_7
crossref_primary_10_1016_j_flora_2017_03_005
crossref_primary_10_3103_S0095452719050098
crossref_primary_10_1016_j_tplants_2021_07_016
crossref_primary_10_3390_ijms19051528
crossref_primary_10_15407_frg2022_01_003
crossref_primary_10_1007_s11104_021_05091_9
crossref_primary_10_35550_vbio2018_02_018
crossref_primary_10_1016_j_jhazmat_2017_05_009
crossref_primary_10_1111_pce_14431
crossref_primary_10_1016_j_tim_2020_08_005
crossref_primary_10_1016_j_ecoenv_2020_110498
crossref_primary_10_1016_j_micres_2021_126943
crossref_primary_10_3390_ijms232314848
crossref_primary_10_1111_ppl_13432
crossref_primary_10_1007_s11104_020_04590_5
crossref_primary_10_1111_ejss_13040
crossref_primary_10_3390_ijms222413229
crossref_primary_10_35550_vbio2019_03_066
crossref_primary_10_3390_antiox8090401
crossref_primary_10_3389_fpls_2019_01089
crossref_primary_10_1093_treephys_tpac042
crossref_primary_10_2174_18743315_v16_e2207050
crossref_primary_10_1007_s11738_023_03615_7
crossref_primary_10_1134_S0003683820040079
crossref_primary_10_1264_jsme2_ME23021
crossref_primary_10_1016_j_ecoenv_2018_03_060
crossref_primary_10_32615_bp_2020_071
crossref_primary_10_1111_plb_13367
crossref_primary_10_1016_j_sajb_2024_03_041
crossref_primary_10_1007_s11104_024_06499_9
crossref_primary_10_3390_ijms21134593
crossref_primary_10_1016_j_xplc_2021_100179
crossref_primary_10_3390_hydrogen2030017
crossref_primary_10_1186_s12870_024_04819_w
crossref_primary_10_1016_j_scienta_2021_110366
crossref_primary_10_3389_fpls_2018_01288
crossref_primary_10_1007_s42729_023_01336_x
crossref_primary_10_1016_j_jhazmat_2022_130283
crossref_primary_10_1016_j_ecoenv_2020_111248
crossref_primary_10_1016_j_plaphy_2020_07_003
crossref_primary_10_1111_pce_14410
crossref_primary_10_1111_pce_14531
crossref_primary_10_1016_j_niox_2024_01_002
crossref_primary_10_3390_ijms21082827
crossref_primary_10_1016_j_scienta_2022_111605
crossref_primary_10_1002_cbic_202100138
crossref_primary_10_3389_fpls_2019_00678
crossref_primary_10_18535_ijsrm_v9i11_ah01
crossref_primary_10_3390_ijms20194881
crossref_primary_10_1007_s13562_022_00776_3
crossref_primary_10_1007_s00299_024_03238_3
crossref_primary_10_1016_j_jplph_2017_09_010
crossref_primary_10_3103_S0095452719020099
crossref_primary_10_1080_15592324_2022_2030082
crossref_primary_10_3390_plants11192544
crossref_primary_10_1016_j_algal_2021_102277
crossref_primary_10_1080_10408347_2024_2337869
crossref_primary_10_1111_ppl_13064
crossref_primary_10_1007_s00344_024_11391_y
crossref_primary_10_3389_fpls_2020_01105
crossref_primary_10_1016_j_niox_2018_10_002
crossref_primary_10_3390_antiox10010108
crossref_primary_10_19159_tutad_392683
crossref_primary_10_1038_s41598_022_26697_8
crossref_primary_10_3389_fpls_2021_670369
crossref_primary_10_15407_frg2023_02_095
crossref_primary_10_1080_15592324_2018_1477905
crossref_primary_10_1111_plb_13316
crossref_primary_10_3390_ijms18030526
crossref_primary_10_1016_j_jare_2020_09_005
crossref_primary_10_35550_vbio2020_01_018
crossref_primary_10_3390_ijms241512264
crossref_primary_10_3390_plants12040719
crossref_primary_10_1016_j_jhazmat_2022_130425
crossref_primary_10_1007_s11738_019_2892_z
crossref_primary_10_3390_ijms20071735
crossref_primary_10_1021_acs_jafc_8b03098
crossref_primary_10_3390_plants12010115
crossref_primary_10_3389_fpls_2018_01172
crossref_primary_10_3390_plants10051021
crossref_primary_10_3390_antiox9020145
crossref_primary_10_1016_j_ecoenv_2020_111158
crossref_primary_10_1016_j_dyepig_2018_12_064
crossref_primary_10_1111_pce_14643
crossref_primary_10_3389_fpls_2020_01283
crossref_primary_10_1007_s00425_020_03463_6
crossref_primary_10_1111_ppl_13002
crossref_primary_10_3389_fpls_2019_00743
crossref_primary_10_1021_acs_jafc_8b04622
crossref_primary_10_1093_jxb_erz031
crossref_primary_10_1016_j_plaphy_2021_06_034
crossref_primary_10_1016_j_jplph_2021_153534
crossref_primary_10_3390_ijms21155421
crossref_primary_10_1016_j_envexpbot_2018_11_006
crossref_primary_10_1016_j_plaphy_2018_08_028
crossref_primary_10_3390_plants13060791
crossref_primary_10_1007_s00344_021_10312_7
crossref_primary_10_3389_fpls_2020_00108
crossref_primary_10_1111_jipb_12779
crossref_primary_10_3390_biology12081043
crossref_primary_10_1051_e3sconf_201913101080
crossref_primary_10_1111_ppl_13380
crossref_primary_10_1016_j_plantsci_2020_110733
crossref_primary_10_1080_15226514_2024_2357634
crossref_primary_10_7717_peerj_15881
crossref_primary_10_1016_j_plaphy_2020_04_038
crossref_primary_10_35550_vbio2021_01_032
crossref_primary_10_1093_hr_uhac284
crossref_primary_10_1007_s10725_017_0316_x
crossref_primary_10_3389_fpls_2024_1337250
crossref_primary_10_3389_fpls_2020_545453
crossref_primary_10_1016_j_plaphy_2021_08_031
crossref_primary_10_1016_j_trac_2024_117841
crossref_primary_10_3390_plants12071440
crossref_primary_10_3390_antiox9070621
Cites_doi 10.1016/j.envexpbot.2015.11.007
10.1007/978-81-322-2616-1
10.1134/S1021443712060118
10.1111/nyas.12733
10.1007/s12374-011-9178-3
10.1515/biolog-2015-0083
10.1155/2015/714756
10.1104/pp.15.00009
10.1007/s11738-012-1021-z
10.5586/asbp.2013.031
10.1007/s11240-015-0939-4
10.1089/ars.2008.2177
10.1016/j.plaphy.2016.02.033
10.3389/fpls.2016.00230
10.1016/j.plantsci.2014.06.006
10.1016/S0176-1617(98)80179-X
10.1007/s00425-014-2209-9
10.1093/jxb/ert055
10.1007/s11104-015-2719-7
10.1134/S1021443710040114
10.1016/j.plaphy.2013.05.042
10.1078/0176-1617-00327
10.1016/j.envexpbot.2007.05.011
10.1111/pce.12092
10.1146/annurev-pharmtox-010510-100505
10.1007/s11104-011-0936-2
10.1111/j.1744-7909.2010.00946.x
10.1016/j.ceca.2014.10.004
10.1007/978-1-4614-6108-1
10.2478/s11756-014-0396-2
10.3389/fpls.2016.00066
10.1155/2015/758358
10.1007/978-3-7091-1254-0
10.1021/jf301912h
10.1007/978-3-642-38469-1
10.1104/pp.116.1.429
10.1016/S0074-7696(08)62707-2
10.1007/s00299-016-1952-8
10.1093/jxb/erw079
10.1016/j.jplph.2015.03.015
10.1016/j.niox.2016.04.002
10.1007/978-1-4939-2540-7_5
10.1007/s11738-011-0746-4
10.1016/j.molp.2015.11.010
10.1016/j.postharvbio.2011.01.006
10.1016/j.sajb.2009.10.007
10.1007/s00709-013-0592-x
10.1080/14620316.2015.11513176
10.1038/srep14078
10.1007/s11104-012-1468-0
10.1007/s11738-015-1971-z
10.1134/S1021443713060058
10.1007/s10535-016-0612-8
10.1016/j.plaphy.2013.12.024
10.1007/s11274-010-0572-7
10.1152/physrev.00017.2011
10.1371/journal.pone.0077047
10.3389/fpls.2016.00277
10.1007/s00344-012-9262-z
10.1016/j.plaphy.2013.07.021
10.1104/pp.110.167569
10.1007/s11104-015-2475-8
10.1016/j.bbrc.2011.09.090
10.1111/pce.12073
10.1016/j.plaphy.2014.02.012
10.1111/j.1744-7909.2008.00769.x
10.4161/psb.5.8.12297
10.1016/j.scienta.2014.12.021
10.1016/j.niox.2014.02.005
10.1016/j.jplph.2012.12.018
10.1016/j.plantsci.2011.10.006
10.1016/bs.mie.2014.11.035
10.1186/1471-2229-14-42
10.1007/s10535-010-0133-9
10.1111/jipb.12302
10.1111/j.1469-8137.2010.03465.x
10.1080/15592324.2015.1051278
10.1007/s10535-015-0539-5
10.1007/s11738-015-2038-x
10.1016/bs.mie.2014.11.031
ContentType Journal Article
Copyright Copyright © 2016 Li, Min and Zhou. 2016 Li, Min and Zhou
Copyright_xml – notice: Copyright © 2016 Li, Min and Zhou. 2016 Li, Min and Zhou
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2016.01621
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
EndPage 1621
ExternalDocumentID oai_doaj_org_article_f5cd8176347d4b8ab667f2af2ed94220
10_3389_fpls_2016_01621
27833636
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IGS
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RNS
RPM
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c459t-57dcc040a2df2578566b9a43f21cb041de3d70bbddf357439370420f893b19053
IEDL.DBID RPM
ISSN 1664-462X
IngestDate Tue Oct 22 15:15:28 EDT 2024
Tue Sep 17 21:07:43 EDT 2024
Fri Oct 25 04:59:14 EDT 2024
Thu Sep 26 15:21:19 EDT 2024
Tue Oct 15 23:55:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stress tolerance
hydrogen sulfide
signal crosstalk
cross-adaptation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-57dcc040a2df2578566b9a43f21cb041de3d70bbddf357439370420f893b19053
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science
Edited by: Hanjo A. Hellmann, Washington State University, USA
Reviewed by: Karl-Josef Dietz, Bielefeld University, Germany; Sutton Mooney, Washington State University, USA
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080339/
PMID 27833636
PQID 1839118316
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_f5cd8176347d4b8ab667f2af2ed94220
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5080339
proquest_miscellaneous_1839118316
crossref_primary_10_3389_fpls_2016_01621
pubmed_primary_27833636
PublicationCentury 2000
PublicationDate 2016-10-26
PublicationDateYYYYMMDD 2016-10-26
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-26
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References 26361343 - Sci Rep. 2015 Sep 11;5:14078
25810097 - Plant Physiol. 2015 May;168(1):334-42
20831717 - New Phytol. 2010 Dec;188(4):977-84
19093970 - J Integr Plant Biol. 2008 Dec;50(12):1518-29
25782612 - Ann N Y Acad Sci. 2016 Feb;1365(1):5-14
26337076 - Plant Signal Behav. 2015;10(9):e1051278
20590986 - J Integr Plant Biol. 2010 Jun;52(6):556-67
23567865 - J Exp Bot. 2013 Apr;64(7):1953-66
24463534 - Plant Physiol Biochem. 2014 Mar;76:44-51
21986537 - Biochem Biophys Res Commun. 2011 Oct 28;414(3):481-6
27083071 - Nitric Oxide. 2016 May 1;55-56:91-100
25017167 - Plant Sci. 2014 Aug;225:117-29
22812725 - J Agric Food Chem. 2012 Aug 8;60(31):7588-96
25526962 - Planta. 2015 Apr;241(4):887-906
27035256 - Plant Physiol Biochem. 2016 Jul;104:174-9
24582856 - Nitric Oxide. 2014 Sep 15;41:72-8
26936830 - J Exp Bot. 2016 Mar;67(7):2025-37
23347018 - Plant Cell Environ. 2013 Sep;36(9):1607-16
23523123 - J Plant Physiol. 2013 May 15;170(8):741-7
25974366 - J Plant Physiol. 2015 Jun 1;181:20-9
23974354 - Plant Physiol Biochem. 2013 Oct;71:226-34
26678664 - Mol Plant. 2016 Mar 7;9(3):489-91
25329496 - J Integr Plant Biol. 2015 Jul;57(7):628-40
24318675 - Protoplasma. 2014 Jul;251(4):899-912
22535897 - Physiol Rev. 2012 Apr;92(2):791-896
24499299 - BMC Plant Biol. 2014 Feb 05;14:42
27014301 - Front Plant Sci. 2016 Mar 15;7:277
26973673 - Front Plant Sci. 2016 Mar 04;7:230
19239350 - Antioxid Redox Signal. 2009 Apr;11(4):861-905
23800663 - Plant Physiol Biochem. 2013 Sep;70:278-86
26078806 - Oxid Med Cell Longev. 2015 ;2015 :397502
25459298 - Cell Calcium. 2014 Dec;56(6):472-81
20724846 - Plant Signal Behav. 2010 Aug;5(8):1031-3
10603578 - Int Rev Cytol. 2000;195:269-324
21205630 - Plant Physiol. 2011 Jan;155(1):2-18
25747484 - Methods Enzymol. 2015;555:253-69
21210746 - Annu Rev Pharmacol Toxicol. 2011;51:169-87
24607577 - Plant Physiol Biochem. 2014 May;78:37-42
22325880 - Plant Sci. 2012 Apr;185-186:185-9
26870076 - Front Plant Sci. 2016 Feb 04;7:66
24194857 - PLoS One. 2013 Oct 23;8(10):e77047
26910861 - Plant Cell Rep. 2016 May;35(5):1155-68
23489239 - Plant Cell Environ. 2013 Aug;36(8):1564-72
25725518 - Methods Enzymol. 2015;554:101-10
26078819 - Oxid Med Cell Longev. 2015;2015:804603
Li (B44) 2015c; 10
Li (B41) 2013; 60
Luo (B59) 2015; 183
Scuffi (B68) 2016; 7
Wang (B76) 2016; 9
Aroca (B4) 2015; 168
Gong (B23) 2001; 158
Christou (B12) 2014; 14
Shi (B72) 2015; 57
Fu (B21) 2013; 82
Li (B52) 2016; 125
Gong (B24) 1998a; 153
Fang (B16) 2014; 76
Li (B42) 2015a; 555
Li (B55) 2014; 69
Zhang (B87) 2010d; 57
Hemmati (B31) 2015; Vol. 2
Lin (B56) 2012; 31
Foyer (B20) 2016; 67
Calderwood (B8) 2014; 41
Iqbal (B33) 2016
Pandey (B64) 2015
Gong (B25) 1998b; 116
Min (B61) 2016; 52
Li (B47) 2013; 60
Chen (B9) 2013; 362
Cheng (B11) 2013; 70
Shen (B70) 2013; 8
Li (B39) 2011; 51
Ma (B60) 2015; 241
Zhang (B84) 2008; 50
Li (B38) 2014; 251
Li (B45) 2013a; 170
Hancock (B30) 2016; 1365
Jin (B34) 2015; 2015
Li (B43) 2015b; 554
Ahmad (B3) 2013b
Yadav (B80) 2010; 76
Zhang (B82) 2010a; 5
Zhang (B83) 2010b; 54
Bloem (B7) 2012; 60
Bao (B6) 2011; 20
Li (B51) 2015; 70
Li (B54) 2013b; 36
Liu (B58) 2016; 400
Foyer (B18) 2009; 11
Shi (B71) 2013; 71
Niu (B63) 2016; 7
Grover (B26) 2011; 27
Pineda (B66) 2016; 123
Singh (B73) 2015; 181
Hancock (B29) 2014; 78
Lisjak (B57) 2013; 36
Yamasaki (B81) 2016; 5
García-Mata (B22) 2010; 188
Li (B46) 2011; 54
Lai (B37) 2014; 225
Li (B48) 2012a; 34
Guo (B27) 2016; 38
Ahmad (B1) 2016
Chen (B10) 2016; 104
Gupta (B28) 2013
Shan (B69) 2011; 33
Zhang (B85) 2011; 60
Wang (B77) 2012; 92
Qiao (B67) 2015; 393
Wahid (B75) 2007; 61
Wojtyla (B79) 2016; 7
Foyer (B19) 2011; 155
Christou (B13) 2011; 47
Li (B40) 2016; 35
Fang (B15) 2014; 56
Christou (B14) 2013; 64
Peng (B65) 2012
Zhang (B88) 2015; 2015
Ahmad (B2) 2013a
Hossain (B32) 2016
Li (B53) 2015; 37
Asthir (B5) 2015; 59
Fotopoulos (B17) 2015; 90
Zhang (B86) 2010c; 52
Jin (B35) 2011; 414
Li (B49) 2012b
Knight (B36) 2000; 195
van Dongen (B74) 2014
Li (B50) 2016; 60
Mostofa (B62) 2015; 5
Wang (B78) 2012; 351
References_xml – volume: 123
  start-page: 88
  year: 2016
  ident: B66
  article-title: Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with, but not explained by an increase in herbivore-induced glucosinolates.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.11.007
  contributor:
    fullname: Pineda
– year: 2016
  ident: B33
  publication-title: Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies.
  doi: 10.1007/978-81-322-2616-1
  contributor:
    fullname: Iqbal
– volume: 60
  start-page: 149
  year: 2013
  ident: B47
  article-title: Mechanical stimulation-induced chilling tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and its relation to proline.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443712060118
  contributor:
    fullname: Li
– volume: 1365
  start-page: 5
  year: 2016
  ident: B30
  article-title: Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12733
  contributor:
    fullname: Hancock
– volume: 54
  start-page: 358
  year: 2011
  ident: B46
  article-title: Mechanical stimulation-induced cross-adaptation in plants: an overview.
  publication-title: J. Plant Biol.
  doi: 10.1007/s12374-011-9178-3
  contributor:
    fullname: Li
– volume: 70
  start-page: 753
  year: 2015
  ident: B51
  article-title: Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfide in seed germination of mung bean (Vigna radiata).
  publication-title: Biologia
  doi: 10.1515/biolog-2015-0083
  contributor:
    fullname: Li
– volume: 2015
  start-page: 1
  year: 2015
  ident: B88
  article-title: Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis.
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2015/714756
  contributor:
    fullname: Zhang
– volume: 168
  start-page: 334
  year: 2015
  ident: B4
  article-title: S-sulfhydration: a cysteine posttranslational modification in plant systems.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00009
  contributor:
    fullname: Aroca
– volume: 34
  start-page: 2207
  year: 2012a
  ident: B48
  article-title: Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-1021-z
  contributor:
    fullname: Li
– start-page: 99
  year: 2012
  ident: B65
  article-title: “Methods for the detection of gasotransmitters,” in
  publication-title: Gasotransmitters: Physiology and Pathophysiology
  contributor:
    fullname: Peng
– volume: 82
  start-page: 295
  year: 2013
  ident: B21
  article-title: Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L.
  publication-title: Acta Soc. Bot. Pol.
  doi: 10.5586/asbp.2013.031
  contributor:
    fullname: Fu
– volume: 125
  start-page: 207
  year: 2016
  ident: B52
  article-title: Hydrogen sulfide partly mediates abscisic acid-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells.
  publication-title: Plant Cell Tiss. Organ. Cult.
  doi: 10.1007/s11240-015-0939-4
  contributor:
    fullname: Li
– volume: 11
  start-page: 861
  year: 2009
  ident: B18
  article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications.
  publication-title: Antioxid. Redox. Signal.
  doi: 10.1089/ars.2008.2177
  contributor:
    fullname: Foyer
– volume: 104
  start-page: 174
  year: 2016
  ident: B10
  article-title: Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.02.033
  contributor:
    fullname: Chen
– volume: 7
  issue: 230
  year: 2016
  ident: B63
  article-title: Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00230
  contributor:
    fullname: Niu
– volume: 225
  start-page: 117
  year: 2014
  ident: B37
  article-title: Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2014.06.006
  contributor:
    fullname: Lai
– volume: 153
  start-page: 488
  year: 1998a
  ident: B24
  article-title: Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems.
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(98)80179-X
  contributor:
    fullname: Gong
– volume: 241
  start-page: 887
  year: 2015
  ident: B60
  article-title: Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotate to altitude gradient in the Northern Tibetan Plateau.
  publication-title: Planta
  doi: 10.1007/s00425-014-2209-9
  contributor:
    fullname: Ma
– volume: 64
  start-page: 1953
  year: 2013
  ident: B14
  article-title: Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert055
  contributor:
    fullname: Christou
– volume: 400
  start-page: 177
  year: 2016
  ident: B58
  article-title: Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator L.
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2719-7
  contributor:
    fullname: Liu
– volume: 57
  start-page: 532
  year: 2010d
  ident: B87
  article-title: Hydrogen sulfide promotes wheat seed germination under osmotic stress.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443710040114
  contributor:
    fullname: Zhang
– volume: 70
  start-page: 278
  year: 2013
  ident: B11
  article-title: Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.05.042
  contributor:
    fullname: Cheng
– volume: 158
  start-page: 1125
  year: 2001
  ident: B23
  article-title: Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2.
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00327
  contributor:
    fullname: Gong
– volume: 61
  start-page: 199
  year: 2007
  ident: B75
  article-title: Heat tolerance in plants: an overview.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2007.05.011
  contributor:
    fullname: Wahid
– volume: 36
  start-page: 1564
  year: 2013b
  ident: B54
  article-title: Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12092
  contributor:
    fullname: Li
– volume: 51
  start-page: 169
  year: 2011
  ident: B39
  article-title: Hydrogen sulfide and cell signaling.
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-010510-100505
  contributor:
    fullname: Li
– volume: 351
  start-page: 107
  year: 2012
  ident: B78
  article-title: Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway.
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0936-2
  contributor:
    fullname: Wang
– volume: 52
  start-page: 556
  year: 2010c
  ident: B86
  article-title: Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings.
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2010.00946.x
  contributor:
    fullname: Zhang
– volume: 56
  start-page: 472
  year: 2014
  ident: B15
  article-title: Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica.
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2014.10.004
  contributor:
    fullname: Fang
– year: 2013a
  ident: B2
  publication-title: Ecophysiology and Responses of Plants under Salt Stress.
  contributor:
    fullname: Ahmad
– year: 2013b
  ident: B3
  publication-title: Salt Stress in Plants: Signalling, Omics and Adaptations.
  doi: 10.1007/978-1-4614-6108-1
  contributor:
    fullname: Ahmad
– volume: 69
  start-page: 1001
  year: 2014
  ident: B55
  article-title: Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings.
  publication-title: Biologia
  doi: 10.2478/s11756-014-0396-2
  contributor:
    fullname: Li
– volume: 7
  issue: 66
  year: 2016
  ident: B79
  article-title: Different modes of hydrogen peroxide action during seed germination.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00066
  contributor:
    fullname: Wojtyla
– volume: 2015
  start-page: 1
  year: 2015
  ident: B34
  article-title: Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour.
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2015/758358
  contributor:
    fullname: Jin
– year: 2014
  ident: B74
  publication-title: Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia.
  doi: 10.1007/978-3-7091-1254-0
  contributor:
    fullname: van Dongen
– volume: 60
  start-page: 7588
  year: 2012
  ident: B7
  article-title: Sulfur fertilization and fungal infections affect the exchange of H2S and COS from agricultural crops.
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf301912h
  contributor:
    fullname: Bloem
– year: 2013
  ident: B28
  publication-title: Heavy Metal Stress in Plants.
  doi: 10.1007/978-3-642-38469-1
  contributor:
    fullname: Gupta
– volume: 116
  start-page: 429
  year: 1998b
  ident: B25
  article-title: Heat-shock-induced changes in intracellular Ca2+ Level in tobacco seedlings in relation to thermotolerance.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.116.1.429
  contributor:
    fullname: Gong
– volume: 195
  start-page: 269
  year: 2000
  ident: B36
  article-title: Calcium signaling during abiotic stress in plants.
  publication-title: Int. Rev. Cytol.
  doi: 10.1016/S0074-7696(08)62707-2
  contributor:
    fullname: Knight
– volume: 35
  start-page: 1155
  year: 2016
  ident: B40
  article-title: Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-016-1952-8
  contributor:
    fullname: Li
– volume: 67
  start-page: 2025
  year: 2016
  ident: B20
  article-title: Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw079
  contributor:
    fullname: Foyer
– volume: 181
  start-page: 20
  year: 2015
  ident: B73
  article-title: Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.03.015
  contributor:
    fullname: Singh
– volume: 5
  start-page: 91
  year: 2016
  ident: B81
  article-title: Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies.
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2016.04.002
  contributor:
    fullname: Yamasaki
– volume: Vol. 2
  start-page: 109
  year: 2015
  ident: B31
  article-title: “Molecular physiology of heat stress responses in plants,” in
  publication-title: Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Gerspectives
  doi: 10.1007/978-1-4939-2540-7_5
  contributor:
    fullname: Hemmati
– volume: 33
  start-page: 2533
  year: 2011
  ident: B69
  article-title: Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-011-0746-4
  contributor:
    fullname: Shan
– volume: 9
  start-page: 489
  year: 2016
  ident: B76
  article-title: Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules.
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.11.010
  contributor:
    fullname: Wang
– volume: 60
  start-page: 251
  year: 2011
  ident: B85
  article-title: Hydrogen sulfide acts as a regulator of ?ower senescence in plants.
  publication-title: Postharv. Biol. Technol.
  doi: 10.1016/j.postharvbio.2011.01.006
  contributor:
    fullname: Zhang
– volume: 76
  start-page: 167
  year: 2010
  ident: B80
  article-title: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants.
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2009.10.007
  contributor:
    fullname: Yadav
– volume: 251
  start-page: 899
  year: 2014
  ident: B38
  article-title: Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root.
  publication-title: Protoplasma
  doi: 10.1007/s00709-013-0592-x
  contributor:
    fullname: Li
– volume: 90
  start-page: 227
  year: 2015
  ident: B17
  article-title: Hydrogen sulphide: a versatile tool for the regulation of growth and defence responses in horticultural crops.
  publication-title: J. Hortic. Sci. Biotechnol.
  doi: 10.1080/14620316.2015.11513176
  contributor:
    fullname: Fotopoulos
– volume: 47
  year: 2011
  ident: B13
  article-title: “The Importance of hydrogen sulfide as a systemic priming agent in strawberry plants grown under key abiotic stress factors,” in
  publication-title: Proceedings of the 4th International Conference: Plant Abiotic Stress: From Systems Biology to Sustainable Agriculture
  contributor:
    fullname: Christou
– volume: 5
  issue: 14078
  year: 2015
  ident: B62
  article-title: Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice.
  publication-title: Sci. Rep.
  doi: 10.1038/srep14078
  contributor:
    fullname: Mostofa
– volume: 362
  start-page: 301
  year: 2013
  ident: B9
  article-title: Hydrogen sulfide alleviates aluminum toxicity in barley seedlings.
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1468-0
  contributor:
    fullname: Chen
– volume: 37
  issue: 219
  year: 2015
  ident: B53
  article-title: Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-015-1971-z
  contributor:
    fullname: Li
– volume: 60
  start-page: 733
  year: 2013
  ident: B41
  article-title: Hydrogen sulfide: a multifunctional gaseous molecule in plants.
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443713060058
  contributor:
    fullname: Li
– volume: 60
  start-page: 595
  year: 2016
  ident: B50
  article-title: Hydrogen sulfide as a signal molecule in hematin-induced heat tolerance of tobacco cell suspension.
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-016-0612-8
  contributor:
    fullname: Li
– volume: 76
  start-page: 44
  year: 2014
  ident: B16
  article-title: Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.12.024
  contributor:
    fullname: Fang
– volume: 27
  start-page: 1231
  year: 2011
  ident: B26
  article-title: Role of microorganisms in adaptation of agriculture crops to abiotic stresses.
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-010-0572-7
  contributor:
    fullname: Grover
– volume: 92
  start-page: 791
  year: 2012
  ident: B77
  article-title: Physiological implications of hydrogen sulfide: a whiff exploration that blossomed.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00017.2011
  contributor:
    fullname: Wang
– start-page: 323
  year: 2016
  ident: B32
  article-title: “Cross-stress tolerance in plants: molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxi?cation systems,” in
  publication-title: Abiotic Stress Response in Plants
  contributor:
    fullname: Hossain
– volume: 8
  issue: e77047
  year: 2013
  ident: B70
  article-title: Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0077047
  contributor:
    fullname: Shen
– volume: 7
  issue: 277
  year: 2016
  ident: B68
  article-title: Gasotransmitters and stomatal closure: is there redundancy, concerted action, or both?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00277
  contributor:
    fullname: Scuffi
– volume: 31
  start-page: 519
  year: 2012
  ident: B56
  article-title: Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation.
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-012-9262-z
  contributor:
    fullname: Lin
– volume: 71
  start-page: 226
  year: 2013
  ident: B71
  article-title: Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.).
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.07.021
  contributor:
    fullname: Shi
– volume: 155
  start-page: 2
  year: 2011
  ident: B19
  article-title: Ascorbate and glutathione: the heart of the redox hub.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.167569
  contributor:
    fullname: Foyer
– volume: 52
  start-page: 37
  year: 2016
  ident: B61
  article-title: The metabolism of signal molecule hydrogen sulfide and its role in the acquisition of heat tolerance in plants.
  publication-title: Plant Physiol. J.
  contributor:
    fullname: Min
– year: 2015
  ident: B64
  publication-title: Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives.
  contributor:
    fullname: Pandey
– volume: 393
  start-page: 137
  year: 2015
  ident: B67
  article-title: H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis.
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2475-8
  contributor:
    fullname: Qiao
– volume: 414
  start-page: 481
  year: 2011
  ident: B35
  article-title: Hydrogen sulfide improves drought resistance in Arabidopsis thaliana.
  publication-title: Biochem. Biophy. Res. Commun.
  doi: 10.1016/j.bbrc.2011.09.090
  contributor:
    fullname: Jin
– volume: 36
  start-page: 1607
  year: 2013
  ident: B57
  article-title: Hydrogen sulfide: environmental factor or signalling molecule?
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12073
  contributor:
    fullname: Lisjak
– volume: 20
  start-page: 40
  year: 2011
  ident: B6
  article-title: Effect of exogenous hydrogen sulfiocde on wheat seed germination under salt stress.
  publication-title: Modern Agric. Sci. Technol.
  contributor:
    fullname: Bao
– volume: 78
  start-page: 37
  year: 2014
  ident: B29
  article-title: Hydrogen sulfide and cell signaling: team player or referee?
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.02.012
  contributor:
    fullname: Hancock
– volume: 50
  start-page: 1518
  year: 2008
  ident: B84
  article-title: Hydrogen sulide promotes wheat seed germination and alleviates oxidative damage against copper stress.
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2008.00769.x
  contributor:
    fullname: Zhang
– volume: 5
  start-page: 1031
  year: 2010a
  ident: B82
  article-title: Hydrogen sulide stimulates β-amylase activity during early stages of wheat grain germination.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.8.12297
  contributor:
    fullname: Zhang
– volume: 183
  start-page: 144
  year: 2015
  ident: B59
  article-title: Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content.
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2014.12.021
  contributor:
    fullname: Luo
– volume: 41
  start-page: 72
  year: 2014
  ident: B8
  article-title: Hydrogen sulfide in plants: from dissipation of excess sulfur to signalling molecule.
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2014.02.005
  contributor:
    fullname: Calderwood
– volume: 170
  start-page: 741
  year: 2013a
  ident: B45
  article-title: Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.12.018
  contributor:
    fullname: Li
– start-page: 185
  year: 2012b
  ident: B49
  article-title: Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2+ and calmodulin.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2011.10.006
  contributor:
    fullname: Li
– volume: 555
  start-page: 253
  year: 2015a
  ident: B42
  article-title: Analysis of some enzymes activities of hydrogen sulfide metabolism in plants.
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2014.11.035
  contributor:
    fullname: Li
– volume: 14
  issue: 42
  year: 2014
  ident: B12
  article-title: Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-14-42
  contributor:
    fullname: Christou
– volume: 54
  start-page: 743
  year: 2010b
  ident: B83
  article-title: Hydrogen sulfide alleviated chromium toxicity in wheat.
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-010-0133-9
  contributor:
    fullname: Zhang
– volume: 57
  start-page: 628
  year: 2015
  ident: B72
  article-title: Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12302
  contributor:
    fullname: Shi
– volume: 188
  start-page: 977
  year: 2010
  ident: B22
  article-title: Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03465.x
  contributor:
    fullname: García-Mata
– year: 2016
  ident: B1
  publication-title: Plant Metal Interaction: Emerging Remediation Techniques.
  contributor:
    fullname: Ahmad
– volume: 10
  issue: e1051278
  year: 2015c
  ident: B44
  article-title: Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings.
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2015.1051278
  contributor:
    fullname: Li
– volume: 59
  start-page: 620
  year: 2015
  ident: B5
  article-title: Mechanisms of heat tolerance in crop plants.
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-015-0539-5
  contributor:
    fullname: Asthir
– volume: 38
  issue: 16
  year: 2016
  ident: B27
  article-title: Hydrogen sulfide: a versatile regulator of environmental stress in plants.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-015-2038-x
  contributor:
    fullname: Guo
– volume: 554
  start-page: 101
  year: 2015b
  ident: B43
  article-title: Quantification of hydrogen sulfide concentration using methylene blue and 5,5′-dithiobis (2-nitrobenzoic acid) methods in plants.
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2014.11.031
  contributor:
    fullname: Li
SSID ssj0000500997
Score 2.5433302
SecondaryResourceType review_article
Snippet For a long time, hydrogen sulfide (H S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal...
For a long time, hydrogen sulfide (H 2 S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous...
For a long time, hydrogen sulfide (H2S) has been considered as merely a toxic byproduct of cell metabolism, but nowadays is emerging as a novel gaseous signal...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1621
SubjectTerms Cross-adaptation
Hydrogen Sulfide
Plant Science
signal crosstalk
Signal molecule
Stress Tolerance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHgR38YXETx4iSb7SlbwUEUpgl5U8LbsZne1IGmp7cF_70y2La0IXjzkkgcZvplhvsluviHk1AvjyryG_IYQzrjwMlMVfoMHuswk8JGq3Yz58Ci7L_z-VbzOjfrCPWFRHjgCdxHw7_UCsoCXjtvKWCnLQE2g3ilOaezWczXXTEVVb6Q-ZdTygS5MXYTBB6pzF_IcDloslKFWrf83ivlzp-Rc6blbJ2sTzph2oq0bZMk3m2Tlug-87muLXHW_3LAPcZA-jT9Cz_nLtJM-9d7wkYc4_NanvSbF8USj9AbNyTrODOIa_DZ5ubt9vulmk6EIWc2FGmWidHUNmWeoC5huQMesMpwFWtQ254XzDMC31rnABHYbrIS8zAPwEgvFX7Adstz0G79HUiVVZYIVuNzCpaFK1hVXULRtKQwTPCFnU4z0IGpfaOgZEE6NcGqEU7dwJuQaMZzdhqLV7QlwpZ64Uv_lyoScTD2gIchx5cI0vj_-1EjjoBNihUzIbvTI7FU4KoRBXCWkXPDVgi2LV5reeyukDeQ0Z0zt_4fxB2QV4cCyRuUhWR4Nx_4I-MrIHreh-Q13p-WD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQ9MCl6hdt2lIFqYdeAok_YySEFgRaIdELrMTNsmObrrRKlmVX6v57ZpIssNWeesgliRXrzUzmTey8IeRnENarvIL4BhfOuAgy0yV-gwe6zCTwkbLdjHn9Ww5H_OpO3L20A-oBfNxY2mE_qdFscvj3YXkKAX-CFSfk26M4naDwdiEP4cCfyncohzId9_H1XL8T-kY2pDp5n03jUBdYlYzJVq75JUm1Wv6bCOi_-yhfJabLd-RtzyjTQecC78lWqD-QN2cNsL7lR3IyXPpZA16S3iwmcezDcTpIb8b3OOS6a40b0nGdYvOieXqO08kG3k67FfpPZHR5cXs-zPqWCVnFhZ5nQvmqgri01EcMRiBrTlvOIi0ql_PCBwamcc77yATWIkxB1OYRWIsDaiDYHtmumzp8IamWurTRCVyM4dJSLauSa0jpTgnLBE_IrxVGZtopYxioKBBZg8gaRNa0yCbkDDF8vg0lrdsTzeze9BFiIsoUFPC648pzV1onpYrURhq85pTmCTlYWcBACOC6hq1Ds3g0SPKgTmKFTMjnziLPj1pZNCFqzVZrc1m_Uo__tDLbQF1zxvTX_x75jewiBpjpqPxOtuezRdgHCjN3P1rXfAJI--1p
  priority: 102
  providerName: Scholars Portal
Title Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation
URI https://www.ncbi.nlm.nih.gov/pubmed/27833636
https://search.proquest.com/docview/1839118316
https://pubmed.ncbi.nlm.nih.gov/PMC5080339
https://doaj.org/article/f5cd8176347d4b8ab667f2af2ed94220
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaSoEOXok1f6iNQgQ5dZEt8SSzQwTGSGAVcFEgDeCNIkUwEOJLh2kP-fe8oK42LThnEQRIh4h6678TTd4R89sK4Mq_Bv8GEMy68zFSF3-ABLjMJeKSKxZjzH3J2xb8vxOKAiOFfmFi0X9tm1C5vR21zE2srV7f1eKgTG_-cTwFU5Iyp8SE5BAN9kKL3hN6IesqexgcSMDUOqyUScxdyBAfF3jDYXoLJSMv8NxhFzv7_Ac1_6yUfBKDz5-TZDjmmk36FL8iBb4_Jk9MO0N3dS_JtdufWHVhDerldhsb5r-kkvWyuccq8b4Hr06ZNsUnRJp3icrKJM6t-J_4VuTo_-zWdZbvWCFnNhdpkonR1Df5nqAvodADKrDKcBVrUNueF8wxUYK1zgQnMOVgJ3pkHQCcWIIBgr8lR27X-LUmVVJUJVuCmC5eGKllXXEHotqUwTPCEfBlkpFc9A4aGzAElq1GyGiWro2QTcooyvL8NqavjiW59rXcK1AHpCAp4rfHScVsZK2UZqAnUO8UpzRPyadCABlPH_QvT-m77WyOYg3yIFTIhb3qN3D9q0GhCyj1d7a1l_wpYV6TT3lnTu0fPfE-eogwwolH5gRxt1lv_EaDKxp7EFB_Gi0UB45xXJ9FY_wBYjuiM
link.rule.ids 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYJLeZaGZ5A4cEk2iR-JkThsV1QLdCuktqg3y47tErFNVkv2UH49M8mmdCsucMgljpXY30z8TTz5hpC3jmubJyX4N5hwxLgTkSzwGzzQZSqAjxRdMubsSExP2eczfrZF-PAvTJe0X5oqrucXcV1973IrFxflaMgTG32dTYBUJJTK0S1yG_w1YdeC9F7SG3lP3gv5QAgmR34xR2nuVMRwZFgdBgtMUNEJM_9ZjjrV_r9RzZsZk9eWoIP75Nvw8H3myY941Zq4_HVD1_GfR_eA7KxJaTjumx-SLVc_Inf2GyCOl4_Jh-mlXTZgaOHxau4r696H4_C4Oscus766rgurOsT6R204wXFGY6sX_Sb_E3J68PFkMo3WVReiknHZRjy3ZQmurTPr0Z-B7xmpGfVZWpqEpdZRQNcYaz3lGM7QHBw_8UB8DLALTnfJdt3Ubo-EUshCe8NxP4cJnUlRFkwCKzA515SzgLwbJl8tenENBUEJQqYQMoWQqQ6ygOwjOFeXoSp2d6JZnqv17CmPSgcpvDFZbpkptBEi95n2mbOSZVkSkDcDtAq8CLdGdO2a1U-FPBFCLZqKgDztob661WAqAck3jGDjWTZbANpOqXsN5bP_7vma3J2ezA7V4aejL8_JPZwPXDgz8YJst8uVewmMqDWvOvv_DZhRB80
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMSF9yM8g8SBS55-JEbisF1YLY-tKpVKFRfLjuMSsU2iJXsov56ZZFN2K0495JLYSuxvxv4mHn1DyNuSa5vFBfg3mHDAeCkCmeM_eKDLVAAfyftkzMWBmB-zLyf8ZKvUV5-0X5gqrJdnYV397HMr27MiGvPEosPFFEhFTKmMWuui6-QG-GwstgL1QdYbuU82iPlAGCYj1y5RnjsRIVwpVojBIhNU9OLM_7akXrn_f3Tzctbk1jY0u0t-jAMYsk9-hevOhMWfS9qOVxrhPXJnQ079ydDkPrlW1g_Izf0GCOT5Q_Jhfm5XDRicf7ReusqW7_2Jf1SdYpfFUGW39KvaxzpInT_FsQYTq9vhsP8ROZ59-j6dB5vqC0HBuOwCntmiABfXqXXo18D7jNSMujQpTMwSW1JA2RhrHeUY1tAMFoDYAQEywDI4fUz26qYunxJfCplrZzie6zChUymKnElgBybjmnLmkXcjAKodRDYUBCcIm0LYFMKmetg8so8AXTRDdez-RrM6VZsZVA4VDxJYOVlmmcm1ESJzqXZpaSVL09gjb0Z4FXgTHpHoumzWvxXyRQi5aCI88mSA--JVo7l4JNsxhJ1v2X0C8PaK3Rs4n12552ty6_DjTH37fPD1ObmN04H7ZypekL1utS5fAjHqzKveBf4C9qsKTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Sulfide%3A+A+Signal+Molecule+in+Plant+Cross-Adaptation&rft.jtitle=Frontiers+in+plant+science&rft.au=Li%2C+Zhong-Guang&rft.au=Min%2C+Xiong&rft.au=Zhou%2C+Zhi-Hao&rft.date=2016-10-26&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=7&rft_id=info:doi/10.3389%2Ffpls.2016.01621&rft_id=info%3Apmid%2F27833636&rft.externalDBID=PMC5080339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon