Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation
For a long time, hydrogen sulfide (H S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cro...
Saved in:
Published in | Frontiers in plant science Vol. 7; p. 1621 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
26.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a long time, hydrogen sulfide (H
S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca
, abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H
S and cross-adaptation in plant biology, H
S homeostasis in plant cells under normal growth conditions; H
S signaling triggered by abiotic stress; and H
S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H
S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed. |
---|---|
AbstractList | For a long time, hydrogen sulfide (H2S) has been considered as merely a toxic byproduct of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca2+, abscisic acid (ABA), hydrogen peroxide (H2O2) and nitric oxide (NO), as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins (HSPs), as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H2S and cross-adaptation in plant biology, H2S homeostasis in plant cells under normal growth conditions; H2S signaling triggered by abiotic stress; and H2S-induced cross-adaptation to heavy metal, salt, drought, cold, heat and flooding stress were summarized, and concluded that H2S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed. For a long time, hydrogen sulfide (H S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca , abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H S and cross-adaptation in plant biology, H S homeostasis in plant cells under normal growth conditions; H S signaling triggered by abiotic stress; and H S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed. For a long time, hydrogen sulfide (H 2 S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca 2+ , abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H 2 S and cross-adaptation in plant biology, H 2 S homeostasis in plant cells under normal growth conditions; H 2 S signaling triggered by abiotic stress; and H 2 S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H 2 S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed. |
Author | Zhou, Zhi-Hao Min, Xiong Li, Zhong-Guang |
AuthorAffiliation | 3 Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University Kunming, China 1 School of Life Sciences, Yunnan Normal University Kunming, China 2 Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education Kunming, China |
AuthorAffiliation_xml | – name: 1 School of Life Sciences, Yunnan Normal University Kunming, China – name: 2 Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education Kunming, China – name: 3 Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal University Kunming, China |
Author_xml | – sequence: 1 givenname: Zhong-Guang surname: Li fullname: Li, Zhong-Guang organization: School of Life Sciences, Yunnan Normal UniversityKunming, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of EducationKunming, China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal UniversityKunming, China – sequence: 2 givenname: Xiong surname: Min fullname: Min, Xiong organization: School of Life Sciences, Yunnan Normal UniversityKunming, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of EducationKunming, China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal UniversityKunming, China – sequence: 3 givenname: Zhi-Hao surname: Zhou fullname: Zhou, Zhi-Hao organization: School of Life Sciences, Yunnan Normal UniversityKunming, China; Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of EducationKunming, China; Key Laboratory of Biomass Energy and Environmental Biotechnology, Yunnan Normal UniversityKunming, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27833636$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkdtLHDEUxkOxVLv67FuZx77MmnsmhRaWpVXBoqCCbyGTyxrJJttkRvC_76yrooFcOOc7Xw7n9xXspZwcAMcIzgnp5InfxDrHEPH5tDH6BA4Q57SlHN_tvXvvg6NaH-C0GIRSii9gH4uOEE74Afh59mRLXrnUXI_RB-t-NIvmOqySjs3fHJ0Zo2tCaq6iTkOzLLnWdmH1ZtBDyOkQfPY6Vnf0cs_A7Z_fN8uz9uLy9Hy5uGgNZXJombDGQAo1th4z0THOe6kp8RiZHlJkHbEC9r21njBBiSQCUgx9J0mPJGRkBs53vjbrB7UpYa3Lk8o6qOdALiulyxBMdMozYzskOKHC0r7TPefCY-2xs5JiDCevXzuvzdivnTUuDUXHD6YfMyncq1V-VAx2kEy9zcD3F4OS_42uDmodqnFxmpDLY1WoIxJNB-KT9GQnNdvBFeffvkFQbRmqLUO1ZaieGU4V395396Z_JUb-AxdwmL0 |
CitedBy_id | crossref_primary_10_3389_fpls_2019_01072 crossref_primary_10_3390_plants10091928 crossref_primary_10_32615_ps_2023_005 crossref_primary_10_3390_agronomy12020508 crossref_primary_10_1016_j_plaphy_2019_09_016 crossref_primary_10_1093_pcp_pcaa144 crossref_primary_10_1111_aab_12658 crossref_primary_10_1007_s12298_021_00991_7 crossref_primary_10_1016_j_flora_2017_03_005 crossref_primary_10_3103_S0095452719050098 crossref_primary_10_1016_j_tplants_2021_07_016 crossref_primary_10_3390_ijms19051528 crossref_primary_10_15407_frg2022_01_003 crossref_primary_10_1007_s11104_021_05091_9 crossref_primary_10_35550_vbio2018_02_018 crossref_primary_10_1016_j_jhazmat_2017_05_009 crossref_primary_10_1111_pce_14431 crossref_primary_10_1016_j_tim_2020_08_005 crossref_primary_10_1016_j_ecoenv_2020_110498 crossref_primary_10_1016_j_micres_2021_126943 crossref_primary_10_3390_ijms232314848 crossref_primary_10_1111_ppl_13432 crossref_primary_10_1007_s11104_020_04590_5 crossref_primary_10_1111_ejss_13040 crossref_primary_10_3390_ijms222413229 crossref_primary_10_35550_vbio2019_03_066 crossref_primary_10_3390_antiox8090401 crossref_primary_10_3389_fpls_2019_01089 crossref_primary_10_1093_treephys_tpac042 crossref_primary_10_2174_18743315_v16_e2207050 crossref_primary_10_1007_s11738_023_03615_7 crossref_primary_10_1134_S0003683820040079 crossref_primary_10_1264_jsme2_ME23021 crossref_primary_10_1016_j_ecoenv_2018_03_060 crossref_primary_10_32615_bp_2020_071 crossref_primary_10_1111_plb_13367 crossref_primary_10_1016_j_sajb_2024_03_041 crossref_primary_10_1007_s11104_024_06499_9 crossref_primary_10_3390_ijms21134593 crossref_primary_10_1016_j_xplc_2021_100179 crossref_primary_10_3390_hydrogen2030017 crossref_primary_10_1186_s12870_024_04819_w crossref_primary_10_1016_j_scienta_2021_110366 crossref_primary_10_3389_fpls_2018_01288 crossref_primary_10_1007_s42729_023_01336_x crossref_primary_10_1016_j_jhazmat_2022_130283 crossref_primary_10_1016_j_ecoenv_2020_111248 crossref_primary_10_1016_j_plaphy_2020_07_003 crossref_primary_10_1111_pce_14410 crossref_primary_10_1111_pce_14531 crossref_primary_10_1016_j_niox_2024_01_002 crossref_primary_10_3390_ijms21082827 crossref_primary_10_1016_j_scienta_2022_111605 crossref_primary_10_1002_cbic_202100138 crossref_primary_10_3389_fpls_2019_00678 crossref_primary_10_18535_ijsrm_v9i11_ah01 crossref_primary_10_3390_ijms20194881 crossref_primary_10_1007_s13562_022_00776_3 crossref_primary_10_1007_s00299_024_03238_3 crossref_primary_10_1016_j_jplph_2017_09_010 crossref_primary_10_3103_S0095452719020099 crossref_primary_10_1080_15592324_2022_2030082 crossref_primary_10_3390_plants11192544 crossref_primary_10_1016_j_algal_2021_102277 crossref_primary_10_1080_10408347_2024_2337869 crossref_primary_10_1111_ppl_13064 crossref_primary_10_1007_s00344_024_11391_y crossref_primary_10_3389_fpls_2020_01105 crossref_primary_10_1016_j_niox_2018_10_002 crossref_primary_10_3390_antiox10010108 crossref_primary_10_19159_tutad_392683 crossref_primary_10_1038_s41598_022_26697_8 crossref_primary_10_3389_fpls_2021_670369 crossref_primary_10_15407_frg2023_02_095 crossref_primary_10_1080_15592324_2018_1477905 crossref_primary_10_1111_plb_13316 crossref_primary_10_3390_ijms18030526 crossref_primary_10_1016_j_jare_2020_09_005 crossref_primary_10_35550_vbio2020_01_018 crossref_primary_10_3390_ijms241512264 crossref_primary_10_3390_plants12040719 crossref_primary_10_1016_j_jhazmat_2022_130425 crossref_primary_10_1007_s11738_019_2892_z crossref_primary_10_3390_ijms20071735 crossref_primary_10_1021_acs_jafc_8b03098 crossref_primary_10_3390_plants12010115 crossref_primary_10_3389_fpls_2018_01172 crossref_primary_10_3390_plants10051021 crossref_primary_10_3390_antiox9020145 crossref_primary_10_1016_j_ecoenv_2020_111158 crossref_primary_10_1016_j_dyepig_2018_12_064 crossref_primary_10_1111_pce_14643 crossref_primary_10_3389_fpls_2020_01283 crossref_primary_10_1007_s00425_020_03463_6 crossref_primary_10_1111_ppl_13002 crossref_primary_10_3389_fpls_2019_00743 crossref_primary_10_1021_acs_jafc_8b04622 crossref_primary_10_1093_jxb_erz031 crossref_primary_10_1016_j_plaphy_2021_06_034 crossref_primary_10_1016_j_jplph_2021_153534 crossref_primary_10_3390_ijms21155421 crossref_primary_10_1016_j_envexpbot_2018_11_006 crossref_primary_10_1016_j_plaphy_2018_08_028 crossref_primary_10_3390_plants13060791 crossref_primary_10_1007_s00344_021_10312_7 crossref_primary_10_3389_fpls_2020_00108 crossref_primary_10_1111_jipb_12779 crossref_primary_10_3390_biology12081043 crossref_primary_10_1051_e3sconf_201913101080 crossref_primary_10_1111_ppl_13380 crossref_primary_10_1016_j_plantsci_2020_110733 crossref_primary_10_1080_15226514_2024_2357634 crossref_primary_10_7717_peerj_15881 crossref_primary_10_1016_j_plaphy_2020_04_038 crossref_primary_10_35550_vbio2021_01_032 crossref_primary_10_1093_hr_uhac284 crossref_primary_10_1007_s10725_017_0316_x crossref_primary_10_3389_fpls_2024_1337250 crossref_primary_10_3389_fpls_2020_545453 crossref_primary_10_1016_j_plaphy_2021_08_031 crossref_primary_10_1016_j_trac_2024_117841 crossref_primary_10_3390_plants12071440 crossref_primary_10_3390_antiox9070621 |
Cites_doi | 10.1016/j.envexpbot.2015.11.007 10.1007/978-81-322-2616-1 10.1134/S1021443712060118 10.1111/nyas.12733 10.1007/s12374-011-9178-3 10.1515/biolog-2015-0083 10.1155/2015/714756 10.1104/pp.15.00009 10.1007/s11738-012-1021-z 10.5586/asbp.2013.031 10.1007/s11240-015-0939-4 10.1089/ars.2008.2177 10.1016/j.plaphy.2016.02.033 10.3389/fpls.2016.00230 10.1016/j.plantsci.2014.06.006 10.1016/S0176-1617(98)80179-X 10.1007/s00425-014-2209-9 10.1093/jxb/ert055 10.1007/s11104-015-2719-7 10.1134/S1021443710040114 10.1016/j.plaphy.2013.05.042 10.1078/0176-1617-00327 10.1016/j.envexpbot.2007.05.011 10.1111/pce.12092 10.1146/annurev-pharmtox-010510-100505 10.1007/s11104-011-0936-2 10.1111/j.1744-7909.2010.00946.x 10.1016/j.ceca.2014.10.004 10.1007/978-1-4614-6108-1 10.2478/s11756-014-0396-2 10.3389/fpls.2016.00066 10.1155/2015/758358 10.1007/978-3-7091-1254-0 10.1021/jf301912h 10.1007/978-3-642-38469-1 10.1104/pp.116.1.429 10.1016/S0074-7696(08)62707-2 10.1007/s00299-016-1952-8 10.1093/jxb/erw079 10.1016/j.jplph.2015.03.015 10.1016/j.niox.2016.04.002 10.1007/978-1-4939-2540-7_5 10.1007/s11738-011-0746-4 10.1016/j.molp.2015.11.010 10.1016/j.postharvbio.2011.01.006 10.1016/j.sajb.2009.10.007 10.1007/s00709-013-0592-x 10.1080/14620316.2015.11513176 10.1038/srep14078 10.1007/s11104-012-1468-0 10.1007/s11738-015-1971-z 10.1134/S1021443713060058 10.1007/s10535-016-0612-8 10.1016/j.plaphy.2013.12.024 10.1007/s11274-010-0572-7 10.1152/physrev.00017.2011 10.1371/journal.pone.0077047 10.3389/fpls.2016.00277 10.1007/s00344-012-9262-z 10.1016/j.plaphy.2013.07.021 10.1104/pp.110.167569 10.1007/s11104-015-2475-8 10.1016/j.bbrc.2011.09.090 10.1111/pce.12073 10.1016/j.plaphy.2014.02.012 10.1111/j.1744-7909.2008.00769.x 10.4161/psb.5.8.12297 10.1016/j.scienta.2014.12.021 10.1016/j.niox.2014.02.005 10.1016/j.jplph.2012.12.018 10.1016/j.plantsci.2011.10.006 10.1016/bs.mie.2014.11.035 10.1186/1471-2229-14-42 10.1007/s10535-010-0133-9 10.1111/jipb.12302 10.1111/j.1469-8137.2010.03465.x 10.1080/15592324.2015.1051278 10.1007/s10535-015-0539-5 10.1007/s11738-015-2038-x 10.1016/bs.mie.2014.11.031 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Li, Min and Zhou. 2016 Li, Min and Zhou |
Copyright_xml | – notice: Copyright © 2016 Li, Min and Zhou. 2016 Li, Min and Zhou |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2016.01621 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
EndPage | 1621 |
ExternalDocumentID | oai_doaj_org_article_f5cd8176347d4b8ab667f2af2ed94220 10_3389_fpls_2016_01621 27833636 |
Genre | Journal Article Review |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBD ECGQY GROUPED_DOAJ GX1 HYE IAO IEA IGS IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RNS RPM AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c459t-57dcc040a2df2578566b9a43f21cb041de3d70bbddf357439370420f893b19053 |
IEDL.DBID | RPM |
ISSN | 1664-462X |
IngestDate | Tue Oct 22 15:15:28 EDT 2024 Tue Sep 17 21:07:43 EDT 2024 Fri Oct 25 04:59:14 EDT 2024 Thu Sep 26 15:21:19 EDT 2024 Tue Oct 15 23:55:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | stress tolerance hydrogen sulfide signal crosstalk cross-adaptation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-57dcc040a2df2578566b9a43f21cb041de3d70bbddf357439370420f893b19053 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science Edited by: Hanjo A. Hellmann, Washington State University, USA Reviewed by: Karl-Josef Dietz, Bielefeld University, Germany; Sutton Mooney, Washington State University, USA |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080339/ |
PMID | 27833636 |
PQID | 1839118316 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f5cd8176347d4b8ab667f2af2ed94220 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5080339 proquest_miscellaneous_1839118316 crossref_primary_10_3389_fpls_2016_01621 pubmed_primary_27833636 |
PublicationCentury | 2000 |
PublicationDate | 2016-10-26 |
PublicationDateYYYYMMDD | 2016-10-26 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2016 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | 26361343 - Sci Rep. 2015 Sep 11;5:14078 25810097 - Plant Physiol. 2015 May;168(1):334-42 20831717 - New Phytol. 2010 Dec;188(4):977-84 19093970 - J Integr Plant Biol. 2008 Dec;50(12):1518-29 25782612 - Ann N Y Acad Sci. 2016 Feb;1365(1):5-14 26337076 - Plant Signal Behav. 2015;10(9):e1051278 20590986 - J Integr Plant Biol. 2010 Jun;52(6):556-67 23567865 - J Exp Bot. 2013 Apr;64(7):1953-66 24463534 - Plant Physiol Biochem. 2014 Mar;76:44-51 21986537 - Biochem Biophys Res Commun. 2011 Oct 28;414(3):481-6 27083071 - Nitric Oxide. 2016 May 1;55-56:91-100 25017167 - Plant Sci. 2014 Aug;225:117-29 22812725 - J Agric Food Chem. 2012 Aug 8;60(31):7588-96 25526962 - Planta. 2015 Apr;241(4):887-906 27035256 - Plant Physiol Biochem. 2016 Jul;104:174-9 24582856 - Nitric Oxide. 2014 Sep 15;41:72-8 26936830 - J Exp Bot. 2016 Mar;67(7):2025-37 23347018 - Plant Cell Environ. 2013 Sep;36(9):1607-16 23523123 - J Plant Physiol. 2013 May 15;170(8):741-7 25974366 - J Plant Physiol. 2015 Jun 1;181:20-9 23974354 - Plant Physiol Biochem. 2013 Oct;71:226-34 26678664 - Mol Plant. 2016 Mar 7;9(3):489-91 25329496 - J Integr Plant Biol. 2015 Jul;57(7):628-40 24318675 - Protoplasma. 2014 Jul;251(4):899-912 22535897 - Physiol Rev. 2012 Apr;92(2):791-896 24499299 - BMC Plant Biol. 2014 Feb 05;14:42 27014301 - Front Plant Sci. 2016 Mar 15;7:277 26973673 - Front Plant Sci. 2016 Mar 04;7:230 19239350 - Antioxid Redox Signal. 2009 Apr;11(4):861-905 23800663 - Plant Physiol Biochem. 2013 Sep;70:278-86 26078806 - Oxid Med Cell Longev. 2015 ;2015 :397502 25459298 - Cell Calcium. 2014 Dec;56(6):472-81 20724846 - Plant Signal Behav. 2010 Aug;5(8):1031-3 10603578 - Int Rev Cytol. 2000;195:269-324 21205630 - Plant Physiol. 2011 Jan;155(1):2-18 25747484 - Methods Enzymol. 2015;555:253-69 21210746 - Annu Rev Pharmacol Toxicol. 2011;51:169-87 24607577 - Plant Physiol Biochem. 2014 May;78:37-42 22325880 - Plant Sci. 2012 Apr;185-186:185-9 26870076 - Front Plant Sci. 2016 Feb 04;7:66 24194857 - PLoS One. 2013 Oct 23;8(10):e77047 26910861 - Plant Cell Rep. 2016 May;35(5):1155-68 23489239 - Plant Cell Environ. 2013 Aug;36(8):1564-72 25725518 - Methods Enzymol. 2015;554:101-10 26078819 - Oxid Med Cell Longev. 2015;2015:804603 Li (B44) 2015c; 10 Li (B41) 2013; 60 Luo (B59) 2015; 183 Scuffi (B68) 2016; 7 Wang (B76) 2016; 9 Aroca (B4) 2015; 168 Gong (B23) 2001; 158 Christou (B12) 2014; 14 Shi (B72) 2015; 57 Fu (B21) 2013; 82 Li (B52) 2016; 125 Gong (B24) 1998a; 153 Fang (B16) 2014; 76 Li (B42) 2015a; 555 Li (B55) 2014; 69 Zhang (B87) 2010d; 57 Hemmati (B31) 2015; Vol. 2 Lin (B56) 2012; 31 Foyer (B20) 2016; 67 Calderwood (B8) 2014; 41 Iqbal (B33) 2016 Pandey (B64) 2015 Gong (B25) 1998b; 116 Min (B61) 2016; 52 Li (B47) 2013; 60 Chen (B9) 2013; 362 Cheng (B11) 2013; 70 Shen (B70) 2013; 8 Li (B39) 2011; 51 Ma (B60) 2015; 241 Zhang (B84) 2008; 50 Li (B38) 2014; 251 Li (B45) 2013a; 170 Hancock (B30) 2016; 1365 Jin (B34) 2015; 2015 Li (B43) 2015b; 554 Ahmad (B3) 2013b Yadav (B80) 2010; 76 Zhang (B82) 2010a; 5 Zhang (B83) 2010b; 54 Bloem (B7) 2012; 60 Bao (B6) 2011; 20 Li (B51) 2015; 70 Li (B54) 2013b; 36 Liu (B58) 2016; 400 Foyer (B18) 2009; 11 Shi (B71) 2013; 71 Niu (B63) 2016; 7 Grover (B26) 2011; 27 Pineda (B66) 2016; 123 Singh (B73) 2015; 181 Hancock (B29) 2014; 78 Lisjak (B57) 2013; 36 Yamasaki (B81) 2016; 5 García-Mata (B22) 2010; 188 Li (B46) 2011; 54 Lai (B37) 2014; 225 Li (B48) 2012a; 34 Guo (B27) 2016; 38 Ahmad (B1) 2016 Chen (B10) 2016; 104 Gupta (B28) 2013 Shan (B69) 2011; 33 Zhang (B85) 2011; 60 Wang (B77) 2012; 92 Qiao (B67) 2015; 393 Wahid (B75) 2007; 61 Wojtyla (B79) 2016; 7 Foyer (B19) 2011; 155 Christou (B13) 2011; 47 Li (B40) 2016; 35 Fang (B15) 2014; 56 Christou (B14) 2013; 64 Peng (B65) 2012 Zhang (B88) 2015; 2015 Ahmad (B2) 2013a Hossain (B32) 2016 Li (B53) 2015; 37 Asthir (B5) 2015; 59 Fotopoulos (B17) 2015; 90 Zhang (B86) 2010c; 52 Jin (B35) 2011; 414 Li (B49) 2012b Knight (B36) 2000; 195 van Dongen (B74) 2014 Li (B50) 2016; 60 Mostofa (B62) 2015; 5 Wang (B78) 2012; 351 |
References_xml | – volume: 123 start-page: 88 year: 2016 ident: B66 article-title: Negative impact of drought stress on a generalist leaf chewer and a phloem feeder is associated with, but not explained by an increase in herbivore-induced glucosinolates. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.11.007 contributor: fullname: Pineda – year: 2016 ident: B33 publication-title: Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies. doi: 10.1007/978-81-322-2616-1 contributor: fullname: Iqbal – volume: 60 start-page: 149 year: 2013 ident: B47 article-title: Mechanical stimulation-induced chilling tolerance in tobacco (Nicotiana tabacum L) suspension cultured cells and its relation to proline. publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443712060118 contributor: fullname: Li – volume: 1365 start-page: 5 year: 2016 ident: B30 article-title: Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/nyas.12733 contributor: fullname: Hancock – volume: 54 start-page: 358 year: 2011 ident: B46 article-title: Mechanical stimulation-induced cross-adaptation in plants: an overview. publication-title: J. Plant Biol. doi: 10.1007/s12374-011-9178-3 contributor: fullname: Li – volume: 70 start-page: 753 year: 2015 ident: B51 article-title: Hydrogen peroxide might be a downstream signal molecule of hydrogen sulfide in seed germination of mung bean (Vigna radiata). publication-title: Biologia doi: 10.1515/biolog-2015-0083 contributor: fullname: Li – volume: 2015 start-page: 1 year: 2015 ident: B88 article-title: Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis. publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2015/714756 contributor: fullname: Zhang – volume: 168 start-page: 334 year: 2015 ident: B4 article-title: S-sulfhydration: a cysteine posttranslational modification in plant systems. publication-title: Plant Physiol. doi: 10.1104/pp.15.00009 contributor: fullname: Aroca – volume: 34 start-page: 2207 year: 2012a ident: B48 article-title: Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-012-1021-z contributor: fullname: Li – start-page: 99 year: 2012 ident: B65 article-title: “Methods for the detection of gasotransmitters,” in publication-title: Gasotransmitters: Physiology and Pathophysiology contributor: fullname: Peng – volume: 82 start-page: 295 year: 2013 ident: B21 article-title: Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. publication-title: Acta Soc. Bot. Pol. doi: 10.5586/asbp.2013.031 contributor: fullname: Fu – volume: 125 start-page: 207 year: 2016 ident: B52 article-title: Hydrogen sulfide partly mediates abscisic acid-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells. publication-title: Plant Cell Tiss. Organ. Cult. doi: 10.1007/s11240-015-0939-4 contributor: fullname: Li – volume: 11 start-page: 861 year: 2009 ident: B18 article-title: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. publication-title: Antioxid. Redox. Signal. doi: 10.1089/ars.2008.2177 contributor: fullname: Foyer – volume: 104 start-page: 174 year: 2016 ident: B10 article-title: Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.02.033 contributor: fullname: Chen – volume: 7 issue: 230 year: 2016 ident: B63 article-title: Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00230 contributor: fullname: Niu – volume: 225 start-page: 117 year: 2014 ident: B37 article-title: Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2014.06.006 contributor: fullname: Lai – volume: 153 start-page: 488 year: 1998a ident: B24 article-title: Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(98)80179-X contributor: fullname: Gong – volume: 241 start-page: 887 year: 2015 ident: B60 article-title: Comparative proteomic analysis reveals the role of hydrogen sulfide in the adaptation of the alpine plant Lamiophlomis rotate to altitude gradient in the Northern Tibetan Plateau. publication-title: Planta doi: 10.1007/s00425-014-2209-9 contributor: fullname: Ma – volume: 64 start-page: 1953 year: 2013 ident: B14 article-title: Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert055 contributor: fullname: Christou – volume: 400 start-page: 177 year: 2016 ident: B58 article-title: Hydrogen sulfide alleviates zinc toxicity by reducing zinc uptake and regulating genes expression of antioxidative enzymes and metallothioneins in roots of the cadmium/zinc hyperaccumulator L. publication-title: Plant Soil doi: 10.1007/s11104-015-2719-7 contributor: fullname: Liu – volume: 57 start-page: 532 year: 2010d ident: B87 article-title: Hydrogen sulfide promotes wheat seed germination under osmotic stress. publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443710040114 contributor: fullname: Zhang – volume: 70 start-page: 278 year: 2013 ident: B11 article-title: Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.042 contributor: fullname: Cheng – volume: 158 start-page: 1125 year: 2001 ident: B23 article-title: Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00327 contributor: fullname: Gong – volume: 61 start-page: 199 year: 2007 ident: B75 article-title: Heat tolerance in plants: an overview. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2007.05.011 contributor: fullname: Wahid – volume: 36 start-page: 1564 year: 2013b ident: B54 article-title: Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. publication-title: Plant Cell Environ. doi: 10.1111/pce.12092 contributor: fullname: Li – volume: 51 start-page: 169 year: 2011 ident: B39 article-title: Hydrogen sulfide and cell signaling. publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-010510-100505 contributor: fullname: Li – volume: 351 start-page: 107 year: 2012 ident: B78 article-title: Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. publication-title: Plant Soil doi: 10.1007/s11104-011-0936-2 contributor: fullname: Wang – volume: 52 start-page: 556 year: 2010c ident: B86 article-title: Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00946.x contributor: fullname: Zhang – volume: 56 start-page: 472 year: 2014 ident: B15 article-title: Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. publication-title: Cell Calcium doi: 10.1016/j.ceca.2014.10.004 contributor: fullname: Fang – year: 2013a ident: B2 publication-title: Ecophysiology and Responses of Plants under Salt Stress. contributor: fullname: Ahmad – year: 2013b ident: B3 publication-title: Salt Stress in Plants: Signalling, Omics and Adaptations. doi: 10.1007/978-1-4614-6108-1 contributor: fullname: Ahmad – volume: 69 start-page: 1001 year: 2014 ident: B55 article-title: Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. publication-title: Biologia doi: 10.2478/s11756-014-0396-2 contributor: fullname: Li – volume: 7 issue: 66 year: 2016 ident: B79 article-title: Different modes of hydrogen peroxide action during seed germination. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00066 contributor: fullname: Wojtyla – volume: 2015 start-page: 1 year: 2015 ident: B34 article-title: Physiological implications of hydrogen sulfide in plants: pleasant exploration behind its unpleasant odour. publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2015/758358 contributor: fullname: Jin – year: 2014 ident: B74 publication-title: Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia. doi: 10.1007/978-3-7091-1254-0 contributor: fullname: van Dongen – volume: 60 start-page: 7588 year: 2012 ident: B7 article-title: Sulfur fertilization and fungal infections affect the exchange of H2S and COS from agricultural crops. publication-title: J. Agric. Food Chem. doi: 10.1021/jf301912h contributor: fullname: Bloem – year: 2013 ident: B28 publication-title: Heavy Metal Stress in Plants. doi: 10.1007/978-3-642-38469-1 contributor: fullname: Gupta – volume: 116 start-page: 429 year: 1998b ident: B25 article-title: Heat-shock-induced changes in intracellular Ca2+ Level in tobacco seedlings in relation to thermotolerance. publication-title: Plant Physiol. doi: 10.1104/pp.116.1.429 contributor: fullname: Gong – volume: 195 start-page: 269 year: 2000 ident: B36 article-title: Calcium signaling during abiotic stress in plants. publication-title: Int. Rev. Cytol. doi: 10.1016/S0074-7696(08)62707-2 contributor: fullname: Knight – volume: 35 start-page: 1155 year: 2016 ident: B40 article-title: Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways. publication-title: Plant Cell Rep. doi: 10.1007/s00299-016-1952-8 contributor: fullname: Li – volume: 67 start-page: 2025 year: 2016 ident: B20 article-title: Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw079 contributor: fullname: Foyer – volume: 181 start-page: 20 year: 2015 ident: B73 article-title: Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.03.015 contributor: fullname: Singh – volume: 5 start-page: 91 year: 2016 ident: B81 article-title: Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies. publication-title: Nitric Oxide doi: 10.1016/j.niox.2016.04.002 contributor: fullname: Yamasaki – volume: Vol. 2 start-page: 109 year: 2015 ident: B31 article-title: “Molecular physiology of heat stress responses in plants,” in publication-title: Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Gerspectives doi: 10.1007/978-1-4939-2540-7_5 contributor: fullname: Hemmati – volume: 33 start-page: 2533 year: 2011 ident: B69 article-title: Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-011-0746-4 contributor: fullname: Shan – volume: 9 start-page: 489 year: 2016 ident: B76 article-title: Hydrogen sulfide activates S-type anion channel via OST1 and Ca2+ modules. publication-title: Mol. Plant doi: 10.1016/j.molp.2015.11.010 contributor: fullname: Wang – volume: 60 start-page: 251 year: 2011 ident: B85 article-title: Hydrogen sulfide acts as a regulator of ?ower senescence in plants. publication-title: Postharv. Biol. Technol. doi: 10.1016/j.postharvbio.2011.01.006 contributor: fullname: Zhang – volume: 76 start-page: 167 year: 2010 ident: B80 article-title: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2009.10.007 contributor: fullname: Yadav – volume: 251 start-page: 899 year: 2014 ident: B38 article-title: Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. publication-title: Protoplasma doi: 10.1007/s00709-013-0592-x contributor: fullname: Li – volume: 90 start-page: 227 year: 2015 ident: B17 article-title: Hydrogen sulphide: a versatile tool for the regulation of growth and defence responses in horticultural crops. publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2015.11513176 contributor: fullname: Fotopoulos – volume: 47 year: 2011 ident: B13 article-title: “The Importance of hydrogen sulfide as a systemic priming agent in strawberry plants grown under key abiotic stress factors,” in publication-title: Proceedings of the 4th International Conference: Plant Abiotic Stress: From Systems Biology to Sustainable Agriculture contributor: fullname: Christou – volume: 5 issue: 14078 year: 2015 ident: B62 article-title: Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. publication-title: Sci. Rep. doi: 10.1038/srep14078 contributor: fullname: Mostofa – volume: 362 start-page: 301 year: 2013 ident: B9 article-title: Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. publication-title: Plant Soil doi: 10.1007/s11104-012-1468-0 contributor: fullname: Chen – volume: 37 issue: 219 year: 2015 ident: B53 article-title: Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-015-1971-z contributor: fullname: Li – volume: 60 start-page: 733 year: 2013 ident: B41 article-title: Hydrogen sulfide: a multifunctional gaseous molecule in plants. publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443713060058 contributor: fullname: Li – volume: 60 start-page: 595 year: 2016 ident: B50 article-title: Hydrogen sulfide as a signal molecule in hematin-induced heat tolerance of tobacco cell suspension. publication-title: Biol. Plant. doi: 10.1007/s10535-016-0612-8 contributor: fullname: Li – volume: 76 start-page: 44 year: 2014 ident: B16 article-title: Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.12.024 contributor: fullname: Fang – volume: 27 start-page: 1231 year: 2011 ident: B26 article-title: Role of microorganisms in adaptation of agriculture crops to abiotic stresses. publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-010-0572-7 contributor: fullname: Grover – volume: 92 start-page: 791 year: 2012 ident: B77 article-title: Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. publication-title: Physiol. Rev. doi: 10.1152/physrev.00017.2011 contributor: fullname: Wang – start-page: 323 year: 2016 ident: B32 article-title: “Cross-stress tolerance in plants: molecular mechanisms and possible involvement of reactive oxygen species and methylglyoxal detoxi?cation systems,” in publication-title: Abiotic Stress Response in Plants contributor: fullname: Hossain – volume: 8 issue: e77047 year: 2013 ident: B70 article-title: Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions. publication-title: PLoS ONE doi: 10.1371/journal.pone.0077047 contributor: fullname: Shen – volume: 7 issue: 277 year: 2016 ident: B68 article-title: Gasotransmitters and stomatal closure: is there redundancy, concerted action, or both? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00277 contributor: fullname: Scuffi – volume: 31 start-page: 519 year: 2012 ident: B56 article-title: Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-012-9262-z contributor: fullname: Lin – volume: 71 start-page: 226 year: 2013 ident: B71 article-title: Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.07.021 contributor: fullname: Shi – volume: 155 start-page: 2 year: 2011 ident: B19 article-title: Ascorbate and glutathione: the heart of the redox hub. publication-title: Plant Physiol. doi: 10.1104/pp.110.167569 contributor: fullname: Foyer – volume: 52 start-page: 37 year: 2016 ident: B61 article-title: The metabolism of signal molecule hydrogen sulfide and its role in the acquisition of heat tolerance in plants. publication-title: Plant Physiol. J. contributor: fullname: Min – year: 2015 ident: B64 publication-title: Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives. contributor: fullname: Pandey – volume: 393 start-page: 137 year: 2015 ident: B67 article-title: H2S acting as a downstream signaling molecule of SA regulates Cd tolerance in Arabidopsis. publication-title: Plant Soil doi: 10.1007/s11104-015-2475-8 contributor: fullname: Qiao – volume: 414 start-page: 481 year: 2011 ident: B35 article-title: Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. publication-title: Biochem. Biophy. Res. Commun. doi: 10.1016/j.bbrc.2011.09.090 contributor: fullname: Jin – volume: 36 start-page: 1607 year: 2013 ident: B57 article-title: Hydrogen sulfide: environmental factor or signalling molecule? publication-title: Plant Cell Environ. doi: 10.1111/pce.12073 contributor: fullname: Lisjak – volume: 20 start-page: 40 year: 2011 ident: B6 article-title: Effect of exogenous hydrogen sulfiocde on wheat seed germination under salt stress. publication-title: Modern Agric. Sci. Technol. contributor: fullname: Bao – volume: 78 start-page: 37 year: 2014 ident: B29 article-title: Hydrogen sulfide and cell signaling: team player or referee? publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.02.012 contributor: fullname: Hancock – volume: 50 start-page: 1518 year: 2008 ident: B84 article-title: Hydrogen sulide promotes wheat seed germination and alleviates oxidative damage against copper stress. publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2008.00769.x contributor: fullname: Zhang – volume: 5 start-page: 1031 year: 2010a ident: B82 article-title: Hydrogen sulide stimulates β-amylase activity during early stages of wheat grain germination. publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.8.12297 contributor: fullname: Zhang – volume: 183 start-page: 144 year: 2015 ident: B59 article-title: Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2014.12.021 contributor: fullname: Luo – volume: 41 start-page: 72 year: 2014 ident: B8 article-title: Hydrogen sulfide in plants: from dissipation of excess sulfur to signalling molecule. publication-title: Nitric Oxide doi: 10.1016/j.niox.2014.02.005 contributor: fullname: Calderwood – volume: 170 start-page: 741 year: 2013a ident: B45 article-title: Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.12.018 contributor: fullname: Li – start-page: 185 year: 2012b ident: B49 article-title: Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2+ and calmodulin. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2011.10.006 contributor: fullname: Li – volume: 555 start-page: 253 year: 2015a ident: B42 article-title: Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2014.11.035 contributor: fullname: Li – volume: 14 issue: 42 year: 2014 ident: B12 article-title: Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-14-42 contributor: fullname: Christou – volume: 54 start-page: 743 year: 2010b ident: B83 article-title: Hydrogen sulfide alleviated chromium toxicity in wheat. publication-title: Biol. Plant. doi: 10.1007/s10535-010-0133-9 contributor: fullname: Zhang – volume: 57 start-page: 628 year: 2015 ident: B72 article-title: Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis. publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12302 contributor: fullname: Shi – volume: 188 start-page: 977 year: 2010 ident: B22 article-title: Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03465.x contributor: fullname: García-Mata – year: 2016 ident: B1 publication-title: Plant Metal Interaction: Emerging Remediation Techniques. contributor: fullname: Ahmad – volume: 10 issue: e1051278 year: 2015c ident: B44 article-title: Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2015.1051278 contributor: fullname: Li – volume: 59 start-page: 620 year: 2015 ident: B5 article-title: Mechanisms of heat tolerance in crop plants. publication-title: Biol. Plant. doi: 10.1007/s10535-015-0539-5 contributor: fullname: Asthir – volume: 38 issue: 16 year: 2016 ident: B27 article-title: Hydrogen sulfide: a versatile regulator of environmental stress in plants. publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-015-2038-x contributor: fullname: Guo – volume: 554 start-page: 101 year: 2015b ident: B43 article-title: Quantification of hydrogen sulfide concentration using methylene blue and 5,5′-dithiobis (2-nitrobenzoic acid) methods in plants. publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2014.11.031 contributor: fullname: Li |
SSID | ssj0000500997 |
Score | 2.5433302 |
SecondaryResourceType | review_article |
Snippet | For a long time, hydrogen sulfide (H
S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal... For a long time, hydrogen sulfide (H 2 S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous... For a long time, hydrogen sulfide (H2S) has been considered as merely a toxic byproduct of cell metabolism, but nowadays is emerging as a novel gaseous signal... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1621 |
SubjectTerms | Cross-adaptation Hydrogen Sulfide Plant Science signal crosstalk Signal molecule Stress Tolerance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHgR38YXETx4iSb7SlbwUEUpgl5U8LbsZne1IGmp7cF_70y2La0IXjzkkgcZvplhvsluviHk1AvjyryG_IYQzrjwMlMVfoMHuswk8JGq3Yz58Ci7L_z-VbzOjfrCPWFRHjgCdxHw7_UCsoCXjtvKWCnLQE2g3ilOaezWczXXTEVVb6Q-ZdTygS5MXYTBB6pzF_IcDloslKFWrf83ivlzp-Rc6blbJ2sTzph2oq0bZMk3m2Tlug-87muLXHW_3LAPcZA-jT9Cz_nLtJM-9d7wkYc4_NanvSbF8USj9AbNyTrODOIa_DZ5ubt9vulmk6EIWc2FGmWidHUNmWeoC5huQMesMpwFWtQ254XzDMC31rnABHYbrIS8zAPwEgvFX7Adstz0G79HUiVVZYIVuNzCpaFK1hVXULRtKQwTPCFnU4z0IGpfaOgZEE6NcGqEU7dwJuQaMZzdhqLV7QlwpZ64Uv_lyoScTD2gIchx5cI0vj_-1EjjoBNihUzIbvTI7FU4KoRBXCWkXPDVgi2LV5reeyukDeQ0Z0zt_4fxB2QV4cCyRuUhWR4Nx_4I-MrIHreh-Q13p-WD priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQ9MCl6hdt2lIFqYdeAok_YySEFgRaIdELrMTNsmObrrRKlmVX6v57ZpIssNWeesgliRXrzUzmTey8IeRnENarvIL4BhfOuAgy0yV-gwe6zCTwkbLdjHn9Ww5H_OpO3L20A-oBfNxY2mE_qdFscvj3YXkKAX-CFSfk26M4naDwdiEP4cCfyncohzId9_H1XL8T-kY2pDp5n03jUBdYlYzJVq75JUm1Wv6bCOi_-yhfJabLd-RtzyjTQecC78lWqD-QN2cNsL7lR3IyXPpZA16S3iwmcezDcTpIb8b3OOS6a40b0nGdYvOieXqO08kG3k67FfpPZHR5cXs-zPqWCVnFhZ5nQvmqgri01EcMRiBrTlvOIi0ql_PCBwamcc77yATWIkxB1OYRWIsDaiDYHtmumzp8IamWurTRCVyM4dJSLauSa0jpTgnLBE_IrxVGZtopYxioKBBZg8gaRNa0yCbkDDF8vg0lrdsTzeze9BFiIsoUFPC648pzV1onpYrURhq85pTmCTlYWcBACOC6hq1Ds3g0SPKgTmKFTMjnziLPj1pZNCFqzVZrc1m_Uo__tDLbQF1zxvTX_x75jewiBpjpqPxOtuezRdgHCjN3P1rXfAJI--1p priority: 102 providerName: Scholars Portal |
Title | Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27833636 https://search.proquest.com/docview/1839118316 https://pubmed.ncbi.nlm.nih.gov/PMC5080339 https://doaj.org/article/f5cd8176347d4b8ab667f2af2ed94220 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaSoEOXok1f6iNQgQ5dZEt8SSzQwTGSGAVcFEgDeCNIkUwEOJLh2kP-fe8oK42LThnEQRIh4h6678TTd4R89sK4Mq_Bv8GEMy68zFSF3-ABLjMJeKSKxZjzH3J2xb8vxOKAiOFfmFi0X9tm1C5vR21zE2srV7f1eKgTG_-cTwFU5Iyp8SE5BAN9kKL3hN6IesqexgcSMDUOqyUScxdyBAfF3jDYXoLJSMv8NxhFzv7_Ac1_6yUfBKDz5-TZDjmmk36FL8iBb4_Jk9MO0N3dS_JtdufWHVhDerldhsb5r-kkvWyuccq8b4Hr06ZNsUnRJp3icrKJM6t-J_4VuTo_-zWdZbvWCFnNhdpkonR1Df5nqAvodADKrDKcBVrUNueF8wxUYK1zgQnMOVgJ3pkHQCcWIIBgr8lR27X-LUmVVJUJVuCmC5eGKllXXEHotqUwTPCEfBlkpFc9A4aGzAElq1GyGiWro2QTcooyvL8NqavjiW59rXcK1AHpCAp4rfHScVsZK2UZqAnUO8UpzRPyadCABlPH_QvT-m77WyOYg3yIFTIhb3qN3D9q0GhCyj1d7a1l_wpYV6TT3lnTu0fPfE-eogwwolH5gRxt1lv_EaDKxp7EFB_Gi0UB45xXJ9FY_wBYjuiM |
link.rule.ids | 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYJLeZaGZ5A4cEk2iR-JkThsV1QLdCuktqg3y47tErFNVkv2UH49M8mmdCsucMgljpXY30z8TTz5hpC3jmubJyX4N5hwxLgTkSzwGzzQZSqAjxRdMubsSExP2eczfrZF-PAvTJe0X5oqrucXcV1973IrFxflaMgTG32dTYBUJJTK0S1yG_w1YdeC9F7SG3lP3gv5QAgmR34xR2nuVMRwZFgdBgtMUNEJM_9ZjjrV_r9RzZsZk9eWoIP75Nvw8H3myY941Zq4_HVD1_GfR_eA7KxJaTjumx-SLVc_Inf2GyCOl4_Jh-mlXTZgaOHxau4r696H4_C4Oscus766rgurOsT6R204wXFGY6sX_Sb_E3J68PFkMo3WVReiknHZRjy3ZQmurTPr0Z-B7xmpGfVZWpqEpdZRQNcYaz3lGM7QHBw_8UB8DLALTnfJdt3Ubo-EUshCe8NxP4cJnUlRFkwCKzA515SzgLwbJl8tenENBUEJQqYQMoWQqQ6ygOwjOFeXoSp2d6JZnqv17CmPSgcpvDFZbpkptBEi95n2mbOSZVkSkDcDtAq8CLdGdO2a1U-FPBFCLZqKgDztob661WAqAck3jGDjWTZbANpOqXsN5bP_7vma3J2ezA7V4aejL8_JPZwPXDgz8YJst8uVewmMqDWvOvv_DZhRB80 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMSF9yM8g8SBS55-JEbisF1YLY-tKpVKFRfLjuMSsU2iJXsov56ZZFN2K0495JLYSuxvxv4mHn1DyNuSa5vFBfg3mHDAeCkCmeM_eKDLVAAfyftkzMWBmB-zLyf8ZKvUV5-0X5gqrJdnYV397HMr27MiGvPEosPFFEhFTKmMWuui6-QG-GwstgL1QdYbuU82iPlAGCYj1y5RnjsRIVwpVojBIhNU9OLM_7akXrn_f3Tzctbk1jY0u0t-jAMYsk9-hevOhMWfS9qOVxrhPXJnQ079ydDkPrlW1g_Izf0GCOT5Q_Jhfm5XDRicf7ReusqW7_2Jf1SdYpfFUGW39KvaxzpInT_FsQYTq9vhsP8ROZ59-j6dB5vqC0HBuOwCntmiABfXqXXo18D7jNSMujQpTMwSW1JA2RhrHeUY1tAMFoDYAQEywDI4fUz26qYunxJfCplrZzie6zChUymKnElgBybjmnLmkXcjAKodRDYUBCcIm0LYFMKmetg8so8AXTRDdez-RrM6VZsZVA4VDxJYOVlmmcm1ESJzqXZpaSVL09gjb0Z4FXgTHpHoumzWvxXyRQi5aCI88mSA--JVo7l4JNsxhJ1v2X0C8PaK3Rs4n12552ty6_DjTH37fPD1ObmN04H7ZypekL1utS5fAjHqzKveBf4C9qsKTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Sulfide%3A+A+Signal+Molecule+in+Plant+Cross-Adaptation&rft.jtitle=Frontiers+in+plant+science&rft.au=Li%2C+Zhong-Guang&rft.au=Min%2C+Xiong&rft.au=Zhou%2C+Zhi-Hao&rft.date=2016-10-26&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=7&rft_id=info:doi/10.3389%2Ffpls.2016.01621&rft_id=info%3Apmid%2F27833636&rft.externalDBID=PMC5080339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |