The Cosmological Bootstrap: Spinning correlators from symmetries and factorization
We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future bounda...
Saved in:
Published in | SciPost physics Vol. 11; no. 3; p. 071 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Stichting SciPost
28.09.2021
SciPost |
Online Access | Get full text |
Cover
Loading…
Abstract | We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators are constrained both by symmetries and by locality.
In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars.
Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities.
The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective.
For multiple spin-1 fields, we recover the structure of Yang--Mills theory.
Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions. |
---|---|
AbstractList | We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang-Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions. We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang--Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions. |
ArticleNumber | 071 |
Author | Baumann, Daniel Duaso Pueyo, Carlos Lee, Hayden L. Pimentel, Guilherme Joyce, Austin |
Author_xml | – sequence: 1 givenname: Daniel surname: Baumann fullname: Baumann, Daniel organization: Institute of Physics, University of Amsterdam, National Taiwan University – sequence: 2 givenname: Carlos surname: Duaso Pueyo fullname: Duaso Pueyo, Carlos organization: Institute of Physics, University of Amsterdam – sequence: 3 givenname: Austin surname: Joyce fullname: Joyce, Austin organization: Institute of Physics, University of Amsterdam, Columbia University – sequence: 4 givenname: Hayden surname: Lee fullname: Lee, Hayden organization: Harvard University – sequence: 5 givenname: Guilherme surname: L. Pimentel fullname: L. Pimentel, Guilherme organization: Institute of Physics, University of Amsterdam, Lorentz Institute |
BackLink | https://www.osti.gov/biblio/1822483$$D View this record in Osti.gov |
BookMark | eNqFUU1rGzEQFSWFpml-QmDJ3a4-19r01Jq0CQQamvQsZkeSrbArGUkX59dH2KGEXHqaYea9N8N7n8lJTNERcsHokjPZ668PGO5TqffbfVkythRLumIfyClXki9kr8TJm_4TOS_liVLKGRtYr07Jn8et69apzGlKm4AwdT9SqqVm2F11D7sQY4ibDlPOboKacul8TnNX9vPsag6udBBt5wHbLjxDDSl-IR89TMWdv9Yz8vfn9eP6ZnH3-9ft-vvdAqUa6kIpFJoPTms_KOjlCAx6T6mUnmu68lKOrF85PliUgrWflUO0PXg7gNWuF2fk9qhrEzyZXQ4z5L1JEMxhkPLGQK4BJ2esHq2wahToreSOjRY8rIT0dNCSjti0Lo9azclgCobqcIspRofVMM251KKB1BGEOZWSnf93lFFzCMO8CcMwZoRpYTTet3e8pn-wqtkcpv-wXwB-Y5hj |
CitedBy_id | crossref_primary_10_1007_JHEP04_2022_128 crossref_primary_10_1088_1475_7516_2024_09_026 crossref_primary_10_1103_PhysRevD_106_023531 crossref_primary_10_1007_JHEP10_2023_090 crossref_primary_10_1007_s00220_025_05254_0 crossref_primary_10_1007_JHEP12_2024_194 crossref_primary_10_21468_SciPostPhys_12_6_192 crossref_primary_10_1007_JHEP10_2024_202 crossref_primary_10_1007_JHEP12_2022_064 crossref_primary_10_1088_1475_7516_2024_07_010 crossref_primary_10_1016_j_physrep_2024_10_007 crossref_primary_10_1007_JHEP03_2025_051 crossref_primary_10_1103_PhysRevD_109_106003 crossref_primary_10_1007_JHEP02_2023_030 crossref_primary_10_1088_1475_7516_2024_09_016 crossref_primary_10_1007_JHEP01_2024_168 crossref_primary_10_1007_JHEP10_2022_154 crossref_primary_10_1007_JHEP12_2021_098 crossref_primary_10_1007_JHEP03_2024_073 crossref_primary_10_1007_JHEP03_2024_070 crossref_primary_10_1103_PhysRevD_109_L101901 crossref_primary_10_1103_PhysRevD_109_106011 crossref_primary_10_1007_JHEP01_2025_001 crossref_primary_10_21468_SciPostPhys_16_6_157 crossref_primary_10_1007_JHEP02_2023_021 crossref_primary_10_1007_JHEP10_2024_070 crossref_primary_10_1140_epjc_s10052_025_14003_5 crossref_primary_10_1103_PhysRevD_106_L121701 crossref_primary_10_1007_JHEP08_2023_038 crossref_primary_10_1007_JHEP03_2024_098 crossref_primary_10_1007_JHEP06_2023_020 crossref_primary_10_1088_1475_7516_2022_06_032 crossref_primary_10_1007_JHEP05_2023_111 crossref_primary_10_1007_JHEP09_2023_142 crossref_primary_10_1007_JHEP10_2022_192 crossref_primary_10_1103_PhysRevD_107_043534 crossref_primary_10_1007_JHEP07_2024_281 crossref_primary_10_1016_j_physrep_2022_09_004 crossref_primary_10_1103_PhysRevLett_133_221501 crossref_primary_10_1007_JHEP10_2022_177 crossref_primary_10_1007_JHEP06_2022_123 crossref_primary_10_1007_JHEP05_2022_027 crossref_primary_10_1007_JHEP05_2022_026 crossref_primary_10_1007_JHEP07_2023_001 crossref_primary_10_1088_1475_7516_2021_12_018 crossref_primary_10_1103_PhysRevD_104_L081902 crossref_primary_10_1007_JHEP08_2023_206 crossref_primary_10_1007_JHEP09_2024_176 crossref_primary_10_1007_JHEP10_2024_057 crossref_primary_10_1007_JHEP02_2023_123 crossref_primary_10_1007_JHEP03_2025_040 crossref_primary_10_1007_JHEP10_2024_051 crossref_primary_10_1103_PhysRevD_107_125018 crossref_primary_10_1007_JHEP07_2022_004 crossref_primary_10_1007_JHEP09_2023_116 crossref_primary_10_1007_JHEP11_2024_147 crossref_primary_10_1007_JHEP12_2023_076 crossref_primary_10_1007_JHEP12_2023_197 crossref_primary_10_1007_JHEP07_2024_011 crossref_primary_10_1103_PhysRevD_105_L121301 crossref_primary_10_1007_JHEP12_2021_067 crossref_primary_10_21468_SciPostPhysCommRep_1 crossref_primary_10_1088_1475_7516_2021_12_001 crossref_primary_10_1007_JHEP04_2023_092 crossref_primary_10_1007_JHEP03_2025_007 crossref_primary_10_1088_1475_7516_2023_03_036 crossref_primary_10_1140_epjc_s10052_024_13644_2 crossref_primary_10_1007_JHEP10_2021_156 crossref_primary_10_1016_j_physrep_2021_11_005 crossref_primary_10_1007_JHEP06_2024_199 crossref_primary_10_1088_1475_7516_2023_05_043 crossref_primary_10_1007_JHEP05_2024_196 crossref_primary_10_1007_JHEP12_2021_074 crossref_primary_10_1103_PhysRevLett_127_251604 crossref_primary_10_1103_PhysRevD_109_125003 crossref_primary_10_1007_JHEP03_2022_023 crossref_primary_10_1007_JHEP02_2025_101 crossref_primary_10_1088_1475_7516_2023_04_002 crossref_primary_10_1007_JHEP03_2023_106 crossref_primary_10_1007_JHEP04_2022_157 crossref_primary_10_1007_JHEP03_2024_147 crossref_primary_10_1007_JHEP12_2022_137 crossref_primary_10_1007_JHEP12_2024_042 crossref_primary_10_1007_JHEP03_2023_196 crossref_primary_10_1007_JHEP01_2025_202 crossref_primary_10_1007_JHEP07_2022_146 crossref_primary_10_1007_JHEP02_2023_162 crossref_primary_10_1007_JHEP03_2022_170 crossref_primary_10_1007_JHEP12_2023_173 crossref_primary_10_1007_JHEP06_2023_212 crossref_primary_10_1007_JHEP09_2022_010 crossref_primary_10_1088_1475_7516_2022_08_083 crossref_primary_10_1007_JHEP02_2022_084 crossref_primary_10_1007_JHEP02_2022_085 crossref_primary_10_1007_JHEP11_2023_038 crossref_primary_10_1103_PhysRevD_111_063510 crossref_primary_10_1007_JHEP04_2023_103 crossref_primary_10_1007_JHEP05_2024_053 crossref_primary_10_1007_JHEP08_2024_211 crossref_primary_10_1007_JHEP04_2024_082 crossref_primary_10_1007_JHEP07_2022_113 crossref_primary_10_1007_JHEP03_2022_181 crossref_primary_10_1007_JHEP04_2022_012 crossref_primary_10_1142_S0217751X23500756 crossref_primary_10_1007_JHEP03_2025_075 crossref_primary_10_1007_JHEP04_2024_004 crossref_primary_10_1007_JHEP05_2023_151 crossref_primary_10_1016_j_nuclphysb_2023_116193 crossref_primary_10_1007_JHEP03_2023_092 crossref_primary_10_1007_JHEP05_2022_077 crossref_primary_10_1007_JHEP08_2022_054 crossref_primary_10_1007_JHEP04_2023_059 crossref_primary_10_1007_JHEP10_2021_065 crossref_primary_10_1103_PhysRevD_108_105005 crossref_primary_10_1103_PhysRevD_108_L061702 crossref_primary_10_1007_JHEP12_2022_039 |
Cites_doi | 10.1007/JHEP04(2019)120 10.1103/PhysRevD.83.126002 10.1088/1475-7516/2013/05/001 10.1007/JHEP11(2020)139 10.1103/PhysRevD.98.083528 10.1038/scientificamerican0512-34 10.1007/JHEP05(2018)011 10.1103/PhysRevD.90.084048 10.1088/1475-7516/2018/12/023 10.1007/JHEP06(2013)051 10.1103/PhysRevLett.124.131602 10.1016/S0550-3213(00)00402-8 10.1007/JHEP02(2018)096 10.1103/PhysRevLett.113.091101 10.1007/JHEP02(2014)124 10.1007/JHEP10(2019)071 10.1007/JHEP04(2015)061 10.1103/PhysRevLett.56.2459 10.1007/JHEP12(2020)204 10.1103/PhysRevD.85.126009 10.1088/1475-7516/2011/05/013 10.1007/JHEP12(2016)040 10.1016/0370-2693(82)91219-9 10.1103/PhysRevLett.94.181602 10.1007/JHEP01(2020)142 10.1007/JHEP06(2018)105 10.1007/JHEP02(2020)098 10.1088/1126-6708/2001/10/016 10.1007/JHEP10(2019)182 10.1007/JHEP02(2018)081 10.1007/JHEP11(2018)159 10.1088/1126-6708/2008/03/014 10.1088/1475-7516/2012/11/047 10.1088/1475-7516/2017/07/046 10.1007/JHEP09(2011)045 10.1086/186707 10.1088/1475-7516/2019/02/060 10.1088/1475-7516/2012/09/021 10.1007/JHEP07(2013)011 10.1016/0550-3213(87)90479-2 10.1007/JHEP04(2020)189 10.1016/B978-0-08-010586-4.50070-5 10.1155/2010/638979 10.1007/JHEP11(2011)071 10.1007/JHEP07(2019)116 10.1103/PhysRevLett.122.101602 10.1007/JHEP07(2013)015 10.1007/JHEP06(2019)058 10.1088/1475-7516/2013/11/043 10.1007/JHEP02(2020)044 10.1088/1361-6382/34/1/015009 10.1103/PhysRevLett.118.091602 10.1002/prop.201800038 10.1103/PhysRevLett.121.161302 10.1007/JHEP11(2013)159 10.1007/JHEP02(2019)040 10.1007/JHEP10(2019)183 10.1103/PhysRevD.88.024003 10.1103/PhysRevD.100.045005 10.1007/JHEP07(2014)011 10.1007/JHEP12(2019)135 10.2307/1968990 10.1007/JHEP01(2020)090 10.1007/JHEP09(2019)107 10.1007/JHEP07(2018)136 10.1007/JHEP03(2020)102 10.1103/PhysRevD.85.041302 10.1007/JHEP04(2018)140 10.1016/j.nuclphysb.2019.03.019 10.1007/JHEP02(2019)130 10.1088/1126-6708/2009/06/079 10.1103/PhysRev.135.B1049 10.1007/JHEP06(2020)068 10.1007/JHEP04(2018)014 10.1016/0550-3213(82)90488-6 10.1016/0550-3213(85)90285-8 10.1007/JHEP07(2013)105 10.1088/1126-6708/2000/08/003 10.1007/JHEP06(2017)100 10.1088/1126-6708/2003/05/013 10.1103/PhysRevD.85.103520 10.1007/JHEP12(2019)107 10.1088/1475-7516/2010/04/027 10.1088/1475-7516/2019/04/045 10.1088/1751-8113/46/21/214019 10.1016/j.nuclphysb.2012.07.027 10.1088/1751-8121/aa56e7 10.1103/PhysRev.51.125 10.1007/JHEP04(2020)077 10.1103/PhysRevD.81.021301 10.1007/JHEP05(2017)081 10.1007/JHEP02(2019)178 10.1088/1475-7516/2012/10/051 10.1007/JHEP04(2020)105 10.1103/PhysRevLett.48.1220 10.1140/epjc/s10052-020-8089-1 10.1016/j.nuclphysb.2018.04.019 10.1007/JHEP08(2020)012 10.1103/PhysRevD.23.347 10.1103/PhysRev.162.1239 10.1017/CBO9781107706620 10.1007/JHEP09(2018)040 10.1103/PhysRevLett.106.091601 10.1007/JHEP10(2019)156 10.1016/S0550-3213(01)00212-7 10.1103/PhysRevD.101.124043 10.1007/JHEP10(2019)274 10.1007/JHEP07(2015)132 10.1088/1475-7516/2014/01/033 10.1007/s00220-004-1187-3 10.1119/1.2338547 10.1007/JHEP03(2014)111 10.1088/1475-7516/2012/09/024 10.1103/PhysRevD.85.126008 10.24033/bsmf.1558 10.1016/0550-3213(82)90489-8 10.1007/JHEP10(2015)040 10.1103/PhysRev.77.242 10.1007/JHEP01(2020)105 10.1007/JHEP01(2013)009 10.1006/aphy.1994.1045 10.1007/JHEP02(2016)043 10.1088/1126-6708/2006/12/080 10.1103/PhysRevLett.124.251302 10.1007/BFb0009678 10.1016/0550-3213(87)90691-2 10.1007/s00220-020-03836-8 10.2307/1969376 10.1016/S0550-3213(03)00348-1 10.1088/1475-7516/2015/11/048 10.1007/JHEP01(2016)046 10.1016/0003-4916(84)90156-8 10.1007/JHEP11(2011)154 10.1007/978-3-319-43626-5 10.1103/PhysRevD.97.123528 10.1016/S0550-3213(96)00545-7 |
ContentType | Journal Article |
DBID | AAYXX CITATION OTOTI DOA |
DOI | 10.21468/SciPostPhys.11.3.071 |
DatabaseName | CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2542-4653 |
ExternalDocumentID | oai_doaj_org_article_d8bd3d5b3cfd42e1bdafa734f09840bc 1822483 10_21468_SciPostPhys_11_3_071 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 OTOTI |
ID | FETCH-LOGICAL-c459t-55c3829e88f95a64ba1a6f0044f2807f44b167e29dc4310005eccd6afd9ad8e63 |
IEDL.DBID | DOA |
ISSN | 2542-4653 |
IngestDate | Wed Aug 27 01:18:54 EDT 2025 Thu May 18 22:31:55 EDT 2023 Thu Apr 24 22:56:36 EDT 2025 Tue Jul 01 03:56:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-55c3829e88f95a64ba1a6f0044f2807f44b167e29dc4310005eccd6afd9ad8e63 |
Notes | SC0019018 USDOE |
OpenAccessLink | https://doaj.org/article/d8bd3d5b3cfd42e1bdafa734f09840bc |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d8bd3d5b3cfd42e1bdafa734f09840bc osti_scitechconnect_1822483 crossref_primary_10_21468_SciPostPhys_11_3_071 crossref_citationtrail_10_21468_SciPostPhys_11_3_071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-28 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | SciPost physics |
PublicationYear | 2021 |
Publisher | Stichting SciPost SciPost |
Publisher_xml | – name: Stichting SciPost – name: SciPost |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref135 ref87 ref136 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref24 doi: 10.1007/JHEP04(2019)120 – ident: ref113 doi: 10.1103/PhysRevD.83.126002 – ident: ref15 doi: 10.1088/1475-7516/2013/05/001 – ident: ref61 doi: 10.1007/JHEP11(2020)139 – ident: ref33 doi: 10.1103/PhysRevD.98.083528 – ident: ref105 doi: 10.1038/scientificamerican0512-34 – ident: ref20 doi: 10.1007/JHEP05(2018)011 – ident: ref3 doi: 10.1103/PhysRevD.90.084048 – ident: ref104 doi: 10.1088/1475-7516/2018/12/023 – ident: ref14 doi: 10.1007/JHEP06(2013)051 – ident: ref54 doi: 10.1103/PhysRevLett.124.131602 – ident: ref122 doi: 10.1016/S0550-3213(00)00402-8 – ident: ref83 doi: 10.1007/JHEP02(2018)096 – ident: ref109 doi: 10.1103/PhysRevLett.113.091101 – ident: ref124 doi: 10.1007/JHEP02(2014)124 – ident: ref67 doi: 10.1007/JHEP10(2019)071 – ident: ref65 doi: 10.1007/JHEP04(2015)061 – ident: ref38 doi: 10.1103/PhysRevLett.56.2459 – ident: ref42 doi: 10.1007/JHEP12(2020)204 – ident: ref49 doi: 10.1103/PhysRevD.85.126009 – ident: ref63 doi: 10.1088/1475-7516/2011/05/013 – ident: ref18 doi: 10.1007/JHEP12(2016)040 – ident: ref5 doi: 10.1016/0370-2693(82)91219-9 – ident: ref101 doi: 10.1103/PhysRevLett.94.181602 – ident: ref57 doi: 10.1007/JHEP01(2020)142 – ident: ref21 doi: 10.1007/JHEP06(2018)105 – ident: ref44 doi: 10.1007/JHEP02(2020)098 – ident: ref73 doi: 10.1088/1126-6708/2001/10/016 – ident: ref25 doi: 10.1007/JHEP10(2019)182 – ident: ref48 doi: 10.1007/JHEP02(2018)081 – ident: ref88 doi: 10.1007/JHEP11(2018)159 – ident: ref8 doi: 10.1088/1126-6708/2008/03/014 – ident: ref11 doi: 10.1088/1475-7516/2012/11/047 – ident: ref19 doi: 10.1088/1475-7516/2017/07/046 – ident: ref37 doi: 10.1007/JHEP09(2011)045 – ident: ref82 doi: 10.1086/186707 – ident: ref125 doi: 10.1088/1475-7516/2019/02/060 – ident: ref12 doi: 10.1088/1475-7516/2012/09/021 – ident: ref51 doi: 10.1007/JHEP07(2013)011 – ident: ref130 doi: 10.1016/0550-3213(87)90479-2 – ident: ref31 doi: 10.1007/JHEP04(2020)189 – ident: ref85 doi: 10.1016/B978-0-08-010586-4.50070-5 – ident: ref35 doi: 10.1155/2010/638979 – ident: ref50 doi: 10.1007/JHEP11(2011)071 – ident: ref111 doi: 10.1007/JHEP07(2019)116 – ident: ref131 doi: 10.1103/PhysRevLett.122.101602 – ident: ref45 doi: 10.1007/JHEP07(2013)015 – ident: ref81 doi: 10.1007/JHEP06(2019)058 – ident: ref17 doi: 10.1088/1475-7516/2013/11/043 – ident: ref32 doi: 10.1007/JHEP02(2020)044 – ident: ref106 doi: 10.1088/1361-6382/34/1/015009 – ident: ref92 doi: 10.1103/PhysRevLett.118.091602 – ident: ref95 doi: 10.1002/prop.201800038 – ident: ref34 doi: 10.1103/PhysRevLett.121.161302 – ident: ref90 doi: 10.1007/JHEP11(2013)159 – ident: ref98 doi: 10.1007/JHEP02(2019)040 – ident: ref56 doi: 10.1007/JHEP10(2019)183 – ident: ref108 doi: 10.1103/PhysRevD.88.024003 – ident: ref134 doi: 10.1103/PhysRevD.100.045005 – ident: ref64 doi: 10.1007/JHEP07(2014)011 – ident: ref100 doi: 10.1007/JHEP12(2019)135 – ident: ref114 doi: 10.2307/1968990 – ident: ref43 doi: 10.1007/JHEP01(2020)090 – ident: ref53 doi: 10.1007/JHEP09(2019)107 – ident: ref55 doi: 10.1007/JHEP07(2018)136 – ident: ref59 doi: 10.1007/JHEP03(2020)102 – ident: ref69 doi: 10.1103/PhysRevD.85.041302 – ident: ref23 doi: 10.1007/JHEP04(2018)140 – ident: ref70 doi: 10.1016/j.nuclphysb.2019.03.019 – ident: ref84 doi: 10.1007/JHEP02(2019)130 – ident: ref2 doi: 10.1088/1126-6708/2009/06/079 – ident: ref1 doi: 10.1103/PhysRev.135.B1049 – ident: ref132 doi: 10.1007/JHEP06(2020)068 – ident: ref94 doi: 10.1007/JHEP04(2018)014 – ident: ref127 doi: 10.1016/0550-3213(82)90488-6 – ident: ref129 doi: 10.1016/0550-3213(85)90285-8 – ident: ref78 doi: 10.1007/JHEP07(2013)105 – ident: ref126 doi: 10.1088/1126-6708/2000/08/003 – ident: ref93 doi: 10.1007/JHEP06(2017)100 – ident: ref36 doi: 10.1088/1126-6708/2003/05/013 – ident: ref10 doi: 10.1103/PhysRevD.85.103520 – ident: ref27 doi: 10.1007/JHEP12(2019)107 – ident: ref9 doi: 10.1088/1475-7516/2010/04/027 – ident: ref26 doi: 10.1088/1475-7516/2019/04/045 – ident: ref107 doi: 10.1088/1751-8113/46/21/214019 – ident: ref79 doi: 10.1016/j.nuclphysb.2012.07.027 – ident: ref80 doi: 10.1088/1751-8121/aa56e7 – ident: ref87 doi: 10.1103/PhysRev.51.125 – ident: ref30 doi: 10.1007/JHEP04(2020)077 – ident: ref62 doi: 10.1103/PhysRevD.81.021301 – ident: ref118 doi: 10.1007/JHEP05(2017)081 – ident: ref119 doi: 10.1007/JHEP02(2019)178 – ident: ref13 doi: 10.1088/1475-7516/2012/10/051 – ident: ref41 doi: 10.1007/JHEP04(2020)105 – ident: ref6 doi: 10.1103/PhysRevLett.48.1220 – ident: ref52 doi: 10.1140/epjc/s10052-020-8089-1 – ident: ref97 doi: 10.1016/j.nuclphysb.2018.04.019 – ident: ref133 doi: 10.1007/JHEP08(2020)012 – ident: ref4 doi: 10.1103/PhysRevD.23.347 – ident: ref39 doi: 10.1103/PhysRev.162.1239 – ident: ref40 doi: 10.1017/CBO9781107706620 – ident: ref96 doi: 10.1007/JHEP09(2018)040 – ident: ref112 doi: 10.1103/PhysRevLett.106.091601 – ident: ref28 doi: 10.1007/JHEP10(2019)156 – ident: ref123 doi: 10.1016/S0550-3213(01)00212-7 – ident: ref60 doi: 10.1103/PhysRevD.101.124043 – ident: ref99 doi: 10.1007/JHEP10(2019)274 – ident: ref103 doi: 10.1007/JHEP07(2015)132 – ident: ref16 doi: 10.1088/1475-7516/2014/01/033 – ident: ref75 doi: 10.1007/s00220-004-1187-3 – ident: ref136 doi: 10.1119/1.2338547 – ident: ref46 doi: 10.1007/JHEP03(2014)111 – ident: ref68 doi: 10.1088/1475-7516/2012/09/024 – ident: ref89 doi: 10.1103/PhysRevD.85.126008 – ident: ref116 doi: 10.24033/bsmf.1558 – ident: ref128 doi: 10.1016/0550-3213(82)90489-8 – ident: ref91 doi: 10.1007/JHEP10(2015)040 – ident: ref86 doi: 10.1103/PhysRev.77.242 – ident: ref29 doi: 10.1007/JHEP01(2020)105 – ident: ref135 doi: 10.1007/JHEP01(2013)009 – ident: ref76 doi: 10.1006/aphy.1994.1045 – ident: ref110 doi: 10.1007/JHEP02(2016)043 – ident: ref7 doi: 10.1088/1126-6708/2006/12/080 – ident: ref71 doi: 10.1103/PhysRevLett.124.251302 – ident: ref117 doi: 10.1007/BFb0009678 – ident: ref120 doi: 10.1016/0550-3213(87)90691-2 – ident: ref58 doi: 10.1007/s00220-020-03836-8 – ident: ref115 doi: 10.2307/1969376 – ident: ref74 doi: 10.1016/S0550-3213(03)00348-1 – ident: ref102 doi: 10.1088/1475-7516/2015/11/048 – ident: ref66 doi: 10.1007/JHEP01(2016)046 – ident: ref121 doi: 10.1016/0003-4916(84)90156-8 – ident: ref47 doi: 10.1007/JHEP11(2011)154 – ident: ref72 doi: 10.1007/978-3-319-43626-5 – ident: ref22 doi: 10.1103/PhysRevD.97.123528 – ident: ref77 doi: 10.1016/S0550-3213(96)00545-7 |
SSID | ssj0002119165 |
Score | 2.5813005 |
Snippet | We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators... We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by... |
SourceID | doaj osti crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 071 |
Title | The Cosmological Bootstrap: Spinning correlators from symmetries and factorization |
URI | https://www.osti.gov/biblio/1822483 https://doaj.org/article/d8bd3d5b3cfd42e1bdafa734f09840bc |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ66rkoPX6rZ5NPXmissi6EFd8BaSTAKC-8DWg__eTNqVevLiqVASWmYmk5lk5vsIuSiC9daAy6Q0LOPOQWZGPs-8YyUIBRUYbE5-eJTTGb9_Fa89qi-sCWvhgVvBXYGywEBY5gLwwucWTDAl42FUxdzEOvS-cc_rJVPogxNumRRtyw5yV6uruFaQ_xYLK6OfuGQIzfdrM0qY_fERB7319pjJLtnpgkN60_7UHtnwi32ylYo0XX1AnqJO6e2ynq8dFh0vlw2eVayu6fPqLbEPUYd8G--YS9cUm0do_TWfJ96smpoF0JZhp2u_PCSzyd3L7TTrOBEyx0XVZEI4porKKxUqYSS3Jjcy4LVsQFybwLnNZemLChxPZ_ci6gikCVAZUF6yI7K5WC78MaG8xHgBolZMzAlLYRw3lWJ2VBoLHkYDwtfC0a4DDEfeincdE4ckU92TaUwlNNNRpgNy-TNt1SJm_DVhjJL_GYyA1-lFNAPdmYH-ywwGZIh60zFuQPBbh1VCrtE5FskqdvIfnxiS7QILWvBKSp2Szebj05_FiKSx58n4vgGn7OUU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cosmological+Bootstrap%3A+Spinning+correlators+from+symmetries+and+factorization&rft.jtitle=SciPost+physics&rft.au=Baumann%2C+Daniel&rft.au=Duaso+Pueyo%2C+Carlos&rft.au=Joyce%2C+Austin&rft.au=Lee%2C+Hayden&rft.date=2021-09-28&rft.pub=Stichting+SciPost&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=11&rft.issue=3&rft_id=info:doi/10.21468%2Fscipostphys.11.3.071&rft.externalDocID=1822483 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon |