The Cosmological Bootstrap: Spinning correlators from symmetries and factorization

We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future bounda...

Full description

Saved in:
Bibliographic Details
Published inSciPost physics Vol. 11; no. 3; p. 071
Main Authors Baumann, Daniel, Duaso Pueyo, Carlos, Joyce, Austin, Lee, Hayden, L. Pimentel, Guilherme
Format Journal Article
LanguageEnglish
Published Netherlands Stichting SciPost 28.09.2021
SciPost
Online AccessGet full text

Cover

Loading…
Abstract We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang--Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions.
AbstractList We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang-Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions.
We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators are constrained both by symmetries and by locality. In particular, the de Sitter isometries become conformal symmetries on the future boundary of the spacetime, which are reflected in a set of Ward identities that the boundary correlators must satisfy. We solve these Ward identities by acting with weight-shifting operators on scalar seed solutions. Using this weight-shifting approach, we derive three- and four-point correlators of massless spin-1 and spin-2 fields with conformally coupled scalars. Four-point functions arising from tree-level exchange are singular in particular kinematic configurations, and the coefficients of these singularities satisfy certain factorization properties. We show that in many cases these factorization limits fix the structure of the correlators uniquely, without having to solve the conformal Ward identities. The additional constraint of locality for massless spinning particles manifests itself as current conservation on the boundary. We find that the four-point functions only satisfy current conservation if the s, t, and u-channels are related to each other, leading to nontrivial constraints on the couplings between the conserved currents and other operators in the theory. For spin-1 currents this implies charge conservation, while for spin-2 currents we recover the equivalence principle from a purely boundary perspective. For multiple spin-1 fields, we recover the structure of Yang--Mills theory. Finally, we apply our methods to slow-roll inflation and derive a few phenomenologically relevant scalar-tensor three-point functions.
ArticleNumber 071
Author Baumann, Daniel
Duaso Pueyo, Carlos
Lee, Hayden
L. Pimentel, Guilherme
Joyce, Austin
Author_xml – sequence: 1
  givenname: Daniel
  surname: Baumann
  fullname: Baumann, Daniel
  organization: Institute of Physics, University of Amsterdam, National Taiwan University
– sequence: 2
  givenname: Carlos
  surname: Duaso Pueyo
  fullname: Duaso Pueyo, Carlos
  organization: Institute of Physics, University of Amsterdam
– sequence: 3
  givenname: Austin
  surname: Joyce
  fullname: Joyce, Austin
  organization: Institute of Physics, University of Amsterdam, Columbia University
– sequence: 4
  givenname: Hayden
  surname: Lee
  fullname: Lee, Hayden
  organization: Harvard University
– sequence: 5
  givenname: Guilherme
  surname: L. Pimentel
  fullname: L. Pimentel, Guilherme
  organization: Institute of Physics, University of Amsterdam, Lorentz Institute
BackLink https://www.osti.gov/biblio/1822483$$D View this record in Osti.gov
BookMark eNqFUU1rGzEQFSWFpml-QmDJ3a4-19r01Jq0CQQamvQsZkeSrbArGUkX59dH2KGEXHqaYea9N8N7n8lJTNERcsHokjPZ668PGO5TqffbfVkythRLumIfyClXki9kr8TJm_4TOS_liVLKGRtYr07Jn8et69apzGlKm4AwdT9SqqVm2F11D7sQY4ibDlPOboKacul8TnNX9vPsag6udBBt5wHbLjxDDSl-IR89TMWdv9Yz8vfn9eP6ZnH3-9ft-vvdAqUa6kIpFJoPTms_KOjlCAx6T6mUnmu68lKOrF85PliUgrWflUO0PXg7gNWuF2fk9qhrEzyZXQ4z5L1JEMxhkPLGQK4BJ2esHq2wahToreSOjRY8rIT0dNCSjti0Lo9azclgCobqcIspRofVMM251KKB1BGEOZWSnf93lFFzCMO8CcMwZoRpYTTet3e8pn-wqtkcpv-wXwB-Y5hj
CitedBy_id crossref_primary_10_1007_JHEP04_2022_128
crossref_primary_10_1088_1475_7516_2024_09_026
crossref_primary_10_1103_PhysRevD_106_023531
crossref_primary_10_1007_JHEP10_2023_090
crossref_primary_10_1007_s00220_025_05254_0
crossref_primary_10_1007_JHEP12_2024_194
crossref_primary_10_21468_SciPostPhys_12_6_192
crossref_primary_10_1007_JHEP10_2024_202
crossref_primary_10_1007_JHEP12_2022_064
crossref_primary_10_1088_1475_7516_2024_07_010
crossref_primary_10_1016_j_physrep_2024_10_007
crossref_primary_10_1007_JHEP03_2025_051
crossref_primary_10_1103_PhysRevD_109_106003
crossref_primary_10_1007_JHEP02_2023_030
crossref_primary_10_1088_1475_7516_2024_09_016
crossref_primary_10_1007_JHEP01_2024_168
crossref_primary_10_1007_JHEP10_2022_154
crossref_primary_10_1007_JHEP12_2021_098
crossref_primary_10_1007_JHEP03_2024_073
crossref_primary_10_1007_JHEP03_2024_070
crossref_primary_10_1103_PhysRevD_109_L101901
crossref_primary_10_1103_PhysRevD_109_106011
crossref_primary_10_1007_JHEP01_2025_001
crossref_primary_10_21468_SciPostPhys_16_6_157
crossref_primary_10_1007_JHEP02_2023_021
crossref_primary_10_1007_JHEP10_2024_070
crossref_primary_10_1140_epjc_s10052_025_14003_5
crossref_primary_10_1103_PhysRevD_106_L121701
crossref_primary_10_1007_JHEP08_2023_038
crossref_primary_10_1007_JHEP03_2024_098
crossref_primary_10_1007_JHEP06_2023_020
crossref_primary_10_1088_1475_7516_2022_06_032
crossref_primary_10_1007_JHEP05_2023_111
crossref_primary_10_1007_JHEP09_2023_142
crossref_primary_10_1007_JHEP10_2022_192
crossref_primary_10_1103_PhysRevD_107_043534
crossref_primary_10_1007_JHEP07_2024_281
crossref_primary_10_1016_j_physrep_2022_09_004
crossref_primary_10_1103_PhysRevLett_133_221501
crossref_primary_10_1007_JHEP10_2022_177
crossref_primary_10_1007_JHEP06_2022_123
crossref_primary_10_1007_JHEP05_2022_027
crossref_primary_10_1007_JHEP05_2022_026
crossref_primary_10_1007_JHEP07_2023_001
crossref_primary_10_1088_1475_7516_2021_12_018
crossref_primary_10_1103_PhysRevD_104_L081902
crossref_primary_10_1007_JHEP08_2023_206
crossref_primary_10_1007_JHEP09_2024_176
crossref_primary_10_1007_JHEP10_2024_057
crossref_primary_10_1007_JHEP02_2023_123
crossref_primary_10_1007_JHEP03_2025_040
crossref_primary_10_1007_JHEP10_2024_051
crossref_primary_10_1103_PhysRevD_107_125018
crossref_primary_10_1007_JHEP07_2022_004
crossref_primary_10_1007_JHEP09_2023_116
crossref_primary_10_1007_JHEP11_2024_147
crossref_primary_10_1007_JHEP12_2023_076
crossref_primary_10_1007_JHEP12_2023_197
crossref_primary_10_1007_JHEP07_2024_011
crossref_primary_10_1103_PhysRevD_105_L121301
crossref_primary_10_1007_JHEP12_2021_067
crossref_primary_10_21468_SciPostPhysCommRep_1
crossref_primary_10_1088_1475_7516_2021_12_001
crossref_primary_10_1007_JHEP04_2023_092
crossref_primary_10_1007_JHEP03_2025_007
crossref_primary_10_1088_1475_7516_2023_03_036
crossref_primary_10_1140_epjc_s10052_024_13644_2
crossref_primary_10_1007_JHEP10_2021_156
crossref_primary_10_1016_j_physrep_2021_11_005
crossref_primary_10_1007_JHEP06_2024_199
crossref_primary_10_1088_1475_7516_2023_05_043
crossref_primary_10_1007_JHEP05_2024_196
crossref_primary_10_1007_JHEP12_2021_074
crossref_primary_10_1103_PhysRevLett_127_251604
crossref_primary_10_1103_PhysRevD_109_125003
crossref_primary_10_1007_JHEP03_2022_023
crossref_primary_10_1007_JHEP02_2025_101
crossref_primary_10_1088_1475_7516_2023_04_002
crossref_primary_10_1007_JHEP03_2023_106
crossref_primary_10_1007_JHEP04_2022_157
crossref_primary_10_1007_JHEP03_2024_147
crossref_primary_10_1007_JHEP12_2022_137
crossref_primary_10_1007_JHEP12_2024_042
crossref_primary_10_1007_JHEP03_2023_196
crossref_primary_10_1007_JHEP01_2025_202
crossref_primary_10_1007_JHEP07_2022_146
crossref_primary_10_1007_JHEP02_2023_162
crossref_primary_10_1007_JHEP03_2022_170
crossref_primary_10_1007_JHEP12_2023_173
crossref_primary_10_1007_JHEP06_2023_212
crossref_primary_10_1007_JHEP09_2022_010
crossref_primary_10_1088_1475_7516_2022_08_083
crossref_primary_10_1007_JHEP02_2022_084
crossref_primary_10_1007_JHEP02_2022_085
crossref_primary_10_1007_JHEP11_2023_038
crossref_primary_10_1103_PhysRevD_111_063510
crossref_primary_10_1007_JHEP04_2023_103
crossref_primary_10_1007_JHEP05_2024_053
crossref_primary_10_1007_JHEP08_2024_211
crossref_primary_10_1007_JHEP04_2024_082
crossref_primary_10_1007_JHEP07_2022_113
crossref_primary_10_1007_JHEP03_2022_181
crossref_primary_10_1007_JHEP04_2022_012
crossref_primary_10_1142_S0217751X23500756
crossref_primary_10_1007_JHEP03_2025_075
crossref_primary_10_1007_JHEP04_2024_004
crossref_primary_10_1007_JHEP05_2023_151
crossref_primary_10_1016_j_nuclphysb_2023_116193
crossref_primary_10_1007_JHEP03_2023_092
crossref_primary_10_1007_JHEP05_2022_077
crossref_primary_10_1007_JHEP08_2022_054
crossref_primary_10_1007_JHEP04_2023_059
crossref_primary_10_1007_JHEP10_2021_065
crossref_primary_10_1103_PhysRevD_108_105005
crossref_primary_10_1103_PhysRevD_108_L061702
crossref_primary_10_1007_JHEP12_2022_039
Cites_doi 10.1007/JHEP04(2019)120
10.1103/PhysRevD.83.126002
10.1088/1475-7516/2013/05/001
10.1007/JHEP11(2020)139
10.1103/PhysRevD.98.083528
10.1038/scientificamerican0512-34
10.1007/JHEP05(2018)011
10.1103/PhysRevD.90.084048
10.1088/1475-7516/2018/12/023
10.1007/JHEP06(2013)051
10.1103/PhysRevLett.124.131602
10.1016/S0550-3213(00)00402-8
10.1007/JHEP02(2018)096
10.1103/PhysRevLett.113.091101
10.1007/JHEP02(2014)124
10.1007/JHEP10(2019)071
10.1007/JHEP04(2015)061
10.1103/PhysRevLett.56.2459
10.1007/JHEP12(2020)204
10.1103/PhysRevD.85.126009
10.1088/1475-7516/2011/05/013
10.1007/JHEP12(2016)040
10.1016/0370-2693(82)91219-9
10.1103/PhysRevLett.94.181602
10.1007/JHEP01(2020)142
10.1007/JHEP06(2018)105
10.1007/JHEP02(2020)098
10.1088/1126-6708/2001/10/016
10.1007/JHEP10(2019)182
10.1007/JHEP02(2018)081
10.1007/JHEP11(2018)159
10.1088/1126-6708/2008/03/014
10.1088/1475-7516/2012/11/047
10.1088/1475-7516/2017/07/046
10.1007/JHEP09(2011)045
10.1086/186707
10.1088/1475-7516/2019/02/060
10.1088/1475-7516/2012/09/021
10.1007/JHEP07(2013)011
10.1016/0550-3213(87)90479-2
10.1007/JHEP04(2020)189
10.1016/B978-0-08-010586-4.50070-5
10.1155/2010/638979
10.1007/JHEP11(2011)071
10.1007/JHEP07(2019)116
10.1103/PhysRevLett.122.101602
10.1007/JHEP07(2013)015
10.1007/JHEP06(2019)058
10.1088/1475-7516/2013/11/043
10.1007/JHEP02(2020)044
10.1088/1361-6382/34/1/015009
10.1103/PhysRevLett.118.091602
10.1002/prop.201800038
10.1103/PhysRevLett.121.161302
10.1007/JHEP11(2013)159
10.1007/JHEP02(2019)040
10.1007/JHEP10(2019)183
10.1103/PhysRevD.88.024003
10.1103/PhysRevD.100.045005
10.1007/JHEP07(2014)011
10.1007/JHEP12(2019)135
10.2307/1968990
10.1007/JHEP01(2020)090
10.1007/JHEP09(2019)107
10.1007/JHEP07(2018)136
10.1007/JHEP03(2020)102
10.1103/PhysRevD.85.041302
10.1007/JHEP04(2018)140
10.1016/j.nuclphysb.2019.03.019
10.1007/JHEP02(2019)130
10.1088/1126-6708/2009/06/079
10.1103/PhysRev.135.B1049
10.1007/JHEP06(2020)068
10.1007/JHEP04(2018)014
10.1016/0550-3213(82)90488-6
10.1016/0550-3213(85)90285-8
10.1007/JHEP07(2013)105
10.1088/1126-6708/2000/08/003
10.1007/JHEP06(2017)100
10.1088/1126-6708/2003/05/013
10.1103/PhysRevD.85.103520
10.1007/JHEP12(2019)107
10.1088/1475-7516/2010/04/027
10.1088/1475-7516/2019/04/045
10.1088/1751-8113/46/21/214019
10.1016/j.nuclphysb.2012.07.027
10.1088/1751-8121/aa56e7
10.1103/PhysRev.51.125
10.1007/JHEP04(2020)077
10.1103/PhysRevD.81.021301
10.1007/JHEP05(2017)081
10.1007/JHEP02(2019)178
10.1088/1475-7516/2012/10/051
10.1007/JHEP04(2020)105
10.1103/PhysRevLett.48.1220
10.1140/epjc/s10052-020-8089-1
10.1016/j.nuclphysb.2018.04.019
10.1007/JHEP08(2020)012
10.1103/PhysRevD.23.347
10.1103/PhysRev.162.1239
10.1017/CBO9781107706620
10.1007/JHEP09(2018)040
10.1103/PhysRevLett.106.091601
10.1007/JHEP10(2019)156
10.1016/S0550-3213(01)00212-7
10.1103/PhysRevD.101.124043
10.1007/JHEP10(2019)274
10.1007/JHEP07(2015)132
10.1088/1475-7516/2014/01/033
10.1007/s00220-004-1187-3
10.1119/1.2338547
10.1007/JHEP03(2014)111
10.1088/1475-7516/2012/09/024
10.1103/PhysRevD.85.126008
10.24033/bsmf.1558
10.1016/0550-3213(82)90489-8
10.1007/JHEP10(2015)040
10.1103/PhysRev.77.242
10.1007/JHEP01(2020)105
10.1007/JHEP01(2013)009
10.1006/aphy.1994.1045
10.1007/JHEP02(2016)043
10.1088/1126-6708/2006/12/080
10.1103/PhysRevLett.124.251302
10.1007/BFb0009678
10.1016/0550-3213(87)90691-2
10.1007/s00220-020-03836-8
10.2307/1969376
10.1016/S0550-3213(03)00348-1
10.1088/1475-7516/2015/11/048
10.1007/JHEP01(2016)046
10.1016/0003-4916(84)90156-8
10.1007/JHEP11(2011)154
10.1007/978-3-319-43626-5
10.1103/PhysRevD.97.123528
10.1016/S0550-3213(96)00545-7
ContentType Journal Article
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.21468/SciPostPhys.11.3.071
DatabaseName CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2542-4653
ExternalDocumentID oai_doaj_org_article_d8bd3d5b3cfd42e1bdafa734f09840bc
1822483
10_21468_SciPostPhys_11_3_071
GroupedDBID 5VS
AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
OTOTI
ID FETCH-LOGICAL-c459t-55c3829e88f95a64ba1a6f0044f2807f44b167e29dc4310005eccd6afd9ad8e63
IEDL.DBID DOA
ISSN 2542-4653
IngestDate Wed Aug 27 01:18:54 EDT 2025
Thu May 18 22:31:55 EDT 2023
Thu Apr 24 22:56:36 EDT 2025
Tue Jul 01 03:56:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-55c3829e88f95a64ba1a6f0044f2807f44b167e29dc4310005eccd6afd9ad8e63
Notes SC0019018
USDOE
OpenAccessLink https://doaj.org/article/d8bd3d5b3cfd42e1bdafa734f09840bc
ParticipantIDs doaj_primary_oai_doaj_org_article_d8bd3d5b3cfd42e1bdafa734f09840bc
osti_scitechconnect_1822483
crossref_primary_10_21468_SciPostPhys_11_3_071
crossref_citationtrail_10_21468_SciPostPhys_11_3_071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-28
  day: 28
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle SciPost physics
PublicationYear 2021
Publisher Stichting SciPost
SciPost
Publisher_xml – name: Stichting SciPost
– name: SciPost
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref86
ref85
ref88
ref135
ref87
ref136
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref24
  doi: 10.1007/JHEP04(2019)120
– ident: ref113
  doi: 10.1103/PhysRevD.83.126002
– ident: ref15
  doi: 10.1088/1475-7516/2013/05/001
– ident: ref61
  doi: 10.1007/JHEP11(2020)139
– ident: ref33
  doi: 10.1103/PhysRevD.98.083528
– ident: ref105
  doi: 10.1038/scientificamerican0512-34
– ident: ref20
  doi: 10.1007/JHEP05(2018)011
– ident: ref3
  doi: 10.1103/PhysRevD.90.084048
– ident: ref104
  doi: 10.1088/1475-7516/2018/12/023
– ident: ref14
  doi: 10.1007/JHEP06(2013)051
– ident: ref54
  doi: 10.1103/PhysRevLett.124.131602
– ident: ref122
  doi: 10.1016/S0550-3213(00)00402-8
– ident: ref83
  doi: 10.1007/JHEP02(2018)096
– ident: ref109
  doi: 10.1103/PhysRevLett.113.091101
– ident: ref124
  doi: 10.1007/JHEP02(2014)124
– ident: ref67
  doi: 10.1007/JHEP10(2019)071
– ident: ref65
  doi: 10.1007/JHEP04(2015)061
– ident: ref38
  doi: 10.1103/PhysRevLett.56.2459
– ident: ref42
  doi: 10.1007/JHEP12(2020)204
– ident: ref49
  doi: 10.1103/PhysRevD.85.126009
– ident: ref63
  doi: 10.1088/1475-7516/2011/05/013
– ident: ref18
  doi: 10.1007/JHEP12(2016)040
– ident: ref5
  doi: 10.1016/0370-2693(82)91219-9
– ident: ref101
  doi: 10.1103/PhysRevLett.94.181602
– ident: ref57
  doi: 10.1007/JHEP01(2020)142
– ident: ref21
  doi: 10.1007/JHEP06(2018)105
– ident: ref44
  doi: 10.1007/JHEP02(2020)098
– ident: ref73
  doi: 10.1088/1126-6708/2001/10/016
– ident: ref25
  doi: 10.1007/JHEP10(2019)182
– ident: ref48
  doi: 10.1007/JHEP02(2018)081
– ident: ref88
  doi: 10.1007/JHEP11(2018)159
– ident: ref8
  doi: 10.1088/1126-6708/2008/03/014
– ident: ref11
  doi: 10.1088/1475-7516/2012/11/047
– ident: ref19
  doi: 10.1088/1475-7516/2017/07/046
– ident: ref37
  doi: 10.1007/JHEP09(2011)045
– ident: ref82
  doi: 10.1086/186707
– ident: ref125
  doi: 10.1088/1475-7516/2019/02/060
– ident: ref12
  doi: 10.1088/1475-7516/2012/09/021
– ident: ref51
  doi: 10.1007/JHEP07(2013)011
– ident: ref130
  doi: 10.1016/0550-3213(87)90479-2
– ident: ref31
  doi: 10.1007/JHEP04(2020)189
– ident: ref85
  doi: 10.1016/B978-0-08-010586-4.50070-5
– ident: ref35
  doi: 10.1155/2010/638979
– ident: ref50
  doi: 10.1007/JHEP11(2011)071
– ident: ref111
  doi: 10.1007/JHEP07(2019)116
– ident: ref131
  doi: 10.1103/PhysRevLett.122.101602
– ident: ref45
  doi: 10.1007/JHEP07(2013)015
– ident: ref81
  doi: 10.1007/JHEP06(2019)058
– ident: ref17
  doi: 10.1088/1475-7516/2013/11/043
– ident: ref32
  doi: 10.1007/JHEP02(2020)044
– ident: ref106
  doi: 10.1088/1361-6382/34/1/015009
– ident: ref92
  doi: 10.1103/PhysRevLett.118.091602
– ident: ref95
  doi: 10.1002/prop.201800038
– ident: ref34
  doi: 10.1103/PhysRevLett.121.161302
– ident: ref90
  doi: 10.1007/JHEP11(2013)159
– ident: ref98
  doi: 10.1007/JHEP02(2019)040
– ident: ref56
  doi: 10.1007/JHEP10(2019)183
– ident: ref108
  doi: 10.1103/PhysRevD.88.024003
– ident: ref134
  doi: 10.1103/PhysRevD.100.045005
– ident: ref64
  doi: 10.1007/JHEP07(2014)011
– ident: ref100
  doi: 10.1007/JHEP12(2019)135
– ident: ref114
  doi: 10.2307/1968990
– ident: ref43
  doi: 10.1007/JHEP01(2020)090
– ident: ref53
  doi: 10.1007/JHEP09(2019)107
– ident: ref55
  doi: 10.1007/JHEP07(2018)136
– ident: ref59
  doi: 10.1007/JHEP03(2020)102
– ident: ref69
  doi: 10.1103/PhysRevD.85.041302
– ident: ref23
  doi: 10.1007/JHEP04(2018)140
– ident: ref70
  doi: 10.1016/j.nuclphysb.2019.03.019
– ident: ref84
  doi: 10.1007/JHEP02(2019)130
– ident: ref2
  doi: 10.1088/1126-6708/2009/06/079
– ident: ref1
  doi: 10.1103/PhysRev.135.B1049
– ident: ref132
  doi: 10.1007/JHEP06(2020)068
– ident: ref94
  doi: 10.1007/JHEP04(2018)014
– ident: ref127
  doi: 10.1016/0550-3213(82)90488-6
– ident: ref129
  doi: 10.1016/0550-3213(85)90285-8
– ident: ref78
  doi: 10.1007/JHEP07(2013)105
– ident: ref126
  doi: 10.1088/1126-6708/2000/08/003
– ident: ref93
  doi: 10.1007/JHEP06(2017)100
– ident: ref36
  doi: 10.1088/1126-6708/2003/05/013
– ident: ref10
  doi: 10.1103/PhysRevD.85.103520
– ident: ref27
  doi: 10.1007/JHEP12(2019)107
– ident: ref9
  doi: 10.1088/1475-7516/2010/04/027
– ident: ref26
  doi: 10.1088/1475-7516/2019/04/045
– ident: ref107
  doi: 10.1088/1751-8113/46/21/214019
– ident: ref79
  doi: 10.1016/j.nuclphysb.2012.07.027
– ident: ref80
  doi: 10.1088/1751-8121/aa56e7
– ident: ref87
  doi: 10.1103/PhysRev.51.125
– ident: ref30
  doi: 10.1007/JHEP04(2020)077
– ident: ref62
  doi: 10.1103/PhysRevD.81.021301
– ident: ref118
  doi: 10.1007/JHEP05(2017)081
– ident: ref119
  doi: 10.1007/JHEP02(2019)178
– ident: ref13
  doi: 10.1088/1475-7516/2012/10/051
– ident: ref41
  doi: 10.1007/JHEP04(2020)105
– ident: ref6
  doi: 10.1103/PhysRevLett.48.1220
– ident: ref52
  doi: 10.1140/epjc/s10052-020-8089-1
– ident: ref97
  doi: 10.1016/j.nuclphysb.2018.04.019
– ident: ref133
  doi: 10.1007/JHEP08(2020)012
– ident: ref4
  doi: 10.1103/PhysRevD.23.347
– ident: ref39
  doi: 10.1103/PhysRev.162.1239
– ident: ref40
  doi: 10.1017/CBO9781107706620
– ident: ref96
  doi: 10.1007/JHEP09(2018)040
– ident: ref112
  doi: 10.1103/PhysRevLett.106.091601
– ident: ref28
  doi: 10.1007/JHEP10(2019)156
– ident: ref123
  doi: 10.1016/S0550-3213(01)00212-7
– ident: ref60
  doi: 10.1103/PhysRevD.101.124043
– ident: ref99
  doi: 10.1007/JHEP10(2019)274
– ident: ref103
  doi: 10.1007/JHEP07(2015)132
– ident: ref16
  doi: 10.1088/1475-7516/2014/01/033
– ident: ref75
  doi: 10.1007/s00220-004-1187-3
– ident: ref136
  doi: 10.1119/1.2338547
– ident: ref46
  doi: 10.1007/JHEP03(2014)111
– ident: ref68
  doi: 10.1088/1475-7516/2012/09/024
– ident: ref89
  doi: 10.1103/PhysRevD.85.126008
– ident: ref116
  doi: 10.24033/bsmf.1558
– ident: ref128
  doi: 10.1016/0550-3213(82)90489-8
– ident: ref91
  doi: 10.1007/JHEP10(2015)040
– ident: ref86
  doi: 10.1103/PhysRev.77.242
– ident: ref29
  doi: 10.1007/JHEP01(2020)105
– ident: ref135
  doi: 10.1007/JHEP01(2013)009
– ident: ref76
  doi: 10.1006/aphy.1994.1045
– ident: ref110
  doi: 10.1007/JHEP02(2016)043
– ident: ref7
  doi: 10.1088/1126-6708/2006/12/080
– ident: ref71
  doi: 10.1103/PhysRevLett.124.251302
– ident: ref117
  doi: 10.1007/BFb0009678
– ident: ref120
  doi: 10.1016/0550-3213(87)90691-2
– ident: ref58
  doi: 10.1007/s00220-020-03836-8
– ident: ref115
  doi: 10.2307/1969376
– ident: ref74
  doi: 10.1016/S0550-3213(03)00348-1
– ident: ref102
  doi: 10.1088/1475-7516/2015/11/048
– ident: ref66
  doi: 10.1007/JHEP01(2016)046
– ident: ref121
  doi: 10.1016/0003-4916(84)90156-8
– ident: ref47
  doi: 10.1007/JHEP11(2011)154
– ident: ref72
  doi: 10.1007/978-3-319-43626-5
– ident: ref22
  doi: 10.1103/PhysRevD.97.123528
– ident: ref77
  doi: 10.1016/S0550-3213(96)00545-7
SSID ssj0002119165
Score 2.5813005
Snippet We extend the cosmological bootstrap to correlators involving massless spinning particles, focusing on spin-1 and spin-2. In de Sitter space, these correlators...
We extend the cosmological bootstrap to correlators involving massless particles with spin. In de Sitter space, these correlators are constrained both by...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 071
Title The Cosmological Bootstrap: Spinning correlators from symmetries and factorization
URI https://www.osti.gov/biblio/1822483
https://doaj.org/article/d8bd3d5b3cfd42e1bdafa734f09840bc
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7EJ66rkoPX6rZ5NPXmissi6EFd8BaSTAKC-8DWg__eTNqVevLiqVASWmYmk5lk5vsIuSiC9daAy6Q0LOPOQWZGPs-8YyUIBRUYbE5-eJTTGb9_Fa89qi-sCWvhgVvBXYGywEBY5gLwwucWTDAl42FUxdzEOvS-cc_rJVPogxNumRRtyw5yV6uruFaQ_xYLK6OfuGQIzfdrM0qY_fERB7319pjJLtnpgkN60_7UHtnwi32ylYo0XX1AnqJO6e2ynq8dFh0vlw2eVayu6fPqLbEPUYd8G--YS9cUm0do_TWfJ96smpoF0JZhp2u_PCSzyd3L7TTrOBEyx0XVZEI4porKKxUqYSS3Jjcy4LVsQFybwLnNZemLChxPZ_ci6gikCVAZUF6yI7K5WC78MaG8xHgBolZMzAlLYRw3lWJ2VBoLHkYDwtfC0a4DDEfeincdE4ckU92TaUwlNNNRpgNy-TNt1SJm_DVhjJL_GYyA1-lFNAPdmYH-ywwGZIh60zFuQPBbh1VCrtE5FskqdvIfnxiS7QILWvBKSp2Szebj05_FiKSx58n4vgGn7OUU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Cosmological+Bootstrap%3A+Spinning+correlators+from+symmetries+and+factorization&rft.jtitle=SciPost+physics&rft.au=Baumann%2C+Daniel&rft.au=Duaso+Pueyo%2C+Carlos&rft.au=Joyce%2C+Austin&rft.au=Lee%2C+Hayden&rft.date=2021-09-28&rft.pub=Stichting+SciPost&rft.issn=2542-4653&rft.eissn=2542-4653&rft.volume=11&rft.issue=3&rft_id=info:doi/10.21468%2Fscipostphys.11.3.071&rft.externalDocID=1822483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2542-4653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2542-4653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2542-4653&client=summon