Exogenous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System

Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed ( L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 8; p. 1061
Main Authors Hasanuzzaman, Mirza, Nahar, Kamrun, Anee, Taufika Islam, Fujita, Masayuki
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 19.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed ( L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl ) separately and in combination with Si (SiO , 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H O content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H O . Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione -transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H O and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.
AbstractList Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed ( Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl 2 ) separately and in combination with Si (SiO 2 , 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H 2 O 2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H 2 O 2 . Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S -transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H 2 O 2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.
Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed ( L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl ) separately and in combination with Si (SiO , 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H O content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H O . Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione -transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H O and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.
Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl2) separately and in combination with Si (SiO2, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H2O2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H2O2. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H2O2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.
Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl2) separately and in combination with Si (SiO2, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H2O2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H2O2. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H2O2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl2) separately and in combination with Si (SiO2, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H2O2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H2O2. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H2O2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.
Author Anee, Taufika Islam
Nahar, Kamrun
Hasanuzzaman, Mirza
Fujita, Masayuki
AuthorAffiliation 1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh
3 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh
2 Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Takamatsu, Japan
AuthorAffiliation_xml – name: 2 Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Takamatsu, Japan
– name: 1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh
– name: 3 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh
Author_xml – sequence: 1
  givenname: Mirza
  surname: Hasanuzzaman
  fullname: Hasanuzzaman, Mirza
  organization: Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
– sequence: 2
  givenname: Kamrun
  surname: Nahar
  fullname: Nahar, Kamrun
  organization: Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
– sequence: 3
  givenname: Taufika Islam
  surname: Anee
  fullname: Anee, Taufika Islam
  organization: Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityTakamatsu, Japan
– sequence: 4
  givenname: Masayuki
  surname: Fujita
  fullname: Fujita, Masayuki
  organization: Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityTakamatsu, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28674552$$D View this record in MEDLINE/PubMed
BookMark eNpVkk1vEzEQhleoiJbSMzfkI5dN7V17Py5IISpppKAiBSRu1qw_UldeO6y9bfIH-N14m1K1c_Fo_PoZj-Z9n50471SWfSR4VpZNe6l3NswKTOoZJrgib7IzUlU0p1Xx--RFfppdhHCHUzCM27Z-l50WTVVTxoqz7O_V3m-V82NAG2ON8A7NY1RuhKgCWoDszdjnKydHoSS62RsJ0dwrtImDCgEZh74OEIIRgBzsEmU9Q90BffdytEnptmge5vlyc41-QLx9gAMCJ9HSHvweLIQEOoSo-g_ZWw02qIun8zz79e3q5-I6X98sV4v5OheUtTFnlDYFA1JhWisi2DSjIFqmcTqi21YTjLXSUAlV66bGhe50WcmCNERCQ7ryPFsdudLDHd8NpofhwD0Y_ljww5bDEI2wioNsOkKFrKEkVBYANUhWt13ZEZywE-vLkbUbu15JoVwcwL6Cvr5x5pZv_T1ntGZF2SbA5yfA4P-MKkTemyCUteBUWggnLWFNQ0lVJunlUSoGH8Kg9HMbgvlkBj6ZgU9m4I9mSC8-vfzds_7_6st_jKq1EQ
CitedBy_id crossref_primary_10_3390_horticulturae7110435
crossref_primary_10_1080_15226514_2021_2025204
crossref_primary_10_1590_1519_6984_259016
crossref_primary_10_3390_biom11030436
crossref_primary_10_1016_j_ecoenv_2018_09_113
crossref_primary_10_1007_s00344_022_10828_6
crossref_primary_10_1016_j_jhazmat_2024_133578
crossref_primary_10_1016_j_jplph_2023_153915
crossref_primary_10_1016_j_plaphy_2021_09_037
crossref_primary_10_1111_pce_14431
crossref_primary_10_3389_fpls_2022_819658
crossref_primary_10_1007_s11270_023_06336_2
crossref_primary_10_1016_j_micpath_2023_106053
crossref_primary_10_3390_su14031462
crossref_primary_10_1007_s12298_021_00983_7
crossref_primary_10_1007_s10725_023_01002_3
crossref_primary_10_1371_journal_pone_0203626
crossref_primary_10_3390_ijms21228695
crossref_primary_10_1007_s11356_018_3227_0
crossref_primary_10_1007_s10343_018_0430_3
crossref_primary_10_1007_s11356_021_14252_3
crossref_primary_10_1007_s00344_020_10231_z
crossref_primary_10_1007_s12517_022_09638_7
crossref_primary_10_1007_s11270_024_07030_7
crossref_primary_10_1080_15226514_2018_1488813
crossref_primary_10_1007_s42976_022_00246_5
crossref_primary_10_1007_s11738_021_03276_4
crossref_primary_10_1007_s42729_022_00852_6
crossref_primary_10_12677_AEP_2019_92021
crossref_primary_10_3390_antiox9080681
crossref_primary_10_1016_j_jhazmat_2020_123020
crossref_primary_10_3390_plants11243574
crossref_primary_10_3390_plants8110489
crossref_primary_10_3390_agronomy11050926
crossref_primary_10_3390_antiox12030678
crossref_primary_10_3390_metabo13040511
crossref_primary_10_1007_s12298_023_01389_3
crossref_primary_10_1016_j_plaphy_2021_09_015
crossref_primary_10_1016_j_plaphy_2022_12_026
crossref_primary_10_3390_ijms241713061
crossref_primary_10_1016_j_chemosphere_2021_132374
crossref_primary_10_3390_foods11193147
crossref_primary_10_3390_plants8070196
crossref_primary_10_3390_life13010211
crossref_primary_10_1093_pcp_pcab145
crossref_primary_10_3390_antiox8090384
crossref_primary_10_3390_plants9091145
crossref_primary_10_1016_j_ecoenv_2021_112879
crossref_primary_10_1016_j_plaphy_2021_06_005
crossref_primary_10_1007_s11104_024_06604_y
crossref_primary_10_1016_j_chemosphere_2024_142417
crossref_primary_10_1016_j_jhazmat_2021_128100
crossref_primary_10_3389_fpls_2023_1141138
crossref_primary_10_1016_j_ecoenv_2023_115101
crossref_primary_10_3390_antiox10030351
crossref_primary_10_3389_fpls_2020_586547
crossref_primary_10_1007_s00344_018_9860_5
crossref_primary_10_1016_j_chemosphere_2022_133718
crossref_primary_10_1016_j_jhazmat_2019_121806
crossref_primary_10_1016_j_scienta_2021_110340
crossref_primary_10_1007_s11356_023_30646_x
crossref_primary_10_1007_s12298_023_01346_0
crossref_primary_10_28955_alinterizbd_741556
crossref_primary_10_1016_j_jhazmat_2021_128170
crossref_primary_10_3390_ijerph17113850
crossref_primary_10_32604_phyton_2021_013657
crossref_primary_10_1016_j_chemosphere_2020_127826
crossref_primary_10_1016_j_envpol_2019_113146
crossref_primary_10_1016_j_jhazmat_2022_129145
crossref_primary_10_1038_s41598_023_49652_7
crossref_primary_10_1016_j_indcrop_2020_112843
crossref_primary_10_1016_j_plaphy_2021_03_044
crossref_primary_10_1016_j_plaphy_2022_01_033
crossref_primary_10_32615_bp_2023_002
crossref_primary_10_1007_s42729_019_00051_w
crossref_primary_10_3389_fpls_2021_700413
crossref_primary_10_1016_j_plaphy_2021_12_018
crossref_primary_10_1016_j_ecoenv_2023_115214
crossref_primary_10_1016_j_rhisph_2022_100478
crossref_primary_10_1007_s10646_022_02524_8
crossref_primary_10_1016_j_scienta_2023_112196
crossref_primary_10_1016_j_ecoenv_2017_09_045
crossref_primary_10_3390_agriculture12060848
crossref_primary_10_1016_j_ecoenv_2018_10_049
crossref_primary_10_12677_HJAS_2019_911139
crossref_primary_10_3389_fpls_2018_00516
crossref_primary_10_1016_j_jhazmat_2023_131366
crossref_primary_10_3390_molecules25071702
crossref_primary_10_1016_j_chemosphere_2020_127533
crossref_primary_10_1111_nph_15343
crossref_primary_10_1021_acsami_9b11142
crossref_primary_10_1007_s10340_021_01470_4
crossref_primary_10_3390_plants11233209
crossref_primary_10_1080_03067319_2020_1865334
crossref_primary_10_1016_j_heliyon_2024_e27724
crossref_primary_10_1016_j_plaphy_2019_07_020
crossref_primary_10_1007_s11356_019_04283_2
crossref_primary_10_1016_j_sajb_2020_06_005
crossref_primary_10_1186_s12870_019_2189_9
crossref_primary_10_1016_j_plaphy_2020_10_010
crossref_primary_10_1016_j_jbiotec_2020_04_008
crossref_primary_10_1016_j_indcrop_2022_116065
crossref_primary_10_1007_s43994_024_00145_x
crossref_primary_10_1007_s11011_018_0299_y
crossref_primary_10_1016_j_scitotenv_2021_149222
crossref_primary_10_3389_fpls_2022_983156
crossref_primary_10_1016_j_chemosphere_2020_127241
crossref_primary_10_1016_j_jes_2022_09_005
crossref_primary_10_1007_s42729_022_00983_w
crossref_primary_10_1016_j_scienta_2021_110707
crossref_primary_10_1016_j_ecoenv_2020_110483
crossref_primary_10_3390_plants12213714
crossref_primary_10_1016_j_stress_2023_100323
crossref_primary_10_3389_fpls_2020_545453
crossref_primary_10_1371_journal_pone_0212639
crossref_primary_10_1016_j_plaphy_2021_08_030
crossref_primary_10_3390_plants9101324
crossref_primary_10_1007_s00344_019_09931_y
Cites_doi 10.1007/s00299-007-0416-6
10.1093/jxb/eri301
10.1016/j.crvi.2016.08.002
10.1007/s00709-014-0731-z
10.1016/S1671-2927(08)60315-6
10.1016/j.envexpbot.2011.07.002
10.1007/978-94-007-5179-8_8
10.1016/j.proenv.2012.10.041
10.1016/j.jhazmat.2007.10.121
10.1016/j.bbrc.2005.08.263
10.1186/1471-2229-10-225
10.1007/s10535-006-0009-1
10.1016/j.biochi.2006.07.003
10.1080/00103620802292871
10.1071/FP03091
10.1093/oxfordjournals.pcp.a076232
10.1007/s11356-015-4532-5
10.1016/0167-4838(87)90076-8
10.1007/s12011-012-9419-4
10.1371/journal.pone.0114571
10.1016/j.phytochem.2009.12.012
10.1016/j.ecoenv.2015.12.026
10.1016/0003-2697(76)90527-3
10.1016/j.plaphy.2010.08.016
10.1093/oxfordjournals.pcp.a076726
10.1016/j.envpol.2015.12.027
10.1016/j.envexpbot.2016.09.005
10.1007/s11356-016-7295-8
10.1111/ppa.12119
10.1016/j.ecoenv.2013.07.006
10.4161/psb.6.2.14880
10.1007/s11356-015-4187-2
10.1016/j.envexpbot.2016.07.012
10.1111/j.1365-3040.2004.01217.x
10.3389/fpls.2016.01117
10.1080/11263500802633626
10.1016/j.envexpbot.2016.06.012
10.1016/j.plaphy.2013.05.032
10.1016/0003-9861(68)90654-1
10.3389/fpls.2017.00115
10.1007/s11099-007-0038-9
10.3390/ijms160817975
10.1016/j.ecoenv.2016.09.019
10.3390/ijms18010200
ContentType Journal Article
Copyright Copyright © 2017 Hasanuzzaman, Nahar, Anee and Fujita. 2017 Hasanuzzaman, Nahar, Anee and Fujita
Copyright_xml – notice: Copyright © 2017 Hasanuzzaman, Nahar, Anee and Fujita. 2017 Hasanuzzaman, Nahar, Anee and Fujita
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2017.01061
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_ad8b14cd7a314d2aa7ad579b3b10fbfb
10_3389_fpls_2017_01061
28674552
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IGS
IPNFZ
ISR
KQ8
M48
M~E
NPM
OK1
PGMZT
RIG
RNS
RPM
AAYXX
AFPKN
CITATION
7X8
5PM
ID FETCH-LOGICAL-c459t-544825a16047e1c51664c1fd867b1f99f100fefa6ce7f8702fbf36d2181da81b3
IEDL.DBID RPM
ISSN 1664-462X
IngestDate Tue Oct 22 15:14:19 EDT 2024
Tue Sep 17 21:15:57 EDT 2024
Sat Oct 26 04:54:16 EDT 2024
Thu Sep 26 19:06:05 EDT 2024
Sat Nov 02 12:01:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords trace element
antioxidant defense
plant nutrients
heavy metals
ROS
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-544825a16047e1c51664c1fd867b1f99f100fefa6ce7f8702fbf36d2181da81b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Rupesh Kailasrao Deshmukh, Laval University, Canada
This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science
Reviewed by: Amitha Mithra V. Sevanthi, National Research Centre on Plant Biotechnology (NRCPB), India; Sajitha Biju, University of Melbourne, Australia
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5475239/
PMID 28674552
PQID 1915884163
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ad8b14cd7a314d2aa7ad579b3b10fbfb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5475239
proquest_miscellaneous_1915884163
crossref_primary_10_3389_fpls_2017_01061
pubmed_primary_28674552
PublicationCentury 2000
PublicationDate 2017-06-19
PublicationDateYYYYMMDD 2017-06-19
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-19
  day: 19
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2017
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gall (B13) 2013
Gill (B15) 2015; 22
Gill (B17) 2010; 48
Yadav (B47) 2005; 337
Jiao-jing (B29) 2009; 8
Yu (B48) 2003; 30
Hasanuzzaman (B21); 149
Tang (B43) 2015; 22
Bradford (B6) 1976; 72
Hasanuzzaman (B22); 8
Sharma (B41) 2007; 26
Debona (B10) 2014; 63
Gill (B16) 2013; 70
Rahman (B38) 2016; 339
Dixon (B11) 2010; 71
Nahar (B33); 126
Wu (B45) 2017; 133
Mourato (B32) 2015; 16
Principato (B36) 1987; 911
Wu (B46) 2016; 131
Islam (B28) 2008; 154
Liu (B31) 2012; 16
Anjum (B5) 2008; 39
Srivastava (B42) 2015; 252
Garg (B14) 2009; 143
Nakano (B35) 1981; 22
Greger (B19) 2016; 211
Ahmad (B2) 2015; 10
Rahman (B39) 2017; 135
Hossain (B25) 1984; 25
Andresen (B3) 2013
Anjum (B4) 2012; 75
Heath (B24) 1968; 125
Gill (B18) 2011; 6
Kabir (B30) 2016; 7
Hasanuzzaman (B23); 18
Farooq (B12) 2013; 96
Wu (B44) 2016; 131
(B1) 2017
Nahar (B34); 23
Hossain (B26) 2006; 50
Chen (B8) 2010; 48
Romero-Puertas (B40) 2004; 27
Qin (B37) 2010; 10
Huang (B27) 2005; 56
Burzyński (B7) 2007; 45
Clemens (B9) 2006; 88
Hasanuzzaman (B20)
References_xml – volume: 26
  start-page: 2027
  year: 2007
  ident: B41
  article-title: Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic levels of aluminium.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-007-0416-6
  contributor:
    fullname: Sharma
– volume: 56
  start-page: 3041
  year: 2005
  ident: B27
  article-title: Increased sensitivity to salt stress in ascorbate deficient Arabidopsis mutant.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri301
  contributor:
    fullname: Huang
– volume: 339
  start-page: 462
  year: 2016
  ident: B38
  article-title: Manganese-induced cadmium stress tolerance in rice seedlings: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis.
  publication-title: C R Biol.
  doi: 10.1016/j.crvi.2016.08.002
  contributor:
    fullname: Rahman
– volume: 252
  start-page: 959
  year: 2015
  ident: B42
  article-title: Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings.
  publication-title: Protoplasma
  doi: 10.1007/s00709-014-0731-z
  contributor:
    fullname: Srivastava
– volume: 8
  start-page: 1075
  year: 2009
  ident: B29
  article-title: Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves.
  publication-title: Agric. Sci. China
  doi: 10.1016/S1671-2927(08)60315-6
  contributor:
    fullname: Jiao-jing
– volume: 75
  start-page: 307
  year: 2012
  ident: B4
  article-title: Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.07.002
  contributor:
    fullname: Anjum
– start-page: 395
  year: 2013
  ident: B3
  article-title: Cadmium toxicity in plants
  publication-title: Cadmium: from Toxicity to Essentiality. Metal Ions in Life Sciences
  doi: 10.1007/978-94-007-5179-8_8
  contributor:
    fullname: Andresen
– volume: 16
  start-page: 293
  year: 2012
  ident: B31
  article-title: The effects of cadmium on germination and seedling growth of Suaeda salsa.
  publication-title: Proc. Environ. Sci.
  doi: 10.1016/j.proenv.2012.10.041
  contributor:
    fullname: Liu
– volume: 154
  start-page: 914
  year: 2008
  ident: B28
  article-title: Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.121
  contributor:
    fullname: Islam
– volume: 337
  start-page: 61
  year: 2005
  ident: B47
  article-title: Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.08.263
  contributor:
    fullname: Yadav
– volume: 10
  year: 2010
  ident: B37
  article-title: Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-10-225
  contributor:
    fullname: Qin
– volume: 50
  start-page: 210
  year: 2006
  ident: B26
  article-title: Induction of pumpkin glutathione S-transferase by different stresses and its possible mechanisms.
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-006-0009-1
  contributor:
    fullname: Hossain
– year: 2017
  ident: B1
  publication-title: XLSTAT v. 2017: Data Analysis and Statistics Software for Microsoft Excel
– volume: 88
  start-page: 1707
  year: 2006
  ident: B9
  article-title: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants.
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2006.07.003
  contributor:
    fullname: Clemens
– volume: 39
  start-page: 2469
  year: 2008
  ident: B5
  article-title: Responses of components ofnantioxidant system in moongbean genotypes to cadmium stress.
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620802292871
  contributor:
    fullname: Anjum
– volume: 30
  start-page: 955
  year: 2003
  ident: B48
  article-title: Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP03091
  contributor:
    fullname: Yu
– volume: 22
  start-page: 867
  year: 1981
  ident: B35
  article-title: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a076232
  contributor:
    fullname: Nakano
– volume: 22
  start-page: 10375
  year: 2015
  ident: B15
  article-title: Superoxide dismutase—mentor of abiotic stress tolerance in crop plants.
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4532-5
  contributor:
    fullname: Gill
– volume: 911
  start-page: 349
  year: 1987
  ident: B36
  article-title: Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats.
  publication-title: Biochem. Biophys. Acta
  doi: 10.1016/0167-4838(87)90076-8
  contributor:
    fullname: Principato
– volume: 149
  start-page: 248
  ident: B21
  article-title: Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems.
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-012-9419-4
  contributor:
    fullname: Hasanuzzaman
– volume: 10
  year: 2015
  ident: B2
  article-title: Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0114571
  contributor:
    fullname: Ahmad
– volume: 71
  start-page: 338
  year: 2010
  ident: B11
  article-title: Roles for glutathione transferases in plant secondary metabolism.
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.12.012
  contributor:
    fullname: Dixon
– start-page: 121
  year: 2013
  ident: B13
  article-title: The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae
  publication-title: Brassicaceae: Characterization, Functional Genomics and Health Benefits
  contributor:
    fullname: Gall
– volume: 126
  start-page: 245
  ident: B33
  article-title: Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense, and methylglyoxal detoxification systems.
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.12.026
  contributor:
    fullname: Nahar
– volume: 72
  start-page: 248
  year: 1976
  ident: B6
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
  contributor:
    fullname: Bradford
– volume: 48
  start-page: 909
  year: 2010
  ident: B17
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.08.016
  contributor:
    fullname: Gill
– volume: 25
  start-page: 385
  year: 1984
  ident: B25
  article-title: Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide.
  publication-title: Plant Cell Physiol.
  doi: 10.1093/oxfordjournals.pcp.a076726
  contributor:
    fullname: Hossain
– volume: 211
  start-page: 90
  year: 2016
  ident: B19
  article-title: Silicate reduces cadmium uptake into cells of wheat.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.12.027
  contributor:
    fullname: Greger
– volume: 133
  start-page: 1
  year: 2017
  ident: B45
  article-title: Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.09.005
  contributor:
    fullname: Wu
– volume: 23
  start-page: 21206
  ident: B34
  article-title: Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings.
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7295-8
  contributor:
    fullname: Nahar
– volume: 63
  start-page: 581
  year: 2014
  ident: B10
  article-title: The effect of silicon on antioxidant metabolism of wheat leaves infected by Pyricularia oryzae.
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12119
  contributor:
    fullname: Debona
– volume: 96
  start-page: 242
  year: 2013
  ident: B12
  article-title: Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton.
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2013.07.006
  contributor:
    fullname: Farooq
– volume: 6
  start-page: 215
  year: 2011
  ident: B18
  article-title: Cadmium stress tolerance in crop plants.
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.2.14880
  contributor:
    fullname: Gill
– volume: 22
  start-page: 9999
  year: 2015
  ident: B43
  article-title: Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress.
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4187-2
  contributor:
    fullname: Tang
– volume: 131
  start-page: 173
  year: 2016
  ident: B46
  article-title: Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.07.012
  contributor:
    fullname: Wu
– volume: 27
  start-page: 1122
  year: 2004
  ident: B40
  article-title: Cd-induced subcellular accumulation of O2- and H2O2 in pea leaves.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2004.01217.x
  contributor:
    fullname: Romero-Puertas
– volume: 7
  year: 2016
  ident: B30
  article-title: Role of silicon counteracting cadmium toxicity in alfalfa (Medicago sativa L.).
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01117
  contributor:
    fullname: Kabir
– volume: 48
  start-page: 663
  year: 2010
  ident: B8
  article-title: Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1007/s11356-016-7295-8
  contributor:
    fullname: Chen
– volume: 143
  start-page: 8
  year: 2009
  ident: B14
  article-title: ROS generation in plants: boon or bane?
  publication-title: Plant Biosyst.
  doi: 10.1080/11263500802633626
  contributor:
    fullname: Garg
– volume: 131
  start-page: 10
  year: 2016
  ident: B44
  article-title: Silicon-enhanced oxalate exudation contributes to alleviation of cadmium toxicity in wheat.
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.06.012
  contributor:
    fullname: Wu
– volume: 70
  start-page: 204
  year: 2013
  ident: B16
  article-title: Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations.
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.05.032
  contributor:
    fullname: Gill
– volume: 125
  start-page: 189
  year: 1968
  ident: B24
  article-title: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation.
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90654-1
  contributor:
    fullname: Heath
– volume: 8
  ident: B22
  article-title: Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00115
  contributor:
    fullname: Hasanuzzaman
– volume: 45
  start-page: 239
  year: 2007
  ident: B7
  article-title: Effects of copper and cadmium on photosynthesis in cucumber cotyledons.
  publication-title: Photosynthetica
  doi: 10.1007/s11099-007-0038-9
  contributor:
    fullname: Burzyński
– start-page: 261
  ident: B20
  article-title: Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor
  publication-title: Crop Stress and its Management: Perspectives and Strategies
  contributor:
    fullname: Hasanuzzaman
– volume: 16
  start-page: 17975
  year: 2015
  ident: B32
  article-title: Effect of heavy metals in plants of the genus Brassica.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms160817975
  contributor:
    fullname: Mourato
– volume: 135
  start-page: 165
  year: 2017
  ident: B39
  article-title: Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon.
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.09.019
  contributor:
    fullname: Rahman
– volume: 18
  ident: B23
  article-title: Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18010200
  contributor:
    fullname: Hasanuzzaman
SSID ssj0000500997
Score 2.537116
Snippet Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1061
SubjectTerms antioxidant defense
heavy metals
plant nutrients
Plant Science
ROS
trace element
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ1QMXBJSP8FEZiQOXtHFix_Fxt2q7QhSQlkq9WePYhkhbZ1V2xe4f4HczdrbVLqrEhWsSOc68Sfye4nlDyHsOTWuMU7kCjwJFCZOrxsoc1zZTCyMkb2Pt8MXnenLJP16Jq61WX3FP2GAPPATuGGxjGG-thIpxWwJIsEIqUxlWeONN-voWaktMDa7ekfrIwcsHVZg69vNZdOdm8iipoJ1lKLn130cx_94pubX0nD0mjzackY6GuT4hD1x4SvbHPfK69QH5fbrqB6dVOu1mCGygowUy4WVkkfQE7HW3vM5ji47WWfpl1dnk9U2nqUqEdoGOb5BBI1g0wBxH-XREzZpe9DZ19grf6ejnKD-fTuhXZIu_YE0hWHo-W_erWIOJAyUz6Gfk8uz028kk33RXyFsu1CIXKMxKAawuuHSsFayuecu8bWppmFfKs6LwzkPdOunxrS4x2lVtIyWwgGS3ek72Qh_cS0KRxQASHQS5BO69BdM4X9mGq6oB40xGPtwGW88HEw2N4iPioiMuOuKiEy4ZGUcw7i6L7tfpAOaE3uSE_ldOZOTdLZQa35b4CwSCQxw0qtNYmYskNCMvBmjvblXik3MhyozIHdB35rJ7JnQ_kiO34BIFvXr1Pyb_mjyM4Yjb0Zh6Q_YWN0v3FonPwhymHP8D-d0Gpg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVgYMEG8abDQ0ZiwSalTuw4XiDUjmamQgwglUqzi-zYHiJ1nNJpNc0P8N3c67QDRV2xTeKHfO6Vz1Hscwl5y3VRGeNUorQHgaKESVRhZQJ7m8mFEZJXeHf47Es-nvJP5-L8TzmgzQJe7ZV2WE9qupj11z_bj5DwH1Bxwn773s9naLzNZD8KnNvkTspBpuM5vg3X74y-kQ3Jzt5nXzv0BS5yyYVIdzap6OW_j4D-e47yr43p5AG5v2GUdNiFwENyy4VH5O6oAdbXPia_jtdN58NKJ_UMYA90uASevEKOSY-0vaxXlwkW8KicpV_XtY1O4HQS75DQOtDRAvg1QEmDnkMvn_vUtPSssbHuV7igw6thcjoZ02_AJa91S3Ww9HTWNmu8oQkdRavoJ2R6cvz9aJxsai8kFRdqmQiQbanQLB9w6VglWJ7zinkLC2SYV8qzwcA7r_PKSQ85n3rjs9wiYbAaqHD2lByEJrjnhALH0UCDIARSzb232hTOZ7bgKiu0caZH3m0Xu5x3FhslSBOEqESISoSojBD1yAjBuPkMvbHjg2ZxUW5SrdS2MIxXVuqMcRhTS22FVCYzbACzhPHebKEsIZfwB4kODnAoQbvivV2gqD3yrIP2ZqhtaPSI3AF9Zy67b0L9I_p1Cy5B7qvD_275gtzDNcATaky9JAfLxcq9Ai60NK9jjP8GubAM7Q
  priority: 102
  providerName: Scholars Portal
Title Exogenous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System
URI https://www.ncbi.nlm.nih.gov/pubmed/28674552
https://www.proquest.com/docview/1915884163
https://pubmed.ncbi.nlm.nih.gov/PMC5475239
https://doaj.org/article/ad8b14cd7a314d2aa7ad579b3b10fbfb
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhoxFLWSqItuqjZ90aSRK3XRzQBm7PF4CSgBVaWNRCOxG_mZjAQeREGFH8h359rDRCHqqptZzMuWz7V8zsy9xwh9pTLXSlmRCOlAoAimEpEbnsDapjKmGKc61A5PfmbjG_p9xmZHiDW1MDFpX6uy7eeLti_vYm7lcqE7TZ5Y53oyZJSDfhKdY3QMAfpEoteG3oH18NrGBwSY6LjlPBhzE96OAij4_-YZp4z1Dhaj6Nn_L6L5PF_yyQJ09Rq92jNH3K97-AYdWX-KXgwqYHe7t-j-clvVfqt4Ws4BXo_7a-DDm8Al8VCaRblZJGGjDm0N_rUtTXT8xtNYK4JLjwcr4NEAGfZyCW_50cZqhyeVift7-Vvc_9NPRtMxvgbO-FfusPQGj-a7ahsqMeFF0RL6Hbq5uvw9HCf7PRYSTZlYJwzkWY9JknUpt0QzkmVUE2dggBRxQjjS7TrrZKYtdzC3e065NDOBGBgJlDd9j0585e1HhIHLSKA7AHVPUueMVLl1qcmpSHOprGqhb81gF8vaSqMACRIgKgJERYCoiBC10CCA8Xhb8MCOJ6rVbbGPhEKaXBGqDZcpodCm5NIwLlSqSBd6Ce19aaAsYM6EHyHSW8ChAI0a6nOBirbQhxrax6aa0GghfgD6QV8Or0CYRl_ufVh--u8nz9DLMAYhE42Ic3SyXm3sZ-A8a3URvxXAcTQjcJzQ_CJG_QO4kggY
link.rule.ids 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGQIIXvgfl00g88JK0buw4fmyrbQXaMakb2ltkx_aIaJ2qtKLlB_C7uXaaaZ14gdc4iZ2c4_hc5d5jhN5TmRVKGREJaSFAEUxFItM8grVNpUwxTgtfOzw-SYfn9NMFu9hDrKmFCUn7hSpjN53FrvwWcivns6Ld5Im1T8cDRjnET6J9C92G-dqh14L02tLb6x5eG_lACCbadj711tyExyEE8g7AWcopY92d5Si49v9Nat7MmLy2BB09QF-bwdeZJ9_j1VLFxa8bvo7__HQP0f2tKMW9uvkR2jPuMbrTr0A4bp6g34frqrZyxZNyCsxxuLcEqb3yMhUPpJ6Vq1nk9wApjMZf1qUOZuJ4EspQcOlwfwESHdiAnZzDXUYxVhs8rnTYOsxd4t6PXnQ8GeJTkKM_5QZLp_HxdFOtfZEn3Ci4TT9F50eHZ4NhtN2-ISooE8uIQeTXZZKkHcoNKRhJU1oQq-HNK2KFsKTTscbKtDDcwmeja5VNUu01h5agppMDtO8qZ54jDDJJgpICFnUltVZLlRmb6IyKJJPKqBb60KCYz2uXjhyiG4997rHPPfZ5wL6F-h7lq9O8vXY4UC0u8y0MudSZIrTQXCaEQp-SS824UIkiHRgl9Peu4UgO09H_Y5HOAA45hL--9BdUbgs9qzlz1VXDuRbiO2zaGctuC3AkWH5vOfHiv698i-4Oz8ajfPTx5PNLdM-_D5_wRsQrtL9crMxrkFZL9SZMpD-xTSdR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgQYgLb9jyNBIHLknrxo7jY1u2W2C7VCorrbhEfi7RtklVWtHyA_jdjJ121a447TVx7NjzOf5GmfkGoQ9UZlopKyIhHTgogqlIZIZHcLaplCnGqfa5w8PTdHBGv5yz851SXyFoX6siLifTuCx-htjK2VQ3t3FizdGwxygH_0k0Z8Y1b6M7sGdb6Y6jXst6e-7DazEfcMNE080mXp6b8Di4QV4FOEs5Zay9dyQF5f7_0c3rUZM7x1D_IfqxnUAdfXIZLxcq1n-uaTveaIaP0IMNOcWdusljdMuWT9DdbgUEcv0U_T1aVbWkKx4XE0BQiTsLoNxLT1dxT5ppsZxGvhaItgZ_WxUmiIrjcUhHwUWJu3Og6oAKXMoZ9HISY7XGw8qEEmLlBe786kTH4wEeAS39LddYlgYfT9bVyid7QkdBdfoZOusffe8Nok0Zh0hTJhYRAw-wzSRJW5RbohlJU6qJM7D6ijghHGm1nHUy1ZY7-Hy0nXJJajz3MBJYdfIcHZRVaQ8RBrokgVEBmtqSOmekyqxLTEZFkkllVQN93Foyn9VqHTl4Od7-ubd_7u2fB_s3UNdb-qqZl9kOF6r5Rb4xRS5NpgjVhsuEUBhTcmkYFypRpAVvCeO93-Ikh23p_7XI0oIdcnCDfQowsN0GelHj5mqoLe4aiO8hau9d9u8AToL09wYXL2_85Dt0b_Spn598Pv36Ct33y-Hj3oh4jQ4W86V9Awxrod6GvfQPzUop0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+Silicon+Attenuates+Cadmium-Induced+Oxidative+Stress+in+Brassica+napus+L.+by+Modulating+AsA-GSH+Pathway+and+Glyoxalase+System&rft.jtitle=Frontiers+in+plant+science&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Nahar%2C+Kamrun&rft.au=Anee%2C+Taufika+Islam&rft.au=Fujita%2C+Masayuki&rft.date=2017-06-19&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=8&rft_id=info:doi/10.3389%2Ffpls.2017.01061&rft_id=info%3Apmid%2F28674552&rft.externalDBID=PMC5475239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon