Exogenous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System
Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed ( L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense...
Saved in:
Published in | Frontiers in plant science Vol. 8; p. 1061 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
19.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (
L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl
) separately and in combination with Si (SiO
, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H
O
content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H
O
. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione
-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H
O
and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system. |
---|---|
AbstractList | Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (
Brassica napus
L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl
2
) separately and in combination with Si (SiO
2
, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H
2
O
2
content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H
2
O
2
. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione
S
-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H
2
O
2
and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system. Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed ( L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl ) separately and in combination with Si (SiO , 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H O content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H O . Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione -transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H O and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system. Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl2) separately and in combination with Si (SiO2, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H2O2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H2O2. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H2O2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system. Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl2) separately and in combination with Si (SiO2, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H2O2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H2O2. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H2O2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system.Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the protective effect of silicon (Si) on cadmium (Cd)-stressed rapeseed (Brassica napus L. cv. BINA Sharisha 3) plants through regulation of antioxidant defense and glyoxalase systems. Twelve-day-old seedlings were exposed to Cd stress (0.5 and 1.0 mM CdCl2) separately and in combination with Si (SiO2, 1.0 mM) for 2 days. Cadmium toxicity was evident by an obvious oxidative stress through sharp increases in H2O2 content and lipid peroxidation (malondialdehyde, MDA content), and visible sign of superoxide and H2O2. Cadmium stress also decreased the content of ascorbate (AsA) and glutathione (GSH) as well as their redox pool. The activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and catalase (CAT) were decreased by Cd while ascorbate peroxidase (APX) and glutathione S-transferase (GST) activities were increased. The enzymes of glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II) were also inefficient under Cd stress. However, exogenous application of Si in Cd treated seedlings reduced H2O2 and MDA contents and improved antioxidant defense mechanism through increasing the AsA and GSH pools and activities of AsA-GSH cycle (APX, MDHAR, DHAR and GR) and glyoxalase system (Gly I and Gly II) enzymes and CAT. Thus Si reduced oxidative damage in plants to make more tolerant under Cd stress through augmentation of different antioxidant components and methylglyoxal detoxification system. |
Author | Anee, Taufika Islam Nahar, Kamrun Hasanuzzaman, Mirza Fujita, Masayuki |
AuthorAffiliation | 1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh 3 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh 2 Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Takamatsu, Japan |
AuthorAffiliation_xml | – name: 2 Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Takamatsu, Japan – name: 1 Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh – name: 3 Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University Dhaka, Bangladesh |
Author_xml | – sequence: 1 givenname: Mirza surname: Hasanuzzaman fullname: Hasanuzzaman, Mirza organization: Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh – sequence: 2 givenname: Kamrun surname: Nahar fullname: Nahar, Kamrun organization: Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh – sequence: 3 givenname: Taufika Islam surname: Anee fullname: Anee, Taufika Islam organization: Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityTakamatsu, Japan – sequence: 4 givenname: Masayuki surname: Fujita fullname: Fujita, Masayuki organization: Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa UniversityTakamatsu, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28674552$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkk1vEzEQhleoiJbSMzfkI5dN7V17Py5IISpppKAiBSRu1qw_UldeO6y9bfIH-N14m1K1c_Fo_PoZj-Z9n50471SWfSR4VpZNe6l3NswKTOoZJrgib7IzUlU0p1Xx--RFfppdhHCHUzCM27Z-l50WTVVTxoqz7O_V3m-V82NAG2ON8A7NY1RuhKgCWoDszdjnKydHoSS62RsJ0dwrtImDCgEZh74OEIIRgBzsEmU9Q90BffdytEnptmge5vlyc41-QLx9gAMCJ9HSHvweLIQEOoSo-g_ZWw02qIun8zz79e3q5-I6X98sV4v5OheUtTFnlDYFA1JhWisi2DSjIFqmcTqi21YTjLXSUAlV66bGhe50WcmCNERCQ7ryPFsdudLDHd8NpofhwD0Y_ljww5bDEI2wioNsOkKFrKEkVBYANUhWt13ZEZywE-vLkbUbu15JoVwcwL6Cvr5x5pZv_T1ntGZF2SbA5yfA4P-MKkTemyCUteBUWggnLWFNQ0lVJunlUSoGH8Kg9HMbgvlkBj6ZgU9m4I9mSC8-vfzds_7_6st_jKq1EQ |
CitedBy_id | crossref_primary_10_3390_horticulturae7110435 crossref_primary_10_1080_15226514_2021_2025204 crossref_primary_10_1590_1519_6984_259016 crossref_primary_10_3390_biom11030436 crossref_primary_10_1016_j_ecoenv_2018_09_113 crossref_primary_10_1007_s00344_022_10828_6 crossref_primary_10_1016_j_jhazmat_2024_133578 crossref_primary_10_1016_j_jplph_2023_153915 crossref_primary_10_1016_j_plaphy_2021_09_037 crossref_primary_10_1111_pce_14431 crossref_primary_10_3389_fpls_2022_819658 crossref_primary_10_1007_s11270_023_06336_2 crossref_primary_10_1016_j_micpath_2023_106053 crossref_primary_10_3390_su14031462 crossref_primary_10_1007_s12298_021_00983_7 crossref_primary_10_1007_s10725_023_01002_3 crossref_primary_10_1371_journal_pone_0203626 crossref_primary_10_3390_ijms21228695 crossref_primary_10_1007_s11356_018_3227_0 crossref_primary_10_1007_s10343_018_0430_3 crossref_primary_10_1007_s11356_021_14252_3 crossref_primary_10_1007_s00344_020_10231_z crossref_primary_10_1007_s12517_022_09638_7 crossref_primary_10_1007_s11270_024_07030_7 crossref_primary_10_1080_15226514_2018_1488813 crossref_primary_10_1007_s42976_022_00246_5 crossref_primary_10_1007_s11738_021_03276_4 crossref_primary_10_1007_s42729_022_00852_6 crossref_primary_10_12677_AEP_2019_92021 crossref_primary_10_3390_antiox9080681 crossref_primary_10_1016_j_jhazmat_2020_123020 crossref_primary_10_3390_plants11243574 crossref_primary_10_3390_plants8110489 crossref_primary_10_3390_agronomy11050926 crossref_primary_10_3390_antiox12030678 crossref_primary_10_3390_metabo13040511 crossref_primary_10_1007_s12298_023_01389_3 crossref_primary_10_1016_j_plaphy_2021_09_015 crossref_primary_10_1016_j_plaphy_2022_12_026 crossref_primary_10_3390_ijms241713061 crossref_primary_10_1016_j_chemosphere_2021_132374 crossref_primary_10_3390_foods11193147 crossref_primary_10_3390_plants8070196 crossref_primary_10_3390_life13010211 crossref_primary_10_1093_pcp_pcab145 crossref_primary_10_3390_antiox8090384 crossref_primary_10_3390_plants9091145 crossref_primary_10_1016_j_ecoenv_2021_112879 crossref_primary_10_1016_j_plaphy_2021_06_005 crossref_primary_10_1007_s11104_024_06604_y crossref_primary_10_1016_j_chemosphere_2024_142417 crossref_primary_10_1016_j_jhazmat_2021_128100 crossref_primary_10_3389_fpls_2023_1141138 crossref_primary_10_1016_j_ecoenv_2023_115101 crossref_primary_10_3390_antiox10030351 crossref_primary_10_3389_fpls_2020_586547 crossref_primary_10_1007_s00344_018_9860_5 crossref_primary_10_1016_j_chemosphere_2022_133718 crossref_primary_10_1016_j_jhazmat_2019_121806 crossref_primary_10_1016_j_scienta_2021_110340 crossref_primary_10_1007_s11356_023_30646_x crossref_primary_10_1007_s12298_023_01346_0 crossref_primary_10_28955_alinterizbd_741556 crossref_primary_10_1016_j_jhazmat_2021_128170 crossref_primary_10_3390_ijerph17113850 crossref_primary_10_32604_phyton_2021_013657 crossref_primary_10_1016_j_chemosphere_2020_127826 crossref_primary_10_1016_j_envpol_2019_113146 crossref_primary_10_1016_j_jhazmat_2022_129145 crossref_primary_10_1038_s41598_023_49652_7 crossref_primary_10_1016_j_indcrop_2020_112843 crossref_primary_10_1016_j_plaphy_2021_03_044 crossref_primary_10_1016_j_plaphy_2022_01_033 crossref_primary_10_32615_bp_2023_002 crossref_primary_10_1007_s42729_019_00051_w crossref_primary_10_3389_fpls_2021_700413 crossref_primary_10_1016_j_plaphy_2021_12_018 crossref_primary_10_1016_j_ecoenv_2023_115214 crossref_primary_10_1016_j_rhisph_2022_100478 crossref_primary_10_1007_s10646_022_02524_8 crossref_primary_10_1016_j_scienta_2023_112196 crossref_primary_10_1016_j_ecoenv_2017_09_045 crossref_primary_10_3390_agriculture12060848 crossref_primary_10_1016_j_ecoenv_2018_10_049 crossref_primary_10_12677_HJAS_2019_911139 crossref_primary_10_3389_fpls_2018_00516 crossref_primary_10_1016_j_jhazmat_2023_131366 crossref_primary_10_3390_molecules25071702 crossref_primary_10_1016_j_chemosphere_2020_127533 crossref_primary_10_1111_nph_15343 crossref_primary_10_1021_acsami_9b11142 crossref_primary_10_1007_s10340_021_01470_4 crossref_primary_10_3390_plants11233209 crossref_primary_10_1080_03067319_2020_1865334 crossref_primary_10_1016_j_heliyon_2024_e27724 crossref_primary_10_1016_j_plaphy_2019_07_020 crossref_primary_10_1007_s11356_019_04283_2 crossref_primary_10_1016_j_sajb_2020_06_005 crossref_primary_10_1186_s12870_019_2189_9 crossref_primary_10_1016_j_plaphy_2020_10_010 crossref_primary_10_1016_j_jbiotec_2020_04_008 crossref_primary_10_1016_j_indcrop_2022_116065 crossref_primary_10_1007_s43994_024_00145_x crossref_primary_10_1007_s11011_018_0299_y crossref_primary_10_1016_j_scitotenv_2021_149222 crossref_primary_10_3389_fpls_2022_983156 crossref_primary_10_1016_j_chemosphere_2020_127241 crossref_primary_10_1016_j_jes_2022_09_005 crossref_primary_10_1007_s42729_022_00983_w crossref_primary_10_1016_j_scienta_2021_110707 crossref_primary_10_1016_j_ecoenv_2020_110483 crossref_primary_10_3390_plants12213714 crossref_primary_10_1016_j_stress_2023_100323 crossref_primary_10_3389_fpls_2020_545453 crossref_primary_10_1371_journal_pone_0212639 crossref_primary_10_1016_j_plaphy_2021_08_030 crossref_primary_10_3390_plants9101324 crossref_primary_10_1007_s00344_019_09931_y |
Cites_doi | 10.1007/s00299-007-0416-6 10.1093/jxb/eri301 10.1016/j.crvi.2016.08.002 10.1007/s00709-014-0731-z 10.1016/S1671-2927(08)60315-6 10.1016/j.envexpbot.2011.07.002 10.1007/978-94-007-5179-8_8 10.1016/j.proenv.2012.10.041 10.1016/j.jhazmat.2007.10.121 10.1016/j.bbrc.2005.08.263 10.1186/1471-2229-10-225 10.1007/s10535-006-0009-1 10.1016/j.biochi.2006.07.003 10.1080/00103620802292871 10.1071/FP03091 10.1093/oxfordjournals.pcp.a076232 10.1007/s11356-015-4532-5 10.1016/0167-4838(87)90076-8 10.1007/s12011-012-9419-4 10.1371/journal.pone.0114571 10.1016/j.phytochem.2009.12.012 10.1016/j.ecoenv.2015.12.026 10.1016/0003-2697(76)90527-3 10.1016/j.plaphy.2010.08.016 10.1093/oxfordjournals.pcp.a076726 10.1016/j.envpol.2015.12.027 10.1016/j.envexpbot.2016.09.005 10.1007/s11356-016-7295-8 10.1111/ppa.12119 10.1016/j.ecoenv.2013.07.006 10.4161/psb.6.2.14880 10.1007/s11356-015-4187-2 10.1016/j.envexpbot.2016.07.012 10.1111/j.1365-3040.2004.01217.x 10.3389/fpls.2016.01117 10.1080/11263500802633626 10.1016/j.envexpbot.2016.06.012 10.1016/j.plaphy.2013.05.032 10.1016/0003-9861(68)90654-1 10.3389/fpls.2017.00115 10.1007/s11099-007-0038-9 10.3390/ijms160817975 10.1016/j.ecoenv.2016.09.019 10.3390/ijms18010200 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Hasanuzzaman, Nahar, Anee and Fujita. 2017 Hasanuzzaman, Nahar, Anee and Fujita |
Copyright_xml | – notice: Copyright © 2017 Hasanuzzaman, Nahar, Anee and Fujita. 2017 Hasanuzzaman, Nahar, Anee and Fujita |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2017.01061 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_ad8b14cd7a314d2aa7ad579b3b10fbfb 10_3389_fpls_2017_01061 28674552 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBD ECGQY GROUPED_DOAJ GX1 HYE IAO IEA IGS IPNFZ ISR KQ8 M48 M~E NPM OK1 PGMZT RIG RNS RPM AAYXX AFPKN CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c459t-544825a16047e1c51664c1fd867b1f99f100fefa6ce7f8702fbf36d2181da81b3 |
IEDL.DBID | RPM |
ISSN | 1664-462X |
IngestDate | Tue Oct 22 15:14:19 EDT 2024 Tue Sep 17 21:15:57 EDT 2024 Sat Oct 26 04:54:16 EDT 2024 Thu Sep 26 19:06:05 EDT 2024 Sat Nov 02 12:01:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | trace element antioxidant defense plant nutrients heavy metals ROS |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-544825a16047e1c51664c1fd867b1f99f100fefa6ce7f8702fbf36d2181da81b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Rupesh Kailasrao Deshmukh, Laval University, Canada This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science Reviewed by: Amitha Mithra V. Sevanthi, National Research Centre on Plant Biotechnology (NRCPB), India; Sajitha Biju, University of Melbourne, Australia |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5475239/ |
PMID | 28674552 |
PQID | 1915884163 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad8b14cd7a314d2aa7ad579b3b10fbfb pubmedcentral_primary_oai_pubmedcentral_nih_gov_5475239 proquest_miscellaneous_1915884163 crossref_primary_10_3389_fpls_2017_01061 pubmed_primary_28674552 |
PublicationCentury | 2000 |
PublicationDate | 2017-06-19 |
PublicationDateYYYYMMDD | 2017-06-19 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2017 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Gall (B13) 2013 Gill (B15) 2015; 22 Gill (B17) 2010; 48 Yadav (B47) 2005; 337 Jiao-jing (B29) 2009; 8 Yu (B48) 2003; 30 Hasanuzzaman (B21); 149 Tang (B43) 2015; 22 Bradford (B6) 1976; 72 Hasanuzzaman (B22); 8 Sharma (B41) 2007; 26 Debona (B10) 2014; 63 Gill (B16) 2013; 70 Rahman (B38) 2016; 339 Dixon (B11) 2010; 71 Nahar (B33); 126 Wu (B45) 2017; 133 Mourato (B32) 2015; 16 Principato (B36) 1987; 911 Wu (B46) 2016; 131 Islam (B28) 2008; 154 Liu (B31) 2012; 16 Anjum (B5) 2008; 39 Srivastava (B42) 2015; 252 Garg (B14) 2009; 143 Nakano (B35) 1981; 22 Greger (B19) 2016; 211 Ahmad (B2) 2015; 10 Rahman (B39) 2017; 135 Hossain (B25) 1984; 25 Andresen (B3) 2013 Anjum (B4) 2012; 75 Heath (B24) 1968; 125 Gill (B18) 2011; 6 Kabir (B30) 2016; 7 Hasanuzzaman (B23); 18 Farooq (B12) 2013; 96 Wu (B44) 2016; 131 (B1) 2017 Nahar (B34); 23 Hossain (B26) 2006; 50 Chen (B8) 2010; 48 Romero-Puertas (B40) 2004; 27 Qin (B37) 2010; 10 Huang (B27) 2005; 56 Burzyński (B7) 2007; 45 Clemens (B9) 2006; 88 Hasanuzzaman (B20) |
References_xml | – volume: 26 start-page: 2027 year: 2007 ident: B41 article-title: Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic levels of aluminium. publication-title: Plant Cell Rep. doi: 10.1007/s00299-007-0416-6 contributor: fullname: Sharma – volume: 56 start-page: 3041 year: 2005 ident: B27 article-title: Increased sensitivity to salt stress in ascorbate deficient Arabidopsis mutant. publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri301 contributor: fullname: Huang – volume: 339 start-page: 462 year: 2016 ident: B38 article-title: Manganese-induced cadmium stress tolerance in rice seedlings: coordinated action of antioxidant defense, glyoxalase system and nutrient homeostasis. publication-title: C R Biol. doi: 10.1016/j.crvi.2016.08.002 contributor: fullname: Rahman – volume: 252 start-page: 959 year: 2015 ident: B42 article-title: Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. publication-title: Protoplasma doi: 10.1007/s00709-014-0731-z contributor: fullname: Srivastava – volume: 8 start-page: 1075 year: 2009 ident: B29 article-title: Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. publication-title: Agric. Sci. China doi: 10.1016/S1671-2927(08)60315-6 contributor: fullname: Jiao-jing – volume: 75 start-page: 307 year: 2012 ident: B4 article-title: Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2011.07.002 contributor: fullname: Anjum – start-page: 395 year: 2013 ident: B3 article-title: Cadmium toxicity in plants publication-title: Cadmium: from Toxicity to Essentiality. Metal Ions in Life Sciences doi: 10.1007/978-94-007-5179-8_8 contributor: fullname: Andresen – volume: 16 start-page: 293 year: 2012 ident: B31 article-title: The effects of cadmium on germination and seedling growth of Suaeda salsa. publication-title: Proc. Environ. Sci. doi: 10.1016/j.proenv.2012.10.041 contributor: fullname: Liu – volume: 154 start-page: 914 year: 2008 ident: B28 article-title: Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.121 contributor: fullname: Islam – volume: 337 start-page: 61 year: 2005 ident: B47 article-title: Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.08.263 contributor: fullname: Yadav – volume: 10 year: 2010 ident: B37 article-title: Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-10-225 contributor: fullname: Qin – volume: 50 start-page: 210 year: 2006 ident: B26 article-title: Induction of pumpkin glutathione S-transferase by different stresses and its possible mechanisms. publication-title: Biol. Plant. doi: 10.1007/s10535-006-0009-1 contributor: fullname: Hossain – year: 2017 ident: B1 publication-title: XLSTAT v. 2017: Data Analysis and Statistics Software for Microsoft Excel – volume: 88 start-page: 1707 year: 2006 ident: B9 article-title: Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. publication-title: Biochimie doi: 10.1016/j.biochi.2006.07.003 contributor: fullname: Clemens – volume: 39 start-page: 2469 year: 2008 ident: B5 article-title: Responses of components ofnantioxidant system in moongbean genotypes to cadmium stress. publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103620802292871 contributor: fullname: Anjum – volume: 30 start-page: 955 year: 2003 ident: B48 article-title: Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. publication-title: Funct. Plant Biol. doi: 10.1071/FP03091 contributor: fullname: Yu – volume: 22 start-page: 867 year: 1981 ident: B35 article-title: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a076232 contributor: fullname: Nakano – volume: 22 start-page: 10375 year: 2015 ident: B15 article-title: Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4532-5 contributor: fullname: Gill – volume: 911 start-page: 349 year: 1987 ident: B36 article-title: Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats. publication-title: Biochem. Biophys. Acta doi: 10.1016/0167-4838(87)90076-8 contributor: fullname: Principato – volume: 149 start-page: 248 ident: B21 article-title: Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-012-9419-4 contributor: fullname: Hasanuzzaman – volume: 10 year: 2015 ident: B2 article-title: Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. publication-title: PLoS ONE doi: 10.1371/journal.pone.0114571 contributor: fullname: Ahmad – volume: 71 start-page: 338 year: 2010 ident: B11 article-title: Roles for glutathione transferases in plant secondary metabolism. publication-title: Phytochemistry doi: 10.1016/j.phytochem.2009.12.012 contributor: fullname: Dixon – start-page: 121 year: 2013 ident: B13 article-title: The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae publication-title: Brassicaceae: Characterization, Functional Genomics and Health Benefits contributor: fullname: Gall – volume: 126 start-page: 245 ident: B33 article-title: Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense, and methylglyoxal detoxification systems. publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.12.026 contributor: fullname: Nahar – volume: 72 start-page: 248 year: 1976 ident: B6 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 contributor: fullname: Bradford – volume: 48 start-page: 909 year: 2010 ident: B17 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 contributor: fullname: Gill – volume: 25 start-page: 385 year: 1984 ident: B25 article-title: Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. publication-title: Plant Cell Physiol. doi: 10.1093/oxfordjournals.pcp.a076726 contributor: fullname: Hossain – volume: 211 start-page: 90 year: 2016 ident: B19 article-title: Silicate reduces cadmium uptake into cells of wheat. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.12.027 contributor: fullname: Greger – volume: 133 start-page: 1 year: 2017 ident: B45 article-title: Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.09.005 contributor: fullname: Wu – volume: 23 start-page: 21206 ident: B34 article-title: Physiological and biochemical mechanisms of spermine-induced cadmium stress tolerance in mung bean (Vigna radiata L.) seedlings. publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7295-8 contributor: fullname: Nahar – volume: 63 start-page: 581 year: 2014 ident: B10 article-title: The effect of silicon on antioxidant metabolism of wheat leaves infected by Pyricularia oryzae. publication-title: Plant Pathol. doi: 10.1111/ppa.12119 contributor: fullname: Debona – volume: 96 start-page: 242 year: 2013 ident: B12 article-title: Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2013.07.006 contributor: fullname: Farooq – volume: 6 start-page: 215 year: 2011 ident: B18 article-title: Cadmium stress tolerance in crop plants. publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.2.14880 contributor: fullname: Gill – volume: 22 start-page: 9999 year: 2015 ident: B43 article-title: Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4187-2 contributor: fullname: Tang – volume: 131 start-page: 173 year: 2016 ident: B46 article-title: Comparative responses to silicon and selenium in relation to cadmium uptake, compartmentation in roots, and xylem transport in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.07.012 contributor: fullname: Wu – volume: 27 start-page: 1122 year: 2004 ident: B40 article-title: Cd-induced subcellular accumulation of O2- and H2O2 in pea leaves. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2004.01217.x contributor: fullname: Romero-Puertas – volume: 7 year: 2016 ident: B30 article-title: Role of silicon counteracting cadmium toxicity in alfalfa (Medicago sativa L.). publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01117 contributor: fullname: Kabir – volume: 48 start-page: 663 year: 2010 ident: B8 article-title: Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. publication-title: Plant Physiol. Biochem. doi: 10.1007/s11356-016-7295-8 contributor: fullname: Chen – volume: 143 start-page: 8 year: 2009 ident: B14 article-title: ROS generation in plants: boon or bane? publication-title: Plant Biosyst. doi: 10.1080/11263500802633626 contributor: fullname: Garg – volume: 131 start-page: 10 year: 2016 ident: B44 article-title: Silicon-enhanced oxalate exudation contributes to alleviation of cadmium toxicity in wheat. publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.06.012 contributor: fullname: Wu – volume: 70 start-page: 204 year: 2013 ident: B16 article-title: Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.032 contributor: fullname: Gill – volume: 125 start-page: 189 year: 1968 ident: B24 article-title: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 contributor: fullname: Heath – volume: 8 ident: B22 article-title: Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: an intrinsic study on antioxidant defense and glyoxalase systems. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00115 contributor: fullname: Hasanuzzaman – volume: 45 start-page: 239 year: 2007 ident: B7 article-title: Effects of copper and cadmium on photosynthesis in cucumber cotyledons. publication-title: Photosynthetica doi: 10.1007/s11099-007-0038-9 contributor: fullname: Burzyński – start-page: 261 ident: B20 article-title: Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor publication-title: Crop Stress and its Management: Perspectives and Strategies contributor: fullname: Hasanuzzaman – volume: 16 start-page: 17975 year: 2015 ident: B32 article-title: Effect of heavy metals in plants of the genus Brassica. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms160817975 contributor: fullname: Mourato – volume: 135 start-page: 165 year: 2017 ident: B39 article-title: Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.09.019 contributor: fullname: Rahman – volume: 18 ident: B23 article-title: Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18010200 contributor: fullname: Hasanuzzaman |
SSID | ssj0000500997 |
Score | 2.537116 |
Snippet | Cadmium (Cd) brings a devastating health hazard to human being as a serious consequence of agricultural and environmental contamination. We demonstrated the... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1061 |
SubjectTerms | antioxidant defense heavy metals plant nutrients Plant Science ROS trace element |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQ1QMXBJSP8FEZiQOXtHFix_Fxt2q7QhSQlkq9WePYhkhbZ1V2xe4f4HczdrbVLqrEhWsSOc68Sfye4nlDyHsOTWuMU7kCjwJFCZOrxsoc1zZTCyMkb2Pt8MXnenLJP16Jq61WX3FP2GAPPATuGGxjGG-thIpxWwJIsEIqUxlWeONN-voWaktMDa7ekfrIwcsHVZg69vNZdOdm8iipoJ1lKLn130cx_94pubX0nD0mjzackY6GuT4hD1x4SvbHPfK69QH5fbrqB6dVOu1mCGygowUy4WVkkfQE7HW3vM5ji47WWfpl1dnk9U2nqUqEdoGOb5BBI1g0wBxH-XREzZpe9DZ19grf6ejnKD-fTuhXZIu_YE0hWHo-W_erWIOJAyUz6Gfk8uz028kk33RXyFsu1CIXKMxKAawuuHSsFayuecu8bWppmFfKs6LwzkPdOunxrS4x2lVtIyWwgGS3ek72Qh_cS0KRxQASHQS5BO69BdM4X9mGq6oB40xGPtwGW88HEw2N4iPioiMuOuKiEy4ZGUcw7i6L7tfpAOaE3uSE_ldOZOTdLZQa35b4CwSCQxw0qtNYmYskNCMvBmjvblXik3MhyozIHdB35rJ7JnQ_kiO34BIFvXr1Pyb_mjyM4Yjb0Zh6Q_YWN0v3FonPwhymHP8D-d0Gpg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLVgYMEG8abDQ0ZiwSalTuw4XiDUjmamQgwglUqzi-zYHiJ1nNJpNc0P8N3c67QDRV2xTeKHfO6Vz1Hscwl5y3VRGeNUorQHgaKESVRhZQJ7m8mFEZJXeHf47Es-nvJP5-L8TzmgzQJe7ZV2WE9qupj11z_bj5DwH1Bxwn773s9naLzNZD8KnNvkTspBpuM5vg3X74y-kQ3Jzt5nXzv0BS5yyYVIdzap6OW_j4D-e47yr43p5AG5v2GUdNiFwENyy4VH5O6oAdbXPia_jtdN58NKJ_UMYA90uASevEKOSY-0vaxXlwkW8KicpV_XtY1O4HQS75DQOtDRAvg1QEmDnkMvn_vUtPSssbHuV7igw6thcjoZ02_AJa91S3Ww9HTWNmu8oQkdRavoJ2R6cvz9aJxsai8kFRdqmQiQbanQLB9w6VglWJ7zinkLC2SYV8qzwcA7r_PKSQ85n3rjs9wiYbAaqHD2lByEJrjnhALH0UCDIARSzb232hTOZ7bgKiu0caZH3m0Xu5x3FhslSBOEqESISoSojBD1yAjBuPkMvbHjg2ZxUW5SrdS2MIxXVuqMcRhTS22FVCYzbACzhPHebKEsIZfwB4kODnAoQbvivV2gqD3yrIP2ZqhtaPSI3AF9Zy67b0L9I_p1Cy5B7qvD_275gtzDNcATaky9JAfLxcq9Ai60NK9jjP8GubAM7Q priority: 102 providerName: Scholars Portal |
Title | Exogenous Silicon Attenuates Cadmium-Induced Oxidative Stress in Brassica napus L. by Modulating AsA-GSH Pathway and Glyoxalase System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28674552 https://www.proquest.com/docview/1915884163 https://pubmed.ncbi.nlm.nih.gov/PMC5475239 https://doaj.org/article/ad8b14cd7a314d2aa7ad579b3b10fbfb |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhoxFLWSqItuqjZ90aSRK3XRzQBm7PF4CSgBVaWNRCOxG_mZjAQeREGFH8h359rDRCHqqptZzMuWz7V8zsy9xwh9pTLXSlmRCOlAoAimEpEbnsDapjKmGKc61A5PfmbjG_p9xmZHiDW1MDFpX6uy7eeLti_vYm7lcqE7TZ5Y53oyZJSDfhKdY3QMAfpEoteG3oH18NrGBwSY6LjlPBhzE96OAij4_-YZp4z1Dhaj6Nn_L6L5PF_yyQJ09Rq92jNH3K97-AYdWX-KXgwqYHe7t-j-clvVfqt4Ws4BXo_7a-DDm8Al8VCaRblZJGGjDm0N_rUtTXT8xtNYK4JLjwcr4NEAGfZyCW_50cZqhyeVift7-Vvc_9NPRtMxvgbO-FfusPQGj-a7ahsqMeFF0RL6Hbq5uvw9HCf7PRYSTZlYJwzkWY9JknUpt0QzkmVUE2dggBRxQjjS7TrrZKYtdzC3e065NDOBGBgJlDd9j0585e1HhIHLSKA7AHVPUueMVLl1qcmpSHOprGqhb81gF8vaSqMACRIgKgJERYCoiBC10CCA8Xhb8MCOJ6rVbbGPhEKaXBGqDZcpodCm5NIwLlSqSBd6Ce19aaAsYM6EHyHSW8ChAI0a6nOBirbQhxrax6aa0GghfgD6QV8Or0CYRl_ufVh--u8nz9DLMAYhE42Ic3SyXm3sZ-A8a3URvxXAcTQjcJzQ_CJG_QO4kggY |
link.rule.ids | 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGQIIXvgfl00g88JK0buw4fmyrbQXaMakb2ltkx_aIaJ2qtKLlB_C7uXaaaZ14gdc4iZ2c4_hc5d5jhN5TmRVKGREJaSFAEUxFItM8grVNpUwxTgtfOzw-SYfn9NMFu9hDrKmFCUn7hSpjN53FrvwWcivns6Ld5Im1T8cDRjnET6J9C92G-dqh14L02tLb6x5eG_lACCbadj711tyExyEE8g7AWcopY92d5Si49v9Nat7MmLy2BB09QF-bwdeZJ9_j1VLFxa8bvo7__HQP0f2tKMW9uvkR2jPuMbrTr0A4bp6g34frqrZyxZNyCsxxuLcEqb3yMhUPpJ6Vq1nk9wApjMZf1qUOZuJ4EspQcOlwfwESHdiAnZzDXUYxVhs8rnTYOsxd4t6PXnQ8GeJTkKM_5QZLp_HxdFOtfZEn3Ci4TT9F50eHZ4NhtN2-ISooE8uIQeTXZZKkHcoNKRhJU1oQq-HNK2KFsKTTscbKtDDcwmeja5VNUu01h5agppMDtO8qZ54jDDJJgpICFnUltVZLlRmb6IyKJJPKqBb60KCYz2uXjhyiG4997rHPPfZ5wL6F-h7lq9O8vXY4UC0u8y0MudSZIrTQXCaEQp-SS824UIkiHRgl9Peu4UgO09H_Y5HOAA45hL--9BdUbgs9qzlz1VXDuRbiO2zaGctuC3AkWH5vOfHiv698i-4Oz8ajfPTx5PNLdM-_D5_wRsQrtL9crMxrkFZL9SZMpD-xTSdR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgQYgLb9jyNBIHLknrxo7jY1u2W2C7VCorrbhEfi7RtklVWtHyA_jdjJ121a447TVx7NjzOf5GmfkGoQ9UZlopKyIhHTgogqlIZIZHcLaplCnGqfa5w8PTdHBGv5yz851SXyFoX6siLifTuCx-htjK2VQ3t3FizdGwxygH_0k0Z8Y1b6M7sGdb6Y6jXst6e-7DazEfcMNE080mXp6b8Di4QV4FOEs5Zay9dyQF5f7_0c3rUZM7x1D_IfqxnUAdfXIZLxcq1n-uaTveaIaP0IMNOcWdusljdMuWT9DdbgUEcv0U_T1aVbWkKx4XE0BQiTsLoNxLT1dxT5ppsZxGvhaItgZ_WxUmiIrjcUhHwUWJu3Og6oAKXMoZ9HISY7XGw8qEEmLlBe786kTH4wEeAS39LddYlgYfT9bVyid7QkdBdfoZOusffe8Nok0Zh0hTJhYRAw-wzSRJW5RbohlJU6qJM7D6ijghHGm1nHUy1ZY7-Hy0nXJJajz3MBJYdfIcHZRVaQ8RBrokgVEBmtqSOmekyqxLTEZFkkllVQN93Foyn9VqHTl4Od7-ubd_7u2fB_s3UNdb-qqZl9kOF6r5Rb4xRS5NpgjVhsuEUBhTcmkYFypRpAVvCeO93-Ikh23p_7XI0oIdcnCDfQowsN0GelHj5mqoLe4aiO8hau9d9u8AToL09wYXL2_85Dt0b_Spn598Pv36Ct33y-Hj3oh4jQ4W86V9Awxrod6GvfQPzUop0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exogenous+Silicon+Attenuates+Cadmium-Induced+Oxidative+Stress+in+Brassica+napus+L.+by+Modulating+AsA-GSH+Pathway+and+Glyoxalase+System&rft.jtitle=Frontiers+in+plant+science&rft.au=Hasanuzzaman%2C+Mirza&rft.au=Nahar%2C+Kamrun&rft.au=Anee%2C+Taufika+Islam&rft.au=Fujita%2C+Masayuki&rft.date=2017-06-19&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=8&rft_id=info:doi/10.3389%2Ffpls.2017.01061&rft_id=info%3Apmid%2F28674552&rft.externalDBID=PMC5475239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |