Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation

Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault classification is complicated because of lack of relevant training...

Full description

Saved in:
Bibliographic Details
Published inControl engineering practice Vol. 80; pp. 146 - 156
Main Authors Jung, Daniel, Ng, Kok Yew, Frisk, Erik, Krysander, Mattias
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2018
Subjects
Online AccessGet full text
ISSN0967-0661
1873-6939
1873-6939
DOI10.1016/j.conengprac.2018.08.013

Cover

Loading…
Abstract Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault classification is complicated because of lack of relevant training data. This paper proposes a hybrid diagnosis system design which combines model-based residuals with incremental anomaly classifiers. The proposed method is able to identify unknown faults and also classify multiple-faults using only single-fault training data. The proposed method is verified using a physical model and data collected from an internal combustion engine.
AbstractList Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault classification is complicated because of lack of relevant training data. This paper proposes a hybrid diagnosis system design which combines model-based residuals with incremental anomaly classifiers. The proposed method is able to identify unknown faults and also classify multiple-faults using only single-fault training data. The proposed method is verified using a physical model and data collected from an internal combustion engine.
Author Ng, Kok Yew
Frisk, Erik
Jung, Daniel
Krysander, Mattias
Author_xml – sequence: 1
  givenname: Daniel
  surname: Jung
  fullname: Jung, Daniel
  email: daniel.jung@liu.se
  organization: Vehicular Systems, Linköping University, Linköping, Sweden
– sequence: 2
  givenname: Kok Yew
  surname: Ng
  fullname: Ng, Kok Yew
  email: mark.ng@ulster.ac.uk
  organization: School of Engineering, Ulster University, Newtownabbey, BT37 0QB UK
– sequence: 3
  givenname: Erik
  surname: Frisk
  fullname: Frisk, Erik
  email: erik.frisk@liu.se
  organization: Vehicular Systems, Linköping University, Linköping, Sweden
– sequence: 4
  givenname: Mattias
  surname: Krysander
  fullname: Krysander, Mattias
  email: mattias.krysander@liu.se
  organization: Vehicular Systems, Linköping University, Linköping, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151296$$DView record from Swedish Publication Index
BookMark eNqNkNtKAzEQhoMoWKvvsC-wNdnsppsbodYjFLzxcBlmcyhTtklJtopvb2pFwRuFgWFm_v-H-U7IoQ_eElIwOmGUifPVROeFX24i6ElFWTuhuRg_ICPWTnkpJJeHZESlmJZUCHZMTlJa0WyVko3IyzysO_Tol8U6GNuXHSRrCoOw9CFhKsDnCQYoTcRX6_Mc1tC_F7qHlNChjalwIRYOtv1QYAo9DBj8KTly0Cd79tXH5Onm-nF-Vy4ebu_ns0Wp60YOZW1rWls3tZYLLoSsW9YxwaHitHVOM-MqMK5tOi01nbbSQMNFk49dlmtd8TEp97npzW62ndpEXEN8VwFQXeHzTIW4VD1uFWtYJUXWt3u9jiGlaN23g1G1A6pW6geo2gFVNBfj2Xrxy6px-Hx2iID9fwIu9wE2A3nN5FTSaL22BqPVgzIB_w75AGd_nSI
CitedBy_id crossref_primary_10_1016_j_conengprac_2019_104189
crossref_primary_10_1016_j_ifacol_2022_07_116
crossref_primary_10_1016_j_isatra_2022_10_031
crossref_primary_10_1016_j_compind_2021_103401
crossref_primary_10_3390_en13123136
crossref_primary_10_1016_j_conengprac_2021_104914
crossref_primary_10_3390_en14092476
crossref_primary_10_1016_j_engappai_2023_107734
crossref_primary_10_3390_en13010275
crossref_primary_10_1016_j_ejcon_2021_06_014
crossref_primary_10_1016_j_measurement_2020_108655
crossref_primary_10_21303_2461_4262_2022_002701
crossref_primary_10_1016_j_ress_2023_109108
crossref_primary_10_1016_j_eswa_2022_119116
crossref_primary_10_1016_j_paerosci_2024_101008
crossref_primary_10_1088_1361_6501_ad42c4
crossref_primary_10_1109_TSG_2023_3325276
crossref_primary_10_1155_2020_4531075
crossref_primary_10_3390_s19081949
crossref_primary_10_3390_app11146525
crossref_primary_10_1016_j_conengprac_2025_106283
crossref_primary_10_1109_TCST_2020_2997648
crossref_primary_10_1016_j_ifacol_2022_07_097
crossref_primary_10_1002_eng2_12060
crossref_primary_10_1016_j_ifacol_2019_09_046
crossref_primary_10_3390_app11093776
crossref_primary_10_3390_s22072635
crossref_primary_10_1016_j_ifacol_2022_10_266
crossref_primary_10_3390_s23094418
crossref_primary_10_1088_1361_6501_ad3976
crossref_primary_10_1007_s00170_021_08047_6
crossref_primary_10_3233_JIFS_213075
crossref_primary_10_1016_j_conengprac_2024_106037
crossref_primary_10_1080_00051144_2022_2142924
crossref_primary_10_1016_j_conengprac_2022_105402
crossref_primary_10_1016_j_measurement_2022_111602
crossref_primary_10_1016_j_conengprac_2021_104910
crossref_primary_10_1016_j_psep_2021_08_008
crossref_primary_10_1016_j_conengprac_2021_105006
crossref_primary_10_1016_j_ifacol_2023_10_1410
crossref_primary_10_1016_j_ifacol_2020_12_859
crossref_primary_10_1016_j_ifacol_2024_07_186
crossref_primary_10_1080_1448837X_2021_2023074
crossref_primary_10_1109_TII_2023_3299111
crossref_primary_10_1109_ACCESS_2023_3265722
crossref_primary_10_1109_TIM_2022_3227609
crossref_primary_10_1016_j_conengprac_2021_105020
crossref_primary_10_1016_j_ifacol_2022_07_183
Cites_doi 10.1109/PHM.2012.6228850
10.1016/S0098-1354(02)00162-X
10.1016/j.conengprac.2013.02.012
10.1016/j.engappai.2011.02.018
10.1109/SYSTOL.2016.7739747
10.1109/COASE.2009.5234108
10.1145/1541880.1541882
10.2516/ogst:2007042
10.1016/j.ifacol.2017.08.504
10.1023/B:MACH.0000008084.60811.49
10.1109/TIE.2014.2301773
10.1109/TSMC.2013.2258906
10.1016/j.patcog.2016.11.026
10.1109/TSMCB.2004.835010
10.1016/S0098-1354(02)00160-6
10.3182/20110828-6-IT-1002.02842
10.1016/j.arcontrol.2016.09.008
10.1007/BF02985802
10.1016/j.engappai.2018.02.014
10.1016/j.ifacol.2015.09.703
10.1016/j.knosys.2017.02.023
10.1109/TSMCA.2009.2034481
10.1109/ACCESS.2015.2422833
10.1016/0004-3702(87)90062-2
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1016/j.conengprac.2018.08.013
DatabaseName CrossRef
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-6939
EndPage 156
ExternalDocumentID oai_DiVA_org_liu_151296
10_1016_j_conengprac_2018_08_013
S0967066118304404
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
UNMZH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ABXSW
ADTPV
AOWAS
D8T
DG8
EFKBS
ZZAVC
ID FETCH-LOGICAL-c459t-4e404ef7ee363669481b163a2308ffc1df2adf85bc9c0789da5365308b636cc23
IEDL.DBID .~1
ISSN 0967-0661
1873-6939
IngestDate Thu Aug 21 06:38:04 EDT 2025
Tue Jul 01 00:39:03 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
Fri Feb 23 02:35:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Fault isolation
Artificial intelligence
Machine learning
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-4e404ef7ee363669481b163a2308ffc1df2adf85bc9c0789da5365308b636cc23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151296
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_liu_151296
crossref_primary_10_1016_j_conengprac_2018_08_013
crossref_citationtrail_10_1016_j_conengprac_2018_08_013
elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_08_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Control engineering practice
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ding, S., Zhang, P., Jeinsch, T., Ding, E., Engel, P., & Gui, W. (2011). A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis. In
Theissler (b27) 2017; 123
Venkatasubramanian, Rengaswamy, Yin, Kavuri (b32) 2003; 27
Chen, C., & Pecht, M. (2012). Prognostics of lithium-ion batteries using model-based and data-driven methods. In
Reiter (b19) 1987; 32
Sankavaram, C., Pattipati, B., Kodali, A., Pattipati, K., Azam, M., & Kumar, S., et al. (2009). Model-based and data-driven prognosis of automotive and electronic systems. In
Toulouse, France.
Loboda, Yepifanov (b15) 2010
Luo, Namburu, Pattipati, Qiao, Chigusa (b16) 2010; 40
Cheng, Wang, Xu (b4) 2016; 63
Shashoa, Kvaščev, Marjanović, Djurović (b23) 2013; 21
Van Der Maaten (b30) 2014; 15
(pp. 12380–12388).
Jung, Khorasgani, Frisk, Krysander, Biswas (b12) 2015; 48
Venkatasubramanian, Rengaswamy, Kavuri, Yin (b31) 2003; 27
Jung, D., Ng, K., Frisk, E., & Krysander, M. (2016). A combined diagnosis system design using model-based and data-driven methods. In
Eriksson, L., Frei, S., Onder, C., & Guzzella, L. (2002). Control and optimization of turbo charged spark ignited engines. In
(pp. 177–182).
Chandola, Banerjee, Kumar (b2) 2009; 41
Svärd, Nyberg, Frisk (b24) 2013; 43
Hastie, Tibshirani, Friedman, Franklin (b11) 2005; 27
Pucel, X., Mayer, W., & Stumptner, M. (2009). Diagnosability analysis without fault models. In
Jung, Sundström (b14) 2017; PP
(pp. 96–101).
Tax, Duin (b26) 2004; 54
Tidriri, Tiplica, Chatti, Verron (b29) 2018; 71
Tax, D. (2015). DDtools, the Data Description Toolbox for Matlab, version 2.1.2.
.
Pernestål, Nyberg, Warnquist (b17) 2012; 25
Yin, Ding, Xie, Luo (b33) 2014; 61
Frisk, E., Krysander, M., & Jung, D. (2017). A toolbox for analysis and design of model based diagnosis systems for large scale models. In
Basseville, Nikiforov (b1) 1993
Cordier, Dague, Levy, Montmain, Staroswiecki, Trave-Massuyes (b5) 2004; 34
Eriksson (b8) 2007; 62
Sankavaram, Kodali, Pattipati, Singh (b20) 2015; 3
Dong, Shulin, Zhang (b7) 2017; 64
Tidriri, Chatti, Verron, Tiplica (b28) 2016; 42
(pp. 67–74).
Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b22) 1999
Cheng (10.1016/j.conengprac.2018.08.013_b4) 2016; 63
10.1016/j.conengprac.2018.08.013_b18
Yin (10.1016/j.conengprac.2018.08.013_b33) 2014; 61
Venkatasubramanian (10.1016/j.conengprac.2018.08.013_b31) 2003; 27
Tidriri (10.1016/j.conengprac.2018.08.013_b29) 2018; 71
Jung (10.1016/j.conengprac.2018.08.013_b12) 2015; 48
Svärd (10.1016/j.conengprac.2018.08.013_b24) 2013; 43
Theissler (10.1016/j.conengprac.2018.08.013_b27) 2017; 123
Basseville (10.1016/j.conengprac.2018.08.013_b1) 1993
Cordier (10.1016/j.conengprac.2018.08.013_b5) 2004; 34
Tax (10.1016/j.conengprac.2018.08.013_b26) 2004; 54
10.1016/j.conengprac.2018.08.013_b10
Shashoa (10.1016/j.conengprac.2018.08.013_b23) 2013; 21
Dong (10.1016/j.conengprac.2018.08.013_b7) 2017; 64
Hastie (10.1016/j.conengprac.2018.08.013_b11) 2005; 27
10.1016/j.conengprac.2018.08.013_b13
Chandola (10.1016/j.conengprac.2018.08.013_b2) 2009; 41
Loboda (10.1016/j.conengprac.2018.08.013_b15) 2010
Schölkopf (10.1016/j.conengprac.2018.08.013_b22) 1999
Tidriri (10.1016/j.conengprac.2018.08.013_b28) 2016; 42
Van Der Maaten (10.1016/j.conengprac.2018.08.013_b30) 2014; 15
Venkatasubramanian (10.1016/j.conengprac.2018.08.013_b32) 2003; 27
Sankavaram (10.1016/j.conengprac.2018.08.013_b20) 2015; 3
Jung (10.1016/j.conengprac.2018.08.013_b14) 2017; PP
10.1016/j.conengprac.2018.08.013_b3
10.1016/j.conengprac.2018.08.013_b9
10.1016/j.conengprac.2018.08.013_b6
Reiter (10.1016/j.conengprac.2018.08.013_b19) 1987; 32
Luo (10.1016/j.conengprac.2018.08.013_b16) 2010; 40
10.1016/j.conengprac.2018.08.013_b21
Pernestål (10.1016/j.conengprac.2018.08.013_b17) 2012; 25
10.1016/j.conengprac.2018.08.013_b25
Eriksson (10.1016/j.conengprac.2018.08.013_b8) 2007; 62
References_xml – reference: Chen, C., & Pecht, M. (2012). Prognostics of lithium-ion batteries using model-based and data-driven methods. In
– start-page: 257
  year: 2010
  end-page: 265
  ident: b15
  article-title: A mixed data-driven and model based fault classification for gas turbine diagnosis
  publication-title: Asme turbo expo: Power for land, sea, and air
– volume: 15
  start-page: 3221
  year: 2014
  end-page: 3245
  ident: b30
  article-title: Accelerating t-sne using tree-based algorithms
  publication-title: Journal of Machine Learning Research
– reference: Pucel, X., Mayer, W., & Stumptner, M. (2009). Diagnosability analysis without fault models. In
– reference: (pp. 67–74).
– volume: 34
  start-page: 2163
  year: 2004
  end-page: 2177
  ident: b5
  article-title: Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives
  publication-title: IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics
– reference: . Toulouse, France.
– reference: (pp. 12380–12388).
– volume: 42
  start-page: 63
  year: 2016
  end-page: 81
  ident: b28
  article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges
  publication-title: Annual Reviews in Control
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: b33
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 32
  start-page: 57
  year: 1987
  end-page: 95
  ident: b19
  article-title: A theory of diagnosis from first principles
  publication-title: Artificial Intelligence
– volume: 63
  start-page: 2403
  year: 2016
  end-page: 2413
  ident: b4
  article-title: A combined model-based and intelligent method for small fault detection and isolation of actuators
  publication-title: IEEE Transactions on Industrial Electronics
– start-page: 582
  year: 1999
  end-page: 588
  ident: b22
  article-title: Support vector method for novelty detection
  publication-title: NIPS, vol. 12
– volume: 48
  start-page: 1289
  year: 2015
  end-page: 1296
  ident: b12
  article-title: Analysis of fault isolation assumptions when comparing model-based design approaches of diagnosis systems
  publication-title: IFAC-PapersOnLine
– reference: (pp. 96–101).
– volume: 71
  start-page: 73
  year: 2018
  end-page: 86
  ident: b29
  article-title: A generic framework for decision fusion in fault detection and diagnosis
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 3
  start-page: 407
  year: 2015
  end-page: 419
  ident: b20
  article-title: Incremental classifiers for data-driven fault diagnosis applied to automotive systems
  publication-title: IEEE Access
– reference: Tax, D. (2015). DDtools, the Data Description Toolbox for Matlab, version 2.1.2.
– volume: PP
  start-page: 1
  year: 2017
  end-page: 15
  ident: b14
  article-title: A combined data-driven and model-based residual selection algorithm for fault detection and isolation
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 27
  start-page: 83
  year: 2005
  end-page: 85
  ident: b11
  article-title: The elements of statistical learning: Data mining, inference and prediction
  publication-title: The Mathematical Intelligencer
– volume: 27
  start-page: 293
  year: 2003
  end-page: 311
  ident: b32
  article-title: A review of process fault detection and diagnosis: Part i: Quantitative model-based methods
  publication-title: Computers & Chemical Engineering
– volume: 21
  start-page: 908
  year: 2013
  end-page: 916
  ident: b23
  article-title: Sensor fault detection and isolation in a thermal power plant steam separator
  publication-title: Control Engineering Practice
– volume: 40
  start-page: 321
  year: 2010
  end-page: 336
  ident: b16
  article-title: Integrated model-based and data-driven diagnosis of automotive antilock braking systems
  publication-title: IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans)
– volume: 123
  start-page: 163
  year: 2017
  end-page: 173
  ident: b27
  article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection
  publication-title: Knowledge-Based Systems
– volume: 62
  start-page: 523
  year: 2007
  end-page: 538
  ident: b8
  article-title: Modeling and control of turbocharged si and di engines
  publication-title: OGST-Revue de L’IFP
– year: 1993
  ident: b1
  article-title: Detection of abrupt changes: Theory and application, vol. 104
– reference: .
– reference: Eriksson, L., Frei, S., Onder, C., & Guzzella, L. (2002). Control and optimization of turbo charged spark ignited engines. In
– volume: 25
  start-page: 705
  year: 2012
  end-page: 719
  ident: b17
  article-title: Modeling and inference for troubleshooting with interventions applied to a heavy truck auxiliary braking system
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 43
  start-page: 1354
  year: 2013
  end-page: 1369
  ident: b24
  article-title: Realizability constrained selection of residual generators for fault diagnosis with an automotive engine application
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 41
  start-page: 15
  year: 2009
  ident: b2
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys (CSUR)
– reference: Ding, S., Zhang, P., Jeinsch, T., Ding, E., Engel, P., & Gui, W. (2011). A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis. In
– volume: 64
  start-page: 374
  year: 2017
  end-page: 385
  ident: b7
  article-title: A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples
  publication-title: Pattern Recognition
– reference: Sankavaram, C., Pattipati, B., Kodali, A., Pattipati, K., Azam, M., & Kumar, S., et al. (2009). Model-based and data-driven prognosis of automotive and electronic systems. In
– reference: (pp. 177–182).
– reference: Frisk, E., Krysander, M., & Jung, D. (2017). A toolbox for analysis and design of model based diagnosis systems for large scale models. In
– reference: Jung, D., Ng, K., Frisk, E., & Krysander, M. (2016). A combined diagnosis system design using model-based and data-driven methods. In
– volume: 54
  start-page: 45
  year: 2004
  end-page: 66
  ident: b26
  article-title: Support vector data description
  publication-title: Machine Learning
– volume: 27
  start-page: 327
  year: 2003
  end-page: 346
  ident: b31
  article-title: A review of process fault detection and diagnosis: Part iii: Process history based methods
  publication-title: Computers & Chemical Engineering
– ident: 10.1016/j.conengprac.2018.08.013_b3
  doi: 10.1109/PHM.2012.6228850
– volume: 27
  start-page: 327
  issue: 3
  year: 2003
  ident: 10.1016/j.conengprac.2018.08.013_b31
  article-title: A review of process fault detection and diagnosis: Part iii: Process history based methods
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/S0098-1354(02)00162-X
– volume: 21
  start-page: 908
  issue: 7
  year: 2013
  ident: 10.1016/j.conengprac.2018.08.013_b23
  article-title: Sensor fault detection and isolation in a thermal power plant steam separator
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2013.02.012
– volume: 25
  start-page: 705
  issue: 4
  year: 2012
  ident: 10.1016/j.conengprac.2018.08.013_b17
  article-title: Modeling and inference for troubleshooting with interventions applied to a heavy truck auxiliary braking system
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2011.02.018
– ident: 10.1016/j.conengprac.2018.08.013_b13
  doi: 10.1109/SYSTOL.2016.7739747
– ident: 10.1016/j.conengprac.2018.08.013_b21
  doi: 10.1109/COASE.2009.5234108
– start-page: 257
  year: 2010
  ident: 10.1016/j.conengprac.2018.08.013_b15
  article-title: A mixed data-driven and model based fault classification for gas turbine diagnosis
– start-page: 582
  year: 1999
  ident: 10.1016/j.conengprac.2018.08.013_b22
  article-title: Support vector method for novelty detection
– volume: 41
  start-page: 15
  issue: 3
  year: 2009
  ident: 10.1016/j.conengprac.2018.08.013_b2
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/1541880.1541882
– volume: 63
  start-page: 2403
  issue: 4
  year: 2016
  ident: 10.1016/j.conengprac.2018.08.013_b4
  article-title: A combined model-based and intelligent method for small fault detection and isolation of actuators
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 62
  start-page: 523
  issue: 4
  year: 2007
  ident: 10.1016/j.conengprac.2018.08.013_b8
  article-title: Modeling and control of turbocharged si and di engines
  publication-title: OGST-Revue de L’IFP
  doi: 10.2516/ogst:2007042
– ident: 10.1016/j.conengprac.2018.08.013_b10
  doi: 10.1016/j.ifacol.2017.08.504
– volume: 54
  start-page: 45
  issue: 1
  year: 2004
  ident: 10.1016/j.conengprac.2018.08.013_b26
  article-title: Support vector data description
  publication-title: Machine Learning
  doi: 10.1023/B:MACH.0000008084.60811.49
– volume: 61
  start-page: 6418
  issue: 11
  year: 2014
  ident: 10.1016/j.conengprac.2018.08.013_b33
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2014.2301773
– volume: 43
  start-page: 1354
  issue: 6
  year: 2013
  ident: 10.1016/j.conengprac.2018.08.013_b24
  article-title: Realizability constrained selection of residual generators for fault diagnosis with an automotive engine application
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2013.2258906
– volume: 64
  start-page: 374
  year: 2017
  ident: 10.1016/j.conengprac.2018.08.013_b7
  article-title: A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.11.026
– volume: 34
  start-page: 2163
  issue: 5
  year: 2004
  ident: 10.1016/j.conengprac.2018.08.013_b5
  article-title: Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives
  publication-title: IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/TSMCB.2004.835010
– volume: 27
  start-page: 293
  issue: 3
  year: 2003
  ident: 10.1016/j.conengprac.2018.08.013_b32
  article-title: A review of process fault detection and diagnosis: Part i: Quantitative model-based methods
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/S0098-1354(02)00160-6
– volume: PP
  start-page: 1
  issue: 99
  year: 2017
  ident: 10.1016/j.conengprac.2018.08.013_b14
  article-title: A combined data-driven and model-based residual selection algorithm for fault detection and isolation
  publication-title: IEEE Transactions on Control Systems Technology
– year: 1993
  ident: 10.1016/j.conengprac.2018.08.013_b1
– ident: 10.1016/j.conengprac.2018.08.013_b9
– ident: 10.1016/j.conengprac.2018.08.013_b6
  doi: 10.3182/20110828-6-IT-1002.02842
– volume: 42
  start-page: 63
  year: 2016
  ident: 10.1016/j.conengprac.2018.08.013_b28
  article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2016.09.008
– volume: 27
  start-page: 83
  issue: 2
  year: 2005
  ident: 10.1016/j.conengprac.2018.08.013_b11
  article-title: The elements of statistical learning: Data mining, inference and prediction
  publication-title: The Mathematical Intelligencer
  doi: 10.1007/BF02985802
– ident: 10.1016/j.conengprac.2018.08.013_b18
– volume: 71
  start-page: 73
  year: 2018
  ident: 10.1016/j.conengprac.2018.08.013_b29
  article-title: A generic framework for decision fusion in fault detection and diagnosis
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2018.02.014
– volume: 48
  start-page: 1289
  issue: 21
  year: 2015
  ident: 10.1016/j.conengprac.2018.08.013_b12
  article-title: Analysis of fault isolation assumptions when comparing model-based design approaches of diagnosis systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.09.703
– volume: 123
  start-page: 163
  year: 2017
  ident: 10.1016/j.conengprac.2018.08.013_b27
  article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.02.023
– volume: 40
  start-page: 321
  issue: 2
  year: 2010
  ident: 10.1016/j.conengprac.2018.08.013_b16
  article-title: Integrated model-based and data-driven diagnosis of automotive antilock braking systems
  publication-title: IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans)
  doi: 10.1109/TSMCA.2009.2034481
– volume: 15
  start-page: 3221
  issue: 1
  year: 2014
  ident: 10.1016/j.conengprac.2018.08.013_b30
  article-title: Accelerating t-sne using tree-based algorithms
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 407
  year: 2015
  ident: 10.1016/j.conengprac.2018.08.013_b20
  article-title: Incremental classifiers for data-driven fault diagnosis applied to automotive systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2422833
– ident: 10.1016/j.conengprac.2018.08.013_b25
– volume: 32
  start-page: 57
  issue: 1
  year: 1987
  ident: 10.1016/j.conengprac.2018.08.013_b19
  article-title: A theory of diagnosis from first principles
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(87)90062-2
SSID ssj0016991
Score 2.4759839
Snippet Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 146
SubjectTerms Artificial intelligence
Classification
Fault diagnosis
Fault isolation
Machine learning
Title Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation
URI https://dx.doi.org/10.1016/j.conengprac.2018.08.013
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151296
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BTlo_KA2ExJnMSJmKpCVUB0gUI3y7HjKii0VUkHFn47d0layoBUidGJLUd3zt2zdPceIecIiiOtfRZYY5kXOpapUCjmeka7Sli4FWE38mM_6A28-6E_rJHOohcGyyqr2F_G9CJaV09alTVb0zRtPQH4FpAwASFz1E1GTlDPE8iff_m1LPNwgqhUzYPJ2G3vVNU8ZY0XXDmT8Qj7kbDIKyzIPB3-Z4pa5RIt8k93h2xXwJG2y2_bJbVkvEe2VugE98kr_NxxIfhAC4EbhinKUFNW06UfVI1hpHLFzAyDHIwn7yr7pBohdGpRFZsCiKVWzbOcpnAsC78dkEH39rnTY5VwAtOeH-XMS8AciRVJwgMeBEjIEgPuUnDdCK3VjrGuMjb0Yx1ppJs3yueBDy9jmK61yw9JfQymOSLUWG6ViWIT89DTvlDulY1CIzQAQ-H4tkHEwlZSV6ziKG6RyUX52Jv8sbJEK0vUvXR4gzjLldOSWWONNdcLd8hfp0RCAlhj9UXpweV-yK19k7605WQ2klk6lwX-CY7_tc0J2cRR2bB4Sur5bJ6cAXLJ42ZxNJtko3330Ot_A9718Vc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMCAeIo3HhCbKYnjOBFTVUDl0S5QYLMcO66CSqlKOrDw27lL0gIDUiXGxLYcnS93n6W77yPkGEFxbIxgobOOBZHnmI6kZn5gja-lg1sRdiO3O2GrG9w8i-c50pz0wmBZZRX7y5heROvqTb2yZn2YZfV7AN8SEiYgZI66ycE8WQgEl-jap5_TOg8vjEvZPJiN7fZeVc5TFnnBnTMd9LAhCau8ooLN0-N_5qifZKJFArpaJSsVcqSN8uPWyFw6WCfLP_gEN8gT_N1JofhAC4UbhjnKUluW02XvVA_gSeea2RFGOXh-e9X9D2oQQ2cOZbEpoFjq9Lif0wz8sji4TdK9unxotlilnMBMIOKcBSnYI3UyTXnIwxAZWRIAXhruG5FzxrPO19ZFIjGxQb55qwUPBQwmMN0Yn2-R2gBMs02oddxpGyc24VFghNT-mYsjKw0gQ-kJt0PkxFbKVLTiqG7RV5P6sRf1bWWFVlYofOnxHeJNVw5Lao0Z1pxPjkP9chMFGWCG1SflCU73Q3Lti-yxod5GPdXPxqoAQOHuv7Y5Iouth_adurvu3O6RJRwpuxf3SS0fjdMDgDF5cli46Rd5ufLt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+model-based+diagnosis+and+data-driven+anomaly+classifiers+for+fault+isolation&rft.jtitle=Control+engineering+practice&rft.au=Jung%2C+Daniel&rft.au=Ng%2C+Kok+Yew&rft.au=Frisk%2C+Erik&rft.au=Krysander%2C+Mattias&rft.date=2018-11-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=80&rft.spage=146&rft.epage=156&rft_id=info:doi/10.1016%2Fj.conengprac.2018.08.013&rft.externalDocID=S0967066118304404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon