Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation
Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault classification is complicated because of lack of relevant training...
Saved in:
Published in | Control engineering practice Vol. 80; pp. 146 - 156 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0967-0661 1873-6939 1873-6939 |
DOI | 10.1016/j.conengprac.2018.08.013 |
Cover
Loading…
Abstract | Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault classification is complicated because of lack of relevant training data. This paper proposes a hybrid diagnosis system design which combines model-based residuals with incremental anomaly classifiers. The proposed method is able to identify unknown faults and also classify multiple-faults using only single-fault training data. The proposed method is verified using a physical model and data collected from an internal combustion engine. |
---|---|
AbstractList | Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications such as fault diagnosis, faults are rare events and learning models for fault classification is complicated because of lack of relevant training data. This paper proposes a hybrid diagnosis system design which combines model-based residuals with incremental anomaly classifiers. The proposed method is able to identify unknown faults and also classify multiple-faults using only single-fault training data. The proposed method is verified using a physical model and data collected from an internal combustion engine. |
Author | Ng, Kok Yew Frisk, Erik Jung, Daniel Krysander, Mattias |
Author_xml | – sequence: 1 givenname: Daniel surname: Jung fullname: Jung, Daniel email: daniel.jung@liu.se organization: Vehicular Systems, Linköping University, Linköping, Sweden – sequence: 2 givenname: Kok Yew surname: Ng fullname: Ng, Kok Yew email: mark.ng@ulster.ac.uk organization: School of Engineering, Ulster University, Newtownabbey, BT37 0QB UK – sequence: 3 givenname: Erik surname: Frisk fullname: Frisk, Erik email: erik.frisk@liu.se organization: Vehicular Systems, Linköping University, Linköping, Sweden – sequence: 4 givenname: Mattias surname: Krysander fullname: Krysander, Mattias email: mattias.krysander@liu.se organization: Vehicular Systems, Linköping University, Linköping, Sweden |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151296$$DView record from Swedish Publication Index |
BookMark | eNqNkNtKAzEQhoMoWKvvsC-wNdnsppsbodYjFLzxcBlmcyhTtklJtopvb2pFwRuFgWFm_v-H-U7IoQ_eElIwOmGUifPVROeFX24i6ElFWTuhuRg_ICPWTnkpJJeHZESlmJZUCHZMTlJa0WyVko3IyzysO_Tol8U6GNuXHSRrCoOw9CFhKsDnCQYoTcRX6_Mc1tC_F7qHlNChjalwIRYOtv1QYAo9DBj8KTly0Cd79tXH5Onm-nF-Vy4ebu_ns0Wp60YOZW1rWls3tZYLLoSsW9YxwaHitHVOM-MqMK5tOi01nbbSQMNFk49dlmtd8TEp97npzW62ndpEXEN8VwFQXeHzTIW4VD1uFWtYJUXWt3u9jiGlaN23g1G1A6pW6geo2gFVNBfj2Xrxy6px-Hx2iID9fwIu9wE2A3nN5FTSaL22BqPVgzIB_w75AGd_nSI |
CitedBy_id | crossref_primary_10_1016_j_conengprac_2019_104189 crossref_primary_10_1016_j_ifacol_2022_07_116 crossref_primary_10_1016_j_isatra_2022_10_031 crossref_primary_10_1016_j_compind_2021_103401 crossref_primary_10_3390_en13123136 crossref_primary_10_1016_j_conengprac_2021_104914 crossref_primary_10_3390_en14092476 crossref_primary_10_1016_j_engappai_2023_107734 crossref_primary_10_3390_en13010275 crossref_primary_10_1016_j_ejcon_2021_06_014 crossref_primary_10_1016_j_measurement_2020_108655 crossref_primary_10_21303_2461_4262_2022_002701 crossref_primary_10_1016_j_ress_2023_109108 crossref_primary_10_1016_j_eswa_2022_119116 crossref_primary_10_1016_j_paerosci_2024_101008 crossref_primary_10_1088_1361_6501_ad42c4 crossref_primary_10_1109_TSG_2023_3325276 crossref_primary_10_1155_2020_4531075 crossref_primary_10_3390_s19081949 crossref_primary_10_3390_app11146525 crossref_primary_10_1016_j_conengprac_2025_106283 crossref_primary_10_1109_TCST_2020_2997648 crossref_primary_10_1016_j_ifacol_2022_07_097 crossref_primary_10_1002_eng2_12060 crossref_primary_10_1016_j_ifacol_2019_09_046 crossref_primary_10_3390_app11093776 crossref_primary_10_3390_s22072635 crossref_primary_10_1016_j_ifacol_2022_10_266 crossref_primary_10_3390_s23094418 crossref_primary_10_1088_1361_6501_ad3976 crossref_primary_10_1007_s00170_021_08047_6 crossref_primary_10_3233_JIFS_213075 crossref_primary_10_1016_j_conengprac_2024_106037 crossref_primary_10_1080_00051144_2022_2142924 crossref_primary_10_1016_j_conengprac_2022_105402 crossref_primary_10_1016_j_measurement_2022_111602 crossref_primary_10_1016_j_conengprac_2021_104910 crossref_primary_10_1016_j_psep_2021_08_008 crossref_primary_10_1016_j_conengprac_2021_105006 crossref_primary_10_1016_j_ifacol_2023_10_1410 crossref_primary_10_1016_j_ifacol_2020_12_859 crossref_primary_10_1016_j_ifacol_2024_07_186 crossref_primary_10_1080_1448837X_2021_2023074 crossref_primary_10_1109_TII_2023_3299111 crossref_primary_10_1109_ACCESS_2023_3265722 crossref_primary_10_1109_TIM_2022_3227609 crossref_primary_10_1016_j_conengprac_2021_105020 crossref_primary_10_1016_j_ifacol_2022_07_183 |
Cites_doi | 10.1109/PHM.2012.6228850 10.1016/S0098-1354(02)00162-X 10.1016/j.conengprac.2013.02.012 10.1016/j.engappai.2011.02.018 10.1109/SYSTOL.2016.7739747 10.1109/COASE.2009.5234108 10.1145/1541880.1541882 10.2516/ogst:2007042 10.1016/j.ifacol.2017.08.504 10.1023/B:MACH.0000008084.60811.49 10.1109/TIE.2014.2301773 10.1109/TSMC.2013.2258906 10.1016/j.patcog.2016.11.026 10.1109/TSMCB.2004.835010 10.1016/S0098-1354(02)00160-6 10.3182/20110828-6-IT-1002.02842 10.1016/j.arcontrol.2016.09.008 10.1007/BF02985802 10.1016/j.engappai.2018.02.014 10.1016/j.ifacol.2015.09.703 10.1016/j.knosys.2017.02.023 10.1109/TSMCA.2009.2034481 10.1109/ACCESS.2015.2422833 10.1016/0004-3702(87)90062-2 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.1016/j.conengprac.2018.08.013 |
DatabaseName | CrossRef SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-6939 |
EndPage | 156 |
ExternalDocumentID | oai_DiVA_org_liu_151296 10_1016_j_conengprac_2018_08_013 S0967066118304404 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K UNMZH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ABXSW ADTPV AOWAS D8T DG8 EFKBS ZZAVC |
ID | FETCH-LOGICAL-c459t-4e404ef7ee363669481b163a2308ffc1df2adf85bc9c0789da5365308b636cc23 |
IEDL.DBID | .~1 |
ISSN | 0967-0661 1873-6939 |
IngestDate | Thu Aug 21 06:38:04 EDT 2025 Tue Jul 01 00:39:03 EDT 2025 Thu Apr 24 23:06:20 EDT 2025 Fri Feb 23 02:35:44 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Fault isolation Artificial intelligence Machine learning Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-4e404ef7ee363669481b163a2308ffc1df2adf85bc9c0789da5365308b636cc23 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151296 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_151296 crossref_primary_10_1016_j_conengprac_2018_08_013 crossref_citationtrail_10_1016_j_conengprac_2018_08_013 elsevier_sciencedirect_doi_10_1016_j_conengprac_2018_08_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Control engineering practice |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ding, S., Zhang, P., Jeinsch, T., Ding, E., Engel, P., & Gui, W. (2011). A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis. In Theissler (b27) 2017; 123 Venkatasubramanian, Rengaswamy, Yin, Kavuri (b32) 2003; 27 Chen, C., & Pecht, M. (2012). Prognostics of lithium-ion batteries using model-based and data-driven methods. In Reiter (b19) 1987; 32 Sankavaram, C., Pattipati, B., Kodali, A., Pattipati, K., Azam, M., & Kumar, S., et al. (2009). Model-based and data-driven prognosis of automotive and electronic systems. In Toulouse, France. Loboda, Yepifanov (b15) 2010 Luo, Namburu, Pattipati, Qiao, Chigusa (b16) 2010; 40 Cheng, Wang, Xu (b4) 2016; 63 Shashoa, Kvaščev, Marjanović, Djurović (b23) 2013; 21 Van Der Maaten (b30) 2014; 15 (pp. 12380–12388). Jung, Khorasgani, Frisk, Krysander, Biswas (b12) 2015; 48 Venkatasubramanian, Rengaswamy, Kavuri, Yin (b31) 2003; 27 Jung, D., Ng, K., Frisk, E., & Krysander, M. (2016). A combined diagnosis system design using model-based and data-driven methods. In Eriksson, L., Frei, S., Onder, C., & Guzzella, L. (2002). Control and optimization of turbo charged spark ignited engines. In (pp. 177–182). Chandola, Banerjee, Kumar (b2) 2009; 41 Svärd, Nyberg, Frisk (b24) 2013; 43 Hastie, Tibshirani, Friedman, Franklin (b11) 2005; 27 Pucel, X., Mayer, W., & Stumptner, M. (2009). Diagnosability analysis without fault models. In Jung, Sundström (b14) 2017; PP (pp. 96–101). Tax, Duin (b26) 2004; 54 Tidriri, Tiplica, Chatti, Verron (b29) 2018; 71 Tax, D. (2015). DDtools, the Data Description Toolbox for Matlab, version 2.1.2. . Pernestål, Nyberg, Warnquist (b17) 2012; 25 Yin, Ding, Xie, Luo (b33) 2014; 61 Frisk, E., Krysander, M., & Jung, D. (2017). A toolbox for analysis and design of model based diagnosis systems for large scale models. In Basseville, Nikiforov (b1) 1993 Cordier, Dague, Levy, Montmain, Staroswiecki, Trave-Massuyes (b5) 2004; 34 Eriksson (b8) 2007; 62 Sankavaram, Kodali, Pattipati, Singh (b20) 2015; 3 Dong, Shulin, Zhang (b7) 2017; 64 Tidriri, Chatti, Verron, Tiplica (b28) 2016; 42 (pp. 67–74). Schölkopf, Williamson, Smola, Shawe-Taylor, Platt (b22) 1999 Cheng (10.1016/j.conengprac.2018.08.013_b4) 2016; 63 10.1016/j.conengprac.2018.08.013_b18 Yin (10.1016/j.conengprac.2018.08.013_b33) 2014; 61 Venkatasubramanian (10.1016/j.conengprac.2018.08.013_b31) 2003; 27 Tidriri (10.1016/j.conengprac.2018.08.013_b29) 2018; 71 Jung (10.1016/j.conengprac.2018.08.013_b12) 2015; 48 Svärd (10.1016/j.conengprac.2018.08.013_b24) 2013; 43 Theissler (10.1016/j.conengprac.2018.08.013_b27) 2017; 123 Basseville (10.1016/j.conengprac.2018.08.013_b1) 1993 Cordier (10.1016/j.conengprac.2018.08.013_b5) 2004; 34 Tax (10.1016/j.conengprac.2018.08.013_b26) 2004; 54 10.1016/j.conengprac.2018.08.013_b10 Shashoa (10.1016/j.conengprac.2018.08.013_b23) 2013; 21 Dong (10.1016/j.conengprac.2018.08.013_b7) 2017; 64 Hastie (10.1016/j.conengprac.2018.08.013_b11) 2005; 27 10.1016/j.conengprac.2018.08.013_b13 Chandola (10.1016/j.conengprac.2018.08.013_b2) 2009; 41 Loboda (10.1016/j.conengprac.2018.08.013_b15) 2010 Schölkopf (10.1016/j.conengprac.2018.08.013_b22) 1999 Tidriri (10.1016/j.conengprac.2018.08.013_b28) 2016; 42 Van Der Maaten (10.1016/j.conengprac.2018.08.013_b30) 2014; 15 Venkatasubramanian (10.1016/j.conengprac.2018.08.013_b32) 2003; 27 Sankavaram (10.1016/j.conengprac.2018.08.013_b20) 2015; 3 Jung (10.1016/j.conengprac.2018.08.013_b14) 2017; PP 10.1016/j.conengprac.2018.08.013_b3 10.1016/j.conengprac.2018.08.013_b9 10.1016/j.conengprac.2018.08.013_b6 Reiter (10.1016/j.conengprac.2018.08.013_b19) 1987; 32 Luo (10.1016/j.conengprac.2018.08.013_b16) 2010; 40 10.1016/j.conengprac.2018.08.013_b21 Pernestål (10.1016/j.conengprac.2018.08.013_b17) 2012; 25 10.1016/j.conengprac.2018.08.013_b25 Eriksson (10.1016/j.conengprac.2018.08.013_b8) 2007; 62 |
References_xml | – reference: Chen, C., & Pecht, M. (2012). Prognostics of lithium-ion batteries using model-based and data-driven methods. In – start-page: 257 year: 2010 end-page: 265 ident: b15 article-title: A mixed data-driven and model based fault classification for gas turbine diagnosis publication-title: Asme turbo expo: Power for land, sea, and air – volume: 15 start-page: 3221 year: 2014 end-page: 3245 ident: b30 article-title: Accelerating t-sne using tree-based algorithms publication-title: Journal of Machine Learning Research – reference: Pucel, X., Mayer, W., & Stumptner, M. (2009). Diagnosability analysis without fault models. In – reference: (pp. 67–74). – volume: 34 start-page: 2163 year: 2004 end-page: 2177 ident: b5 article-title: Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives publication-title: IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics – reference: . Toulouse, France. – reference: (pp. 12380–12388). – volume: 42 start-page: 63 year: 2016 end-page: 81 ident: b28 article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges publication-title: Annual Reviews in Control – volume: 61 start-page: 6418 year: 2014 end-page: 6428 ident: b33 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Transactions on Industrial Electronics – volume: 32 start-page: 57 year: 1987 end-page: 95 ident: b19 article-title: A theory of diagnosis from first principles publication-title: Artificial Intelligence – volume: 63 start-page: 2403 year: 2016 end-page: 2413 ident: b4 article-title: A combined model-based and intelligent method for small fault detection and isolation of actuators publication-title: IEEE Transactions on Industrial Electronics – start-page: 582 year: 1999 end-page: 588 ident: b22 article-title: Support vector method for novelty detection publication-title: NIPS, vol. 12 – volume: 48 start-page: 1289 year: 2015 end-page: 1296 ident: b12 article-title: Analysis of fault isolation assumptions when comparing model-based design approaches of diagnosis systems publication-title: IFAC-PapersOnLine – reference: (pp. 96–101). – volume: 71 start-page: 73 year: 2018 end-page: 86 ident: b29 article-title: A generic framework for decision fusion in fault detection and diagnosis publication-title: Engineering Applications of Artificial Intelligence – volume: 3 start-page: 407 year: 2015 end-page: 419 ident: b20 article-title: Incremental classifiers for data-driven fault diagnosis applied to automotive systems publication-title: IEEE Access – reference: Tax, D. (2015). DDtools, the Data Description Toolbox for Matlab, version 2.1.2. – volume: PP start-page: 1 year: 2017 end-page: 15 ident: b14 article-title: A combined data-driven and model-based residual selection algorithm for fault detection and isolation publication-title: IEEE Transactions on Control Systems Technology – volume: 27 start-page: 83 year: 2005 end-page: 85 ident: b11 article-title: The elements of statistical learning: Data mining, inference and prediction publication-title: The Mathematical Intelligencer – volume: 27 start-page: 293 year: 2003 end-page: 311 ident: b32 article-title: A review of process fault detection and diagnosis: Part i: Quantitative model-based methods publication-title: Computers & Chemical Engineering – volume: 21 start-page: 908 year: 2013 end-page: 916 ident: b23 article-title: Sensor fault detection and isolation in a thermal power plant steam separator publication-title: Control Engineering Practice – volume: 40 start-page: 321 year: 2010 end-page: 336 ident: b16 article-title: Integrated model-based and data-driven diagnosis of automotive antilock braking systems publication-title: IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans) – volume: 123 start-page: 163 year: 2017 end-page: 173 ident: b27 article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection publication-title: Knowledge-Based Systems – volume: 62 start-page: 523 year: 2007 end-page: 538 ident: b8 article-title: Modeling and control of turbocharged si and di engines publication-title: OGST-Revue de L’IFP – year: 1993 ident: b1 article-title: Detection of abrupt changes: Theory and application, vol. 104 – reference: . – reference: Eriksson, L., Frei, S., Onder, C., & Guzzella, L. (2002). Control and optimization of turbo charged spark ignited engines. In – volume: 25 start-page: 705 year: 2012 end-page: 719 ident: b17 article-title: Modeling and inference for troubleshooting with interventions applied to a heavy truck auxiliary braking system publication-title: Engineering Applications of Artificial Intelligence – volume: 43 start-page: 1354 year: 2013 end-page: 1369 ident: b24 article-title: Realizability constrained selection of residual generators for fault diagnosis with an automotive engine application publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 41 start-page: 15 year: 2009 ident: b2 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys (CSUR) – reference: Ding, S., Zhang, P., Jeinsch, T., Ding, E., Engel, P., & Gui, W. (2011). A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis. In – volume: 64 start-page: 374 year: 2017 end-page: 385 ident: b7 article-title: A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples publication-title: Pattern Recognition – reference: Sankavaram, C., Pattipati, B., Kodali, A., Pattipati, K., Azam, M., & Kumar, S., et al. (2009). Model-based and data-driven prognosis of automotive and electronic systems. In – reference: (pp. 177–182). – reference: Frisk, E., Krysander, M., & Jung, D. (2017). A toolbox for analysis and design of model based diagnosis systems for large scale models. In – reference: Jung, D., Ng, K., Frisk, E., & Krysander, M. (2016). A combined diagnosis system design using model-based and data-driven methods. In – volume: 54 start-page: 45 year: 2004 end-page: 66 ident: b26 article-title: Support vector data description publication-title: Machine Learning – volume: 27 start-page: 327 year: 2003 end-page: 346 ident: b31 article-title: A review of process fault detection and diagnosis: Part iii: Process history based methods publication-title: Computers & Chemical Engineering – ident: 10.1016/j.conengprac.2018.08.013_b3 doi: 10.1109/PHM.2012.6228850 – volume: 27 start-page: 327 issue: 3 year: 2003 ident: 10.1016/j.conengprac.2018.08.013_b31 article-title: A review of process fault detection and diagnosis: Part iii: Process history based methods publication-title: Computers & Chemical Engineering doi: 10.1016/S0098-1354(02)00162-X – volume: 21 start-page: 908 issue: 7 year: 2013 ident: 10.1016/j.conengprac.2018.08.013_b23 article-title: Sensor fault detection and isolation in a thermal power plant steam separator publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2013.02.012 – volume: 25 start-page: 705 issue: 4 year: 2012 ident: 10.1016/j.conengprac.2018.08.013_b17 article-title: Modeling and inference for troubleshooting with interventions applied to a heavy truck auxiliary braking system publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2011.02.018 – ident: 10.1016/j.conengprac.2018.08.013_b13 doi: 10.1109/SYSTOL.2016.7739747 – ident: 10.1016/j.conengprac.2018.08.013_b21 doi: 10.1109/COASE.2009.5234108 – start-page: 257 year: 2010 ident: 10.1016/j.conengprac.2018.08.013_b15 article-title: A mixed data-driven and model based fault classification for gas turbine diagnosis – start-page: 582 year: 1999 ident: 10.1016/j.conengprac.2018.08.013_b22 article-title: Support vector method for novelty detection – volume: 41 start-page: 15 issue: 3 year: 2009 ident: 10.1016/j.conengprac.2018.08.013_b2 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/1541880.1541882 – volume: 63 start-page: 2403 issue: 4 year: 2016 ident: 10.1016/j.conengprac.2018.08.013_b4 article-title: A combined model-based and intelligent method for small fault detection and isolation of actuators publication-title: IEEE Transactions on Industrial Electronics – volume: 62 start-page: 523 issue: 4 year: 2007 ident: 10.1016/j.conengprac.2018.08.013_b8 article-title: Modeling and control of turbocharged si and di engines publication-title: OGST-Revue de L’IFP doi: 10.2516/ogst:2007042 – ident: 10.1016/j.conengprac.2018.08.013_b10 doi: 10.1016/j.ifacol.2017.08.504 – volume: 54 start-page: 45 issue: 1 year: 2004 ident: 10.1016/j.conengprac.2018.08.013_b26 article-title: Support vector data description publication-title: Machine Learning doi: 10.1023/B:MACH.0000008084.60811.49 – volume: 61 start-page: 6418 issue: 11 year: 2014 ident: 10.1016/j.conengprac.2018.08.013_b33 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2014.2301773 – volume: 43 start-page: 1354 issue: 6 year: 2013 ident: 10.1016/j.conengprac.2018.08.013_b24 article-title: Realizability constrained selection of residual generators for fault diagnosis with an automotive engine application publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2013.2258906 – volume: 64 start-page: 374 year: 2017 ident: 10.1016/j.conengprac.2018.08.013_b7 article-title: A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.11.026 – volume: 34 start-page: 2163 issue: 5 year: 2004 ident: 10.1016/j.conengprac.2018.08.013_b5 article-title: Conflicts versus analytical redundancy relations: A comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives publication-title: IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/TSMCB.2004.835010 – volume: 27 start-page: 293 issue: 3 year: 2003 ident: 10.1016/j.conengprac.2018.08.013_b32 article-title: A review of process fault detection and diagnosis: Part i: Quantitative model-based methods publication-title: Computers & Chemical Engineering doi: 10.1016/S0098-1354(02)00160-6 – volume: PP start-page: 1 issue: 99 year: 2017 ident: 10.1016/j.conengprac.2018.08.013_b14 article-title: A combined data-driven and model-based residual selection algorithm for fault detection and isolation publication-title: IEEE Transactions on Control Systems Technology – year: 1993 ident: 10.1016/j.conengprac.2018.08.013_b1 – ident: 10.1016/j.conengprac.2018.08.013_b9 – ident: 10.1016/j.conengprac.2018.08.013_b6 doi: 10.3182/20110828-6-IT-1002.02842 – volume: 42 start-page: 63 year: 2016 ident: 10.1016/j.conengprac.2018.08.013_b28 article-title: Bridging data-driven and model-based approaches for process fault diagnosis and health monitoring: A review of researches and future challenges publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2016.09.008 – volume: 27 start-page: 83 issue: 2 year: 2005 ident: 10.1016/j.conengprac.2018.08.013_b11 article-title: The elements of statistical learning: Data mining, inference and prediction publication-title: The Mathematical Intelligencer doi: 10.1007/BF02985802 – ident: 10.1016/j.conengprac.2018.08.013_b18 – volume: 71 start-page: 73 year: 2018 ident: 10.1016/j.conengprac.2018.08.013_b29 article-title: A generic framework for decision fusion in fault detection and diagnosis publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2018.02.014 – volume: 48 start-page: 1289 issue: 21 year: 2015 ident: 10.1016/j.conengprac.2018.08.013_b12 article-title: Analysis of fault isolation assumptions when comparing model-based design approaches of diagnosis systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.09.703 – volume: 123 start-page: 163 year: 2017 ident: 10.1016/j.conengprac.2018.08.013_b27 article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.02.023 – volume: 40 start-page: 321 issue: 2 year: 2010 ident: 10.1016/j.conengprac.2018.08.013_b16 article-title: Integrated model-based and data-driven diagnosis of automotive antilock braking systems publication-title: IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans) doi: 10.1109/TSMCA.2009.2034481 – volume: 15 start-page: 3221 issue: 1 year: 2014 ident: 10.1016/j.conengprac.2018.08.013_b30 article-title: Accelerating t-sne using tree-based algorithms publication-title: Journal of Machine Learning Research – volume: 3 start-page: 407 year: 2015 ident: 10.1016/j.conengprac.2018.08.013_b20 article-title: Incremental classifiers for data-driven fault diagnosis applied to automotive systems publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2422833 – ident: 10.1016/j.conengprac.2018.08.013_b25 – volume: 32 start-page: 57 issue: 1 year: 1987 ident: 10.1016/j.conengprac.2018.08.013_b19 article-title: A theory of diagnosis from first principles publication-title: Artificial Intelligence doi: 10.1016/0004-3702(87)90062-2 |
SSID | ssj0016991 |
Score | 2.4759839 |
Snippet | Machine learning can be used to automatically process sensor data and create data-driven models for prediction and classification. However, in applications... |
SourceID | swepub crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 146 |
SubjectTerms | Artificial intelligence Classification Fault diagnosis Fault isolation Machine learning |
Title | Combining model-based diagnosis and data-driven anomaly classifiers for fault isolation |
URI | https://dx.doi.org/10.1016/j.conengprac.2018.08.013 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151296 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWqssCA-BTlo_KA2ExJnMSJmKpCVUB0gUI3y7HjKii0VUkHFn47d0layoBUidGJLUd3zt2zdPceIecIiiOtfRZYY5kXOpapUCjmeka7Sli4FWE38mM_6A28-6E_rJHOohcGyyqr2F_G9CJaV09alTVb0zRtPQH4FpAwASFz1E1GTlDPE8iff_m1LPNwgqhUzYPJ2G3vVNU8ZY0XXDmT8Qj7kbDIKyzIPB3-Z4pa5RIt8k93h2xXwJG2y2_bJbVkvEe2VugE98kr_NxxIfhAC4EbhinKUFNW06UfVI1hpHLFzAyDHIwn7yr7pBohdGpRFZsCiKVWzbOcpnAsC78dkEH39rnTY5VwAtOeH-XMS8AciRVJwgMeBEjIEgPuUnDdCK3VjrGuMjb0Yx1ppJs3yueBDy9jmK61yw9JfQymOSLUWG6ViWIT89DTvlDulY1CIzQAQ-H4tkHEwlZSV6ziKG6RyUX52Jv8sbJEK0vUvXR4gzjLldOSWWONNdcLd8hfp0RCAlhj9UXpweV-yK19k7605WQ2klk6lwX-CY7_tc0J2cRR2bB4Sur5bJ6cAXLJ42ZxNJtko3330Ot_A9718Vc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMCAeIo3HhCbKYnjOBFTVUDl0S5QYLMcO66CSqlKOrDw27lL0gIDUiXGxLYcnS93n6W77yPkGEFxbIxgobOOBZHnmI6kZn5gja-lg1sRdiO3O2GrG9w8i-c50pz0wmBZZRX7y5heROvqTb2yZn2YZfV7AN8SEiYgZI66ycE8WQgEl-jap5_TOg8vjEvZPJiN7fZeVc5TFnnBnTMd9LAhCau8ooLN0-N_5qifZKJFArpaJSsVcqSN8uPWyFw6WCfLP_gEN8gT_N1JofhAC4UbhjnKUluW02XvVA_gSeea2RFGOXh-e9X9D2oQQ2cOZbEpoFjq9Lif0wz8sji4TdK9unxotlilnMBMIOKcBSnYI3UyTXnIwxAZWRIAXhruG5FzxrPO19ZFIjGxQb55qwUPBQwmMN0Yn2-R2gBMs02oddxpGyc24VFghNT-mYsjKw0gQ-kJt0PkxFbKVLTiqG7RV5P6sRf1bWWFVlYofOnxHeJNVw5Lao0Z1pxPjkP9chMFGWCG1SflCU73Q3Lti-yxod5GPdXPxqoAQOHuv7Y5Iouth_adurvu3O6RJRwpuxf3SS0fjdMDgDF5cli46Rd5ufLt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+model-based+diagnosis+and+data-driven+anomaly+classifiers+for+fault+isolation&rft.jtitle=Control+engineering+practice&rft.au=Jung%2C+Daniel&rft.au=Ng%2C+Kok+Yew&rft.au=Frisk%2C+Erik&rft.au=Krysander%2C+Mattias&rft.date=2018-11-01&rft.pub=Elsevier+Ltd&rft.issn=0967-0661&rft.eissn=1873-6939&rft.volume=80&rft.spage=146&rft.epage=156&rft_id=info:doi/10.1016%2Fj.conengprac.2018.08.013&rft.externalDocID=S0967066118304404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0967-0661&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0967-0661&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0967-0661&client=summon |