Temperature-adaptive radiative coating for all-season household thermal regulation
Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al . and Tang et al . used the metal-insulator transition in tungsten-doped van...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 374; no. 6574; pp. 1504 - 1509 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
17.12.2021
AAAS |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abf7136 |
Cover
Loading…
Abstract | Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang
et al
. and Tang
et al
. used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BG
A smart radiative coating automatically switches thermal radiation power in response to ambient temperature.
The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations. |
---|---|
AbstractList | The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations. A passive turnoffPassive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al. and Tang et al. used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BGThe sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations. The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. In this work, we approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations. The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations. Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al . and Tang et al . used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BG A smart radiative coating automatically switches thermal radiation power in response to ambient temperature. The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations. |
Author | Grigoropoulos, Costas P. Yao, Jie Rho, Yoonsoo Gordon, Madeleine P. Reichertz, Finnegan G. Javey, Ali Levinson, Ronnen Kim, Hyungjin Wang, Qingjun Li, Jiachen Urban, Jeffrey J. Lin, Chang-Yu Dong, Kaichen Tang, Kechao Wu, Junqiao |
Author_xml | – sequence: 1 givenname: Kechao orcidid: 0000-0003-4570-0142 surname: Tang fullname: Tang, Kechao organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing 100871, P. R. China – sequence: 2 givenname: Kaichen orcidid: 0000-0001-5334-4243 surname: Dong fullname: Dong, Kaichen organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 3 givenname: Jiachen orcidid: 0000-0002-0368-3551 surname: Li fullname: Li, Jiachen organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Applied Science and Technology Graduate Group, University of California, Berkeley, CA, 94720, USA – sequence: 4 givenname: Madeleine P. orcidid: 0000-0002-2818-7458 surname: Gordon fullname: Gordon, Madeleine P. organization: Applied Science and Technology Graduate Group, University of California, Berkeley, CA, 94720, USA., The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 5 givenname: Finnegan G. orcidid: 0000-0002-5203-8698 surname: Reichertz fullname: Reichertz, Finnegan G. organization: East Bay Innovation Academy, 3800 Mountain Blvd., Oakland, CA 94619, USA – sequence: 6 givenname: Hyungjin orcidid: 0000-0002-8868-4931 surname: Kim fullname: Kim, Hyungjin organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA – sequence: 7 givenname: Yoonsoo orcidid: 0000-0003-2870-5064 surname: Rho fullname: Rho, Yoonsoo organization: Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA – sequence: 8 givenname: Qingjun orcidid: 0000-0001-8602-1213 surname: Wang fullname: Wang, Qingjun organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 9 givenname: Chang-Yu orcidid: 0000-0001-8427-6626 surname: Lin fullname: Lin, Chang-Yu organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA – sequence: 10 givenname: Costas P. surname: Grigoropoulos fullname: Grigoropoulos, Costas P. organization: Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA – sequence: 11 givenname: Ali orcidid: 0000-0001-7214-7931 surname: Javey fullname: Javey, Ali organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA – sequence: 12 givenname: Jeffrey J. orcidid: 0000-0003-4909-2869 surname: Urban fullname: Urban, Jeffrey J. organization: The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 13 givenname: Jie orcidid: 0000-0003-0557-759X surname: Yao fullname: Yao, Jie organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 14 givenname: Ronnen orcidid: 0000-0003-1463-1359 surname: Levinson fullname: Levinson, Ronnen organization: Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 15 givenname: Junqiao orcidid: 0000-0002-1498-0148 surname: Wu fullname: Wu, Junqiao organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Applied Science and Technology Graduate Group, University of California, Berkeley, CA, 94720, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34914515$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1875448$$D View this record in Osti.gov |
BookMark | eNp1kc1r3DAQxUVJaTZJz70V015ycaIvy_KxhDYtBAIlOYuxPMo6yNJWkgP976tktz0EehrB_J6Y994JOQoxICEfGL1gjKvLbGcMFi9gdD0T6g3ZMDp07cCpOCIbSoVqNe27Y3KS8yOldTeId-RYyIHJjnUb8vMOlx0mKGvCFibYlfkJmwTTDC8vG-sMD42LqQHv24yQY2i2cc24jX5qyhbTAr5J-LD6ysZwRt468BnfH-Ypuf_29e7qe3tze_3j6stNa2U3lFZaDo5pq0EBc471YrRcKyk4aqWt7EfFJ0WlRJjcNKp-0Jxb6uqRiBwmcUo-7f-NucymJlHQbm0MAW0xTPedlLpC53tol-KvFXMxy5wteg8BqwfDFWOqJiFZRT-_Qh_jmkK1UCmhqWa86yv18UCt44KT2aV5gfTb_I20Apd7wKaYc0L3D2HUPJdmDqWZQ2lV0b1SVC8vUZYEs_-v7g8u6Z8n |
CitedBy_id | crossref_primary_10_1021_jacs_4c07609 crossref_primary_10_3390_su14031110 crossref_primary_10_1016_j_mser_2024_100915 crossref_primary_10_1016_j_optmat_2022_113131 crossref_primary_10_1016_j_ceramint_2023_08_150 crossref_primary_10_1016_j_renene_2022_07_143 crossref_primary_10_1126_science_adl0653 crossref_primary_10_1002_smll_202301957 crossref_primary_10_1039_D2TA09753B crossref_primary_10_1021_acsphotonics_4c00981 crossref_primary_10_1002_ange_202301421 crossref_primary_10_1021_acs_nanolett_2c04069 crossref_primary_10_3390_photonics10090966 crossref_primary_10_1063_5_0164936 crossref_primary_10_1021_acsphotonics_4c00848 crossref_primary_10_1002_admt_202400512 crossref_primary_10_1002_admt_202401723 crossref_primary_10_1063_5_0199932 crossref_primary_10_1021_acssuschemeng_4c10372 crossref_primary_10_29026_oea_2024_230194 crossref_primary_10_1364_AO_522582 crossref_primary_10_1021_acsami_2c21188 crossref_primary_10_3986_alternator_2022_27 crossref_primary_10_1038_s41893_022_01030_3 crossref_primary_10_1364_OE_523853 crossref_primary_10_1021_acsphotonics_4c00833 crossref_primary_10_1016_j_ijleo_2024_172098 crossref_primary_10_1016_j_joule_2022_07_015 crossref_primary_10_1016_j_enbuild_2024_114662 crossref_primary_10_1002_adom_202301303 crossref_primary_10_1002_adfm_202310858 crossref_primary_10_1038_s41893_023_01061_4 crossref_primary_10_1038_s41467_022_32528_1 crossref_primary_10_1002_adma_202305791 crossref_primary_10_1039_D3CP02224B crossref_primary_10_1515_nanoph_2023_0678 crossref_primary_10_1016_j_joule_2023_09_011 crossref_primary_10_1016_j_pmatsci_2024_101276 crossref_primary_10_1063_5_0149542 crossref_primary_10_1016_j_cej_2025_161629 crossref_primary_10_1021_acsanm_2c02788 crossref_primary_10_1039_D3MH00671A crossref_primary_10_1515_nanoph_2024_0005 crossref_primary_10_1002_adma_202409738 crossref_primary_10_1002_adom_202402432 crossref_primary_10_1016_j_nanoen_2024_110311 crossref_primary_10_1016_j_cej_2024_150657 crossref_primary_10_1016_j_applthermaleng_2025_125805 crossref_primary_10_1016_j_pmatsci_2025_101461 crossref_primary_10_1126_science_adn2524 crossref_primary_10_1063_5_0204694 crossref_primary_10_1021_acsami_2c13991 crossref_primary_10_1002_adom_202201702 crossref_primary_10_1021_acsnano_2c11916 crossref_primary_10_1073_pnas_2217068120 crossref_primary_10_1103_PhysRevResearch_5_013028 crossref_primary_10_1038_s41528_024_00339_7 crossref_primary_10_1002_adfm_202419378 crossref_primary_10_1515_nanoph_2023_0739 crossref_primary_10_1002_admt_202400835 crossref_primary_10_1016_j_pmatsci_2024_101291 crossref_primary_10_1002_aenm_202404122 crossref_primary_10_3390_su152215876 crossref_primary_10_1016_j_joule_2023_10_013 crossref_primary_10_1039_D4NH00136B crossref_primary_10_1021_acsenergylett_2c00419 crossref_primary_10_1002_anie_202301421 crossref_primary_10_1016_j_isci_2022_105780 crossref_primary_10_1002_adma_202310923 crossref_primary_10_1515_nanoph_2023_0641 crossref_primary_10_1021_acsami_4c20168 crossref_primary_10_1186_s40580_023_00365_7 crossref_primary_10_1021_acssuschemeng_4c00773 crossref_primary_10_1021_acsami_4c09138 crossref_primary_10_1021_acsaelm_3c01023 crossref_primary_10_1016_j_csite_2024_104811 crossref_primary_10_1038_s41467_022_32409_7 crossref_primary_10_1360_nso_20220063 crossref_primary_10_1002_admt_202301808 crossref_primary_10_1016_j_scs_2023_104912 crossref_primary_10_1016_j_nanoen_2024_109770 crossref_primary_10_1016_j_xcrp_2022_101098 crossref_primary_10_1016_j_xcrp_2023_101274 crossref_primary_10_1364_OPTCON_554500 crossref_primary_10_1063_5_0089353 crossref_primary_10_1016_j_vacuum_2022_111079 crossref_primary_10_1002_adom_202300123 crossref_primary_10_1002_adom_202301694 crossref_primary_10_1021_acs_jpcc_2c00091 crossref_primary_10_1039_D2TC02668F crossref_primary_10_1063_5_0185406 crossref_primary_10_1021_acs_nanolett_2c00872 crossref_primary_10_1016_j_jobe_2023_108298 crossref_primary_10_1002_adom_202200541 crossref_primary_10_1002_admi_202202308 crossref_primary_10_1002_smll_202309397 crossref_primary_10_1002_aenm_202202932 crossref_primary_10_1038_s41378_024_00744_y crossref_primary_10_1063_5_0217725 crossref_primary_10_1007_s42114_023_00819_w crossref_primary_10_1016_j_solmat_2023_112488 crossref_primary_10_1016_j_cej_2024_154666 crossref_primary_10_1016_j_mtcomm_2022_104534 crossref_primary_10_1021_acsami_2c14007 crossref_primary_10_1080_15599612_2024_2334293 crossref_primary_10_1088_0256_307X_41_4_044202 crossref_primary_10_1126_science_adi2224 crossref_primary_10_1002_smll_202206145 crossref_primary_10_1016_j_rser_2024_114716 crossref_primary_10_1016_j_joule_2022_01_012 crossref_primary_10_1063_5_0156810 crossref_primary_10_1103_PhysRevB_107_115139 crossref_primary_10_1002_smtd_202400832 crossref_primary_10_1002_sus2_171 crossref_primary_10_1021_acsnano_4c10659 crossref_primary_10_1002_adhm_202301104 crossref_primary_10_1016_j_optlastec_2023_109774 crossref_primary_10_1039_D4TA03558E crossref_primary_10_1016_j_nanoso_2024_101296 crossref_primary_10_1117_1_JPE_14_028501 crossref_primary_10_1016_j_ceramint_2024_07_126 crossref_primary_10_1002_adfm_202414229 crossref_primary_10_1021_acs_jpcc_2c07631 crossref_primary_10_1016_j_nanoen_2024_110443 crossref_primary_10_1039_D4TA05314A crossref_primary_10_3390_buildings14061745 crossref_primary_10_1021_acsami_2c01370 crossref_primary_10_1002_adfm_202300886 crossref_primary_10_1103_PhysRevResearch_5_043077 crossref_primary_10_1016_j_adapen_2023_100159 crossref_primary_10_1002_admt_202301174 crossref_primary_10_1115_1_4056978 crossref_primary_10_1002_adfm_202203789 crossref_primary_10_1021_acs_nanolett_3c03375 crossref_primary_10_1016_j_isci_2024_110948 crossref_primary_10_1016_j_enbuild_2024_115121 crossref_primary_10_1126_sciadv_adf5883 crossref_primary_10_1002_smll_202312004 crossref_primary_10_1002_admi_202202505 crossref_primary_10_1016_j_compositesb_2025_112207 crossref_primary_10_1016_j_isci_2022_104727 crossref_primary_10_1103_PhysRevMaterials_8_035003 crossref_primary_10_3390_nano15020098 crossref_primary_10_1016_j_matt_2024_08_026 crossref_primary_10_1002_advs_202416437 crossref_primary_10_1016_j_ceramint_2024_09_150 crossref_primary_10_1016_j_ceramint_2023_11_400 crossref_primary_10_1016_j_cej_2024_149388 crossref_primary_10_1021_acsami_4c04546 crossref_primary_10_3390_s23156715 crossref_primary_10_1088_1361_6528_ad7269 crossref_primary_10_1021_acs_chemrev_2c00762 crossref_primary_10_1016_j_apmt_2024_102331 crossref_primary_10_1038_s41565_024_01756_5 crossref_primary_10_1021_acsnano_3c01755 crossref_primary_10_1039_D4TA08945F crossref_primary_10_1016_j_xcrp_2022_100986 crossref_primary_10_1515_nanoph_2022_0047 crossref_primary_10_1016_j_nanoen_2024_110023 crossref_primary_10_3390_su16062346 crossref_primary_10_1016_j_buildenv_2024_111776 crossref_primary_10_1002_adma_202201093 crossref_primary_10_3390_buildings14092994 crossref_primary_10_1002_advs_202416420 crossref_primary_10_1038_s41377_024_01560_9 crossref_primary_10_1364_PRJ_527945 crossref_primary_10_1016_j_jallcom_2023_168905 crossref_primary_10_1016_j_isci_2023_107388 crossref_primary_10_1038_s41893_024_01350_6 crossref_primary_10_1063_5_0220191 crossref_primary_10_1002_smll_202309050 crossref_primary_10_1039_D3EE04261H crossref_primary_10_1021_acs_chemrev_2c00546 crossref_primary_10_1002_adpr_202200253 crossref_primary_10_1073_pnas_2207353119 crossref_primary_10_1039_D2MA01000C crossref_primary_10_1016_j_xcrp_2022_100960 crossref_primary_10_1103_PhysRevResearch_5_043272 crossref_primary_10_1016_j_xcrp_2025_102445 crossref_primary_10_1002_chem_202400826 crossref_primary_10_1364_AO_475672 crossref_primary_10_1038_s44284_023_00005_5 crossref_primary_10_1038_s41598_024_52021_7 crossref_primary_10_1039_D4TA01158A crossref_primary_10_1016_j_ijheatmasstransfer_2025_126887 crossref_primary_10_1002_vnl_22038 crossref_primary_10_1016_j_enbuild_2024_115041 crossref_primary_10_1039_D2TC00318J crossref_primary_10_1039_D3RA05506J crossref_primary_10_1007_s12274_023_5916_3 crossref_primary_10_1039_D4MH00903G crossref_primary_10_1002_aenm_202402667 crossref_primary_10_1002_adfm_202405582 crossref_primary_10_1002_cjoc_202300282 crossref_primary_10_1016_j_jechem_2023_05_051 crossref_primary_10_1038_s41377_023_01119_0 crossref_primary_10_1016_j_applthermaleng_2024_124197 crossref_primary_10_1002_adfm_202208144 crossref_primary_10_1016_j_mtphys_2024_101643 crossref_primary_10_1364_OME_496246 crossref_primary_10_1016_j_ijthermalsci_2025_109819 crossref_primary_10_1016_j_solener_2023_04_032 crossref_primary_10_1002_smll_202407777 crossref_primary_10_1063_5_0156526 crossref_primary_10_15541_jim20230386 crossref_primary_10_1002_adma_202414300 crossref_primary_10_1016_j_applthermaleng_2025_125690 crossref_primary_10_1146_annurev_environ_112321_093021 crossref_primary_10_1038_s41467_023_40902_w crossref_primary_10_1038_s44286_024_00050_4 crossref_primary_10_1016_j_jechem_2025_01_016 crossref_primary_10_1016_j_apsusc_2024_161608 crossref_primary_10_3390_polym15010159 crossref_primary_10_1364_OE_485934 crossref_primary_10_1016_j_buildenv_2023_110806 crossref_primary_10_1021_acs_nanolett_5c00083 crossref_primary_10_1364_PRJ_534513 crossref_primary_10_1360_nso_20240019 crossref_primary_10_1016_j_cej_2024_157877 crossref_primary_10_3390_ma16010273 crossref_primary_10_1364_OE_548006 crossref_primary_10_1002_adfm_202410819 crossref_primary_10_1016_j_xcrp_2024_101934 crossref_primary_10_1021_acsenergylett_3c00905 crossref_primary_10_3390_su16166936 crossref_primary_10_1002_adfm_202316536 crossref_primary_10_1002_aenm_202402202 crossref_primary_10_1021_acsami_4c15587 crossref_primary_10_1016_j_cej_2024_153262 crossref_primary_10_1016_j_compscitech_2023_110163 crossref_primary_10_1016_j_cej_2024_157862 crossref_primary_10_1002_adma_202401577 crossref_primary_10_1016_j_jallcom_2025_178529 crossref_primary_10_7498_aps_72_20222167 crossref_primary_10_1016_j_energy_2022_125289 crossref_primary_10_1016_j_applthermaleng_2023_121751 crossref_primary_10_1016_j_apenergy_2022_119676 crossref_primary_10_1002_admt_202401393 crossref_primary_10_1021_acsnano_3c05460 crossref_primary_10_1016_j_apenergy_2023_121928 crossref_primary_10_1021_acsami_4c19875 crossref_primary_10_1088_1674_1056_ad23d2 crossref_primary_10_1002_aenm_202200713 crossref_primary_10_1016_j_physleta_2024_130083 crossref_primary_10_1002_adma_202209897 crossref_primary_10_21595_vp_2022_22385 crossref_primary_10_1016_j_compscitech_2024_110518 crossref_primary_10_1038_s41467_024_54983_8 crossref_primary_10_1021_acsami_4c18311 crossref_primary_10_1063_5_0188144 crossref_primary_10_1016_j_xpro_2025_103683 crossref_primary_10_1038_s41467_024_53177_6 crossref_primary_10_7498_aps_73_20240289 crossref_primary_10_1021_acsami_4c10823 crossref_primary_10_1126_sciadv_ade4853 crossref_primary_10_1002_adma_202311453 crossref_primary_10_1016_j_apsusc_2022_153741 crossref_primary_10_1016_j_ijthermalsci_2025_109740 crossref_primary_10_1016_j_jechem_2023_11_016 crossref_primary_10_1016_j_applthermaleng_2023_121305 crossref_primary_10_1063_5_0152061 crossref_primary_10_1016_j_tsf_2022_139455 crossref_primary_10_1016_j_energy_2024_133861 crossref_primary_10_1016_j_nxener_2023_100078 crossref_primary_10_1016_j_nxener_2023_100072 crossref_primary_10_1016_j_ynexs_2024_100028 crossref_primary_10_2139_ssrn_4120300 crossref_primary_10_1021_acsapm_3c01914 crossref_primary_10_1002_adma_202206364 crossref_primary_10_1063_5_0134673 crossref_primary_10_1016_j_buildenv_2024_112119 crossref_primary_10_1002_adfm_202202661 crossref_primary_10_1016_j_mtener_2024_101647 crossref_primary_10_1016_j_mtener_2024_101767 crossref_primary_10_1364_OME_485012 crossref_primary_10_1002_lpor_202300407 crossref_primary_10_1002_adma_202308189 crossref_primary_10_1021_acsaelm_2c01176 crossref_primary_10_1038_s41467_024_45095_4 crossref_primary_10_1002_idm2_12123 crossref_primary_10_1021_acsaom_4c00336 crossref_primary_10_1002_advs_202405962 crossref_primary_10_1016_j_jobe_2023_108344 crossref_primary_10_1021_acs_chemrev_3c00136 crossref_primary_10_1016_j_nxener_2023_100083 crossref_primary_10_1002_adfm_202300441 crossref_primary_10_1021_acsami_2c21961 crossref_primary_10_1063_5_0136842 crossref_primary_10_1007_s11664_025_11863_1 crossref_primary_10_1039_D2CP03565K crossref_primary_10_1103_PhysRevMaterials_6_090201 crossref_primary_10_1038_s41377_023_01315_y crossref_primary_10_1038_s41467_023_39812_8 crossref_primary_10_1103_PhysRevLett_132_216901 crossref_primary_10_1016_j_ceramint_2023_10_002 crossref_primary_10_1063_5_0084341 crossref_primary_10_1016_j_scib_2023_08_003 crossref_primary_10_1021_acsnano_4c05929 crossref_primary_10_1016_j_nanoen_2022_107435 crossref_primary_10_1002_advs_202305067 crossref_primary_10_1021_acsphotonics_4c01689 crossref_primary_10_1016_j_optmat_2023_113812 crossref_primary_10_1038_s41467_025_57388_3 crossref_primary_10_1016_j_xcrp_2022_101066 crossref_primary_10_1021_acs_chemrev_2c00171 crossref_primary_10_1016_j_cej_2024_150972 crossref_primary_10_1103_PhysRevB_109_094122 crossref_primary_10_1021_acsphotonics_3c00241 crossref_primary_10_1126_science_add1795 crossref_primary_10_2139_ssrn_4055938 crossref_primary_10_1002_adom_202202163 crossref_primary_10_1002_smll_202408598 crossref_primary_10_1039_D4CP01245C crossref_primary_10_1002_adma_202401869 crossref_primary_10_1016_j_apenergy_2024_124961 crossref_primary_10_1016_j_pmatsci_2023_101144 crossref_primary_10_1016_j_cej_2023_148010 crossref_primary_10_1021_acsami_4c09758 crossref_primary_10_1002_smll_202305234 crossref_primary_10_1021_acsami_3c17286 crossref_primary_10_1016_j_solmat_2024_113173 crossref_primary_10_1002_adfm_202208785 crossref_primary_10_1016_j_jallcom_2024_176793 crossref_primary_10_1038_s41893_022_01023_2 crossref_primary_10_1063_5_0253948 crossref_primary_10_1016_j_infrared_2023_105000 crossref_primary_10_1007_s42765_024_00467_9 crossref_primary_10_1016_j_mtener_2022_100978 crossref_primary_10_1016_j_xcrp_2022_101198 crossref_primary_10_1016_j_device_2023_100008 crossref_primary_10_1016_j_renene_2023_119360 crossref_primary_10_1016_j_nxener_2023_100064 crossref_primary_10_1038_s41377_024_01400_w crossref_primary_10_1016_j_enconman_2024_118309 crossref_primary_10_1039_D4TA04942J crossref_primary_10_1007_s42114_024_01127_7 crossref_primary_10_1021_acsphotonics_2c00714 crossref_primary_10_1016_j_renene_2023_119486 crossref_primary_10_1002_adfm_202314021 crossref_primary_10_1002_pol_20230408 crossref_primary_10_1002_adma_202302685 crossref_primary_10_1016_j_energy_2024_132178 crossref_primary_10_1016_j_matt_2022_01_018 crossref_primary_10_1016_j_enbuild_2024_114949 crossref_primary_10_1016_j_ijleo_2023_171556 crossref_primary_10_1117_1_AP_6_4_046006 crossref_primary_10_1016_j_cej_2022_137308 crossref_primary_10_1016_j_solener_2024_112734 crossref_primary_10_1016_j_jmat_2024_03_015 crossref_primary_10_1021_acsami_4c00825 crossref_primary_10_1002_adfm_202209654 crossref_primary_10_1016_j_apenergy_2024_123619 crossref_primary_10_1016_j_nxener_2024_100108 crossref_primary_10_2139_ssrn_4097428 crossref_primary_10_1016_j_buildenv_2025_112581 crossref_primary_10_1021_acsami_3c16162 crossref_primary_10_1016_j_nxener_2023_100046 crossref_primary_10_1021_acsami_4c15068 crossref_primary_10_1016_j_enbuild_2024_114836 crossref_primary_10_1016_j_enbuild_2024_114955 crossref_primary_10_1016_j_cej_2023_141715 crossref_primary_10_1002_advs_202305664 crossref_primary_10_1016_j_cej_2022_137556 crossref_primary_10_1016_j_cej_2022_139739 crossref_primary_10_1038_s42254_024_00771_8 crossref_primary_10_25159_3005_2602_13618 crossref_primary_10_1039_D4EE05416D crossref_primary_10_1016_j_solmat_2024_113040 crossref_primary_10_1016_j_xcrp_2022_101147 crossref_primary_10_1002_admt_202200808 crossref_primary_10_26599_CF_2025_9200033 crossref_primary_10_1016_j_mtphys_2025_101694 crossref_primary_10_1364_OME_546761 crossref_primary_10_1016_j_enbuild_2023_113031 crossref_primary_10_1016_j_eng_2023_07_019 crossref_primary_10_1016_j_tsep_2024_102689 crossref_primary_10_1038_s41893_024_01349_z crossref_primary_10_1021_acs_nanolett_3c02733 crossref_primary_10_7216_teksmuh_1271662 crossref_primary_10_1088_2631_7990_ad8710 crossref_primary_10_1021_acsapm_3c02194 crossref_primary_10_1016_j_buildenv_2024_112053 crossref_primary_10_1002_adma_202412845 crossref_primary_10_1016_j_triboint_2023_108557 crossref_primary_10_1002_adma_202200329 crossref_primary_10_1016_j_joule_2023_06_019 crossref_primary_10_1016_j_renene_2024_120208 crossref_primary_10_1016_j_apmt_2022_101642 crossref_primary_10_1021_acs_nanolett_3c03711 crossref_primary_10_1016_j_renene_2024_121658 crossref_primary_10_1016_j_solmat_2022_111883 crossref_primary_10_1021_acsanm_2c01396 crossref_primary_10_1002_adfm_202305998 crossref_primary_10_1002_adom_202402491 crossref_primary_10_1021_acsami_3c19498 crossref_primary_10_1117_1_OE_63_9_091606 crossref_primary_10_1016_j_matt_2023_01_031 crossref_primary_10_1016_j_nxener_2023_100019 crossref_primary_10_1038_s41467_024_50654_w crossref_primary_10_1515_nanoph_2023_0695 crossref_primary_10_1007_s12145_025_01728_w crossref_primary_10_1021_acsaem_4c01385 crossref_primary_10_3788_AOS241378 crossref_primary_10_1016_j_cej_2022_139763 crossref_primary_10_1007_s10570_022_04749_6 crossref_primary_10_1016_j_isci_2023_106857 crossref_primary_10_1016_j_enbuild_2023_113131 crossref_primary_10_1021_acsami_1c23401 crossref_primary_10_1039_D4TA01767F crossref_primary_10_1038_s41467_024_50872_2 crossref_primary_10_1021_acsami_4c08207 crossref_primary_10_1088_1742_6596_2774_1_012083 crossref_primary_10_1002_lpor_202401438 crossref_primary_10_1016_j_nxener_2023_100003 crossref_primary_10_1016_j_scs_2025_106190 crossref_primary_10_1063_5_0087687 crossref_primary_10_1016_j_device_2024_100407 crossref_primary_10_1029_2024EF005246 crossref_primary_10_1021_acs_nanolett_4c01535 crossref_primary_10_1021_acsnano_3c01184 crossref_primary_10_1021_acsnano_3c08930 crossref_primary_10_1039_D4TC03978E crossref_primary_10_1021_acsami_2c12610 crossref_primary_10_1016_j_matt_2025_102057 crossref_primary_10_1360_TB_2024_0932 crossref_primary_10_1016_j_enbuild_2023_113481 |
Cites_doi | 10.1002/adma.201906751 10.1016/j.solener.2020.08.077 10.1103/PhysRevLett.17.1286 10.1016/j.ijrefrig.2013.09.001 10.1126/science.aau9101 10.1126/science.aab3564 10.1063/1.5091048 10.1103/PhysRevB.79.075107 10.2514/1.17988 10.4271/981691 10.1021/acsami.0c14075 10.2298/TSCI170504188K 10.1364/OE.27.021787 10.1016/j.ijrefrig.2013.09.025 10.1016/j.optmat.2016.02.032 10.1364/OE.396171 10.1016/j.matdes.2008.04.007 10.1016/j.egyr.2019.11.132 10.1038/nature13883 10.1016/j.jqsrt.2017.01.014 10.1007/978-3-642-02971-4 10.1126/science.abb8045 10.1364/OE.27.031587 10.1126/science.aat9513 10.1002/smll.201905290 10.1364/OE.26.00A777 10.1088/1361-6463/aa87a2 10.1002/adma.202000870 10.1016/S0017-9310(83)80111-2 10.1021/acsphotonics.8b00119 10.1016/0038-092X(93)90108-Z 10.1016/0306-2619(77)90015-0 10.1126/science.1158899 10.1016/j.enconman.2017.11.057 10.1021/acsami.0c05803 10.1103/PhysRevB.6.4370 10.1016/j.enbuild.2019.02.028 10.1016/j.enbuild.2013.03.028 10.1088/0953-8984/19/9/096007 10.1016/j.applthermaleng.2016.10.153 10.1021/acsphotonics.6b00991 10.1364/AO.23.000370 10.1126/science.aai7899 10.1002/admt.201901007 10.1063/1.4932164 10.1016/j.applthermaleng.2014.01.074 10.1038/s41893-019-0348-5 10.1016/S0378-7788(96)01004-3 10.1063/1.5087281 10.1016/j.solmat.2007.10.011 10.1016/0360-5442(89)90034-0 10.1063/1.5025947 10.1103/PhysRevB.83.073101 10.1016/j.ijheatmasstransfer.2020.120312 10.1002/advs.201500119 10.1126/science.aag0410 10.1016/0038-092X(95)00117-A 10.1016/j.xcrp.2020.100221 10.1016/j.solmat.2013.03.001 10.1016/j.energy.2018.08.007 10.1126/sciadv.aat9480 10.1364/AO.24.004493 10.1002/adma.201802152 10.1002/admi.201801063 10.1021/acsami.0c21204 10.1126/science.156.3771.30 10.1364/JOSA.54.000628 10.1007/s00231-013-1116-0 10.4271/2001-01-2194 10.1016/j.solmat.2011.12.010 10.1016/j.enconman.2003.09.033 10.1103/PhysRevLett.3.34 10.1016/j.renene.2019.06.119 10.1038/s41598-019-47572-z 10.1002/adma.201703878 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OIOZB OTOTI |
DOI | 10.1126/science.abf7136 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1509 |
ExternalDocumentID | 1875448 34914515 10_1126_science_abf7136 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ GX1 NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 0B8 63O 6XO ABPTK ABQIS AEUPB AEXZC AFUVZ ANJGP B-7 ESX IGG OIOZB OK1 OTOTI PK8 PQEST PV9 UMP VQA XFK YCJ YJ6 ZA5 |
ID | FETCH-LOGICAL-c459t-4c2af18c8a6a1ff173bc286432e868c47b62d6044eadfdb679822c0fadaee2ad3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri May 19 00:42:25 EDT 2023 Mon Jul 21 12:04:26 EDT 2025 Fri Jul 25 19:06:53 EDT 2025 Thu Apr 24 04:15:04 EDT 2025 Tue Jul 01 02:24:09 EDT 2025 Thu Apr 24 23:12:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6574 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-4c2af18c8a6a1ff173bc286432e868c47b62d6044eadfdb679822c0fadaee2ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Building Technologies Office National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division AC02-05CH11231; 1555336 |
ORCID | 0000-0001-8427-6626 0000-0003-2870-5064 0000-0002-0368-3551 0000-0001-5334-4243 0000-0002-2818-7458 0000-0002-8868-4931 0000-0003-4909-2869 0000-0002-1498-0148 0000-0002-5203-8698 0000-0001-7214-7931 0000-0003-0557-759X 0000-0003-1463-1359 0000-0003-4570-0142 0000-0001-8602-1213 0000000349092869 0000000214980148 0000000314631359 0000000288684931 0000000203683551 0000000228187458 000000030557759X 0000000252038698 0000000186021213 0000000172147931 0000000345700142 0000000153344243 0000000184276626 0000000328705064 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1875448 |
PMID | 34914515 |
PQID | 2638081257 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1875448 proquest_miscellaneous_2611651541 proquest_journals_2638081257 pubmed_primary_34914515 crossref_primary_10_1126_science_abf7136 crossref_citationtrail_10_1126_science_abf7136 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-17 2021-Dec-17 20211217 |
PublicationDateYYYYMMDD | 2021-12-17 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_70_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 |
References_xml | – ident: e_1_3_2_30_2 doi: 10.1002/adma.201906751 – ident: e_1_3_2_16_2 doi: 10.1016/j.solener.2020.08.077 – ident: e_1_3_2_35_2 doi: 10.1103/PhysRevLett.17.1286 – ident: e_1_3_2_68_2 doi: 10.1016/j.ijrefrig.2013.09.001 – ident: e_1_3_2_49_2 – ident: e_1_3_2_48_2 – ident: e_1_3_2_12_2 doi: 10.1126/science.aau9101 – ident: e_1_3_2_8_2 doi: 10.1126/science.aab3564 – ident: e_1_3_2_27_2 doi: 10.1063/1.5091048 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.79.075107 – ident: e_1_3_2_79_2 – ident: e_1_3_2_21_2 doi: 10.2514/1.17988 – ident: e_1_3_2_18_2 doi: 10.4271/981691 – ident: e_1_3_2_95_2 doi: 10.1021/acsami.0c14075 – ident: e_1_3_2_64_2 doi: 10.2298/TSCI170504188K – ident: e_1_3_2_23_2 doi: 10.1364/OE.27.021787 – ident: e_1_3_2_69_2 doi: 10.1016/j.ijrefrig.2013.09.025 – ident: e_1_3_2_46_2 doi: 10.1016/j.optmat.2016.02.032 – ident: e_1_3_2_77_2 – ident: e_1_3_2_2_2 – ident: e_1_3_2_82_2 – ident: e_1_3_2_25_2 doi: 10.1364/OE.396171 – ident: e_1_3_2_85_2 – ident: e_1_3_2_55_2 doi: 10.1016/j.matdes.2008.04.007 – ident: e_1_3_2_101_2 – ident: e_1_3_2_62_2 – ident: e_1_3_2_65_2 doi: 10.1016/j.egyr.2019.11.132 – ident: e_1_3_2_96_2 doi: 10.1038/nature13883 – ident: e_1_3_2_24_2 doi: 10.1016/j.jqsrt.2017.01.014 – ident: e_1_3_2_3_2 – ident: e_1_3_2_52_2 doi: 10.1007/978-3-642-02971-4 – ident: e_1_3_2_70_2 doi: 10.1126/science.abb8045 – ident: e_1_3_2_84_2 – ident: e_1_3_2_5_2 doi: 10.1364/OE.27.031587 – ident: e_1_3_2_11_2 doi: 10.1126/science.aat9513 – ident: e_1_3_2_92_2 doi: 10.1002/smll.201905290 – ident: e_1_3_2_78_2 – ident: e_1_3_2_22_2 doi: 10.1364/OE.26.00A777 – ident: e_1_3_2_72_2 doi: 10.1088/1361-6463/aa87a2 – ident: e_1_3_2_81_2 – ident: e_1_3_2_19_2 doi: 10.1002/adma.202000870 – ident: e_1_3_2_7_2 doi: 10.1016/S0017-9310(83)80111-2 – ident: e_1_3_2_29_2 doi: 10.1021/acsphotonics.8b00119 – ident: e_1_3_2_6_2 doi: 10.1016/0038-092X(93)90108-Z – ident: e_1_3_2_94_2 doi: 10.1016/0306-2619(77)90015-0 – ident: e_1_3_2_59_2 doi: 10.1126/science.1158899 – ident: e_1_3_2_74_2 doi: 10.1016/j.enconman.2017.11.057 – ident: e_1_3_2_20_2 doi: 10.1021/acsami.0c05803 – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevB.6.4370 – ident: e_1_3_2_39_2 doi: 10.1016/j.enbuild.2019.02.028 – ident: e_1_3_2_88_2 – ident: e_1_3_2_75_2 doi: 10.1016/j.enbuild.2013.03.028 – ident: e_1_3_2_33_2 doi: 10.1088/0953-8984/19/9/096007 – ident: e_1_3_2_76_2 doi: 10.1016/j.applthermaleng.2016.10.153 – ident: e_1_3_2_87_2 – ident: e_1_3_2_91_2 – ident: e_1_3_2_9_2 doi: 10.1021/acsphotonics.6b00991 – ident: e_1_3_2_14_2 doi: 10.1364/AO.23.000370 – ident: e_1_3_2_10_2 doi: 10.1126/science.aai7899 – ident: e_1_3_2_13_2 doi: 10.1002/admt.201901007 – ident: e_1_3_2_71_2 doi: 10.1063/1.4932164 – ident: e_1_3_2_63_2 doi: 10.1016/j.applthermaleng.2014.01.074 – ident: e_1_3_2_44_2 – ident: e_1_3_2_93_2 doi: 10.1038/s41893-019-0348-5 – ident: e_1_3_2_104_2 doi: 10.1016/S0378-7788(96)01004-3 – ident: e_1_3_2_51_2 doi: 10.1063/1.5087281 – ident: e_1_3_2_106_2 doi: 10.1016/j.solmat.2007.10.011 – ident: e_1_3_2_103_2 doi: 10.1016/0360-5442(89)90034-0 – ident: e_1_3_2_26_2 doi: 10.1063/1.5025947 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevB.83.073101 – ident: e_1_3_2_60_2 – ident: e_1_3_2_73_2 doi: 10.1016/j.ijheatmasstransfer.2020.120312 – ident: e_1_3_2_102_2 – ident: e_1_3_2_90_2 – ident: e_1_3_2_4_2 doi: 10.1002/advs.201500119 – ident: e_1_3_2_99_2 – ident: e_1_3_2_34_2 doi: 10.1126/science.aag0410 – ident: e_1_3_2_54_2 doi: 10.1016/0038-092X(95)00117-A – ident: e_1_3_2_15_2 doi: 10.1016/j.xcrp.2020.100221 – ident: e_1_3_2_56_2 doi: 10.1016/j.solmat.2013.03.001 – ident: e_1_3_2_66_2 doi: 10.1016/j.energy.2018.08.007 – ident: e_1_3_2_40_2 doi: 10.1126/sciadv.aat9480 – ident: e_1_3_2_41_2 doi: 10.1364/AO.24.004493 – ident: e_1_3_2_38_2 – ident: e_1_3_2_98_2 doi: 10.1002/adma.201802152 – ident: e_1_3_2_58_2 doi: 10.1002/admi.201801063 – ident: e_1_3_2_57_2 doi: 10.1021/acsami.0c21204 – ident: e_1_3_2_100_2 – ident: e_1_3_2_36_2 doi: 10.1126/science.156.3771.30 – ident: e_1_3_2_47_2 doi: 10.1364/JOSA.54.000628 – ident: e_1_3_2_80_2 – ident: e_1_3_2_50_2 doi: 10.1007/s00231-013-1116-0 – ident: e_1_3_2_17_2 doi: 10.4271/2001-01-2194 – ident: e_1_3_2_105_2 doi: 10.1016/j.solmat.2011.12.010 – ident: e_1_3_2_53_2 doi: 10.1016/j.enconman.2003.09.033 – ident: e_1_3_2_61_2 – ident: e_1_3_2_31_2 doi: 10.1103/PhysRevLett.3.34 – ident: e_1_3_2_97_2 doi: 10.1016/j.renene.2019.06.119 – ident: e_1_3_2_28_2 doi: 10.1038/s41598-019-47572-z – ident: e_1_3_2_67_2 – ident: e_1_3_2_83_2 – ident: e_1_3_2_89_2 – ident: e_1_3_2_86_2 – ident: e_1_3_2_42_2 doi: 10.1002/adma.201703878 |
SSID | ssj0009593 |
Score | 2.7296333 |
Snippet | Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is... The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative... A passive turnoffPassive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1504 |
SubjectTerms | Ambient temperature Atmospheric windows Climate Coatings Cooling Emittance Energy Energy conservation ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Energy consumption Heat Heat sinks Heating Households Insulators Low temperature Material properties Metal-insulator transition Optimization Roofs Seasonal variations Solar energy Switches Temperature Temperature dependence Tungsten Vanadium Vanadium dioxide |
Title | Temperature-adaptive radiative coating for all-season household thermal regulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34914515 https://www.proquest.com/docview/2638081257 https://www.proquest.com/docview/2611651541 https://www.osti.gov/servlets/purl/1875448 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZymAvZe1-ee2KBnvoHhxsRXbsx3RrWtquG8OBvBlZltdCSErrPmx__e6ss-INF7q9GEexE6M7nb-TPn3H2AdtAkCpwQSQW9qIams_DSrtmxgJPGEV6KZ6w5fL-HQuzxbRYjDospbu62Kkf_XuK_kfq0Ib2BV3yf6DZd2PQgOcg33hCBaG4-NsbAD0WlFkX5XqpqEB3aLaQHOm16p2RMnl0sf5QDD2FST7BledEHRCXEZl_x9UxauLVdthDxjUret0rOkIilNLI2hZBXRbZ4ohoznpc6Ov1NpBZyIDnytko26YQQ294OxadRtPIEUmmj_KWhqExt-6ExYiRPKH3Z9JMTbA8pAisHHN9LRRYB7b-j3kgXFEH22kBSAr-18BnaKVZqSKCtLwHrHty6_5bH5xkWfHi-wJ2xKQZYgh25oefT6a_a3a7J6OtKE6u67aP_gD1gzXEJ4fTlka6JI9Z9uUc_CpdaAdNjCrXfbUViH9uct2yGJ3_JBEyD--YN_7fIs73-LkWxycgG98izvf4uRbfONbL9l8dpx9OvWp_oavZZTWvtRCVWGiExWrsKrCybjQIgEIK0wSJ1pOiliUcSAlRKOqLHA9TwgdVPBQxghVjl-x4Wq9Mm8YV2AuiAGFnJQw-EOhpGliQVQY6GaVemzUdl-uSZwea6Qs8yZJFXFO_Z1Tf3vs0N1wY3VZHr50D-2BzaiLrJFApus8TFD7MfHYfmumnIb2XS7grQRYGV5nHnvvvobAi6tpamWgL-EaVK6CDCT02GtrXvckY5liBezo7SPu3mPPNqNknw3r23vzDoBuXRyQO_4GDTKtmw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-adaptive+radiative+coating+for+all-season+household+thermal+regulation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tang%2C+Kechao&rft.au=Dong%2C+Kaichen&rft.au=Li%2C+Jiachen&rft.au=Gordon%2C+Madeleine+P&rft.date=2021-12-17&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=374&rft.issue=6574&rft.spage=1504&rft_id=info:doi/10.1126%2Fscience.abf7136&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |