Temperature-adaptive radiative coating for all-season household thermal regulation

Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al . and Tang et al . used the metal-insulator transition in tungsten-doped van...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 374; no. 6574; pp. 1504 - 1509
Main Authors Tang, Kechao, Dong, Kaichen, Li, Jiachen, Gordon, Madeleine P., Reichertz, Finnegan G., Kim, Hyungjin, Rho, Yoonsoo, Wang, Qingjun, Lin, Chang-Yu, Grigoropoulos, Costas P., Javey, Ali, Urban, Jeffrey J., Yao, Jie, Levinson, Ronnen, Wu, Junqiao
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 17.12.2021
AAAS
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.abf7136

Cover

Loading…
Abstract Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al . and Tang et al . used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BG A smart radiative coating automatically switches thermal radiation power in response to ambient temperature. The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.
AbstractList The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.
A passive turnoffPassive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al. and Tang et al. used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BGThe sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.
The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. In this work, we approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.
The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.
Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al . and Tang et al . used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BG A smart radiative coating automatically switches thermal radiation power in response to ambient temperature. The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative cooling power of roof coating in the hot daytime using static, cooling-optimized material properties. However, the resultant overcooling in cold night or winter times exacerbates the heating cost, especially in climates where heating dominates energy consumption. We approached thermal regulation from an all-season perspective by developing a mechanically flexible coating that adapts its thermal emittance to different ambient temperatures. The fabricated temperature-adaptive radiative coating (TARC) optimally absorbs the solar energy and automatically switches thermal emittance from 0.20 for ambient temperatures lower than 15°C to 0.90 for temperatures above 30°C, driven by a photonically amplified metal-insulator transition. Simulations show that this system outperforms existing roof coatings for energy saving in most climates, especially those with substantial seasonal variations.
Author Grigoropoulos, Costas P.
Yao, Jie
Rho, Yoonsoo
Gordon, Madeleine P.
Reichertz, Finnegan G.
Javey, Ali
Levinson, Ronnen
Kim, Hyungjin
Wang, Qingjun
Li, Jiachen
Urban, Jeffrey J.
Lin, Chang-Yu
Dong, Kaichen
Tang, Kechao
Wu, Junqiao
Author_xml – sequence: 1
  givenname: Kechao
  orcidid: 0000-0003-4570-0142
  surname: Tang
  fullname: Tang, Kechao
  organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing 100871, P. R. China
– sequence: 2
  givenname: Kaichen
  orcidid: 0000-0001-5334-4243
  surname: Dong
  fullname: Dong, Kaichen
  organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 3
  givenname: Jiachen
  orcidid: 0000-0002-0368-3551
  surname: Li
  fullname: Li, Jiachen
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Applied Science and Technology Graduate Group, University of California, Berkeley, CA, 94720, USA
– sequence: 4
  givenname: Madeleine P.
  orcidid: 0000-0002-2818-7458
  surname: Gordon
  fullname: Gordon, Madeleine P.
  organization: Applied Science and Technology Graduate Group, University of California, Berkeley, CA, 94720, USA., The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 5
  givenname: Finnegan G.
  orcidid: 0000-0002-5203-8698
  surname: Reichertz
  fullname: Reichertz, Finnegan G.
  organization: East Bay Innovation Academy, 3800 Mountain Blvd., Oakland, CA 94619, USA
– sequence: 6
  givenname: Hyungjin
  orcidid: 0000-0002-8868-4931
  surname: Kim
  fullname: Kim, Hyungjin
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
– sequence: 7
  givenname: Yoonsoo
  orcidid: 0000-0003-2870-5064
  surname: Rho
  fullname: Rho, Yoonsoo
  organization: Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
– sequence: 8
  givenname: Qingjun
  orcidid: 0000-0001-8602-1213
  surname: Wang
  fullname: Wang, Qingjun
  organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 9
  givenname: Chang-Yu
  orcidid: 0000-0001-8427-6626
  surname: Lin
  fullname: Lin, Chang-Yu
  organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
– sequence: 10
  givenname: Costas P.
  surname: Grigoropoulos
  fullname: Grigoropoulos, Costas P.
  organization: Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA
– sequence: 11
  givenname: Ali
  orcidid: 0000-0001-7214-7931
  surname: Javey
  fullname: Javey, Ali
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
– sequence: 12
  givenname: Jeffrey J.
  orcidid: 0000-0003-4909-2869
  surname: Urban
  fullname: Urban, Jeffrey J.
  organization: The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 13
  givenname: Jie
  orcidid: 0000-0003-0557-759X
  surname: Yao
  fullname: Yao, Jie
  organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 14
  givenname: Ronnen
  orcidid: 0000-0003-1463-1359
  surname: Levinson
  fullname: Levinson, Ronnen
  organization: Heat Island Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 15
  givenname: Junqiao
  orcidid: 0000-0002-1498-0148
  surname: Wu
  fullname: Wu, Junqiao
  organization: Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA., Applied Science and Technology Graduate Group, University of California, Berkeley, CA, 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34914515$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1875448$$D View this record in Osti.gov
BookMark eNp1kc1r3DAQxUVJaTZJz70V015ycaIvy_KxhDYtBAIlOYuxPMo6yNJWkgP976tktz0EehrB_J6Y994JOQoxICEfGL1gjKvLbGcMFi9gdD0T6g3ZMDp07cCpOCIbSoVqNe27Y3KS8yOldTeId-RYyIHJjnUb8vMOlx0mKGvCFibYlfkJmwTTDC8vG-sMD42LqQHv24yQY2i2cc24jX5qyhbTAr5J-LD6ysZwRt468BnfH-Ypuf_29e7qe3tze_3j6stNa2U3lFZaDo5pq0EBc471YrRcKyk4aqWt7EfFJ0WlRJjcNKp-0Jxb6uqRiBwmcUo-7f-NucymJlHQbm0MAW0xTPedlLpC53tol-KvFXMxy5wteg8BqwfDFWOqJiFZRT-_Qh_jmkK1UCmhqWa86yv18UCt44KT2aV5gfTb_I20Apd7wKaYc0L3D2HUPJdmDqWZQ2lV0b1SVC8vUZYEs_-v7g8u6Z8n
CitedBy_id crossref_primary_10_1021_jacs_4c07609
crossref_primary_10_3390_su14031110
crossref_primary_10_1016_j_mser_2024_100915
crossref_primary_10_1016_j_optmat_2022_113131
crossref_primary_10_1016_j_ceramint_2023_08_150
crossref_primary_10_1016_j_renene_2022_07_143
crossref_primary_10_1126_science_adl0653
crossref_primary_10_1002_smll_202301957
crossref_primary_10_1039_D2TA09753B
crossref_primary_10_1021_acsphotonics_4c00981
crossref_primary_10_1002_ange_202301421
crossref_primary_10_1021_acs_nanolett_2c04069
crossref_primary_10_3390_photonics10090966
crossref_primary_10_1063_5_0164936
crossref_primary_10_1021_acsphotonics_4c00848
crossref_primary_10_1002_admt_202400512
crossref_primary_10_1002_admt_202401723
crossref_primary_10_1063_5_0199932
crossref_primary_10_1021_acssuschemeng_4c10372
crossref_primary_10_29026_oea_2024_230194
crossref_primary_10_1364_AO_522582
crossref_primary_10_1021_acsami_2c21188
crossref_primary_10_3986_alternator_2022_27
crossref_primary_10_1038_s41893_022_01030_3
crossref_primary_10_1364_OE_523853
crossref_primary_10_1021_acsphotonics_4c00833
crossref_primary_10_1016_j_ijleo_2024_172098
crossref_primary_10_1016_j_joule_2022_07_015
crossref_primary_10_1016_j_enbuild_2024_114662
crossref_primary_10_1002_adom_202301303
crossref_primary_10_1002_adfm_202310858
crossref_primary_10_1038_s41893_023_01061_4
crossref_primary_10_1038_s41467_022_32528_1
crossref_primary_10_1002_adma_202305791
crossref_primary_10_1039_D3CP02224B
crossref_primary_10_1515_nanoph_2023_0678
crossref_primary_10_1016_j_joule_2023_09_011
crossref_primary_10_1016_j_pmatsci_2024_101276
crossref_primary_10_1063_5_0149542
crossref_primary_10_1016_j_cej_2025_161629
crossref_primary_10_1021_acsanm_2c02788
crossref_primary_10_1039_D3MH00671A
crossref_primary_10_1515_nanoph_2024_0005
crossref_primary_10_1002_adma_202409738
crossref_primary_10_1002_adom_202402432
crossref_primary_10_1016_j_nanoen_2024_110311
crossref_primary_10_1016_j_cej_2024_150657
crossref_primary_10_1016_j_applthermaleng_2025_125805
crossref_primary_10_1016_j_pmatsci_2025_101461
crossref_primary_10_1126_science_adn2524
crossref_primary_10_1063_5_0204694
crossref_primary_10_1021_acsami_2c13991
crossref_primary_10_1002_adom_202201702
crossref_primary_10_1021_acsnano_2c11916
crossref_primary_10_1073_pnas_2217068120
crossref_primary_10_1103_PhysRevResearch_5_013028
crossref_primary_10_1038_s41528_024_00339_7
crossref_primary_10_1002_adfm_202419378
crossref_primary_10_1515_nanoph_2023_0739
crossref_primary_10_1002_admt_202400835
crossref_primary_10_1016_j_pmatsci_2024_101291
crossref_primary_10_1002_aenm_202404122
crossref_primary_10_3390_su152215876
crossref_primary_10_1016_j_joule_2023_10_013
crossref_primary_10_1039_D4NH00136B
crossref_primary_10_1021_acsenergylett_2c00419
crossref_primary_10_1002_anie_202301421
crossref_primary_10_1016_j_isci_2022_105780
crossref_primary_10_1002_adma_202310923
crossref_primary_10_1515_nanoph_2023_0641
crossref_primary_10_1021_acsami_4c20168
crossref_primary_10_1186_s40580_023_00365_7
crossref_primary_10_1021_acssuschemeng_4c00773
crossref_primary_10_1021_acsami_4c09138
crossref_primary_10_1021_acsaelm_3c01023
crossref_primary_10_1016_j_csite_2024_104811
crossref_primary_10_1038_s41467_022_32409_7
crossref_primary_10_1360_nso_20220063
crossref_primary_10_1002_admt_202301808
crossref_primary_10_1016_j_scs_2023_104912
crossref_primary_10_1016_j_nanoen_2024_109770
crossref_primary_10_1016_j_xcrp_2022_101098
crossref_primary_10_1016_j_xcrp_2023_101274
crossref_primary_10_1364_OPTCON_554500
crossref_primary_10_1063_5_0089353
crossref_primary_10_1016_j_vacuum_2022_111079
crossref_primary_10_1002_adom_202300123
crossref_primary_10_1002_adom_202301694
crossref_primary_10_1021_acs_jpcc_2c00091
crossref_primary_10_1039_D2TC02668F
crossref_primary_10_1063_5_0185406
crossref_primary_10_1021_acs_nanolett_2c00872
crossref_primary_10_1016_j_jobe_2023_108298
crossref_primary_10_1002_adom_202200541
crossref_primary_10_1002_admi_202202308
crossref_primary_10_1002_smll_202309397
crossref_primary_10_1002_aenm_202202932
crossref_primary_10_1038_s41378_024_00744_y
crossref_primary_10_1063_5_0217725
crossref_primary_10_1007_s42114_023_00819_w
crossref_primary_10_1016_j_solmat_2023_112488
crossref_primary_10_1016_j_cej_2024_154666
crossref_primary_10_1016_j_mtcomm_2022_104534
crossref_primary_10_1021_acsami_2c14007
crossref_primary_10_1080_15599612_2024_2334293
crossref_primary_10_1088_0256_307X_41_4_044202
crossref_primary_10_1126_science_adi2224
crossref_primary_10_1002_smll_202206145
crossref_primary_10_1016_j_rser_2024_114716
crossref_primary_10_1016_j_joule_2022_01_012
crossref_primary_10_1063_5_0156810
crossref_primary_10_1103_PhysRevB_107_115139
crossref_primary_10_1002_smtd_202400832
crossref_primary_10_1002_sus2_171
crossref_primary_10_1021_acsnano_4c10659
crossref_primary_10_1002_adhm_202301104
crossref_primary_10_1016_j_optlastec_2023_109774
crossref_primary_10_1039_D4TA03558E
crossref_primary_10_1016_j_nanoso_2024_101296
crossref_primary_10_1117_1_JPE_14_028501
crossref_primary_10_1016_j_ceramint_2024_07_126
crossref_primary_10_1002_adfm_202414229
crossref_primary_10_1021_acs_jpcc_2c07631
crossref_primary_10_1016_j_nanoen_2024_110443
crossref_primary_10_1039_D4TA05314A
crossref_primary_10_3390_buildings14061745
crossref_primary_10_1021_acsami_2c01370
crossref_primary_10_1002_adfm_202300886
crossref_primary_10_1103_PhysRevResearch_5_043077
crossref_primary_10_1016_j_adapen_2023_100159
crossref_primary_10_1002_admt_202301174
crossref_primary_10_1115_1_4056978
crossref_primary_10_1002_adfm_202203789
crossref_primary_10_1021_acs_nanolett_3c03375
crossref_primary_10_1016_j_isci_2024_110948
crossref_primary_10_1016_j_enbuild_2024_115121
crossref_primary_10_1126_sciadv_adf5883
crossref_primary_10_1002_smll_202312004
crossref_primary_10_1002_admi_202202505
crossref_primary_10_1016_j_compositesb_2025_112207
crossref_primary_10_1016_j_isci_2022_104727
crossref_primary_10_1103_PhysRevMaterials_8_035003
crossref_primary_10_3390_nano15020098
crossref_primary_10_1016_j_matt_2024_08_026
crossref_primary_10_1002_advs_202416437
crossref_primary_10_1016_j_ceramint_2024_09_150
crossref_primary_10_1016_j_ceramint_2023_11_400
crossref_primary_10_1016_j_cej_2024_149388
crossref_primary_10_1021_acsami_4c04546
crossref_primary_10_3390_s23156715
crossref_primary_10_1088_1361_6528_ad7269
crossref_primary_10_1021_acs_chemrev_2c00762
crossref_primary_10_1016_j_apmt_2024_102331
crossref_primary_10_1038_s41565_024_01756_5
crossref_primary_10_1021_acsnano_3c01755
crossref_primary_10_1039_D4TA08945F
crossref_primary_10_1016_j_xcrp_2022_100986
crossref_primary_10_1515_nanoph_2022_0047
crossref_primary_10_1016_j_nanoen_2024_110023
crossref_primary_10_3390_su16062346
crossref_primary_10_1016_j_buildenv_2024_111776
crossref_primary_10_1002_adma_202201093
crossref_primary_10_3390_buildings14092994
crossref_primary_10_1002_advs_202416420
crossref_primary_10_1038_s41377_024_01560_9
crossref_primary_10_1364_PRJ_527945
crossref_primary_10_1016_j_jallcom_2023_168905
crossref_primary_10_1016_j_isci_2023_107388
crossref_primary_10_1038_s41893_024_01350_6
crossref_primary_10_1063_5_0220191
crossref_primary_10_1002_smll_202309050
crossref_primary_10_1039_D3EE04261H
crossref_primary_10_1021_acs_chemrev_2c00546
crossref_primary_10_1002_adpr_202200253
crossref_primary_10_1073_pnas_2207353119
crossref_primary_10_1039_D2MA01000C
crossref_primary_10_1016_j_xcrp_2022_100960
crossref_primary_10_1103_PhysRevResearch_5_043272
crossref_primary_10_1016_j_xcrp_2025_102445
crossref_primary_10_1002_chem_202400826
crossref_primary_10_1364_AO_475672
crossref_primary_10_1038_s44284_023_00005_5
crossref_primary_10_1038_s41598_024_52021_7
crossref_primary_10_1039_D4TA01158A
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126887
crossref_primary_10_1002_vnl_22038
crossref_primary_10_1016_j_enbuild_2024_115041
crossref_primary_10_1039_D2TC00318J
crossref_primary_10_1039_D3RA05506J
crossref_primary_10_1007_s12274_023_5916_3
crossref_primary_10_1039_D4MH00903G
crossref_primary_10_1002_aenm_202402667
crossref_primary_10_1002_adfm_202405582
crossref_primary_10_1002_cjoc_202300282
crossref_primary_10_1016_j_jechem_2023_05_051
crossref_primary_10_1038_s41377_023_01119_0
crossref_primary_10_1016_j_applthermaleng_2024_124197
crossref_primary_10_1002_adfm_202208144
crossref_primary_10_1016_j_mtphys_2024_101643
crossref_primary_10_1364_OME_496246
crossref_primary_10_1016_j_ijthermalsci_2025_109819
crossref_primary_10_1016_j_solener_2023_04_032
crossref_primary_10_1002_smll_202407777
crossref_primary_10_1063_5_0156526
crossref_primary_10_15541_jim20230386
crossref_primary_10_1002_adma_202414300
crossref_primary_10_1016_j_applthermaleng_2025_125690
crossref_primary_10_1146_annurev_environ_112321_093021
crossref_primary_10_1038_s41467_023_40902_w
crossref_primary_10_1038_s44286_024_00050_4
crossref_primary_10_1016_j_jechem_2025_01_016
crossref_primary_10_1016_j_apsusc_2024_161608
crossref_primary_10_3390_polym15010159
crossref_primary_10_1364_OE_485934
crossref_primary_10_1016_j_buildenv_2023_110806
crossref_primary_10_1021_acs_nanolett_5c00083
crossref_primary_10_1364_PRJ_534513
crossref_primary_10_1360_nso_20240019
crossref_primary_10_1016_j_cej_2024_157877
crossref_primary_10_3390_ma16010273
crossref_primary_10_1364_OE_548006
crossref_primary_10_1002_adfm_202410819
crossref_primary_10_1016_j_xcrp_2024_101934
crossref_primary_10_1021_acsenergylett_3c00905
crossref_primary_10_3390_su16166936
crossref_primary_10_1002_adfm_202316536
crossref_primary_10_1002_aenm_202402202
crossref_primary_10_1021_acsami_4c15587
crossref_primary_10_1016_j_cej_2024_153262
crossref_primary_10_1016_j_compscitech_2023_110163
crossref_primary_10_1016_j_cej_2024_157862
crossref_primary_10_1002_adma_202401577
crossref_primary_10_1016_j_jallcom_2025_178529
crossref_primary_10_7498_aps_72_20222167
crossref_primary_10_1016_j_energy_2022_125289
crossref_primary_10_1016_j_applthermaleng_2023_121751
crossref_primary_10_1016_j_apenergy_2022_119676
crossref_primary_10_1002_admt_202401393
crossref_primary_10_1021_acsnano_3c05460
crossref_primary_10_1016_j_apenergy_2023_121928
crossref_primary_10_1021_acsami_4c19875
crossref_primary_10_1088_1674_1056_ad23d2
crossref_primary_10_1002_aenm_202200713
crossref_primary_10_1016_j_physleta_2024_130083
crossref_primary_10_1002_adma_202209897
crossref_primary_10_21595_vp_2022_22385
crossref_primary_10_1016_j_compscitech_2024_110518
crossref_primary_10_1038_s41467_024_54983_8
crossref_primary_10_1021_acsami_4c18311
crossref_primary_10_1063_5_0188144
crossref_primary_10_1016_j_xpro_2025_103683
crossref_primary_10_1038_s41467_024_53177_6
crossref_primary_10_7498_aps_73_20240289
crossref_primary_10_1021_acsami_4c10823
crossref_primary_10_1126_sciadv_ade4853
crossref_primary_10_1002_adma_202311453
crossref_primary_10_1016_j_apsusc_2022_153741
crossref_primary_10_1016_j_ijthermalsci_2025_109740
crossref_primary_10_1016_j_jechem_2023_11_016
crossref_primary_10_1016_j_applthermaleng_2023_121305
crossref_primary_10_1063_5_0152061
crossref_primary_10_1016_j_tsf_2022_139455
crossref_primary_10_1016_j_energy_2024_133861
crossref_primary_10_1016_j_nxener_2023_100078
crossref_primary_10_1016_j_nxener_2023_100072
crossref_primary_10_1016_j_ynexs_2024_100028
crossref_primary_10_2139_ssrn_4120300
crossref_primary_10_1021_acsapm_3c01914
crossref_primary_10_1002_adma_202206364
crossref_primary_10_1063_5_0134673
crossref_primary_10_1016_j_buildenv_2024_112119
crossref_primary_10_1002_adfm_202202661
crossref_primary_10_1016_j_mtener_2024_101647
crossref_primary_10_1016_j_mtener_2024_101767
crossref_primary_10_1364_OME_485012
crossref_primary_10_1002_lpor_202300407
crossref_primary_10_1002_adma_202308189
crossref_primary_10_1021_acsaelm_2c01176
crossref_primary_10_1038_s41467_024_45095_4
crossref_primary_10_1002_idm2_12123
crossref_primary_10_1021_acsaom_4c00336
crossref_primary_10_1002_advs_202405962
crossref_primary_10_1016_j_jobe_2023_108344
crossref_primary_10_1021_acs_chemrev_3c00136
crossref_primary_10_1016_j_nxener_2023_100083
crossref_primary_10_1002_adfm_202300441
crossref_primary_10_1021_acsami_2c21961
crossref_primary_10_1063_5_0136842
crossref_primary_10_1007_s11664_025_11863_1
crossref_primary_10_1039_D2CP03565K
crossref_primary_10_1103_PhysRevMaterials_6_090201
crossref_primary_10_1038_s41377_023_01315_y
crossref_primary_10_1038_s41467_023_39812_8
crossref_primary_10_1103_PhysRevLett_132_216901
crossref_primary_10_1016_j_ceramint_2023_10_002
crossref_primary_10_1063_5_0084341
crossref_primary_10_1016_j_scib_2023_08_003
crossref_primary_10_1021_acsnano_4c05929
crossref_primary_10_1016_j_nanoen_2022_107435
crossref_primary_10_1002_advs_202305067
crossref_primary_10_1021_acsphotonics_4c01689
crossref_primary_10_1016_j_optmat_2023_113812
crossref_primary_10_1038_s41467_025_57388_3
crossref_primary_10_1016_j_xcrp_2022_101066
crossref_primary_10_1021_acs_chemrev_2c00171
crossref_primary_10_1016_j_cej_2024_150972
crossref_primary_10_1103_PhysRevB_109_094122
crossref_primary_10_1021_acsphotonics_3c00241
crossref_primary_10_1126_science_add1795
crossref_primary_10_2139_ssrn_4055938
crossref_primary_10_1002_adom_202202163
crossref_primary_10_1002_smll_202408598
crossref_primary_10_1039_D4CP01245C
crossref_primary_10_1002_adma_202401869
crossref_primary_10_1016_j_apenergy_2024_124961
crossref_primary_10_1016_j_pmatsci_2023_101144
crossref_primary_10_1016_j_cej_2023_148010
crossref_primary_10_1021_acsami_4c09758
crossref_primary_10_1002_smll_202305234
crossref_primary_10_1021_acsami_3c17286
crossref_primary_10_1016_j_solmat_2024_113173
crossref_primary_10_1002_adfm_202208785
crossref_primary_10_1016_j_jallcom_2024_176793
crossref_primary_10_1038_s41893_022_01023_2
crossref_primary_10_1063_5_0253948
crossref_primary_10_1016_j_infrared_2023_105000
crossref_primary_10_1007_s42765_024_00467_9
crossref_primary_10_1016_j_mtener_2022_100978
crossref_primary_10_1016_j_xcrp_2022_101198
crossref_primary_10_1016_j_device_2023_100008
crossref_primary_10_1016_j_renene_2023_119360
crossref_primary_10_1016_j_nxener_2023_100064
crossref_primary_10_1038_s41377_024_01400_w
crossref_primary_10_1016_j_enconman_2024_118309
crossref_primary_10_1039_D4TA04942J
crossref_primary_10_1007_s42114_024_01127_7
crossref_primary_10_1021_acsphotonics_2c00714
crossref_primary_10_1016_j_renene_2023_119486
crossref_primary_10_1002_adfm_202314021
crossref_primary_10_1002_pol_20230408
crossref_primary_10_1002_adma_202302685
crossref_primary_10_1016_j_energy_2024_132178
crossref_primary_10_1016_j_matt_2022_01_018
crossref_primary_10_1016_j_enbuild_2024_114949
crossref_primary_10_1016_j_ijleo_2023_171556
crossref_primary_10_1117_1_AP_6_4_046006
crossref_primary_10_1016_j_cej_2022_137308
crossref_primary_10_1016_j_solener_2024_112734
crossref_primary_10_1016_j_jmat_2024_03_015
crossref_primary_10_1021_acsami_4c00825
crossref_primary_10_1002_adfm_202209654
crossref_primary_10_1016_j_apenergy_2024_123619
crossref_primary_10_1016_j_nxener_2024_100108
crossref_primary_10_2139_ssrn_4097428
crossref_primary_10_1016_j_buildenv_2025_112581
crossref_primary_10_1021_acsami_3c16162
crossref_primary_10_1016_j_nxener_2023_100046
crossref_primary_10_1021_acsami_4c15068
crossref_primary_10_1016_j_enbuild_2024_114836
crossref_primary_10_1016_j_enbuild_2024_114955
crossref_primary_10_1016_j_cej_2023_141715
crossref_primary_10_1002_advs_202305664
crossref_primary_10_1016_j_cej_2022_137556
crossref_primary_10_1016_j_cej_2022_139739
crossref_primary_10_1038_s42254_024_00771_8
crossref_primary_10_25159_3005_2602_13618
crossref_primary_10_1039_D4EE05416D
crossref_primary_10_1016_j_solmat_2024_113040
crossref_primary_10_1016_j_xcrp_2022_101147
crossref_primary_10_1002_admt_202200808
crossref_primary_10_26599_CF_2025_9200033
crossref_primary_10_1016_j_mtphys_2025_101694
crossref_primary_10_1364_OME_546761
crossref_primary_10_1016_j_enbuild_2023_113031
crossref_primary_10_1016_j_eng_2023_07_019
crossref_primary_10_1016_j_tsep_2024_102689
crossref_primary_10_1038_s41893_024_01349_z
crossref_primary_10_1021_acs_nanolett_3c02733
crossref_primary_10_7216_teksmuh_1271662
crossref_primary_10_1088_2631_7990_ad8710
crossref_primary_10_1021_acsapm_3c02194
crossref_primary_10_1016_j_buildenv_2024_112053
crossref_primary_10_1002_adma_202412845
crossref_primary_10_1016_j_triboint_2023_108557
crossref_primary_10_1002_adma_202200329
crossref_primary_10_1016_j_joule_2023_06_019
crossref_primary_10_1016_j_renene_2024_120208
crossref_primary_10_1016_j_apmt_2022_101642
crossref_primary_10_1021_acs_nanolett_3c03711
crossref_primary_10_1016_j_renene_2024_121658
crossref_primary_10_1016_j_solmat_2022_111883
crossref_primary_10_1021_acsanm_2c01396
crossref_primary_10_1002_adfm_202305998
crossref_primary_10_1002_adom_202402491
crossref_primary_10_1021_acsami_3c19498
crossref_primary_10_1117_1_OE_63_9_091606
crossref_primary_10_1016_j_matt_2023_01_031
crossref_primary_10_1016_j_nxener_2023_100019
crossref_primary_10_1038_s41467_024_50654_w
crossref_primary_10_1515_nanoph_2023_0695
crossref_primary_10_1007_s12145_025_01728_w
crossref_primary_10_1021_acsaem_4c01385
crossref_primary_10_3788_AOS241378
crossref_primary_10_1016_j_cej_2022_139763
crossref_primary_10_1007_s10570_022_04749_6
crossref_primary_10_1016_j_isci_2023_106857
crossref_primary_10_1016_j_enbuild_2023_113131
crossref_primary_10_1021_acsami_1c23401
crossref_primary_10_1039_D4TA01767F
crossref_primary_10_1038_s41467_024_50872_2
crossref_primary_10_1021_acsami_4c08207
crossref_primary_10_1088_1742_6596_2774_1_012083
crossref_primary_10_1002_lpor_202401438
crossref_primary_10_1016_j_nxener_2023_100003
crossref_primary_10_1016_j_scs_2025_106190
crossref_primary_10_1063_5_0087687
crossref_primary_10_1016_j_device_2024_100407
crossref_primary_10_1029_2024EF005246
crossref_primary_10_1021_acs_nanolett_4c01535
crossref_primary_10_1021_acsnano_3c01184
crossref_primary_10_1021_acsnano_3c08930
crossref_primary_10_1039_D4TC03978E
crossref_primary_10_1021_acsami_2c12610
crossref_primary_10_1016_j_matt_2025_102057
crossref_primary_10_1360_TB_2024_0932
crossref_primary_10_1016_j_enbuild_2023_113481
Cites_doi 10.1002/adma.201906751
10.1016/j.solener.2020.08.077
10.1103/PhysRevLett.17.1286
10.1016/j.ijrefrig.2013.09.001
10.1126/science.aau9101
10.1126/science.aab3564
10.1063/1.5091048
10.1103/PhysRevB.79.075107
10.2514/1.17988
10.4271/981691
10.1021/acsami.0c14075
10.2298/TSCI170504188K
10.1364/OE.27.021787
10.1016/j.ijrefrig.2013.09.025
10.1016/j.optmat.2016.02.032
10.1364/OE.396171
10.1016/j.matdes.2008.04.007
10.1016/j.egyr.2019.11.132
10.1038/nature13883
10.1016/j.jqsrt.2017.01.014
10.1007/978-3-642-02971-4
10.1126/science.abb8045
10.1364/OE.27.031587
10.1126/science.aat9513
10.1002/smll.201905290
10.1364/OE.26.00A777
10.1088/1361-6463/aa87a2
10.1002/adma.202000870
10.1016/S0017-9310(83)80111-2
10.1021/acsphotonics.8b00119
10.1016/0038-092X(93)90108-Z
10.1016/0306-2619(77)90015-0
10.1126/science.1158899
10.1016/j.enconman.2017.11.057
10.1021/acsami.0c05803
10.1103/PhysRevB.6.4370
10.1016/j.enbuild.2019.02.028
10.1016/j.enbuild.2013.03.028
10.1088/0953-8984/19/9/096007
10.1016/j.applthermaleng.2016.10.153
10.1021/acsphotonics.6b00991
10.1364/AO.23.000370
10.1126/science.aai7899
10.1002/admt.201901007
10.1063/1.4932164
10.1016/j.applthermaleng.2014.01.074
10.1038/s41893-019-0348-5
10.1016/S0378-7788(96)01004-3
10.1063/1.5087281
10.1016/j.solmat.2007.10.011
10.1016/0360-5442(89)90034-0
10.1063/1.5025947
10.1103/PhysRevB.83.073101
10.1016/j.ijheatmasstransfer.2020.120312
10.1002/advs.201500119
10.1126/science.aag0410
10.1016/0038-092X(95)00117-A
10.1016/j.xcrp.2020.100221
10.1016/j.solmat.2013.03.001
10.1016/j.energy.2018.08.007
10.1126/sciadv.aat9480
10.1364/AO.24.004493
10.1002/adma.201802152
10.1002/admi.201801063
10.1021/acsami.0c21204
10.1126/science.156.3771.30
10.1364/JOSA.54.000628
10.1007/s00231-013-1116-0
10.4271/2001-01-2194
10.1016/j.solmat.2011.12.010
10.1016/j.enconman.2003.09.033
10.1103/PhysRevLett.3.34
10.1016/j.renene.2019.06.119
10.1038/s41598-019-47572-z
10.1002/adma.201703878
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OIOZB
OTOTI
DOI 10.1126/science.abf7136
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1509
ExternalDocumentID 1875448
34914515
10_1126_science_abf7136
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
GX1
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
0B8
63O
6XO
ABPTK
ABQIS
AEUPB
AEXZC
AFUVZ
ANJGP
B-7
ESX
IGG
OIOZB
OK1
OTOTI
PK8
PQEST
PV9
UMP
VQA
XFK
YCJ
YJ6
ZA5
ID FETCH-LOGICAL-c459t-4c2af18c8a6a1ff173bc286432e868c47b62d6044eadfdb679822c0fadaee2ad3
ISSN 0036-8075
1095-9203
IngestDate Fri May 19 00:42:25 EDT 2023
Mon Jul 21 12:04:26 EDT 2025
Fri Jul 25 19:06:53 EDT 2025
Thu Apr 24 04:15:04 EDT 2025
Tue Jul 01 02:24:09 EDT 2025
Thu Apr 24 23:12:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6574
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-4c2af18c8a6a1ff173bc286432e868c47b62d6044eadfdb679822c0fadaee2ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Building Technologies Office
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division
AC02-05CH11231; 1555336
ORCID 0000-0001-8427-6626
0000-0003-2870-5064
0000-0002-0368-3551
0000-0001-5334-4243
0000-0002-2818-7458
0000-0002-8868-4931
0000-0003-4909-2869
0000-0002-1498-0148
0000-0002-5203-8698
0000-0001-7214-7931
0000-0003-0557-759X
0000-0003-1463-1359
0000-0003-4570-0142
0000-0001-8602-1213
0000000349092869
0000000214980148
0000000314631359
0000000288684931
0000000203683551
0000000228187458
000000030557759X
0000000252038698
0000000186021213
0000000172147931
0000000345700142
0000000153344243
0000000184276626
0000000328705064
OpenAccessLink https://www.osti.gov/servlets/purl/1875448
PMID 34914515
PQID 2638081257
PQPubID 1256
PageCount 6
ParticipantIDs osti_scitechconnect_1875448
proquest_miscellaneous_2611651541
proquest_journals_2638081257
pubmed_primary_34914515
crossref_primary_10_1126_science_abf7136
crossref_citationtrail_10_1126_science_abf7136
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-17
2021-Dec-17
20211217
PublicationDateYYYYMMDD 2021-12-17
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
AAAS
Publisher_xml – name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
References_xml – ident: e_1_3_2_30_2
  doi: 10.1002/adma.201906751
– ident: e_1_3_2_16_2
  doi: 10.1016/j.solener.2020.08.077
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevLett.17.1286
– ident: e_1_3_2_68_2
  doi: 10.1016/j.ijrefrig.2013.09.001
– ident: e_1_3_2_49_2
– ident: e_1_3_2_48_2
– ident: e_1_3_2_12_2
  doi: 10.1126/science.aau9101
– ident: e_1_3_2_8_2
  doi: 10.1126/science.aab3564
– ident: e_1_3_2_27_2
  doi: 10.1063/1.5091048
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.79.075107
– ident: e_1_3_2_79_2
– ident: e_1_3_2_21_2
  doi: 10.2514/1.17988
– ident: e_1_3_2_18_2
  doi: 10.4271/981691
– ident: e_1_3_2_95_2
  doi: 10.1021/acsami.0c14075
– ident: e_1_3_2_64_2
  doi: 10.2298/TSCI170504188K
– ident: e_1_3_2_23_2
  doi: 10.1364/OE.27.021787
– ident: e_1_3_2_69_2
  doi: 10.1016/j.ijrefrig.2013.09.025
– ident: e_1_3_2_46_2
  doi: 10.1016/j.optmat.2016.02.032
– ident: e_1_3_2_77_2
– ident: e_1_3_2_2_2
– ident: e_1_3_2_82_2
– ident: e_1_3_2_25_2
  doi: 10.1364/OE.396171
– ident: e_1_3_2_85_2
– ident: e_1_3_2_55_2
  doi: 10.1016/j.matdes.2008.04.007
– ident: e_1_3_2_101_2
– ident: e_1_3_2_62_2
– ident: e_1_3_2_65_2
  doi: 10.1016/j.egyr.2019.11.132
– ident: e_1_3_2_96_2
  doi: 10.1038/nature13883
– ident: e_1_3_2_24_2
  doi: 10.1016/j.jqsrt.2017.01.014
– ident: e_1_3_2_3_2
– ident: e_1_3_2_52_2
  doi: 10.1007/978-3-642-02971-4
– ident: e_1_3_2_70_2
  doi: 10.1126/science.abb8045
– ident: e_1_3_2_84_2
– ident: e_1_3_2_5_2
  doi: 10.1364/OE.27.031587
– ident: e_1_3_2_11_2
  doi: 10.1126/science.aat9513
– ident: e_1_3_2_92_2
  doi: 10.1002/smll.201905290
– ident: e_1_3_2_78_2
– ident: e_1_3_2_22_2
  doi: 10.1364/OE.26.00A777
– ident: e_1_3_2_72_2
  doi: 10.1088/1361-6463/aa87a2
– ident: e_1_3_2_81_2
– ident: e_1_3_2_19_2
  doi: 10.1002/adma.202000870
– ident: e_1_3_2_7_2
  doi: 10.1016/S0017-9310(83)80111-2
– ident: e_1_3_2_29_2
  doi: 10.1021/acsphotonics.8b00119
– ident: e_1_3_2_6_2
  doi: 10.1016/0038-092X(93)90108-Z
– ident: e_1_3_2_94_2
  doi: 10.1016/0306-2619(77)90015-0
– ident: e_1_3_2_59_2
  doi: 10.1126/science.1158899
– ident: e_1_3_2_74_2
  doi: 10.1016/j.enconman.2017.11.057
– ident: e_1_3_2_20_2
  doi: 10.1021/acsami.0c05803
– ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevB.6.4370
– ident: e_1_3_2_39_2
  doi: 10.1016/j.enbuild.2019.02.028
– ident: e_1_3_2_88_2
– ident: e_1_3_2_75_2
  doi: 10.1016/j.enbuild.2013.03.028
– ident: e_1_3_2_33_2
  doi: 10.1088/0953-8984/19/9/096007
– ident: e_1_3_2_76_2
  doi: 10.1016/j.applthermaleng.2016.10.153
– ident: e_1_3_2_87_2
– ident: e_1_3_2_91_2
– ident: e_1_3_2_9_2
  doi: 10.1021/acsphotonics.6b00991
– ident: e_1_3_2_14_2
  doi: 10.1364/AO.23.000370
– ident: e_1_3_2_10_2
  doi: 10.1126/science.aai7899
– ident: e_1_3_2_13_2
  doi: 10.1002/admt.201901007
– ident: e_1_3_2_71_2
  doi: 10.1063/1.4932164
– ident: e_1_3_2_63_2
  doi: 10.1016/j.applthermaleng.2014.01.074
– ident: e_1_3_2_44_2
– ident: e_1_3_2_93_2
  doi: 10.1038/s41893-019-0348-5
– ident: e_1_3_2_104_2
  doi: 10.1016/S0378-7788(96)01004-3
– ident: e_1_3_2_51_2
  doi: 10.1063/1.5087281
– ident: e_1_3_2_106_2
  doi: 10.1016/j.solmat.2007.10.011
– ident: e_1_3_2_103_2
  doi: 10.1016/0360-5442(89)90034-0
– ident: e_1_3_2_26_2
  doi: 10.1063/1.5025947
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevB.83.073101
– ident: e_1_3_2_60_2
– ident: e_1_3_2_73_2
  doi: 10.1016/j.ijheatmasstransfer.2020.120312
– ident: e_1_3_2_102_2
– ident: e_1_3_2_90_2
– ident: e_1_3_2_4_2
  doi: 10.1002/advs.201500119
– ident: e_1_3_2_99_2
– ident: e_1_3_2_34_2
  doi: 10.1126/science.aag0410
– ident: e_1_3_2_54_2
  doi: 10.1016/0038-092X(95)00117-A
– ident: e_1_3_2_15_2
  doi: 10.1016/j.xcrp.2020.100221
– ident: e_1_3_2_56_2
  doi: 10.1016/j.solmat.2013.03.001
– ident: e_1_3_2_66_2
  doi: 10.1016/j.energy.2018.08.007
– ident: e_1_3_2_40_2
  doi: 10.1126/sciadv.aat9480
– ident: e_1_3_2_41_2
  doi: 10.1364/AO.24.004493
– ident: e_1_3_2_38_2
– ident: e_1_3_2_98_2
  doi: 10.1002/adma.201802152
– ident: e_1_3_2_58_2
  doi: 10.1002/admi.201801063
– ident: e_1_3_2_57_2
  doi: 10.1021/acsami.0c21204
– ident: e_1_3_2_100_2
– ident: e_1_3_2_36_2
  doi: 10.1126/science.156.3771.30
– ident: e_1_3_2_47_2
  doi: 10.1364/JOSA.54.000628
– ident: e_1_3_2_80_2
– ident: e_1_3_2_50_2
  doi: 10.1007/s00231-013-1116-0
– ident: e_1_3_2_17_2
  doi: 10.4271/2001-01-2194
– ident: e_1_3_2_105_2
  doi: 10.1016/j.solmat.2011.12.010
– ident: e_1_3_2_53_2
  doi: 10.1016/j.enconman.2003.09.033
– ident: e_1_3_2_61_2
– ident: e_1_3_2_31_2
  doi: 10.1103/PhysRevLett.3.34
– ident: e_1_3_2_97_2
  doi: 10.1016/j.renene.2019.06.119
– ident: e_1_3_2_28_2
  doi: 10.1038/s41598-019-47572-z
– ident: e_1_3_2_67_2
– ident: e_1_3_2_83_2
– ident: e_1_3_2_89_2
– ident: e_1_3_2_86_2
– ident: e_1_3_2_42_2
  doi: 10.1002/adma.201703878
SSID ssj0009593
Score 2.7296333
Snippet Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is...
The sky is a natural heat sink that has been extensively used for passive radiative cooling of households. A lot of focus has been on maximizing the radiative...
A passive turnoffPassive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1504
SubjectTerms Ambient temperature
Atmospheric windows
Climate
Coatings
Cooling
Emittance
Energy
Energy conservation
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
Energy consumption
Heat
Heat sinks
Heating
Households
Insulators
Low temperature
Material properties
Metal-insulator transition
Optimization
Roofs
Seasonal variations
Solar energy
Switches
Temperature
Temperature dependence
Tungsten
Vanadium
Vanadium dioxide
Title Temperature-adaptive radiative coating for all-season household thermal regulation
URI https://www.ncbi.nlm.nih.gov/pubmed/34914515
https://www.proquest.com/docview/2638081257
https://www.proquest.com/docview/2611651541
https://www.osti.gov/servlets/purl/1875448
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZymAvZe1-ee2KBnvoHhxsRXbsx3RrWtquG8OBvBlZltdCSErrPmx__e6ss-INF7q9GEexE6M7nb-TPn3H2AdtAkCpwQSQW9qIams_DSrtmxgJPGEV6KZ6w5fL-HQuzxbRYjDospbu62Kkf_XuK_kfq0Ib2BV3yf6DZd2PQgOcg33hCBaG4-NsbAD0WlFkX5XqpqEB3aLaQHOm16p2RMnl0sf5QDD2FST7BledEHRCXEZl_x9UxauLVdthDxjUret0rOkIilNLI2hZBXRbZ4ohoznpc6Ov1NpBZyIDnytko26YQQ294OxadRtPIEUmmj_KWhqExt-6ExYiRPKH3Z9JMTbA8pAisHHN9LRRYB7b-j3kgXFEH22kBSAr-18BnaKVZqSKCtLwHrHty6_5bH5xkWfHi-wJ2xKQZYgh25oefT6a_a3a7J6OtKE6u67aP_gD1gzXEJ4fTlka6JI9Z9uUc_CpdaAdNjCrXfbUViH9uct2yGJ3_JBEyD--YN_7fIs73-LkWxycgG98izvf4uRbfONbL9l8dpx9OvWp_oavZZTWvtRCVWGiExWrsKrCybjQIgEIK0wSJ1pOiliUcSAlRKOqLHA9TwgdVPBQxghVjl-x4Wq9Mm8YV2AuiAGFnJQw-EOhpGliQVQY6GaVemzUdl-uSZwea6Qs8yZJFXFO_Z1Tf3vs0N1wY3VZHr50D-2BzaiLrJFApus8TFD7MfHYfmumnIb2XS7grQRYGV5nHnvvvobAi6tpamWgL-EaVK6CDCT02GtrXvckY5liBezo7SPu3mPPNqNknw3r23vzDoBuXRyQO_4GDTKtmw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature-adaptive+radiative+coating+for+all-season+household+thermal+regulation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Tang%2C+Kechao&rft.au=Dong%2C+Kaichen&rft.au=Li%2C+Jiachen&rft.au=Gordon%2C+Madeleine+P&rft.date=2021-12-17&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=374&rft.issue=6574&rft.spage=1504&rft_id=info:doi/10.1126%2Fscience.abf7136&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon