Multiscale in silico lung modeling strategies for aerosol inhalation therapy and drug delivery
Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering rea...
Saved in:
Published in | Current opinion in biomedical engineering Vol. 11; pp. 130 - 136 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2468-4511 2468-4511 |
DOI | 10.1016/j.cobme.2019.11.003 |
Cover
Loading…
Abstract | Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of ‘brute force’ simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations. |
---|---|
AbstractList | Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of ‘brute force’ simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent
in silico
studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such
in silico
strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations. Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of ‘brute force’ simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations. Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations. Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations. |
Author | Kassinos, Stavros C. Koullapis, Pantelis Ollson, Bo Sznitman, Josué |
AuthorAffiliation | 3 Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel 1 Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus 2 Emmace Consulting AB, SE223 63 Lund, Sweden |
AuthorAffiliation_xml | – name: 2 Emmace Consulting AB, SE223 63 Lund, Sweden – name: 3 Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel – name: 1 Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus |
Author_xml | – sequence: 1 givenname: Pantelis surname: Koullapis fullname: Koullapis, Pantelis organization: Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus – sequence: 2 givenname: Bo orcidid: 0000-0003-4042-3086 surname: Ollson fullname: Ollson, Bo organization: Emmace Consulting AB, SE223 63 Lund, Sweden – sequence: 3 givenname: Stavros C. surname: Kassinos fullname: Kassinos, Stavros C. organization: Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus – sequence: 4 givenname: Josué surname: Sznitman fullname: Sznitman, Josué email: sznitman@bm.technion.ac.il organization: Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34642646$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vEzEQxS1UREvpJ0BCPnLJYq-9Xu8BJFTxTyriAlesiT2bOHLsYO9Gyrev05SqcICTR_L7vRm995ycxRSRkJecNZxx9WbT2LTcYtMyPjScN4yJJ-SilUovZMf52aP5nFyVsmGMcd0xqbtn5FxIJVsl1QX5-XUOky8WAlIfafHB20TDHFd0mxwGX4cyZZhw5bHQMWUKmFNJocrXEGDyKdJpjRl2BwrRUZfnFT2Se8yHF-TpCKHg1f17SX58_PD9-vPi5tunL9fvbxZWdsO0kMu-52CX0PWi42p0WrgRcWw1dtKqXoCWA1NOLNkoBqcUCI3SwehAaj2AuCTvTr67uabiLMZ6czC77LeQDyaBN3_-RL82q7Q3veJcs7YavL43yOnXjGUy25oKhgAR01xM22muW8HVUfrq8a6HJb9DrQJxEtgaVMk4Pkg4M8f2zMbctWeO7RnOTW2vUsNflPXTXbz1YB_-w749sVgz3nvMpliP0aLzGe1kXPL_5G8BV1i5NQ |
CitedBy_id | crossref_primary_10_1016_j_ijpharm_2025_125171 crossref_primary_10_1016_j_jddst_2023_104261 crossref_primary_10_1016_j_jaerosci_2020_105541 crossref_primary_10_1109_TBME_2023_3255784 crossref_primary_10_3390_chemengineering4020023 crossref_primary_10_3389_fphys_2022_853317 crossref_primary_10_1016_j_addr_2020_09_007 crossref_primary_10_3390_pharmaceutics12030230 crossref_primary_10_1038_s41598_023_49946_w crossref_primary_10_1007_s42452_025_06617_x crossref_primary_10_1016_j_addr_2021_113901 crossref_primary_10_1063_5_0084415 crossref_primary_10_1016_j_partic_2024_04_006 crossref_primary_10_4155_fmc_2021_0081 crossref_primary_10_1016_j_jaerosci_2024_106471 crossref_primary_10_1021_acs_molpharmaceut_4c01534 crossref_primary_10_1002_aic_17695 crossref_primary_10_1080_17425247_2022_2112570 crossref_primary_10_1016_j_ejps_2022_106172 crossref_primary_10_1021_acs_chemrev_1c00621 crossref_primary_10_1016_j_ejps_2022_106272 crossref_primary_10_1371_journal_pcbi_1010537 crossref_primary_10_1089_jamp_2023_0041 |
Cites_doi | 10.1038/nrd2153 10.1016/j.jaerosci.2014.09.003 10.1002/cnm.2873 10.4187/respcare.03537 10.1186/2213-0802-2-3 10.1080/17425247.2016.1224846 10.1016/j.clinbiomech.2017.10.020 10.4187/respcare.04137 10.1016/S1526-0542(12)70124-0 10.1186/s12890-018-0697-2 10.1016/j.jbiomech.2010.03.048 10.1016/j.euromechflu.2018.04.011 10.1016/j.jaerosci.2016.07.006 10.1016/j.medengphy.2007.11.002 10.1089/jamp.2014.1191 10.1016/j.ejps.2019.03.025 10.4155/tde-2017-0093 10.1016/j.ejps.2017.09.016 10.1089/jamp.2018.1487 10.1152/japplphysiol.01117.2014 10.1016/j.jaerosci.2017.12.001 10.1016/j.jbiomech.2012.10.028 10.1186/s12989-017-0190-8 10.1146/annurev-fluid-121108-145453 10.1146/annurev.bioeng.10.061807.160544 10.1016/j.jbiomech.2015.11.026 10.1002/cphy.c150028 10.1016/j.jbiomech.2016.08.025 10.1016/j.jaerosci.2017.10.001 10.1115/1.4001679 10.1016/j.ejps.2017.09.033 10.1080/17425247.2019.1551875 10.1080/08958370600748687 10.1371/journal.pone.0207711 10.1007/s10439-017-1971-9 10.1007/s11095-015-1695-1 10.1016/j.compbiomed.2015.03.032 10.1016/j.jaerosci.2017.03.004 10.1016/j.ejps.2017.09.003 10.1007/s11095-013-1123-3 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. |
Copyright_xml | – notice: 2019 Elsevier Inc. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.cobme.2019.11.003 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-4511 |
EndPage | 136 |
ExternalDocumentID | PMC7611802 34642646 10_1016_j_cobme_2019_11_003 S2468451119300674 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 677772 |
GroupedDBID | --M 53G AABXZ AACTN AADPK AAEDW AAIAV AAKOC AALRI AAOAW AAXLA AAXUO ABLVK ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AFXIZ AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BJAXD BKOJK BNPGV EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM ROL SPC SPCBC SSH SSM SSN SST SSZ T5K ~G- 0R~ AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACIEU ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c459t-4b771acba573516fd83dfeef28e54c673a84906d3b0f39d66a38e4dafda4889a3 |
IEDL.DBID | AIKHN |
ISSN | 2468-4511 |
IngestDate | Thu Aug 21 14:11:57 EDT 2025 Fri Sep 05 07:17:40 EDT 2025 Mon Jul 21 06:03:14 EDT 2025 Tue Jul 01 00:39:26 EDT 2025 Thu Apr 24 23:00:53 EDT 2025 Fri Feb 23 02:47:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CFD Numerical simulations Drug delivery Inhalation therapy Lungs Multiscale |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-4b771acba573516fd83dfeef28e54c673a84906d3b0f39d66a38e4dafda4889a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4042-3086 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7611802 |
PMID | 34642646 |
PQID | 2581823162 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611802 proquest_miscellaneous_2581823162 pubmed_primary_34642646 crossref_primary_10_1016_j_cobme_2019_11_003 crossref_citationtrail_10_1016_j_cobme_2019_11_003 elsevier_sciencedirect_doi_10_1016_j_cobme_2019_11_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 2019-Sep 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in biomedical engineering |
PublicationTitleAlternate | Curr Opin Biomed Eng |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hofemeier, Sznitman (bib33) 2015; 118 Darquenne, Prisk (bib46) 2019; 32 Laube (bib4) 2014; 2 Yin, Choi, Hoffman, Tawhai, Lin (bib24) 2010; 43 Pozin (bib27) 2017; 33 Miyawaki, Hoffman, Wenzel, Lin (bib47) 2019; 66 Miyawaki, Hoffman, Lin (bib21) 2016; 100 Longest, Tian, Khajeh-Hosseini-Dalasm, Hindle (bib37) 2016; 29 Oakes, Hofemeier, Vignon-Clementel, Sznitman (bib32) 2016; 49 Das, Nof, Amirav, Kassinos, Sznitman (bib7) 2018; 13 Longest (bib12) 2019; 16 Golshahi (bib13) 2013; 30 Kleinstreuer, Zhang, Donohue (bib18) 2008; 10 Hofemeier, Sznitman (bib31) 2016; 49 Oakes, Roth, Shadden (bib30) 2018; 46 Koshiyama, Wada (bib39) 2015; 62 Koullapis, Nicolaou, Kassinos (bib29) 2018; 117 Jakobsson (bib45) 2018; 18 De Backer (bib28) 2008; 30 Comerford, Förster, Wall (bib25) 2010; 132 Kolanjiyil, Kleinstreuer (bib36) 2017; 114 Khajeh-Hosseini-Dalasm, Longest (bib34) 2015; 79 Fleming (bib10) 2015; 28 Tian, Hindle, Lee, Longest (bib35) 2015 Sznitman (bib19) 2013; 46 Islam, Saha, Sauret, Gemci, Gu (bib16) 2017; 108 Rissler (bib44) 2017; 14 Kleinstreuer, Zhang (bib17) 2010; 42 Asgharian, Price (bib26) 2006; 18 Longest, Spence, Hindle (bib38) 2019; 32 DiBlasi (bib8) 2015; 60 Amirav, Newhouse (bib9) 2012; 13 Janke, Koullapis, Kassinos, Bauer (bib22) 2019; 133 Koullapis (bib23) 2018; 113 Dominelli (bib43) 2019 Patton, Byron (bib3) 2007; 6 de Boer (bib6) 2017; 14 Choi (bib5) 2019; 32 Haddrell (bib14) 2017; 8 Hofemeier, Koshiyama, Wada, Sznitman (bib40) 2018; 113 Alcoforado (bib11) 2018; 31 Koullapis, Hofemeier, Sznitman, Kassinos (bib41) 2018; 113 Stein, Thiel (bib1) 2016; 29 Holguin (bib2) 2019 Hsia, Hyde, Weibel (bib15) 2016; 6 Corcoran (bib42) 2015; 60 Xi, April Si, Dong, Zhong (bib20) 2018; 72 Janke (10.1016/j.cobme.2019.11.003_sref22) 2019; 133 Koshiyama (10.1016/j.cobme.2019.11.003_bib39) 2015; 62 Haddrell (10.1016/j.cobme.2019.11.003_bib14) 2017; 8 Koullapis (10.1016/j.cobme.2019.11.003_sref23) 2018; 113 Miyawaki (10.1016/j.cobme.2019.11.003_bib21) 2016; 100 Asgharian (10.1016/j.cobme.2019.11.003_bib26) 2006; 18 Golshahi (10.1016/j.cobme.2019.11.003_bib13) 2013; 30 Sznitman (10.1016/j.cobme.2019.11.003_bib19) 2013; 46 Darquenne (10.1016/j.cobme.2019.11.003_sref46) 2019; 32 Kolanjiyil (10.1016/j.cobme.2019.11.003_bib36) 2017; 114 Koullapis (10.1016/j.cobme.2019.11.003_bib29) 2018; 117 Corcoran (10.1016/j.cobme.2019.11.003_bib42) 2015; 60 Xi (10.1016/j.cobme.2019.11.003_bib20) 2018; 72 Laube (10.1016/j.cobme.2019.11.003_bib4) 2014; 2 Das (10.1016/j.cobme.2019.11.003_bib7) 2018; 13 Amirav (10.1016/j.cobme.2019.11.003_bib9) 2012; 13 Khajeh-Hosseini-Dalasm (10.1016/j.cobme.2019.11.003_bib34) 2015; 79 Miyawaki (10.1016/j.cobme.2019.11.003_bib47) 2019; 66 Longest (10.1016/j.cobme.2019.11.003_sref12) 2019; 16 Jakobsson (10.1016/j.cobme.2019.11.003_bib45) 2018; 18 Tian (10.1016/j.cobme.2019.11.003_bib35) 2015 Rissler (10.1016/j.cobme.2019.11.003_bib44) 2017; 14 Kleinstreuer (10.1016/j.cobme.2019.11.003_bib17) 2010; 42 Alcoforado (10.1016/j.cobme.2019.11.003_sref11) 2018; 31 Dominelli (10.1016/j.cobme.2019.11.003_sref43) 2019 Comerford (10.1016/j.cobme.2019.11.003_bib25) 2010; 132 Longest (10.1016/j.cobme.2019.11.003_bib38) 2019; 32 Choi (10.1016/j.cobme.2019.11.003_bib5) 2019; 32 Pozin (10.1016/j.cobme.2019.11.003_bib27) 2017; 33 Oakes (10.1016/j.cobme.2019.11.003_bib30) 2018; 46 Hofemeier (10.1016/j.cobme.2019.11.003_bib33) 2015; 118 Hofemeier (10.1016/j.cobme.2019.11.003_sref40) 2018; 113 Hofemeier (10.1016/j.cobme.2019.11.003_bib31) 2016; 49 Holguin (10.1016/j.cobme.2019.11.003_bib2) 2019 de Boer (10.1016/j.cobme.2019.11.003_bib6) 2017; 14 Longest (10.1016/j.cobme.2019.11.003_bib37) 2016; 29 Fleming (10.1016/j.cobme.2019.11.003_bib10) 2015; 28 Patton (10.1016/j.cobme.2019.11.003_bib3) 2007; 6 DiBlasi (10.1016/j.cobme.2019.11.003_bib8) 2015; 60 Oakes (10.1016/j.cobme.2019.11.003_bib32) 2016; 49 Koullapis (10.1016/j.cobme.2019.11.003_sref41) 2018; 113 Yin (10.1016/j.cobme.2019.11.003_bib24) 2010; 43 Stein (10.1016/j.cobme.2019.11.003_bib1) 2016; 29 Islam (10.1016/j.cobme.2019.11.003_bib16) 2017; 108 Hsia (10.1016/j.cobme.2019.11.003_bib15) 2016; 6 Kleinstreuer (10.1016/j.cobme.2019.11.003_bib18) 2008; 10 De Backer (10.1016/j.cobme.2019.11.003_bib28) 2008; 30 |
References_xml | – volume: 79 start-page: 15 year: 2015 end-page: 30 ident: bib34 article-title: Deposition of particles in the alveolar airways: inhalation and breath-hold with pharmaceutical aerosols publication-title: J Aerosol Sci – volume: 18 start-page: 1 year: 2018 end-page: 11 ident: bib45 article-title: Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease publication-title: BMC Pulm Med – volume: 72 start-page: 23 year: 2018 end-page: 37 ident: bib20 article-title: Effects of glottis motion on airflow and energy expenditure in a human upper airway model publication-title: Eur J Mech B Fluid – volume: 30 start-page: 2917 year: 2013 end-page: 2930 ident: bib13 article-title: The use of condensational growth methods for efficient drug delivery to the lungs during noninvasive ventilation high flow therapy publication-title: Pharm Res – volume: 62 start-page: 25 year: 2015 end-page: 32 ident: bib39 article-title: Mathematical model of a heterogeneous pulmonary acinus structure publication-title: Comput Biol Med – volume: 46 start-page: 498 year: 2018 end-page: 512 ident: bib30 article-title: Airflow simulations in infant, child, and adult pulmonary conducting airways publication-title: Ann Biomed Eng – start-page: 960 year: 2019 end-page: 965 ident: bib43 article-title: Sex differences in large conducting airway anatomy publication-title: J Appl Physiol – volume: 2 year: 2014 ident: bib4 article-title: The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination publication-title: Transl Respir Med – volume: 113 start-page: 77 year: 2018 end-page: 94 ident: bib23 article-title: Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods publication-title: Eur J Pharm Sci – volume: 114 start-page: 301 year: 2017 end-page: 316 ident: bib36 article-title: Computational analysis of aerosol-dynamics in a human whole-lung airway model publication-title: J Aerosol Sci – volume: 29 year: 2016 ident: bib37 article-title: Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates publication-title: J Aerosol Med Pulm Drug Deliv – volume: 133 start-page: 183 year: 2019 end-page: 189 ident: bib22 article-title: PIV measurements of the SimInhale benchmark case publication-title: Eur J Pharm Sci – volume: 8 start-page: 1051 year: 2017 end-page: 1061 ident: bib14 article-title: Pulmonary aerosol delivery and the importance of growth dynamics publication-title: Ther Deliv – volume: 132 start-page: 081002 year: 2010 ident: bib25 article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations publication-title: J Biomech Eng – volume: 30 start-page: 872 year: 2008 end-page: 879 ident: bib28 article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions publication-title: Med Eng Phys – volume: 16 start-page: 7 year: 2019 end-page: 26 ident: bib12 article-title: Use of computational fluid dynamics deposition modeling in respiratory drug delivery publication-title: Expert Opin Drug Deliv – volume: 32 start-page: 213 year: 2019 end-page: 223 ident: bib5 article-title: Differences in particle deposition between members of imaging-based asthma clusters publication-title: J Aerosol Med Pulm Drug Deliv – volume: 117 start-page: 164 year: 2018 end-page: 188 ident: bib29 article-title: In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways publication-title: J Aerosol Sci – volume: 13 start-page: 1 year: 2018 end-page: 20 ident: bib7 article-title: Targeting inhaled aerosol delivery to upper airways in children: insight from computational fluid dynamics (CFD) publication-title: PLoS One – year: 2019 ident: bib2 article-title: management of severe asthma: a European respiratory society/American thoracic society guideline publication-title: Eur Respir J – volume: 31 year: 2018 ident: bib11 article-title: Anatomically based analysis of radioaerosol distribution in pulmonary scintigraphy: a feasibility study in asthmatics publication-title: J Aerosol Med Pulm Drug Deliv – volume: 113 start-page: 132 year: 2018 end-page: 144 ident: bib41 article-title: An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung publication-title: Eur J Pharm Sci – volume: 43 start-page: 2159 year: 2010 end-page: 2163 ident: bib24 article-title: Simulation of pulmonary air flow with a subject-specific boundary condition publication-title: J Biomech – volume: 118 start-page: 1375 year: 2015 end-page: 1385 ident: bib33 article-title: Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay publication-title: J Appl Physiol – volume: 32 start-page: 1 year: 2019 end-page: 23 ident: bib38 article-title: Devices for improved delivery of nebulized pharmaceutical aerosols to the lungs publication-title: J Aerosol Med Pulm Drug Deliv – volume: 14 start-page: 499 year: 2017 end-page: 512 ident: bib6 article-title: Dry powder inhalation: past, present and future publication-title: Expert Opin Drug Deliv – volume: 60 start-page: 894 year: 2015 end-page: 914 ident: bib8 article-title: Clinical controversies in aerosol therapy for infants and children publication-title: Respir Care – volume: 66 start-page: 81 year: 2019 end-page: 87 ident: bib47 article-title: Aerosol deposition predictions in computed tomography-derived skeletons from severe asthmatics: a feasibility study publication-title: Clin Biomech – volume: 13 start-page: 73 year: 2012 end-page: 78 ident: bib9 article-title: Deposition of small particles in the developing lung publication-title: Paediatr Respir Rev – volume: 108 start-page: 29 year: 2017 end-page: 43 ident: bib16 article-title: Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract publication-title: J Aerosol Sci – volume: 46 start-page: 284 year: 2013 end-page: 298 ident: bib19 article-title: Respiratory microflows in the pulmonary acinus publication-title: J Biomech – volume: 28 start-page: 432 year: 2015 end-page: 451 ident: bib10 article-title: Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of asthmatic human subjects for model validation publication-title: J Aerosol Med Pulm Drug Deliv – volume: 6 start-page: 827 year: 2016 end-page: 895 ident: bib15 article-title: Lung structure and the intrinsic challenges of gas exchange publication-title: Comp Physiol – volume: 42 start-page: 301 year: 2010 end-page: 334 ident: bib17 article-title: Airflow and particle transport in the human respiratory system publication-title: Annu Rev Fluid Mech – volume: 113 start-page: 53 year: 2018 end-page: 63 ident: bib40 article-title: One (sub-)acinus for all: fate of inhaled aerosols in heterogeneous pulmonary acinar structures publication-title: Eur J Pharm Sci – volume: 49 start-page: 2213 year: 2016 end-page: 2220 ident: bib32 article-title: Aerosols in healthy and emphysematous in silico pulmonary acinar rat models publication-title: J Biomech – volume: 18 start-page: 795 year: 2006 end-page: 801 ident: bib26 article-title: Airflow distribution in the human lung and its influence on particle deposition publication-title: Inhal Toxicol – volume: 29 year: 2016 ident: bib1 article-title: The history of therapeutic aerosols: a chronological review publication-title: J Aerosol Med Pulm Drug Deliv – volume: 14 start-page: 10 year: 2017 ident: bib44 article-title: Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults publication-title: Part Fibre Toxicol – volume: 33 start-page: 1 year: 2017 end-page: 30 ident: bib27 article-title: A tree-parenchyma coupled model for lung ventilation simulation publication-title: Int J Numer Method Biomed Eng – volume: 10 start-page: 195 year: 2008 end-page: 220 ident: bib18 article-title: Targeted drug-aerosol delivery in the human respiratory system publication-title: Annu Rev Biomed Eng – year: 2015 ident: bib35 article-title: Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data publication-title: Pharm Res – volume: 32 start-page: 1 year: 2019 end-page: 7 ident: bib46 article-title: The effect of aging on aerosol bolus deposition in the healthy adult lung: a 19-year longitudinal study publication-title: J Aerosol Med Pulm Drug Deliv – volume: 6 start-page: 67 year: 2007 end-page: 74 ident: bib3 article-title: Inhaling medicines: delivering drugs to the body through the lungs publication-title: Nat Rev Drug Discov – volume: 49 start-page: 3543 year: 2016 end-page: 3548 ident: bib31 article-title: The role of anisotropic expansion for pulmonary acinar aerosol deposition publication-title: J Biomech – volume: 100 start-page: 129 year: 2016 end-page: 139 ident: bib21 article-title: Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways publication-title: J Aerosol Sci – volume: 60 start-page: 850 year: 2015 end-page: 855 ident: bib42 article-title: Imaging in aerosol medicine publication-title: Respir Care – volume: 32 start-page: 1 year: 2019 ident: 10.1016/j.cobme.2019.11.003_bib38 article-title: Devices for improved delivery of nebulized pharmaceutical aerosols to the lungs publication-title: J Aerosol Med Pulm Drug Deliv – volume: 6 start-page: 67 year: 2007 ident: 10.1016/j.cobme.2019.11.003_bib3 article-title: Inhaling medicines: delivering drugs to the body through the lungs publication-title: Nat Rev Drug Discov doi: 10.1038/nrd2153 – volume: 79 start-page: 15 year: 2015 ident: 10.1016/j.cobme.2019.11.003_bib34 article-title: Deposition of particles in the alveolar airways: inhalation and breath-hold with pharmaceutical aerosols publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2014.09.003 – volume: 33 start-page: 1 year: 2017 ident: 10.1016/j.cobme.2019.11.003_bib27 article-title: A tree-parenchyma coupled model for lung ventilation simulation publication-title: Int J Numer Method Biomed Eng doi: 10.1002/cnm.2873 – volume: 60 start-page: 850 year: 2015 ident: 10.1016/j.cobme.2019.11.003_bib42 article-title: Imaging in aerosol medicine publication-title: Respir Care doi: 10.4187/respcare.03537 – volume: 2 year: 2014 ident: 10.1016/j.cobme.2019.11.003_bib4 article-title: The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination publication-title: Transl Respir Med doi: 10.1186/2213-0802-2-3 – volume: 14 start-page: 499 year: 2017 ident: 10.1016/j.cobme.2019.11.003_bib6 article-title: Dry powder inhalation: past, present and future publication-title: Expert Opin Drug Deliv doi: 10.1080/17425247.2016.1224846 – volume: 66 start-page: 81 year: 2019 ident: 10.1016/j.cobme.2019.11.003_bib47 article-title: Aerosol deposition predictions in computed tomography-derived skeletons from severe asthmatics: a feasibility study publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2017.10.020 – volume: 60 start-page: 894 year: 2015 ident: 10.1016/j.cobme.2019.11.003_bib8 article-title: Clinical controversies in aerosol therapy for infants and children publication-title: Respir Care doi: 10.4187/respcare.04137 – volume: 13 start-page: 73 year: 2012 ident: 10.1016/j.cobme.2019.11.003_bib9 article-title: Deposition of small particles in the developing lung publication-title: Paediatr Respir Rev doi: 10.1016/S1526-0542(12)70124-0 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.cobme.2019.11.003_bib45 article-title: Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease publication-title: BMC Pulm Med doi: 10.1186/s12890-018-0697-2 – volume: 43 start-page: 2159 year: 2010 ident: 10.1016/j.cobme.2019.11.003_bib24 article-title: Simulation of pulmonary air flow with a subject-specific boundary condition publication-title: J Biomech doi: 10.1016/j.jbiomech.2010.03.048 – volume: 72 start-page: 23 year: 2018 ident: 10.1016/j.cobme.2019.11.003_bib20 article-title: Effects of glottis motion on airflow and energy expenditure in a human upper airway model publication-title: Eur J Mech B Fluid doi: 10.1016/j.euromechflu.2018.04.011 – volume: 100 start-page: 129 year: 2016 ident: 10.1016/j.cobme.2019.11.003_bib21 article-title: Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2016.07.006 – volume: 30 start-page: 872 year: 2008 ident: 10.1016/j.cobme.2019.11.003_bib28 article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.11.002 – volume: 28 start-page: 432 year: 2015 ident: 10.1016/j.cobme.2019.11.003_bib10 article-title: Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of asthmatic human subjects for model validation publication-title: J Aerosol Med Pulm Drug Deliv doi: 10.1089/jamp.2014.1191 – volume: 133 start-page: 183 year: 2019 ident: 10.1016/j.cobme.2019.11.003_sref22 article-title: PIV measurements of the SimInhale benchmark case publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2019.03.025 – volume: 8 start-page: 1051 year: 2017 ident: 10.1016/j.cobme.2019.11.003_bib14 article-title: Pulmonary aerosol delivery and the importance of growth dynamics publication-title: Ther Deliv doi: 10.4155/tde-2017-0093 – volume: 113 start-page: 132 year: 2018 ident: 10.1016/j.cobme.2019.11.003_sref41 article-title: An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2017.09.016 – volume: 32 start-page: 213 year: 2019 ident: 10.1016/j.cobme.2019.11.003_bib5 article-title: Differences in particle deposition between members of imaging-based asthma clusters publication-title: J Aerosol Med Pulm Drug Deliv doi: 10.1089/jamp.2018.1487 – volume: 118 start-page: 1375 year: 2015 ident: 10.1016/j.cobme.2019.11.003_bib33 article-title: Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01117.2014 – volume: 117 start-page: 164 year: 2018 ident: 10.1016/j.cobme.2019.11.003_bib29 article-title: In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2017.12.001 – volume: 46 start-page: 284 year: 2013 ident: 10.1016/j.cobme.2019.11.003_bib19 article-title: Respiratory microflows in the pulmonary acinus publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.10.028 – volume: 29 year: 2016 ident: 10.1016/j.cobme.2019.11.003_bib1 article-title: The history of therapeutic aerosols: a chronological review publication-title: J Aerosol Med Pulm Drug Deliv – volume: 14 start-page: 10 year: 2017 ident: 10.1016/j.cobme.2019.11.003_bib44 article-title: Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults publication-title: Part Fibre Toxicol doi: 10.1186/s12989-017-0190-8 – volume: 42 start-page: 301 year: 2010 ident: 10.1016/j.cobme.2019.11.003_bib17 article-title: Airflow and particle transport in the human respiratory system publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-121108-145453 – volume: 10 start-page: 195 year: 2008 ident: 10.1016/j.cobme.2019.11.003_bib18 article-title: Targeted drug-aerosol delivery in the human respiratory system publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.10.061807.160544 – volume: 29 year: 2016 ident: 10.1016/j.cobme.2019.11.003_bib37 article-title: Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates publication-title: J Aerosol Med Pulm Drug Deliv – volume: 49 start-page: 2213 year: 2016 ident: 10.1016/j.cobme.2019.11.003_bib32 article-title: Aerosols in healthy and emphysematous in silico pulmonary acinar rat models publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.11.026 – volume: 6 start-page: 827 year: 2016 ident: 10.1016/j.cobme.2019.11.003_bib15 article-title: Lung structure and the intrinsic challenges of gas exchange publication-title: Comp Physiol doi: 10.1002/cphy.c150028 – volume: 49 start-page: 3543 year: 2016 ident: 10.1016/j.cobme.2019.11.003_bib31 article-title: The role of anisotropic expansion for pulmonary acinar aerosol deposition publication-title: J Biomech doi: 10.1016/j.jbiomech.2016.08.025 – volume: 114 start-page: 301 year: 2017 ident: 10.1016/j.cobme.2019.11.003_bib36 article-title: Computational analysis of aerosol-dynamics in a human whole-lung airway model publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2017.10.001 – volume: 132 start-page: 081002 year: 2010 ident: 10.1016/j.cobme.2019.11.003_bib25 article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations publication-title: J Biomech Eng doi: 10.1115/1.4001679 – volume: 113 start-page: 53 year: 2018 ident: 10.1016/j.cobme.2019.11.003_sref40 article-title: One (sub-)acinus for all: fate of inhaled aerosols in heterogeneous pulmonary acinar structures publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2017.09.033 – year: 2019 ident: 10.1016/j.cobme.2019.11.003_bib2 article-title: management of severe asthma: a European respiratory society/American thoracic society guideline publication-title: Eur Respir J – volume: 16 start-page: 7 year: 2019 ident: 10.1016/j.cobme.2019.11.003_sref12 article-title: Use of computational fluid dynamics deposition modeling in respiratory drug delivery publication-title: Expert Opin Drug Deliv doi: 10.1080/17425247.2019.1551875 – volume: 18 start-page: 795 year: 2006 ident: 10.1016/j.cobme.2019.11.003_bib26 article-title: Airflow distribution in the human lung and its influence on particle deposition publication-title: Inhal Toxicol doi: 10.1080/08958370600748687 – start-page: 960 year: 2019 ident: 10.1016/j.cobme.2019.11.003_sref43 article-title: Sex differences in large conducting airway anatomy publication-title: J Appl Physiol – volume: 31 year: 2018 ident: 10.1016/j.cobme.2019.11.003_sref11 article-title: Anatomically based analysis of radioaerosol distribution in pulmonary scintigraphy: a feasibility study in asthmatics publication-title: J Aerosol Med Pulm Drug Deliv – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.cobme.2019.11.003_bib7 article-title: Targeting inhaled aerosol delivery to upper airways in children: insight from computational fluid dynamics (CFD) publication-title: PLoS One doi: 10.1371/journal.pone.0207711 – volume: 46 start-page: 498 year: 2018 ident: 10.1016/j.cobme.2019.11.003_bib30 article-title: Airflow simulations in infant, child, and adult pulmonary conducting airways publication-title: Ann Biomed Eng doi: 10.1007/s10439-017-1971-9 – year: 2015 ident: 10.1016/j.cobme.2019.11.003_bib35 article-title: Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data publication-title: Pharm Res doi: 10.1007/s11095-015-1695-1 – volume: 62 start-page: 25 year: 2015 ident: 10.1016/j.cobme.2019.11.003_bib39 article-title: Mathematical model of a heterogeneous pulmonary acinus structure publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2015.03.032 – volume: 108 start-page: 29 year: 2017 ident: 10.1016/j.cobme.2019.11.003_bib16 article-title: Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2017.03.004 – volume: 113 start-page: 77 year: 2018 ident: 10.1016/j.cobme.2019.11.003_sref23 article-title: Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2017.09.003 – volume: 30 start-page: 2917 year: 2013 ident: 10.1016/j.cobme.2019.11.003_bib13 article-title: The use of condensational growth methods for efficient drug delivery to the lungs during noninvasive ventilation high flow therapy publication-title: Pharm Res doi: 10.1007/s11095-013-1123-3 – volume: 32 start-page: 1 year: 2019 ident: 10.1016/j.cobme.2019.11.003_sref46 article-title: The effect of aging on aerosol bolus deposition in the healthy adult lung: a 19-year longitudinal study publication-title: J Aerosol Med Pulm Drug Deliv |
SSID | ssj0001850485 |
Score | 2.2313287 |
SecondaryResourceType | review_article |
Snippet | Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130 |
SubjectTerms | CFD Drug delivery Inhalation therapy Lungs Multiscale Numerical simulations |
Title | Multiscale in silico lung modeling strategies for aerosol inhalation therapy and drug delivery |
URI | https://dx.doi.org/10.1016/j.cobme.2019.11.003 https://www.ncbi.nlm.nih.gov/pubmed/34642646 https://www.proquest.com/docview/2581823162 https://pubmed.ncbi.nlm.nih.gov/PMC7611802 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-NADLagXLggECx0F9AgcdzQNPNIckQIVEBwYZE4beRkZpasqhTR9sC_x86jUJA4cEwylizbYzvJN58Bjl0ROe-9C3TCpNoxvaCgjxkJYEOTY-HD-lTaza0Z3aurB_2wAmfdWRiGVba5v8npdbZu7wxaaw6eynJwFymTMLsWtSCcc9UqrEUyNboHa6eX16Pbt08tiaY4ZTAjiwQs0_EP1UivYkKVh1Fe6QkTenbzsz7XqM896Eco5bvadLEJG21TKU4bvbdgxVXb8Lc-WzslHzhRVmJajsnpYkybW9Tjb6hmiemsY4oQ1LwKdKTPZEzLH7HByInmfNaLwMoK-zz_J1iSwv9lB-4vzv-cjYJ2mkJQKJ3OApXH8RCLHHUs9dB4m0jrnfNR4rQqTCwxUWlorMxDL1NrDMrEKYveIm3yFOUP6FWTyu2B0Ox3n-cmRKly4zEc-jQqUrTaWR9iH6LOflnRUo3zxItx1mHK_me10TM2Or2EMENpH34vhJ4apo2vl5vOMdlSwGRUC74WPOrcmNFW4v8jWLnJfJpFmroX6ndN1Ifdxq0LTaQy3DuaPsRLDl8sYJru5SdV-VjTdcemptn7-V2Ff8E6XzXAtn3ozZ7n7oA6oVl-2Eb6K9X1C2o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcGgvVavSNn2xSD3ixvE-bB8RKgoFcgEkTqzG3t3iKnIQSQ78-874kZIiceBq70ijmdmZWfvbbwC--zLxIQQf6YxJtVM6oGBIGQngYlNgGeLmVtrZ1Ewu1a8rfbUFh_1dGIZVdrm_zelNtu6ejDprjm6ranSeKJMxuxa1IJxz1QvYVppOewPYPjg-mUz_fWrJNMUpgxlZJGKZnn-oQXqVc6o8jPLKfzChZz8_63GNetyD_g-lfFCbjt7A666pFAet3m9hy9fv4Lq5W7sgH3hR1WJRzcjpYkabWzTjb6hmicWyZ4oQ1LwK9KTPfEbLb7DFyIn2fta9wNoJd7f6LViSwv9-By6Pfl4cTqJumkJUKp0vI1Wk6RjLAnUq9dgEl0kXvA9J5rUqTSoxU3lsnCziIHNnDMrMK4fBIW3yHOV7GNTz2n8EodnvoShMjFIVJmA8DnlS5ui0dyHGISS9_WzZUY3zxIuZ7TFlf2xjdMtGp0MIM5QOYX8tdNsybTy93PSOsRsBY6kWPC2417vR0lbi_yNY-_lqYRNN3Qv1uyYZwofWrWtNpDLcO5ohpBsOXy9gmu7NN3V109B1p6ah2fv0XIV34eXk4uzUnh5PTz7DK37Tgty-wGB5t_JfqStaFt-6qP8Lh48OVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+in+silico+lung+modeling+strategies+for+aerosol+inhalation+therapy+and+drug+delivery&rft.jtitle=Current+opinion+in+biomedical+engineering&rft.au=Koullapis%2C+Pantelis&rft.au=Ollson%2C+Bo&rft.au=Kassinos%2C+Stavros+C.&rft.au=Sznitman%2C+Josu%C3%A9&rft.date=2019-09-01&rft.issn=2468-4511&rft.eissn=2468-4511&rft.volume=11&rft.spage=130&rft.epage=136&rft_id=info:doi/10.1016%2Fj.cobme.2019.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cobme_2019_11_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-4511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-4511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-4511&client=summon |