Multiscale in silico lung modeling strategies for aerosol inhalation therapy and drug delivery

Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering rea...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in biomedical engineering Vol. 11; pp. 130 - 136
Main Authors Koullapis, Pantelis, Ollson, Bo, Kassinos, Stavros C., Sznitman, Josué
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.09.2019
Subjects
Online AccessGet full text
ISSN2468-4511
2468-4511
DOI10.1016/j.cobme.2019.11.003

Cover

Loading…
Abstract Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of ‘brute force’ simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.
AbstractList Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of ‘brute force’ simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.
Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of ‘brute force’ simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.
Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.
Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory airflows and aerosol deposition in the lungs have rapidly developed into an increasingly mature research field in the biomedical engineering realm, owing, among others, to tremendous advances in computational capabilities and available resources. Despite such progress, the intrinsic anatomical and physiological complexity of the lungs prevents the straightforward implementation of 'brute force' simulation strategies applied across the entire pulmonary tract. Here, we discuss how knowledge gathered from recent in silico studies can be purposefully leveraged to design efficient hybrid multiscale lung models and explore quantitatively via computational fluid-particle dynamics inhalation therapy outcomes. In contrast to the efforts geared toward patient-specific applications, we argue instead that such in silico strategies hold tremendous promise for broad inter-subject variability studies that can help foster the development of clinically efficient inhalation therapies across large human patient populations.
Author Kassinos, Stavros C.
Koullapis, Pantelis
Ollson, Bo
Sznitman, Josué
AuthorAffiliation 3 Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
1 Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus
2 Emmace Consulting AB, SE223 63 Lund, Sweden
AuthorAffiliation_xml – name: 2 Emmace Consulting AB, SE223 63 Lund, Sweden
– name: 3 Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
– name: 1 Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus
Author_xml – sequence: 1
  givenname: Pantelis
  surname: Koullapis
  fullname: Koullapis, Pantelis
  organization: Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus
– sequence: 2
  givenname: Bo
  orcidid: 0000-0003-4042-3086
  surname: Ollson
  fullname: Ollson, Bo
  organization: Emmace Consulting AB, SE223 63 Lund, Sweden
– sequence: 3
  givenname: Stavros C.
  surname: Kassinos
  fullname: Kassinos, Stavros C.
  organization: Computational Sciences Laboratory (UCY-CompSci), Department of Mechanical and Manufacturing Engineering, University of Cyprus, Kallipoleos Avenue 75, Nicosia 1678, Cyprus
– sequence: 4
  givenname: Josué
  surname: Sznitman
  fullname: Sznitman, Josué
  email: sznitman@bm.technion.ac.il
  organization: Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34642646$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS1UREvpJ0BCPnLJYq-9Xu8BJFTxTyriAlesiT2bOHLsYO9Gyrev05SqcICTR_L7vRm995ycxRSRkJecNZxx9WbT2LTcYtMyPjScN4yJJ-SilUovZMf52aP5nFyVsmGMcd0xqbtn5FxIJVsl1QX5-XUOky8WAlIfafHB20TDHFd0mxwGX4cyZZhw5bHQMWUKmFNJocrXEGDyKdJpjRl2BwrRUZfnFT2Se8yHF-TpCKHg1f17SX58_PD9-vPi5tunL9fvbxZWdsO0kMu-52CX0PWi42p0WrgRcWw1dtKqXoCWA1NOLNkoBqcUCI3SwehAaj2AuCTvTr67uabiLMZ6czC77LeQDyaBN3_-RL82q7Q3veJcs7YavL43yOnXjGUy25oKhgAR01xM22muW8HVUfrq8a6HJb9DrQJxEtgaVMk4Pkg4M8f2zMbctWeO7RnOTW2vUsNflPXTXbz1YB_-w749sVgz3nvMpliP0aLzGe1kXPL_5G8BV1i5NQ
CitedBy_id crossref_primary_10_1016_j_ijpharm_2025_125171
crossref_primary_10_1016_j_jddst_2023_104261
crossref_primary_10_1016_j_jaerosci_2020_105541
crossref_primary_10_1109_TBME_2023_3255784
crossref_primary_10_3390_chemengineering4020023
crossref_primary_10_3389_fphys_2022_853317
crossref_primary_10_1016_j_addr_2020_09_007
crossref_primary_10_3390_pharmaceutics12030230
crossref_primary_10_1038_s41598_023_49946_w
crossref_primary_10_1007_s42452_025_06617_x
crossref_primary_10_1016_j_addr_2021_113901
crossref_primary_10_1063_5_0084415
crossref_primary_10_1016_j_partic_2024_04_006
crossref_primary_10_4155_fmc_2021_0081
crossref_primary_10_1016_j_jaerosci_2024_106471
crossref_primary_10_1021_acs_molpharmaceut_4c01534
crossref_primary_10_1002_aic_17695
crossref_primary_10_1080_17425247_2022_2112570
crossref_primary_10_1016_j_ejps_2022_106172
crossref_primary_10_1021_acs_chemrev_1c00621
crossref_primary_10_1016_j_ejps_2022_106272
crossref_primary_10_1371_journal_pcbi_1010537
crossref_primary_10_1089_jamp_2023_0041
Cites_doi 10.1038/nrd2153
10.1016/j.jaerosci.2014.09.003
10.1002/cnm.2873
10.4187/respcare.03537
10.1186/2213-0802-2-3
10.1080/17425247.2016.1224846
10.1016/j.clinbiomech.2017.10.020
10.4187/respcare.04137
10.1016/S1526-0542(12)70124-0
10.1186/s12890-018-0697-2
10.1016/j.jbiomech.2010.03.048
10.1016/j.euromechflu.2018.04.011
10.1016/j.jaerosci.2016.07.006
10.1016/j.medengphy.2007.11.002
10.1089/jamp.2014.1191
10.1016/j.ejps.2019.03.025
10.4155/tde-2017-0093
10.1016/j.ejps.2017.09.016
10.1089/jamp.2018.1487
10.1152/japplphysiol.01117.2014
10.1016/j.jaerosci.2017.12.001
10.1016/j.jbiomech.2012.10.028
10.1186/s12989-017-0190-8
10.1146/annurev-fluid-121108-145453
10.1146/annurev.bioeng.10.061807.160544
10.1016/j.jbiomech.2015.11.026
10.1002/cphy.c150028
10.1016/j.jbiomech.2016.08.025
10.1016/j.jaerosci.2017.10.001
10.1115/1.4001679
10.1016/j.ejps.2017.09.033
10.1080/17425247.2019.1551875
10.1080/08958370600748687
10.1371/journal.pone.0207711
10.1007/s10439-017-1971-9
10.1007/s11095-015-1695-1
10.1016/j.compbiomed.2015.03.032
10.1016/j.jaerosci.2017.03.004
10.1016/j.ejps.2017.09.003
10.1007/s11095-013-1123-3
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.cobme.2019.11.003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-4511
EndPage 136
ExternalDocumentID PMC7611802
34642646
10_1016_j_cobme_2019_11_003
S2468451119300674
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 677772
GroupedDBID --M
53G
AABXZ
AACTN
AADPK
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABLVK
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BJAXD
BKOJK
BNPGV
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
ROL
SPC
SPCBC
SSH
SSM
SSN
SST
SSZ
T5K
~G-
0R~
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACIEU
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-4b771acba573516fd83dfeef28e54c673a84906d3b0f39d66a38e4dafda4889a3
IEDL.DBID AIKHN
ISSN 2468-4511
IngestDate Thu Aug 21 14:11:57 EDT 2025
Fri Sep 05 07:17:40 EDT 2025
Mon Jul 21 06:03:14 EDT 2025
Tue Jul 01 00:39:26 EDT 2025
Thu Apr 24 23:00:53 EDT 2025
Fri Feb 23 02:47:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CFD
Numerical simulations
Drug delivery
Inhalation therapy
Lungs
Multiscale
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-4b771acba573516fd83dfeef28e54c673a84906d3b0f39d66a38e4dafda4889a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4042-3086
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7611802
PMID 34642646
PQID 2581823162
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611802
proquest_miscellaneous_2581823162
pubmed_primary_34642646
crossref_primary_10_1016_j_cobme_2019_11_003
crossref_citationtrail_10_1016_j_cobme_2019_11_003
elsevier_sciencedirect_doi_10_1016_j_cobme_2019_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
2019-Sep
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in biomedical engineering
PublicationTitleAlternate Curr Opin Biomed Eng
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hofemeier, Sznitman (bib33) 2015; 118
Darquenne, Prisk (bib46) 2019; 32
Laube (bib4) 2014; 2
Yin, Choi, Hoffman, Tawhai, Lin (bib24) 2010; 43
Pozin (bib27) 2017; 33
Miyawaki, Hoffman, Wenzel, Lin (bib47) 2019; 66
Miyawaki, Hoffman, Lin (bib21) 2016; 100
Longest, Tian, Khajeh-Hosseini-Dalasm, Hindle (bib37) 2016; 29
Oakes, Hofemeier, Vignon-Clementel, Sznitman (bib32) 2016; 49
Das, Nof, Amirav, Kassinos, Sznitman (bib7) 2018; 13
Longest (bib12) 2019; 16
Golshahi (bib13) 2013; 30
Kleinstreuer, Zhang, Donohue (bib18) 2008; 10
Hofemeier, Sznitman (bib31) 2016; 49
Oakes, Roth, Shadden (bib30) 2018; 46
Koshiyama, Wada (bib39) 2015; 62
Koullapis, Nicolaou, Kassinos (bib29) 2018; 117
Jakobsson (bib45) 2018; 18
De Backer (bib28) 2008; 30
Comerford, Förster, Wall (bib25) 2010; 132
Kolanjiyil, Kleinstreuer (bib36) 2017; 114
Khajeh-Hosseini-Dalasm, Longest (bib34) 2015; 79
Fleming (bib10) 2015; 28
Tian, Hindle, Lee, Longest (bib35) 2015
Sznitman (bib19) 2013; 46
Islam, Saha, Sauret, Gemci, Gu (bib16) 2017; 108
Rissler (bib44) 2017; 14
Kleinstreuer, Zhang (bib17) 2010; 42
Asgharian, Price (bib26) 2006; 18
Longest, Spence, Hindle (bib38) 2019; 32
DiBlasi (bib8) 2015; 60
Amirav, Newhouse (bib9) 2012; 13
Janke, Koullapis, Kassinos, Bauer (bib22) 2019; 133
Koullapis (bib23) 2018; 113
Dominelli (bib43) 2019
Patton, Byron (bib3) 2007; 6
de Boer (bib6) 2017; 14
Choi (bib5) 2019; 32
Haddrell (bib14) 2017; 8
Hofemeier, Koshiyama, Wada, Sznitman (bib40) 2018; 113
Alcoforado (bib11) 2018; 31
Koullapis, Hofemeier, Sznitman, Kassinos (bib41) 2018; 113
Stein, Thiel (bib1) 2016; 29
Holguin (bib2) 2019
Hsia, Hyde, Weibel (bib15) 2016; 6
Corcoran (bib42) 2015; 60
Xi, April Si, Dong, Zhong (bib20) 2018; 72
Janke (10.1016/j.cobme.2019.11.003_sref22) 2019; 133
Koshiyama (10.1016/j.cobme.2019.11.003_bib39) 2015; 62
Haddrell (10.1016/j.cobme.2019.11.003_bib14) 2017; 8
Koullapis (10.1016/j.cobme.2019.11.003_sref23) 2018; 113
Miyawaki (10.1016/j.cobme.2019.11.003_bib21) 2016; 100
Asgharian (10.1016/j.cobme.2019.11.003_bib26) 2006; 18
Golshahi (10.1016/j.cobme.2019.11.003_bib13) 2013; 30
Sznitman (10.1016/j.cobme.2019.11.003_bib19) 2013; 46
Darquenne (10.1016/j.cobme.2019.11.003_sref46) 2019; 32
Kolanjiyil (10.1016/j.cobme.2019.11.003_bib36) 2017; 114
Koullapis (10.1016/j.cobme.2019.11.003_bib29) 2018; 117
Corcoran (10.1016/j.cobme.2019.11.003_bib42) 2015; 60
Xi (10.1016/j.cobme.2019.11.003_bib20) 2018; 72
Laube (10.1016/j.cobme.2019.11.003_bib4) 2014; 2
Das (10.1016/j.cobme.2019.11.003_bib7) 2018; 13
Amirav (10.1016/j.cobme.2019.11.003_bib9) 2012; 13
Khajeh-Hosseini-Dalasm (10.1016/j.cobme.2019.11.003_bib34) 2015; 79
Miyawaki (10.1016/j.cobme.2019.11.003_bib47) 2019; 66
Longest (10.1016/j.cobme.2019.11.003_sref12) 2019; 16
Jakobsson (10.1016/j.cobme.2019.11.003_bib45) 2018; 18
Tian (10.1016/j.cobme.2019.11.003_bib35) 2015
Rissler (10.1016/j.cobme.2019.11.003_bib44) 2017; 14
Kleinstreuer (10.1016/j.cobme.2019.11.003_bib17) 2010; 42
Alcoforado (10.1016/j.cobme.2019.11.003_sref11) 2018; 31
Dominelli (10.1016/j.cobme.2019.11.003_sref43) 2019
Comerford (10.1016/j.cobme.2019.11.003_bib25) 2010; 132
Longest (10.1016/j.cobme.2019.11.003_bib38) 2019; 32
Choi (10.1016/j.cobme.2019.11.003_bib5) 2019; 32
Pozin (10.1016/j.cobme.2019.11.003_bib27) 2017; 33
Oakes (10.1016/j.cobme.2019.11.003_bib30) 2018; 46
Hofemeier (10.1016/j.cobme.2019.11.003_bib33) 2015; 118
Hofemeier (10.1016/j.cobme.2019.11.003_sref40) 2018; 113
Hofemeier (10.1016/j.cobme.2019.11.003_bib31) 2016; 49
Holguin (10.1016/j.cobme.2019.11.003_bib2) 2019
de Boer (10.1016/j.cobme.2019.11.003_bib6) 2017; 14
Longest (10.1016/j.cobme.2019.11.003_bib37) 2016; 29
Fleming (10.1016/j.cobme.2019.11.003_bib10) 2015; 28
Patton (10.1016/j.cobme.2019.11.003_bib3) 2007; 6
DiBlasi (10.1016/j.cobme.2019.11.003_bib8) 2015; 60
Oakes (10.1016/j.cobme.2019.11.003_bib32) 2016; 49
Koullapis (10.1016/j.cobme.2019.11.003_sref41) 2018; 113
Yin (10.1016/j.cobme.2019.11.003_bib24) 2010; 43
Stein (10.1016/j.cobme.2019.11.003_bib1) 2016; 29
Islam (10.1016/j.cobme.2019.11.003_bib16) 2017; 108
Hsia (10.1016/j.cobme.2019.11.003_bib15) 2016; 6
Kleinstreuer (10.1016/j.cobme.2019.11.003_bib18) 2008; 10
De Backer (10.1016/j.cobme.2019.11.003_bib28) 2008; 30
References_xml – volume: 79
  start-page: 15
  year: 2015
  end-page: 30
  ident: bib34
  article-title: Deposition of particles in the alveolar airways: inhalation and breath-hold with pharmaceutical aerosols
  publication-title: J Aerosol Sci
– volume: 18
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib45
  article-title: Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease
  publication-title: BMC Pulm Med
– volume: 72
  start-page: 23
  year: 2018
  end-page: 37
  ident: bib20
  article-title: Effects of glottis motion on airflow and energy expenditure in a human upper airway model
  publication-title: Eur J Mech B Fluid
– volume: 30
  start-page: 2917
  year: 2013
  end-page: 2930
  ident: bib13
  article-title: The use of condensational growth methods for efficient drug delivery to the lungs during noninvasive ventilation high flow therapy
  publication-title: Pharm Res
– volume: 62
  start-page: 25
  year: 2015
  end-page: 32
  ident: bib39
  article-title: Mathematical model of a heterogeneous pulmonary acinus structure
  publication-title: Comput Biol Med
– volume: 46
  start-page: 498
  year: 2018
  end-page: 512
  ident: bib30
  article-title: Airflow simulations in infant, child, and adult pulmonary conducting airways
  publication-title: Ann Biomed Eng
– start-page: 960
  year: 2019
  end-page: 965
  ident: bib43
  article-title: Sex differences in large conducting airway anatomy
  publication-title: J Appl Physiol
– volume: 2
  year: 2014
  ident: bib4
  article-title: The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination
  publication-title: Transl Respir Med
– volume: 113
  start-page: 77
  year: 2018
  end-page: 94
  ident: bib23
  article-title: Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods
  publication-title: Eur J Pharm Sci
– volume: 114
  start-page: 301
  year: 2017
  end-page: 316
  ident: bib36
  article-title: Computational analysis of aerosol-dynamics in a human whole-lung airway model
  publication-title: J Aerosol Sci
– volume: 29
  year: 2016
  ident: bib37
  article-title: Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 133
  start-page: 183
  year: 2019
  end-page: 189
  ident: bib22
  article-title: PIV measurements of the SimInhale benchmark case
  publication-title: Eur J Pharm Sci
– volume: 8
  start-page: 1051
  year: 2017
  end-page: 1061
  ident: bib14
  article-title: Pulmonary aerosol delivery and the importance of growth dynamics
  publication-title: Ther Deliv
– volume: 132
  start-page: 081002
  year: 2010
  ident: bib25
  article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations
  publication-title: J Biomech Eng
– volume: 30
  start-page: 872
  year: 2008
  end-page: 879
  ident: bib28
  article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions
  publication-title: Med Eng Phys
– volume: 16
  start-page: 7
  year: 2019
  end-page: 26
  ident: bib12
  article-title: Use of computational fluid dynamics deposition modeling in respiratory drug delivery
  publication-title: Expert Opin Drug Deliv
– volume: 32
  start-page: 213
  year: 2019
  end-page: 223
  ident: bib5
  article-title: Differences in particle deposition between members of imaging-based asthma clusters
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 117
  start-page: 164
  year: 2018
  end-page: 188
  ident: bib29
  article-title: In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways
  publication-title: J Aerosol Sci
– volume: 13
  start-page: 1
  year: 2018
  end-page: 20
  ident: bib7
  article-title: Targeting inhaled aerosol delivery to upper airways in children: insight from computational fluid dynamics (CFD)
  publication-title: PLoS One
– year: 2019
  ident: bib2
  article-title: management of severe asthma: a European respiratory society/American thoracic society guideline
  publication-title: Eur Respir J
– volume: 31
  year: 2018
  ident: bib11
  article-title: Anatomically based analysis of radioaerosol distribution in pulmonary scintigraphy: a feasibility study in asthmatics
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 113
  start-page: 132
  year: 2018
  end-page: 144
  ident: bib41
  article-title: An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung
  publication-title: Eur J Pharm Sci
– volume: 43
  start-page: 2159
  year: 2010
  end-page: 2163
  ident: bib24
  article-title: Simulation of pulmonary air flow with a subject-specific boundary condition
  publication-title: J Biomech
– volume: 118
  start-page: 1375
  year: 2015
  end-page: 1385
  ident: bib33
  article-title: Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay
  publication-title: J Appl Physiol
– volume: 32
  start-page: 1
  year: 2019
  end-page: 23
  ident: bib38
  article-title: Devices for improved delivery of nebulized pharmaceutical aerosols to the lungs
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 14
  start-page: 499
  year: 2017
  end-page: 512
  ident: bib6
  article-title: Dry powder inhalation: past, present and future
  publication-title: Expert Opin Drug Deliv
– volume: 60
  start-page: 894
  year: 2015
  end-page: 914
  ident: bib8
  article-title: Clinical controversies in aerosol therapy for infants and children
  publication-title: Respir Care
– volume: 66
  start-page: 81
  year: 2019
  end-page: 87
  ident: bib47
  article-title: Aerosol deposition predictions in computed tomography-derived skeletons from severe asthmatics: a feasibility study
  publication-title: Clin Biomech
– volume: 13
  start-page: 73
  year: 2012
  end-page: 78
  ident: bib9
  article-title: Deposition of small particles in the developing lung
  publication-title: Paediatr Respir Rev
– volume: 108
  start-page: 29
  year: 2017
  end-page: 43
  ident: bib16
  article-title: Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract
  publication-title: J Aerosol Sci
– volume: 46
  start-page: 284
  year: 2013
  end-page: 298
  ident: bib19
  article-title: Respiratory microflows in the pulmonary acinus
  publication-title: J Biomech
– volume: 28
  start-page: 432
  year: 2015
  end-page: 451
  ident: bib10
  article-title: Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of asthmatic human subjects for model validation
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 6
  start-page: 827
  year: 2016
  end-page: 895
  ident: bib15
  article-title: Lung structure and the intrinsic challenges of gas exchange
  publication-title: Comp Physiol
– volume: 42
  start-page: 301
  year: 2010
  end-page: 334
  ident: bib17
  article-title: Airflow and particle transport in the human respiratory system
  publication-title: Annu Rev Fluid Mech
– volume: 113
  start-page: 53
  year: 2018
  end-page: 63
  ident: bib40
  article-title: One (sub-)acinus for all: fate of inhaled aerosols in heterogeneous pulmonary acinar structures
  publication-title: Eur J Pharm Sci
– volume: 49
  start-page: 2213
  year: 2016
  end-page: 2220
  ident: bib32
  article-title: Aerosols in healthy and emphysematous in silico pulmonary acinar rat models
  publication-title: J Biomech
– volume: 18
  start-page: 795
  year: 2006
  end-page: 801
  ident: bib26
  article-title: Airflow distribution in the human lung and its influence on particle deposition
  publication-title: Inhal Toxicol
– volume: 29
  year: 2016
  ident: bib1
  article-title: The history of therapeutic aerosols: a chronological review
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 14
  start-page: 10
  year: 2017
  ident: bib44
  article-title: Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults
  publication-title: Part Fibre Toxicol
– volume: 33
  start-page: 1
  year: 2017
  end-page: 30
  ident: bib27
  article-title: A tree-parenchyma coupled model for lung ventilation simulation
  publication-title: Int J Numer Method Biomed Eng
– volume: 10
  start-page: 195
  year: 2008
  end-page: 220
  ident: bib18
  article-title: Targeted drug-aerosol delivery in the human respiratory system
  publication-title: Annu Rev Biomed Eng
– year: 2015
  ident: bib35
  article-title: Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data
  publication-title: Pharm Res
– volume: 32
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib46
  article-title: The effect of aging on aerosol bolus deposition in the healthy adult lung: a 19-year longitudinal study
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 6
  start-page: 67
  year: 2007
  end-page: 74
  ident: bib3
  article-title: Inhaling medicines: delivering drugs to the body through the lungs
  publication-title: Nat Rev Drug Discov
– volume: 49
  start-page: 3543
  year: 2016
  end-page: 3548
  ident: bib31
  article-title: The role of anisotropic expansion for pulmonary acinar aerosol deposition
  publication-title: J Biomech
– volume: 100
  start-page: 129
  year: 2016
  end-page: 139
  ident: bib21
  article-title: Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways
  publication-title: J Aerosol Sci
– volume: 60
  start-page: 850
  year: 2015
  end-page: 855
  ident: bib42
  article-title: Imaging in aerosol medicine
  publication-title: Respir Care
– volume: 32
  start-page: 1
  year: 2019
  ident: 10.1016/j.cobme.2019.11.003_bib38
  article-title: Devices for improved delivery of nebulized pharmaceutical aerosols to the lungs
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 6
  start-page: 67
  year: 2007
  ident: 10.1016/j.cobme.2019.11.003_bib3
  article-title: Inhaling medicines: delivering drugs to the body through the lungs
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2153
– volume: 79
  start-page: 15
  year: 2015
  ident: 10.1016/j.cobme.2019.11.003_bib34
  article-title: Deposition of particles in the alveolar airways: inhalation and breath-hold with pharmaceutical aerosols
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2014.09.003
– volume: 33
  start-page: 1
  year: 2017
  ident: 10.1016/j.cobme.2019.11.003_bib27
  article-title: A tree-parenchyma coupled model for lung ventilation simulation
  publication-title: Int J Numer Method Biomed Eng
  doi: 10.1002/cnm.2873
– volume: 60
  start-page: 850
  year: 2015
  ident: 10.1016/j.cobme.2019.11.003_bib42
  article-title: Imaging in aerosol medicine
  publication-title: Respir Care
  doi: 10.4187/respcare.03537
– volume: 2
  year: 2014
  ident: 10.1016/j.cobme.2019.11.003_bib4
  article-title: The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination
  publication-title: Transl Respir Med
  doi: 10.1186/2213-0802-2-3
– volume: 14
  start-page: 499
  year: 2017
  ident: 10.1016/j.cobme.2019.11.003_bib6
  article-title: Dry powder inhalation: past, present and future
  publication-title: Expert Opin Drug Deliv
  doi: 10.1080/17425247.2016.1224846
– volume: 66
  start-page: 81
  year: 2019
  ident: 10.1016/j.cobme.2019.11.003_bib47
  article-title: Aerosol deposition predictions in computed tomography-derived skeletons from severe asthmatics: a feasibility study
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2017.10.020
– volume: 60
  start-page: 894
  year: 2015
  ident: 10.1016/j.cobme.2019.11.003_bib8
  article-title: Clinical controversies in aerosol therapy for infants and children
  publication-title: Respir Care
  doi: 10.4187/respcare.04137
– volume: 13
  start-page: 73
  year: 2012
  ident: 10.1016/j.cobme.2019.11.003_bib9
  article-title: Deposition of small particles in the developing lung
  publication-title: Paediatr Respir Rev
  doi: 10.1016/S1526-0542(12)70124-0
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_bib45
  article-title: Altered deposition of inhaled nanoparticles in subjects with chronic obstructive pulmonary disease
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-018-0697-2
– volume: 43
  start-page: 2159
  year: 2010
  ident: 10.1016/j.cobme.2019.11.003_bib24
  article-title: Simulation of pulmonary air flow with a subject-specific boundary condition
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2010.03.048
– volume: 72
  start-page: 23
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_bib20
  article-title: Effects of glottis motion on airflow and energy expenditure in a human upper airway model
  publication-title: Eur J Mech B Fluid
  doi: 10.1016/j.euromechflu.2018.04.011
– volume: 100
  start-page: 129
  year: 2016
  ident: 10.1016/j.cobme.2019.11.003_bib21
  article-title: Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2016.07.006
– volume: 30
  start-page: 872
  year: 2008
  ident: 10.1016/j.cobme.2019.11.003_bib28
  article-title: Flow analyses in the lower airways: patient-specific model and boundary conditions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.11.002
– volume: 28
  start-page: 432
  year: 2015
  ident: 10.1016/j.cobme.2019.11.003_bib10
  article-title: Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of asthmatic human subjects for model validation
  publication-title: J Aerosol Med Pulm Drug Deliv
  doi: 10.1089/jamp.2014.1191
– volume: 133
  start-page: 183
  year: 2019
  ident: 10.1016/j.cobme.2019.11.003_sref22
  article-title: PIV measurements of the SimInhale benchmark case
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2019.03.025
– volume: 8
  start-page: 1051
  year: 2017
  ident: 10.1016/j.cobme.2019.11.003_bib14
  article-title: Pulmonary aerosol delivery and the importance of growth dynamics
  publication-title: Ther Deliv
  doi: 10.4155/tde-2017-0093
– volume: 113
  start-page: 132
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_sref41
  article-title: An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2017.09.016
– volume: 32
  start-page: 213
  year: 2019
  ident: 10.1016/j.cobme.2019.11.003_bib5
  article-title: Differences in particle deposition between members of imaging-based asthma clusters
  publication-title: J Aerosol Med Pulm Drug Deliv
  doi: 10.1089/jamp.2018.1487
– volume: 118
  start-page: 1375
  year: 2015
  ident: 10.1016/j.cobme.2019.11.003_bib33
  article-title: Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion and their interplay
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01117.2014
– volume: 117
  start-page: 164
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_bib29
  article-title: In silico assessment of mouth-throat effects on regional deposition in the upper tracheobronchial airways
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2017.12.001
– volume: 46
  start-page: 284
  year: 2013
  ident: 10.1016/j.cobme.2019.11.003_bib19
  article-title: Respiratory microflows in the pulmonary acinus
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2012.10.028
– volume: 29
  year: 2016
  ident: 10.1016/j.cobme.2019.11.003_bib1
  article-title: The history of therapeutic aerosols: a chronological review
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 14
  start-page: 10
  year: 2017
  ident: 10.1016/j.cobme.2019.11.003_bib44
  article-title: Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults
  publication-title: Part Fibre Toxicol
  doi: 10.1186/s12989-017-0190-8
– volume: 42
  start-page: 301
  year: 2010
  ident: 10.1016/j.cobme.2019.11.003_bib17
  article-title: Airflow and particle transport in the human respiratory system
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-121108-145453
– volume: 10
  start-page: 195
  year: 2008
  ident: 10.1016/j.cobme.2019.11.003_bib18
  article-title: Targeted drug-aerosol delivery in the human respiratory system
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.10.061807.160544
– volume: 29
  year: 2016
  ident: 10.1016/j.cobme.2019.11.003_bib37
  article-title: Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 49
  start-page: 2213
  year: 2016
  ident: 10.1016/j.cobme.2019.11.003_bib32
  article-title: Aerosols in healthy and emphysematous in silico pulmonary acinar rat models
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2015.11.026
– volume: 6
  start-page: 827
  year: 2016
  ident: 10.1016/j.cobme.2019.11.003_bib15
  article-title: Lung structure and the intrinsic challenges of gas exchange
  publication-title: Comp Physiol
  doi: 10.1002/cphy.c150028
– volume: 49
  start-page: 3543
  year: 2016
  ident: 10.1016/j.cobme.2019.11.003_bib31
  article-title: The role of anisotropic expansion for pulmonary acinar aerosol deposition
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2016.08.025
– volume: 114
  start-page: 301
  year: 2017
  ident: 10.1016/j.cobme.2019.11.003_bib36
  article-title: Computational analysis of aerosol-dynamics in a human whole-lung airway model
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2017.10.001
– volume: 132
  start-page: 081002
  year: 2010
  ident: 10.1016/j.cobme.2019.11.003_bib25
  article-title: Structured tree impedance outflow boundary conditions for 3D lung simulations
  publication-title: J Biomech Eng
  doi: 10.1115/1.4001679
– volume: 113
  start-page: 53
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_sref40
  article-title: One (sub-)acinus for all: fate of inhaled aerosols in heterogeneous pulmonary acinar structures
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2017.09.033
– year: 2019
  ident: 10.1016/j.cobme.2019.11.003_bib2
  article-title: management of severe asthma: a European respiratory society/American thoracic society guideline
  publication-title: Eur Respir J
– volume: 16
  start-page: 7
  year: 2019
  ident: 10.1016/j.cobme.2019.11.003_sref12
  article-title: Use of computational fluid dynamics deposition modeling in respiratory drug delivery
  publication-title: Expert Opin Drug Deliv
  doi: 10.1080/17425247.2019.1551875
– volume: 18
  start-page: 795
  year: 2006
  ident: 10.1016/j.cobme.2019.11.003_bib26
  article-title: Airflow distribution in the human lung and its influence on particle deposition
  publication-title: Inhal Toxicol
  doi: 10.1080/08958370600748687
– start-page: 960
  year: 2019
  ident: 10.1016/j.cobme.2019.11.003_sref43
  article-title: Sex differences in large conducting airway anatomy
  publication-title: J Appl Physiol
– volume: 31
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_sref11
  article-title: Anatomically based analysis of radioaerosol distribution in pulmonary scintigraphy: a feasibility study in asthmatics
  publication-title: J Aerosol Med Pulm Drug Deliv
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_bib7
  article-title: Targeting inhaled aerosol delivery to upper airways in children: insight from computational fluid dynamics (CFD)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0207711
– volume: 46
  start-page: 498
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_bib30
  article-title: Airflow simulations in infant, child, and adult pulmonary conducting airways
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-017-1971-9
– year: 2015
  ident: 10.1016/j.cobme.2019.11.003_bib35
  article-title: Validating CFD predictions of pharmaceutical aerosol deposition with in vivo data
  publication-title: Pharm Res
  doi: 10.1007/s11095-015-1695-1
– volume: 62
  start-page: 25
  year: 2015
  ident: 10.1016/j.cobme.2019.11.003_bib39
  article-title: Mathematical model of a heterogeneous pulmonary acinus structure
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2015.03.032
– volume: 108
  start-page: 29
  year: 2017
  ident: 10.1016/j.cobme.2019.11.003_bib16
  article-title: Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2017.03.004
– volume: 113
  start-page: 77
  year: 2018
  ident: 10.1016/j.cobme.2019.11.003_sref23
  article-title: Regional aerosol deposition in the human airways: the SimInhale benchmark case and a critical assessment of in silico methods
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2017.09.003
– volume: 30
  start-page: 2917
  year: 2013
  ident: 10.1016/j.cobme.2019.11.003_bib13
  article-title: The use of condensational growth methods for efficient drug delivery to the lungs during noninvasive ventilation high flow therapy
  publication-title: Pharm Res
  doi: 10.1007/s11095-013-1123-3
– volume: 32
  start-page: 1
  year: 2019
  ident: 10.1016/j.cobme.2019.11.003_sref46
  article-title: The effect of aging on aerosol bolus deposition in the healthy adult lung: a 19-year longitudinal study
  publication-title: J Aerosol Med Pulm Drug Deliv
SSID ssj0001850485
Score 2.2313287
SecondaryResourceType review_article
Snippet Inhalation therapy is a hallmark of modern respiratory medicine. Over recent years, computational fluid-particle dynamics (CFPD) simulations of respiratory...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms CFD
Drug delivery
Inhalation therapy
Lungs
Multiscale
Numerical simulations
Title Multiscale in silico lung modeling strategies for aerosol inhalation therapy and drug delivery
URI https://dx.doi.org/10.1016/j.cobme.2019.11.003
https://www.ncbi.nlm.nih.gov/pubmed/34642646
https://www.proquest.com/docview/2581823162
https://pubmed.ncbi.nlm.nih.gov/PMC7611802
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-NADLagXLggECx0F9AgcdzQNPNIckQIVEBwYZE4beRkZpasqhTR9sC_x86jUJA4cEwylizbYzvJN58Bjl0ROe-9C3TCpNoxvaCgjxkJYEOTY-HD-lTaza0Z3aurB_2wAmfdWRiGVba5v8npdbZu7wxaaw6eynJwFymTMLsWtSCcc9UqrEUyNboHa6eX16Pbt08tiaY4ZTAjiwQs0_EP1UivYkKVh1Fe6QkTenbzsz7XqM896Eco5bvadLEJG21TKU4bvbdgxVXb8Lc-WzslHzhRVmJajsnpYkybW9Tjb6hmiemsY4oQ1LwKdKTPZEzLH7HByInmfNaLwMoK-zz_J1iSwv9lB-4vzv-cjYJ2mkJQKJ3OApXH8RCLHHUs9dB4m0jrnfNR4rQqTCwxUWlorMxDL1NrDMrEKYveIm3yFOUP6FWTyu2B0Ox3n-cmRKly4zEc-jQqUrTaWR9iH6LOflnRUo3zxItx1mHK_me10TM2Or2EMENpH34vhJ4apo2vl5vOMdlSwGRUC74WPOrcmNFW4v8jWLnJfJpFmroX6ndN1Ifdxq0LTaQy3DuaPsRLDl8sYJru5SdV-VjTdcemptn7-V2Ff8E6XzXAtn3ozZ7n7oA6oVl-2Eb6K9X1C2o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcGgvVavSNn2xSD3ixvE-bB8RKgoFcgEkTqzG3t3iKnIQSQ78-874kZIiceBq70ijmdmZWfvbbwC--zLxIQQf6YxJtVM6oGBIGQngYlNgGeLmVtrZ1Ewu1a8rfbUFh_1dGIZVdrm_zelNtu6ejDprjm6ranSeKJMxuxa1IJxz1QvYVppOewPYPjg-mUz_fWrJNMUpgxlZJGKZnn-oQXqVc6o8jPLKfzChZz8_63GNetyD_g-lfFCbjt7A666pFAet3m9hy9fv4Lq5W7sgH3hR1WJRzcjpYkabWzTjb6hmicWyZ4oQ1LwK9KTPfEbLb7DFyIn2fta9wNoJd7f6LViSwv9-By6Pfl4cTqJumkJUKp0vI1Wk6RjLAnUq9dgEl0kXvA9J5rUqTSoxU3lsnCziIHNnDMrMK4fBIW3yHOV7GNTz2n8EodnvoShMjFIVJmA8DnlS5ui0dyHGISS9_WzZUY3zxIuZ7TFlf2xjdMtGp0MIM5QOYX8tdNsybTy93PSOsRsBY6kWPC2417vR0lbi_yNY-_lqYRNN3Qv1uyYZwofWrWtNpDLcO5ohpBsOXy9gmu7NN3V109B1p6ah2fv0XIV34eXk4uzUnh5PTz7DK37Tgty-wGB5t_JfqStaFt-6qP8Lh48OVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+in+silico+lung+modeling+strategies+for+aerosol+inhalation+therapy+and+drug+delivery&rft.jtitle=Current+opinion+in+biomedical+engineering&rft.au=Koullapis%2C+Pantelis&rft.au=Ollson%2C+Bo&rft.au=Kassinos%2C+Stavros+C.&rft.au=Sznitman%2C+Josu%C3%A9&rft.date=2019-09-01&rft.issn=2468-4511&rft.eissn=2468-4511&rft.volume=11&rft.spage=130&rft.epage=136&rft_id=info:doi/10.1016%2Fj.cobme.2019.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cobme_2019_11_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-4511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-4511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-4511&client=summon