Soil colloids as binding agents in the formation of soil microaggregates in wet-dry cycles: A case study for arable Luvisols under different management
•In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids favored the formation of 1–40 μm soil microaggregates.•In absence of <1 μm colloids, >40 μm soil micro- and macroaggregates were...
Saved in:
Published in | Geoderma Vol. 443; p. 116830 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0016-7061 1872-6259 |
DOI | 10.1016/j.geoderma.2024.116830 |
Cover
Abstract | •In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids favored the formation of 1–40 μm soil microaggregates.•In absence of <1 μm colloids, >40 μm soil micro- and macroaggregates were preferentially formed.•The particle size is decisive for the aggregate formation under the current experimental condition.
In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils. |
---|---|
AbstractList | In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils. In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils. •In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids favored the formation of 1–40 μm soil microaggregates.•In absence of <1 μm colloids, >40 μm soil micro- and macroaggregates were preferentially formed.•The particle size is decisive for the aggregate formation under the current experimental condition. In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils. |
ArticleNumber | 116830 |
Author | Klumpp, Erwin Tang, Ni Dultz, Stefan Gerth, Daniel |
Author_xml | – sequence: 1 givenname: Ni orcidid: 0000-0002-6726-2481 surname: Tang fullname: Tang, Ni email: n.tang@fz-juelich.de organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany – sequence: 2 givenname: Stefan surname: Dultz fullname: Dultz, Stefan organization: Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany – sequence: 3 givenname: Daniel surname: Gerth fullname: Gerth, Daniel organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany – sequence: 4 givenname: Erwin surname: Klumpp fullname: Klumpp, Erwin organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany |
BookMark | eNqFkc-OFCEQxjtmTZxdfQXD0UuPQDf9x3hws1F3k0k8qGdSQNEy6YYVmDXzJL6u9IzrwcuegMr3_Yqq77K68MFjVb1mdMso697utxMGg3GBLae83TLWDQ19Vm3Y0PO642K8qDa0KOueduxFdZnSvjx7yumm-v01uJnoMM_BmUQgEeW8cX4iMKHPiThP8g8kNhR-dsGTYElaPYvTMcA0RZwg40n4C3Nt4pHoo54xvSPXRENCkvLBHFcCgQhqRrI7PLgU5kQOvvybGGctxtKNLOBL26VcX1bPLcwJX_09r6rvnz5-u7mtd18-391c72rdijHX7Wg7Myrd2G5A21trjKKKC0a5ZkJ1wE2pN83AVcutYI2CcRg7alpqxCD65qq6O3NNgL28j26BeJQBnDwVQpwkxOzKPBKsUQIQG6GGdrBW9ePI2cgUWC5oSwvrzZl1H8PPA6YsF5c0zjN4DIckG95yKljLVml3lpYdphTR_mvNqFxTlXv5mKpcU5XnVIvx_X9G7fIpmBzBzU_bP5ztWHb64DDKpB16jcZF1LkM7Z5C_AFNkcdj |
CitedBy_id | crossref_primary_10_1016_j_enggeo_2024_107904 crossref_primary_10_3390_agronomy15020501 crossref_primary_10_1111_ejss_70056 crossref_primary_10_53360_2788_7995_2024_2_14__50 |
Cites_doi | 10.1016/j.geoderma.2021.115103 10.1016/j.geoderma.2008.05.021 10.1016/j.soilbio.2021.108483 10.1016/j.geoderma.2018.07.027 10.1016/j.geoderma.2016.04.009 10.1016/j.geoderma.2017.11.009 10.1002/jpln.202300156 10.1002/jpln.202300020 10.5194/soil-6-597-2020 10.1111/j.1365-2389.2007.00964.x 10.1111/gcb.15220 10.1080/07352680490886842 10.2136/sssaj2003.1715 10.1016/j.geoderma.2018.01.015 10.1016/bs.agron.2018.04.003 10.1016/j.geoderma.2013.10.005 10.1016/j.orggeochem.2007.04.002 10.1016/j.geoderma.2014.07.017 10.1021/acs.est.2c01973 10.1002/jpln.202300149 10.1071/SR9910815 10.2134/jeq2015.02.0085 10.1039/C6JA00027D 10.1007/s11104-017-3430-7 10.1016/j.soilbio.2008.05.004 10.1007/s10533-007-9105-3 10.1016/S0038-0717(00)00179-6 10.1023/A:1020668013524 10.1016/j.geoderma.2015.01.022 10.1016/j.envpol.2018.09.019 10.1016/j.soilbio.2014.10.018 10.2136/sssaj2001.651184x 10.1073/pnas.1913855117 10.1016/j.scitotenv.2018.06.004 10.1046/j.1365-2389.2001.00417.x 10.1016/j.geoderma.2017.07.004 10.1016/S0269-7491(02)00181-1 10.1080/1064119X.2016.1168498 10.1016/0167-1987(94)90005-1 10.1002/jpln.201100073 10.1111/j.1365-2389.1996.tb01843.x 10.1002/jpln.200521732 10.3390/soilsystems2020032 10.2136/vzj2017.05.0090 10.1016/j.geoderma.2004.03.005 10.1016/j.geoderma.2020.114421 10.1016/j.geoderma.2010.12.017 10.1016/0167-1987(89)90002-0 10.1002/jpln.201600451 10.1016/j.soilbio.2007.03.007 10.2136/sssaj2001.6551413x 10.1016/j.soilbio.2007.06.007 10.1016/j.still.2018.05.003 10.1016/j.clay.2019.01.002 10.5194/bg-18-1703-2021 10.1016/j.gca.2008.12.028 10.1016/j.chemosphere.2020.127910 10.2134/jeq2006.0427 10.1021/acs.est.0c07709 10.2136/sssaj2005.0001 10.1016/bs.agron.2014.10.005 10.1111/j.1365-2389.2006.00809.x 10.1111/gcb.16230 10.1007/s11104-013-1910-y 10.1007/s10533-017-0410-1 10.2478/s11756-009-0089-4 10.1016/j.enggeo.2022.106538 10.1111/ejss.12774 10.1029/93WR02403 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.geoderma.2024.116830 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_afdb5aee35b848ffb7992191baf25040 10_1016_j_geoderma_2024_116830 S0016706124000594 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c459t-49f6d9bc3f68ef7ffddb0b25102c15b6a2d8ef3382b42f513ba98960d40d58573 |
IEDL.DBID | AIKHN |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Fri Sep 05 15:06:04 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Tue Jul 01 04:05:02 EDT 2025 Sat Mar 30 16:17:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Size distribution of aggregates Field flow fractionation Elemental composition Soil microaggregation |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-49f6d9bc3f68ef7ffddb0b25102c15b6a2d8ef3382b42f513ba98960d40d58573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6726-2481 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706124000594 |
PQID | 3242051410 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_afdb5aee35b848ffb7992191baf25040 proquest_miscellaneous_3242051410 crossref_primary_10_1016_j_geoderma_2024_116830 crossref_citationtrail_10_1016_j_geoderma_2024_116830 elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_116830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 20240301 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Jiang, Bol, Nischwitz, Siebers, Willbold, Vereecken, Amelung, Klumpp (b0120) 2015; 44 Virto, Barré, Chenu (b0295) 2008; 146 Asano, Wagai (b0010) 2014; 216 Chassé, Lutfalla, Cécillon, Baudin, Abiven, Chenu, Barré (b0040) 2021; 18 Jiang, Séquaris, Wacha, Bóta, Vereecken, Klumpp (b0125) 2014; 235–236 Nam, Kim, Oh (b0210) 2003; 121 Majzik, Tombácz (b0185) 2007; 38 Paradiś, Brueck, Meisenheimer, Wanzek, Dragila (b0235) 2017; 16 Bai, Wang, Hall, Wang, Ye, Li, Li, Zhou, Qiu, Guo, Guo, Wang, Hu (b0020) 2020; 26 Mikutta, Schaumann, Gildemeister, Bonneville, Kramer, Chorover, Chadwick, Guggenberger (b0195) 2009; 73 Holthusen, Peth, Horn, Kühn (b0095) 2012; 175 Guhra, Stolze, Totsche (b0075) 2022; 164 Lehmann, Kinyangi, Solomon (b0165) 2007; 85 Seiphoori, Ma, Arratia, Jerolmack (b0260) 2020; 117 Zech, Schweizer, Bucka, Ray, Kögel-Knabner, Prechtel (b0335) 2022; 28 Albalasmeh, Ghezzehei (b0005) 2014; 374 Li, Zhang, Klumpp, Bol, Nischwitz, Ge, Liang (b0170) 2021; 55 Horn, Dexter (b0100) 1989; 13 Zhang, Liu (b0345) 2018; 642 Hochman, Dor, Mishael (b0090) 2021; 263 Wang, Xue, Zhang, Li, Liu, Pan, Chen, Liu (b0320) 2018; 243 Paradelo, van Oort, Barré, Billiou, Chenu (b0230) 2016; 275 Schweizer, Aehnelt, Bucka, Totsche, Kögel-Knabner (bib346) 2024; 187 Dultz, Woche, Mikutta, Schrapel, Guggenberger (b0055) 2019; 170 Horn, Peth (b0105) 2009; 64 Park, Sul, Smucker (b0240) 2007; 39 Lützow, Kögel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner, Flessa (b0175) 2006; 57 Totsche, Amelung, Gerzabek, Guggenberger, Klumpp, Knief, Lehndorff, Mikutta, Peth, Prechtel, Ray, Kögel-Knabner (b0285) 2018; 181 Verchot, Dutaur, Shepherd, Albrecht (b0290) 2011; 161 Oades, Waters (b0225) 1991; 29 Six, Elliott, Paustian (b0275) 2000; 32 Rowley, Grand, Verrecchia (b0255) 2018; 137 Christensen (b0045) 2001; 52 Missong, Bol, Nischwitz, Krüger, Lang, Siemens, Klumpp (b0200) 2018; 427 Horn, Taubner, Wuttke, Baumgartl (b0110) 1994; 30 Xiang, Doyle, Holden, Schimel (b0325) 2008; 40 Nischwitz, Gottselig, Missong, Meyn, Klumpp (b0220) 2016; 31 Seiphoori, Zamanian (b0265) 2022; 298 He, Chu (b0085) 2017; 35 Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0135) 2015 Hallett, Baumgartl, Young (b0080) 2001; 65 Majdalani, Michel, Di-Pietro, Angulo-Jaramillo (b0180) 2008; 59 Kaiser, Kleber, Berhe (b0130) 2015; 80 Wagner, Cattle, Scholten (b0310) 2007; 170 Krause, Klumpp, Nofz, Missong, Amelung, Siebers (b0150) 2020; 374 Laird, Martens, Kingery (b0155) 2001; 65 Le Bissonnais (b0160) 1996; 47 Tang, Siebers, Leinweber, Eckhardt, Dultz, Nischwitz, Klumpp (b0280) 2022; 56 Bieganowski, Ryżak, Sochan, Barna, Hernádi, Beczek, Polakowski, Makó (b0025) 2018 Klitzke, Lang (b0140) 2007; 36 Gonzalez, Laird (b0060) 2003; 67 Zaher, Caron, Ouaki (b0330) 2005; 69 Wagai, Kajiura, Asano (b0305) 2020; 6 Asano, Wagai, Yamaguchi, Takeichi, Maeda, Suga, Takahashi (b0015) 2018; 2 von Lützow, Kögel-Knabner, Ekschmitt, Flessa, Guggenberger, Matzner, Marschner (b0300) 2007; 39 Nguyen, Dultz, Meharg, Pham, Hoang, Dam, Nguyen, Nguyen, Nguyen, Nguyen (b0215) 2019; 333 Guhra, Ritschel, Totsche (b0070) 2019; 70 Mitchell, Soga (b0205) 2005 Siebers, Voggenreiter, Joshi, Rethemeyer, Wang (b0270) 2024; 187 Bronick, Lal (b0035) 2005; 124 Krause, Rodionov, Schweizer, Siebers, Lehndorff, Klumpp, Amelung (b0145) 2018; 182 Denef, Six, Merckx, Paustian (b0050) 2002; 246 Wan, Wilson (b0315) 1994; 30 Amelung, Tang, Siebers, Aehnelt, Eusterhues, Felde, Guggenberger, Kaiser, Kögel-Knabner, Klumpp, Knief, Kruse, Lehndorff, Mikutta, Peth, Ray, Prechtel, Ritschel, Schweizer, Woche, Wu, Totsche (bib347) 2024; 187 Meyer, Bornemann, Welp, Schiedung, Herbst, Amelung (b0190) 2017; 306 Gu, Gruau, Malique, Dupas, Petitjean, Gascuel-Odoux (b0065) 2018; 321 (b0115) 2007 Blanco-Canqui, Lal (b0030) 2004; 23 Rabot, Wiesmeier, Schlüter, Vogel (b0245) 2018; 314 Regelink, Stoof, Rousseva, Weng, Lair, Kram, Nikolaidis, Kercheva, Banwart, Comans (b0250) 2015; 247–248 Zhang, Bol, Amelung, Missong, Siemens, Mulder, Willbold, Müller, Westphal Muniz, Klumpp (b0340) 2021; 397 Hochman (10.1016/j.geoderma.2024.116830_b0090) 2021; 263 Laird (10.1016/j.geoderma.2024.116830_b0155) 2001; 65 Kleber (10.1016/j.geoderma.2024.116830_b0135) 2015 Wan (10.1016/j.geoderma.2024.116830_b0315) 1994; 30 Chassé (10.1016/j.geoderma.2024.116830_b0040) 2021; 18 Schweizer (10.1016/j.geoderma.2024.116830_bib346) 2024; 187 Siebers (10.1016/j.geoderma.2024.116830_b0270) 2024; 187 Christensen (10.1016/j.geoderma.2024.116830_b0045) 2001; 52 Klitzke (10.1016/j.geoderma.2024.116830_b0140) 2007; 36 Zech (10.1016/j.geoderma.2024.116830_b0335) 2022; 28 Blanco-Canqui (10.1016/j.geoderma.2024.116830_b0030) 2004; 23 Zhang (10.1016/j.geoderma.2024.116830_b0340) 2021; 397 Tang (10.1016/j.geoderma.2024.116830_b0280) 2022; 56 Holthusen (10.1016/j.geoderma.2024.116830_b0095) 2012; 175 von Lützow (10.1016/j.geoderma.2024.116830_b0300) 2007; 39 Seiphoori (10.1016/j.geoderma.2024.116830_b0265) 2022; 298 He (10.1016/j.geoderma.2024.116830_b0085) 2017; 35 Mikutta (10.1016/j.geoderma.2024.116830_b0195) 2009; 73 Lehmann (10.1016/j.geoderma.2024.116830_b0165) 2007; 85 Bieganowski (10.1016/j.geoderma.2024.116830_b0025) 2018 Majzik (10.1016/j.geoderma.2024.116830_b0185) 2007; 38 Guhra (10.1016/j.geoderma.2024.116830_b0070) 2019; 70 Krause (10.1016/j.geoderma.2024.116830_b0150) 2020; 374 Kaiser (10.1016/j.geoderma.2024.116830_b0130) 2015; 80 Nischwitz (10.1016/j.geoderma.2024.116830_b0220) 2016; 31 Virto (10.1016/j.geoderma.2024.116830_b0295) 2008; 146 Denef (10.1016/j.geoderma.2024.116830_b0050) 2002; 246 Paradelo (10.1016/j.geoderma.2024.116830_b0230) 2016; 275 Regelink (10.1016/j.geoderma.2024.116830_b0250) 2015; 247–248 Asano (10.1016/j.geoderma.2024.116830_b0010) 2014; 216 (10.1016/j.geoderma.2024.116830_b0115) 2007 Gu (10.1016/j.geoderma.2024.116830_b0065) 2018; 321 Hallett (10.1016/j.geoderma.2024.116830_b0080) 2001; 65 Horn (10.1016/j.geoderma.2024.116830_b0100) 1989; 13 Rowley (10.1016/j.geoderma.2024.116830_b0255) 2018; 137 Nam (10.1016/j.geoderma.2024.116830_b0210) 2003; 121 Wang (10.1016/j.geoderma.2024.116830_b0320) 2018; 243 Meyer (10.1016/j.geoderma.2024.116830_b0190) 2017; 306 Verchot (10.1016/j.geoderma.2024.116830_b0290) 2011; 161 Bronick (10.1016/j.geoderma.2024.116830_b0035) 2005; 124 Li (10.1016/j.geoderma.2024.116830_b0170) 2021; 55 Oades (10.1016/j.geoderma.2024.116830_b0225) 1991; 29 Gonzalez (10.1016/j.geoderma.2024.116830_b0060) 2003; 67 Totsche (10.1016/j.geoderma.2024.116830_b0285) 2018; 181 Jiang (10.1016/j.geoderma.2024.116830_b0125) 2014; 235–236 Majdalani (10.1016/j.geoderma.2024.116830_b0180) 2008; 59 Six (10.1016/j.geoderma.2024.116830_b0275) 2000; 32 Horn (10.1016/j.geoderma.2024.116830_b0110) 1994; 30 Rabot (10.1016/j.geoderma.2024.116830_b0245) 2018; 314 Xiang (10.1016/j.geoderma.2024.116830_b0325) 2008; 40 Mitchell (10.1016/j.geoderma.2024.116830_b0205) 2005 Wagai (10.1016/j.geoderma.2024.116830_b0305) 2020; 6 Wagner (10.1016/j.geoderma.2024.116830_b0310) 2007; 170 Missong (10.1016/j.geoderma.2024.116830_b0200) 2018; 427 Albalasmeh (10.1016/j.geoderma.2024.116830_b0005) 2014; 374 Nguyen (10.1016/j.geoderma.2024.116830_b0215) 2019; 333 Asano (10.1016/j.geoderma.2024.116830_b0015) 2018; 2 Bai (10.1016/j.geoderma.2024.116830_b0020) 2020; 26 Krause (10.1016/j.geoderma.2024.116830_b0145) 2018; 182 Lützow (10.1016/j.geoderma.2024.116830_b0175) 2006; 57 Le Bissonnais (10.1016/j.geoderma.2024.116830_b0160) 1996; 47 Paradiś (10.1016/j.geoderma.2024.116830_b0235) 2017; 16 Park (10.1016/j.geoderma.2024.116830_b0240) 2007; 39 Horn (10.1016/j.geoderma.2024.116830_b0105) 2009; 64 Guhra (10.1016/j.geoderma.2024.116830_b0075) 2022; 164 Seiphoori (10.1016/j.geoderma.2024.116830_b0260) 2020; 117 Amelung (10.1016/j.geoderma.2024.116830_bib347) 2024; 187 Dultz (10.1016/j.geoderma.2024.116830_b0055) 2019; 170 Zaher (10.1016/j.geoderma.2024.116830_b0330) 2005; 69 Jiang (10.1016/j.geoderma.2024.116830_b0120) 2015; 44 Zhang (10.1016/j.geoderma.2024.116830_b0345) 2018; 642 |
References_xml | – volume: 306 start-page: 89 year: 2017 end-page: 98 ident: b0190 article-title: Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow publication-title: Geoderma – volume: 247–248 start-page: 24 year: 2015 end-page: 37 ident: b0250 article-title: Linkages between aggregate formation, porosity and soil chemical properties publication-title: Geoderma – volume: 187 start-page: 17 year: 2024 end-page: 50 ident: bib347 article-title: Architecture of soil microaggregates: Advanced methodologies to explore properties and functions publication-title: J. Plant Nutrit. Soil Sci. – volume: 26 start-page: 5320 year: 2020 end-page: 5332 ident: b0020 article-title: Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland publication-title: Glob. Change Biol. – volume: 70 start-page: 604 year: 2019 end-page: 615 ident: b0070 article-title: Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances publication-title: European Journal of Soil Science – volume: 161 start-page: 182 year: 2011 end-page: 193 ident: b0290 article-title: Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils publication-title: Geoderma – volume: 170 start-page: 173 year: 2007 end-page: 180 ident: b0310 article-title: Soil-aggregate formation as influenced by clay content and organic-matter amendment publication-title: J. Plant Nutrit. Soil Sci. – volume: 32 start-page: 2099 year: 2000 end-page: 2103 ident: b0275 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. – volume: 263 year: 2021 ident: b0090 article-title: Diverse effects of wetting and drying cycles on soil aggregation: Implications on pesticide leaching publication-title: Chemosphere – volume: 187 start-page: 77 year: 2024 end-page: 88 ident: b0270 article-title: Synergistic relationships between the age of soil organic matter, Fe speciation, and aggregate stability in an arable Luvisol publication-title: J. Plant Nutrit. Soil Sci. – volume: 69 start-page: 1 year: 2005 end-page: 12 ident: b0330 article-title: Modeling aggregate internal pressure evolution following immersion to quantify mechanisms of structural stability publication-title: Soil Sci. Soc. Am. J. – volume: 124 start-page: 3 year: 2005 end-page: 22 ident: b0035 article-title: Soil structure and management: a review publication-title: Geoderma – volume: 235–236 start-page: 260 year: 2014 end-page: 270 ident: b0125 article-title: Effect of metal oxide on surface area and pore size of water-dispersible colloids from three German silt loam topsoils publication-title: Geoderma – volume: 427 start-page: 71 year: 2018 end-page: 86 ident: b0200 article-title: Phosphorus in water dispersible-colloids of forest soil profiles publication-title: Plant Soil – volume: 314 start-page: 122 year: 2018 end-page: 137 ident: b0245 article-title: Soil structure as an indicator of soil functions: A review publication-title: Geoderma – volume: 137 start-page: 27 year: 2018 end-page: 49 ident: b0255 article-title: Calcium-mediated stabilisation of soil organic carbon publication-title: Biogeochemistry – volume: 246 start-page: 185 year: 2002 end-page: 200 ident: b0050 article-title: Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy publication-title: Plant Soil – volume: 6 start-page: 597 year: 2020 end-page: 627 ident: b0305 article-title: Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis publication-title: Soil – volume: 30 start-page: 11 year: 1994 end-page: 23 ident: b0315 article-title: Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media publication-title: Water Resour. Res. – volume: 642 start-page: 12 year: 2018 end-page: 20 ident: b0345 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. – volume: 117 start-page: 3375 year: 2020 end-page: 3381 ident: b0260 article-title: Formation of stable aggregates by fluid-assembled solid bridges publication-title: Proc. Natl. Acad. Sci. u.s.a. – volume: 28 start-page: 4589 year: 2022 end-page: 4604 ident: b0335 article-title: Explicit spatial modeling at the pore scale unravels the interplay of soil organic carbon storage and structure dynamics publication-title: Glob. Change Biol. – volume: 18 start-page: 1703 year: 2021 end-page: 1718 ident: b0040 article-title: Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics publication-title: Biogeosciences – volume: 59 start-page: 147 year: 2008 end-page: 155 ident: b0180 article-title: Effects of wetting and drying cycles on in situ soil particle mobilization publication-title: Eur. J. Soil Sci. – volume: 275 start-page: 48 year: 2016 end-page: 54 ident: b0230 article-title: Soil organic matter stabilization at the pluri-decadal scale: Insight from bare fallow soils with contrasting physicochemical properties and macrostructures publication-title: Geoderma – volume: 374 year: 2020 ident: b0150 article-title: Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols publication-title: Geoderma – volume: 39 start-page: 2183 year: 2007 end-page: 2207 ident: b0300 article-title: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms publication-title: Soil Biol. Biochem. – volume: 67 start-page: 1715 year: 2003 end-page: 1720 ident: b0060 article-title: Carbon Sequestration in Clay Mineral Fractions from 14C-Labeled Plant Residues publication-title: Soil Science Society of America Journal – volume: 47 start-page: 425 year: 1996 end-page: 437 ident: b0160 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology publication-title: Eur. J. Soil Sci. – volume: 65 start-page: 1413 year: 2001 end-page: 1418 ident: b0155 article-title: Nature of Clay-Humic Complexes in an Agricultural Soil publication-title: Soil Sci. Soc. Am. J. – volume: 164 year: 2022 ident: b0075 article-title: Pathways of biogenically excreted organic matter into soil aggregates publication-title: Soil Biol. Biochem. – volume: 36 start-page: 1187 year: 2007 end-page: 1193 ident: b0140 article-title: Hydrophobicity of soil colloids and heavy metal mobilization publication-title: J. Environ. Quality – volume: 29 start-page: 815 year: 1991 end-page: 828 ident: b0225 article-title: Aggregate hierarchy in soils publication-title: Soil Res. – start-page: 1 year: 2015 end-page: 140 ident: b0135 article-title: Chapter one - mineral-organic associations: formation, properties, and relevance in soil environments publication-title: Adv. Agron – volume: 35 start-page: 441 year: 2017 end-page: 445 ident: b0085 article-title: Cementation of sand due to salt precipitation in drying process publication-title: Mar. Georesources Geotechnol. – volume: 64 start-page: 449 year: 2009 end-page: 453 ident: b0105 article-title: Soil structure formation and management effects on gas emission publication-title: Biologia – volume: 40 start-page: 2281 year: 2008 end-page: 2289 ident: b0325 article-title: Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils publication-title: Soil Biol. Biochem. – volume: 146 start-page: 326 year: 2008 end-page: 335 ident: b0295 article-title: Microaggregation and organic matter storage at the silt-size scale publication-title: Geoderma – volume: 374 start-page: 739 year: 2014 end-page: 751 ident: b0005 article-title: Interplay between soil drying and root exudation in rhizosheath development publication-title: Plant and Soil – volume: 321 start-page: 32 year: 2018 end-page: 41 ident: b0065 article-title: Drying/rewetting cycles stimulate release of colloidal-bound phosphorus in riparian soils publication-title: Geoderma – volume: 30 start-page: 187 year: 1994 end-page: 216 ident: b0110 article-title: Soil physical properties related to soil structure publication-title: Soil Tillage Res. – volume: 39 start-page: 2758 year: 2007 end-page: 2768 ident: b0240 article-title: Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability publication-title: Soil Biol. Biochem. – volume: 181 start-page: 104 year: 2018 end-page: 136 ident: b0285 article-title: Microaggregates in soils publication-title: J. Plant. Nutr. Soil Sci. – year: 2007 ident: b0115 publication-title: World Reference Base for Soil Resources 2006, first update 2007 – volume: 2 start-page: 32 year: 2018 ident: b0015 article-title: In search of a binding agent: nano-scale evidence of preferential carbon associations with poorly-crystalline mineral phases in physically-stable, clay-sized aggregates publication-title: Soil Syst. – volume: 80 start-page: 324 year: 2015 end-page: 340 ident: b0130 article-title: How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference publication-title: Soil Biol. Biochem. – volume: 44 start-page: 1772 year: 2015 end-page: 1781 ident: b0120 article-title: Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil publication-title: J. Environ. Qual. – volume: 57 start-page: 426 year: 2006 end-page: 445 ident: b0175 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review publication-title: Eur. J. Soil Sci. – volume: 38 start-page: 1330 year: 2007 end-page: 1340 ident: b0185 article-title: Interaction between humic acid and montmorillonite in the presence of calcium ions II. Colloidal interactions: Charge state, dispersing and/or aggregation of particles in suspension publication-title: Org. Geochem. – volume: 175 start-page: 535 year: 2012 end-page: 547 ident: b0095 article-title: Flow and deformation behavior at the microscale of soils from several long-term potassium fertilization trials in Germany publication-title: J. Plant Nutr. Soil Sci. – volume: 13 start-page: 253 year: 1989 end-page: 266 ident: b0100 article-title: Dynamics of soil aggregation in an irrigated desert loess publication-title: Soil Tillage Res. – volume: 397 year: 2021 ident: b0340 article-title: Water dispersible colloids and related nutrient availability in Amazonian Terra Preta soils publication-title: Geoderma – volume: 52 start-page: 345 year: 2001 end-page: 353 ident: b0045 article-title: Physical fractionation of soil and structural and functional complexity in organic matter turnover publication-title: Eur. J. Soil Sci. – volume: 333 start-page: 200 year: 2019 end-page: 213 ident: b0215 article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties publication-title: Geoderma – start-page: 215 year: 2018 end-page: 279 ident: b0025 article-title: Chapter Five - laser diffractometry in the measurements of soil and sediment particle size distribution publication-title: Adv. Agron – volume: 55 start-page: 5815 year: 2021 end-page: 5825 ident: b0170 article-title: Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles publication-title: Environ. Sci. Technol. – volume: 243 start-page: 734 year: 2018 end-page: 742 ident: b0320 article-title: Soil aggregate-associated distribution of DDTs and HCHs in farmland and bareland soils in the Danjiangkou Reservoir Area of China publication-title: Environ. Pollut. – volume: 56 start-page: 14133 year: 2022 end-page: 14145 ident: b0280 article-title: Implications of Free and Occluded Fine Colloids for Organic Matter Preservation in Arable Soils publication-title: Environ. Sci. Technol. – volume: 65 start-page: 184 year: 2001 end-page: 190 ident: b0080 article-title: Subcritical Water Repellency of Aggregates from a Range of Soil Management Practices publication-title: Soil Science Society of America Journal – volume: 121 start-page: 147 year: 2003 end-page: 151 ident: b0210 article-title: Effect of soil aggregation on the biodegradation of phenanthrene aged in soil publication-title: Environ. Pollut. – volume: 85 start-page: 45 year: 2007 end-page: 57 ident: b0165 article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms publication-title: Biogeochemistry – volume: 298 year: 2022 ident: b0265 article-title: Improving mechanical behaviour of collapsible soils by grouting clay nanoparticles publication-title: Eng. Geol. – volume: 23 start-page: 481 year: 2004 end-page: 504 ident: b0030 article-title: Mechanisms of Carbon Sequestration in Soil Aggregates publication-title: Crit. Rev. Plant Sci. – volume: 182 start-page: 123 year: 2018 end-page: 129 ident: b0145 article-title: Microaggregate stability and storage of organic carbon is affected by clay content in arable Luvisols publication-title: Soil Tillage Res. – volume: 216 start-page: 62 year: 2014 end-page: 74 ident: b0010 article-title: Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol publication-title: Geoderma – volume: 16 year: 2017 ident: b0235 article-title: Sandy soil microaggregates: rethinking our understanding of hydraulic function publication-title: Vadose Zone J. – volume: 170 start-page: 29 year: 2019 end-page: 40 ident: b0055 article-title: Size and charge constraints in microaggregation: Model experiments with mineral particle size fractions publication-title: Applied Clay Science – volume: 187 start-page: 118 year: 2024 end-page: 129 ident: bib346 article-title: Impact of bare fallow management on soil carbon storage and aggregates across a rock fragment gradient publication-title: J. Plant Nutrit. Soil Sci. – volume: 73 start-page: 2034 year: 2009 end-page: 2060 ident: b0195 article-title: Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100kyr), Hawaiian Islands publication-title: Geochim. Cosmochim. Acta. – volume: 31 start-page: 1858 year: 2016 end-page: 1868 ident: b0220 article-title: Field flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts publication-title: J. Anal. At. Spectrom – year: 2005 ident: b0205 article-title: Fundamentals of soil behavior – volume: 397 year: 2021 ident: 10.1016/j.geoderma.2024.116830_b0340 article-title: Water dispersible colloids and related nutrient availability in Amazonian Terra Preta soils publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115103 – volume: 146 start-page: 326 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2024.116830_b0295 article-title: Microaggregation and organic matter storage at the silt-size scale publication-title: Geoderma doi: 10.1016/j.geoderma.2008.05.021 – volume: 164 year: 2022 ident: 10.1016/j.geoderma.2024.116830_b0075 article-title: Pathways of biogenically excreted organic matter into soil aggregates publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108483 – volume: 333 start-page: 200 year: 2019 ident: 10.1016/j.geoderma.2024.116830_b0215 article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2018.07.027 – volume: 275 start-page: 48 year: 2016 ident: 10.1016/j.geoderma.2024.116830_b0230 article-title: Soil organic matter stabilization at the pluri-decadal scale: Insight from bare fallow soils with contrasting physicochemical properties and macrostructures publication-title: Geoderma doi: 10.1016/j.geoderma.2016.04.009 – volume: 314 start-page: 122 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0245 article-title: Soil structure as an indicator of soil functions: A review publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.009 – volume: 187 start-page: 118 issue: 1 year: 2024 ident: 10.1016/j.geoderma.2024.116830_bib346 article-title: Impact of bare fallow management on soil carbon storage and aggregates across a rock fragment gradient publication-title: J. Plant Nutrit. Soil Sci. doi: 10.1002/jpln.202300156 – volume: 187 start-page: 77 issue: 1 year: 2024 ident: 10.1016/j.geoderma.2024.116830_b0270 article-title: Synergistic relationships between the age of soil organic matter, Fe speciation, and aggregate stability in an arable Luvisol publication-title: J. Plant Nutrit. Soil Sci. doi: 10.1002/jpln.202300020 – volume: 6 start-page: 597 issue: 2 year: 2020 ident: 10.1016/j.geoderma.2024.116830_b0305 article-title: Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis publication-title: Soil doi: 10.5194/soil-6-597-2020 – volume: 59 start-page: 147 issue: 2 year: 2008 ident: 10.1016/j.geoderma.2024.116830_b0180 article-title: Effects of wetting and drying cycles on in situ soil particle mobilization publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2007.00964.x – volume: 26 start-page: 5320 issue: 9 year: 2020 ident: 10.1016/j.geoderma.2024.116830_b0020 article-title: Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland publication-title: Glob. Change Biol. doi: 10.1111/gcb.15220 – volume: 23 start-page: 481 issue: 6 year: 2004 ident: 10.1016/j.geoderma.2024.116830_b0030 article-title: Mechanisms of Carbon Sequestration in Soil Aggregates publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680490886842 – volume: 67 start-page: 1715 issue: 6 year: 2003 ident: 10.1016/j.geoderma.2024.116830_b0060 article-title: Carbon Sequestration in Clay Mineral Fractions from 14C-Labeled Plant Residues publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2003.1715 – volume: 321 start-page: 32 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0065 article-title: Drying/rewetting cycles stimulate release of colloidal-bound phosphorus in riparian soils publication-title: Geoderma doi: 10.1016/j.geoderma.2018.01.015 – start-page: 215 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0025 article-title: Chapter Five - laser diffractometry in the measurements of soil and sediment particle size distribution doi: 10.1016/bs.agron.2018.04.003 – volume: 216 start-page: 62 year: 2014 ident: 10.1016/j.geoderma.2024.116830_b0010 article-title: Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol publication-title: Geoderma doi: 10.1016/j.geoderma.2013.10.005 – volume: 38 start-page: 1330 issue: 8 year: 2007 ident: 10.1016/j.geoderma.2024.116830_b0185 article-title: Interaction between humic acid and montmorillonite in the presence of calcium ions II. Colloidal interactions: Charge state, dispersing and/or aggregation of particles in suspension publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2007.04.002 – volume: 235–236 start-page: 260 year: 2014 ident: 10.1016/j.geoderma.2024.116830_b0125 article-title: Effect of metal oxide on surface area and pore size of water-dispersible colloids from three German silt loam topsoils publication-title: Geoderma doi: 10.1016/j.geoderma.2014.07.017 – volume: 56 start-page: 14133 issue: 19 year: 2022 ident: 10.1016/j.geoderma.2024.116830_b0280 article-title: Implications of Free and Occluded Fine Colloids for Organic Matter Preservation in Arable Soils publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c01973 – year: 2007 ident: 10.1016/j.geoderma.2024.116830_b0115 – volume: 187 start-page: 17 issue: 1 year: 2024 ident: 10.1016/j.geoderma.2024.116830_bib347 article-title: Architecture of soil microaggregates: Advanced methodologies to explore properties and functions publication-title: J. Plant Nutrit. Soil Sci. doi: 10.1002/jpln.202300149 – volume: 29 start-page: 815 issue: 6 year: 1991 ident: 10.1016/j.geoderma.2024.116830_b0225 article-title: Aggregate hierarchy in soils publication-title: Soil Res. doi: 10.1071/SR9910815 – volume: 44 start-page: 1772 issue: 6 year: 2015 ident: 10.1016/j.geoderma.2024.116830_b0120 article-title: Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil publication-title: J. Environ. Qual. doi: 10.2134/jeq2015.02.0085 – volume: 31 start-page: 1858 issue: 9 year: 2016 ident: 10.1016/j.geoderma.2024.116830_b0220 article-title: Field flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts publication-title: J. Anal. At. Spectrom doi: 10.1039/C6JA00027D – volume: 427 start-page: 71 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0200 article-title: Phosphorus in water dispersible-colloids of forest soil profiles publication-title: Plant Soil doi: 10.1007/s11104-017-3430-7 – volume: 40 start-page: 2281 issue: 9 year: 2008 ident: 10.1016/j.geoderma.2024.116830_b0325 article-title: Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.05.004 – volume: 85 start-page: 45 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2024.116830_b0165 article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms publication-title: Biogeochemistry doi: 10.1007/s10533-007-9105-3 – volume: 32 start-page: 2099 issue: 14 year: 2000 ident: 10.1016/j.geoderma.2024.116830_b0275 article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00179-6 – volume: 246 start-page: 185 issue: 2 year: 2002 ident: 10.1016/j.geoderma.2024.116830_b0050 article-title: Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy publication-title: Plant Soil doi: 10.1023/A:1020668013524 – volume: 247–248 start-page: 24 year: 2015 ident: 10.1016/j.geoderma.2024.116830_b0250 article-title: Linkages between aggregate formation, porosity and soil chemical properties publication-title: Geoderma doi: 10.1016/j.geoderma.2015.01.022 – volume: 243 start-page: 734 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0320 article-title: Soil aggregate-associated distribution of DDTs and HCHs in farmland and bareland soils in the Danjiangkou Reservoir Area of China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.019 – volume: 80 start-page: 324 year: 2015 ident: 10.1016/j.geoderma.2024.116830_b0130 article-title: How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.10.018 – volume: 65 start-page: 184 issue: 1 year: 2001 ident: 10.1016/j.geoderma.2024.116830_b0080 article-title: Subcritical Water Repellency of Aggregates from a Range of Soil Management Practices publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2001.651184x – volume: 117 start-page: 3375 issue: 7 year: 2020 ident: 10.1016/j.geoderma.2024.116830_b0260 article-title: Formation of stable aggregates by fluid-assembled solid bridges publication-title: Proc. Natl. Acad. Sci. u.s.a. doi: 10.1073/pnas.1913855117 – year: 2005 ident: 10.1016/j.geoderma.2024.116830_b0205 – volume: 642 start-page: 12 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0345 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.004 – volume: 52 start-page: 345 issue: 3 year: 2001 ident: 10.1016/j.geoderma.2024.116830_b0045 article-title: Physical fractionation of soil and structural and functional complexity in organic matter turnover publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2001.00417.x – volume: 306 start-page: 89 year: 2017 ident: 10.1016/j.geoderma.2024.116830_b0190 article-title: Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow publication-title: Geoderma doi: 10.1016/j.geoderma.2017.07.004 – volume: 121 start-page: 147 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2024.116830_b0210 article-title: Effect of soil aggregation on the biodegradation of phenanthrene aged in soil publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(02)00181-1 – volume: 35 start-page: 441 issue: 3 year: 2017 ident: 10.1016/j.geoderma.2024.116830_b0085 article-title: Cementation of sand due to salt precipitation in drying process publication-title: Mar. Georesources Geotechnol. doi: 10.1080/1064119X.2016.1168498 – volume: 30 start-page: 187 issue: 2 year: 1994 ident: 10.1016/j.geoderma.2024.116830_b0110 article-title: Soil physical properties related to soil structure publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(94)90005-1 – volume: 175 start-page: 535 issue: 4 year: 2012 ident: 10.1016/j.geoderma.2024.116830_b0095 article-title: Flow and deformation behavior at the microscale of soils from several long-term potassium fertilization trials in Germany publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201100073 – volume: 47 start-page: 425 issue: 4 year: 1996 ident: 10.1016/j.geoderma.2024.116830_b0160 article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1996.tb01843.x – volume: 170 start-page: 173 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2024.116830_b0310 article-title: Soil-aggregate formation as influenced by clay content and organic-matter amendment publication-title: J. Plant Nutrit. Soil Sci. doi: 10.1002/jpln.200521732 – volume: 2 start-page: 32 issue: 2 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0015 article-title: In search of a binding agent: nano-scale evidence of preferential carbon associations with poorly-crystalline mineral phases in physically-stable, clay-sized aggregates publication-title: Soil Syst. doi: 10.3390/soilsystems2020032 – volume: 16 issue: 9 year: 2017 ident: 10.1016/j.geoderma.2024.116830_b0235 article-title: Sandy soil microaggregates: rethinking our understanding of hydraulic function publication-title: Vadose Zone J. doi: 10.2136/vzj2017.05.0090 – volume: 124 start-page: 3 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2024.116830_b0035 article-title: Soil structure and management: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 374 year: 2020 ident: 10.1016/j.geoderma.2024.116830_b0150 article-title: Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114421 – volume: 161 start-page: 182 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2024.116830_b0290 article-title: Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils publication-title: Geoderma doi: 10.1016/j.geoderma.2010.12.017 – volume: 13 start-page: 253 issue: 3 year: 1989 ident: 10.1016/j.geoderma.2024.116830_b0100 article-title: Dynamics of soil aggregation in an irrigated desert loess publication-title: Soil Tillage Res. doi: 10.1016/0167-1987(89)90002-0 – volume: 181 start-page: 104 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0285 article-title: Microaggregates in soils publication-title: J. Plant. Nutr. Soil Sci. doi: 10.1002/jpln.201600451 – volume: 39 start-page: 2183 issue: 9 year: 2007 ident: 10.1016/j.geoderma.2024.116830_b0300 article-title: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.03.007 – volume: 65 start-page: 1413 issue: 5 year: 2001 ident: 10.1016/j.geoderma.2024.116830_b0155 article-title: Nature of Clay-Humic Complexes in an Agricultural Soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.6551413x – volume: 39 start-page: 2758 issue: 11 year: 2007 ident: 10.1016/j.geoderma.2024.116830_b0240 article-title: Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.06.007 – volume: 182 start-page: 123 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0145 article-title: Microaggregate stability and storage of organic carbon is affected by clay content in arable Luvisols publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.05.003 – volume: 170 start-page: 29 year: 2019 ident: 10.1016/j.geoderma.2024.116830_b0055 article-title: Size and charge constraints in microaggregation: Model experiments with mineral particle size fractions publication-title: Applied Clay Science doi: 10.1016/j.clay.2019.01.002 – volume: 18 start-page: 1703 issue: 5 year: 2021 ident: 10.1016/j.geoderma.2024.116830_b0040 article-title: Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics publication-title: Biogeosciences doi: 10.5194/bg-18-1703-2021 – volume: 73 start-page: 2034 issue: 7 year: 2009 ident: 10.1016/j.geoderma.2024.116830_b0195 article-title: Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100kyr), Hawaiian Islands publication-title: Geochim. Cosmochim. Acta. doi: 10.1016/j.gca.2008.12.028 – volume: 263 year: 2021 ident: 10.1016/j.geoderma.2024.116830_b0090 article-title: Diverse effects of wetting and drying cycles on soil aggregation: Implications on pesticide leaching publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127910 – volume: 36 start-page: 1187 issue: 4 year: 2007 ident: 10.1016/j.geoderma.2024.116830_b0140 article-title: Hydrophobicity of soil colloids and heavy metal mobilization publication-title: J. Environ. Quality doi: 10.2134/jeq2006.0427 – volume: 55 start-page: 5815 issue: 9 year: 2021 ident: 10.1016/j.geoderma.2024.116830_b0170 article-title: Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07709 – volume: 69 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2024.116830_b0330 article-title: Modeling aggregate internal pressure evolution following immersion to quantify mechanisms of structural stability publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0001 – start-page: 1 year: 2015 ident: 10.1016/j.geoderma.2024.116830_b0135 article-title: Chapter one - mineral-organic associations: formation, properties, and relevance in soil environments doi: 10.1016/bs.agron.2014.10.005 – volume: 57 start-page: 426 issue: 4 year: 2006 ident: 10.1016/j.geoderma.2024.116830_b0175 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00809.x – volume: 28 start-page: 4589 issue: 15 year: 2022 ident: 10.1016/j.geoderma.2024.116830_b0335 article-title: Explicit spatial modeling at the pore scale unravels the interplay of soil organic carbon storage and structure dynamics publication-title: Glob. Change Biol. doi: 10.1111/gcb.16230 – volume: 374 start-page: 739 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2024.116830_b0005 article-title: Interplay between soil drying and root exudation in rhizosheath development publication-title: Plant and Soil doi: 10.1007/s11104-013-1910-y – volume: 137 start-page: 27 issue: 1–2 year: 2018 ident: 10.1016/j.geoderma.2024.116830_b0255 article-title: Calcium-mediated stabilisation of soil organic carbon publication-title: Biogeochemistry doi: 10.1007/s10533-017-0410-1 – volume: 64 start-page: 449 issue: 3 year: 2009 ident: 10.1016/j.geoderma.2024.116830_b0105 article-title: Soil structure formation and management effects on gas emission publication-title: Biologia doi: 10.2478/s11756-009-0089-4 – volume: 298 year: 2022 ident: 10.1016/j.geoderma.2024.116830_b0265 article-title: Improving mechanical behaviour of collapsible soils by grouting clay nanoparticles publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2022.106538 – volume: 70 start-page: 604 issue: 3 year: 2019 ident: 10.1016/j.geoderma.2024.116830_b0070 article-title: Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances publication-title: European Journal of Soil Science doi: 10.1111/ejss.12774 – volume: 30 start-page: 11 issue: 1 year: 1994 ident: 10.1016/j.geoderma.2024.116830_b0315 article-title: Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media publication-title: Water Resour. Res. doi: 10.1029/93WR02403 |
SSID | ssj0017020 |
Score | 2.4638512 |
Snippet | •In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids... In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the... In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116830 |
SubjectTerms | A horizons case studies centrifugation Elemental composition fallow Field flow fractionation fractionation Luvisols microaggregates organic carbon Size distribution of aggregates Soil microaggregation spectrometers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAoIBYKGiQuEbNw07i3hZEVSHgApV6s_ysUrUJSrKg_hL-LjNOstr2sheulu1YnrHnm3jmG8Y-eOtNiW5XIl2tE17oNKl5kSY8Nz6gjZUhUmx8-16eX_Avl-Jyp9QXxYRN9MDTxp3o4IzQ3hfC1LwOwVRS4inLjA7EvhW99VSmizM1vx9UiIJ28oGvURpUWiwyDeUc74myprjnHVMUGfvvWaQHd3M0OGdP2ZMZKcJ6WuEz9si3R-zx-qqf2TL8c_b3R9fcAImya9wAegDTxCwV0JQxNUDTAgI82GYoQhdgoDG3FIenr9DZpt9oseMfPyauvwN7R4Fyp7AGixYOIv8szQC6pzQr-Lr53aDCDkDpZz0sFVZGuN1G0rxgF2eff346T-ZKC4nlQo4Jl6F00tgilLUPVQjOmdQg9ElzmwlT6txhO3qzueF5EFlhtKzR93E8dehvVMVLdtB2rX_FQFuCIDzkzqZc59gzFMGLzOe8EsJXKyaWTVd2piGnahg3aok3u1aLsBQJS03CWrGT7bhfExHH3hEfSabb3kSkHRtQvdSsXmqfeq2YXDRCzZhkwho4VbN3Ae8XFVJ4aOklRre-2wyKUCwRz2fp6_-xyDfskD47hcYds4Ox3_i3iJVG8y4ei3_IfxaK priority: 102 providerName: Directory of Open Access Journals |
Title | Soil colloids as binding agents in the formation of soil microaggregates in wet-dry cycles: A case study for arable Luvisols under different management |
URI | https://dx.doi.org/10.1016/j.geoderma.2024.116830 https://www.proquest.com/docview/3242051410 https://doaj.org/article/afdb5aee35b848ffb7992191baf25040 |
Volume | 443 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELba7QUOiKcoj5WRuIbNw05ibktFtbx6gUq9WXZsr1K1SZVkQb3wN_i7zDhO1HLpgWMsz8jKjOdhz3wm5K2trM4h7YqEKVXEMhVHJcviiKXaOvCxwnmIjW8n-eaUfT7jZ3vkaOqFwbLKYPtHm-6tdRhZhb-5uqpr7PFN8gI9NBtRR_bJQZqJnC_IwfrTl83JfJlQxAGdMckjJLjRKHwOYsI3xzwEUcrAgOQlFkTf8FEeyv-Wq_rHaHtPdPyQPAghJF2Pq3xE9mzzmNxfb7sAo2GfkD_f2_qCoozb2vRU9VTXvn2FKmyl6mndUIj86Ny6SFtHe6S5xAI9tYUsHM_X_MRfdohMd02ra6yge0_XtALXRz0wLXKgqsP-K_p197MGTe4p9qV1dHp6ZaCXc4nNU3J6_PHH0SYKTzBEFeNiiJhwuRG6ylxeWlc4Z4yONcREcVolXOcqNTAOaW6qWep4kmklSkiKDIsNJCJF9owsmraxzwlVFcYmzKWmiplKYabLnOWJTVnBuS0OCZ9-uqwCPjk-k3Ehp0K0czkJS6Kw5CisQ7Ka6a5GhI47KT6gTOfZiLDtB9puK4OKSeWM5srajOuSlc7pQgiw7gksG1HfgImYNELeUlhgVd-5gDeTCknYzXhFoxrb7nqJ4S0i0ifxi__g_5Lcw6-xVO4VWQzdzr6G2GnQS7L_7neyDDtk6U8g_gL5zxyQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELZKOQAHxCrKOkhcw8tiZ-H2qKge8NoLrdSbZcf2U6o2qZI8UC_8Df4uM86ilksPXB3bsjLjWZJvvmHsgy2tTjHtCgqTq4AnKgxynoQBj7V16GML5yk2Do_S1Qn_dipOd9j-VAtDsMrR9g823VvrcWQxvs3FZVVRjW-UZuSh-cA6cofd5SLJCNf38feM84iycORmjNKApl8rEz5DIVHHMU9AFHM0H2lOcOhrHsoT-d9wVP-YbO-HDh6xh2MACcvhjI_Zjq2fsAfLTTuSaNin7M-PpjoHknBTmQ5UB7ryxSugqJCqg6oGjPtgLlyExkFHay4Inqc2mIPT1zU_8ZftA9NeQXlF-LlPsIQSHR94WlraAVRL1Vew3v6sUI87oKq0FqbGKz1czACbZ-zk4Mvx_ioYGzAEJRdFH_DCpabQZeLS3LrMOWN0qDEiCuMyEjpVscFxTHJjzWMnokSrIseUyPDQYBqSJc_Zbt3U9gUDVVJkwl1sypCrGGe6xFkR2ZhnQthsj4nppctyZCenJhnncoKhnclJWJKEJQdh7bHFvO5y4Oe4dcVnkuk8m_i1_UDTbuSoYFI5o4WyNhE657lzOisKtO0RHps433CTYtIIeUNdcavq1gO8n1RI4l2mHzSqts22kxTcEh99FL78j_3fsXur48O1XH89-v6K3acnA2juNdvt2619g1FUr9_6W_IXwokcZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+colloids+as+binding+agents+in+the+formation+of+soil+microaggregates+in+wet-dry+cycles%3A+A+case+study+for+arable+Luvisols+under+different+management&rft.jtitle=Geoderma&rft.au=Tang%2C+Ni&rft.au=Dultz%2C+Stefan&rft.au=Gerth%2C+Daniel&rft.au=Klumpp%2C+Erwin&rft.date=2024-03-01&rft.issn=0016-7061&rft.volume=443+p.116830-&rft_id=info:doi/10.1016%2Fj.geoderma.2024.116830&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |