Soil colloids as binding agents in the formation of soil microaggregates in wet-dry cycles: A case study for arable Luvisols under different management

•In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids favored the formation of 1–40 μm soil microaggregates.•In absence of <1 μm colloids, >40 μm soil micro- and macroaggregates were...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 443; p. 116830
Main Authors Tang, Ni, Dultz, Stefan, Gerth, Daniel, Klumpp, Erwin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0016-7061
1872-6259
DOI10.1016/j.geoderma.2024.116830

Cover

Abstract •In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids favored the formation of 1–40 μm soil microaggregates.•In absence of <1 μm colloids, >40 μm soil micro- and macroaggregates were preferentially formed.•The particle size is decisive for the aggregate formation under the current experimental condition. In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils.
AbstractList In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils.
In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils.
•In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids favored the formation of 1–40 μm soil microaggregates.•In absence of <1 μm colloids, >40 μm soil micro- and macroaggregates were preferentially formed.•The particle size is decisive for the aggregate formation under the current experimental condition. In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the micron scale. Below which, soil colloids (<1 µm) have recently been proposed as binding agents of (micro)aggregates. However, the way in which soil colloids contribute to the formation and stability of soil micro- and macroaggregates remains largely unknown. For clarification, we evaluated potential impacts of the colloidal content, particularly the <450 nm colloids, on the aggregation of small SMA. Free water stable small SMA and <450 nm colloids were isolated from Ap-horizons of Stagnic Luvisols under different management (cropped and bare fallow). The size-resolved elemental composition of the <450 nm colloids was analyzed by asymmetric flow field-flow fractionation in combination with an inductively coupled plasma mass spectrometer and an organic carbon detector. To vary the colloidal content in small SMA, (1) suspensions containing different amounts of <450 nm colloids were added in small SMA, or (2) <1 µm colloids were removed from small SMA by centrifugation. In the maximum colloidal addition treatment, the mass ratios of added colloids to small SMA were 3.0 and 5.1 wt% for the cropped and bare fallow soil samples, respectively. Aggregation of small SMA with different colloidal amounts was performed in three successive wet-dry cycles. Afterwards, the size distribution of the resulting aggregates was measured by laser diffraction. Our results indicated that, in wet-dry cycles, colloids were important binding agents for the formation of SMA. Their presence, especially those <450 nm, was likely to support the formation of solid bridges during drying at particle contacts of 1–10 µm small SMA, favoring hereby SMA build-up in a relatively small size range of 1–40 µm. In contrast, the absence of <1 μm colloids in small SMA led to a preferential generation of relatively large aggregates in wet-dry cycles, i.e., typically with sizes >40 μm up to 1700 μm in maximum. Our study on aggregation in wet-dry cycles revealed that the colloidal content has a controlling effect on the size distribution of resulting aggregates by acting as a binding agent and provides hereby new insights into the evolvement of aggregate hierarchy in soils.
ArticleNumber 116830
Author Klumpp, Erwin
Tang, Ni
Dultz, Stefan
Gerth, Daniel
Author_xml – sequence: 1
  givenname: Ni
  orcidid: 0000-0002-6726-2481
  surname: Tang
  fullname: Tang, Ni
  email: n.tang@fz-juelich.de
  organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
– sequence: 2
  givenname: Stefan
  surname: Dultz
  fullname: Dultz, Stefan
  organization: Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
– sequence: 3
  givenname: Daniel
  surname: Gerth
  fullname: Gerth, Daniel
  organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
– sequence: 4
  givenname: Erwin
  surname: Klumpp
  fullname: Klumpp, Erwin
  organization: Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
BookMark eNqFkc-OFCEQxjtmTZxdfQXD0UuPQDf9x3hws1F3k0k8qGdSQNEy6YYVmDXzJL6u9IzrwcuegMr3_Yqq77K68MFjVb1mdMso697utxMGg3GBLae83TLWDQ19Vm3Y0PO642K8qDa0KOueduxFdZnSvjx7yumm-v01uJnoMM_BmUQgEeW8cX4iMKHPiThP8g8kNhR-dsGTYElaPYvTMcA0RZwg40n4C3Nt4pHoo54xvSPXRENCkvLBHFcCgQhqRrI7PLgU5kQOvvybGGctxtKNLOBL26VcX1bPLcwJX_09r6rvnz5-u7mtd18-391c72rdijHX7Wg7Myrd2G5A21trjKKKC0a5ZkJ1wE2pN83AVcutYI2CcRg7alpqxCD65qq6O3NNgL28j26BeJQBnDwVQpwkxOzKPBKsUQIQG6GGdrBW9ePI2cgUWC5oSwvrzZl1H8PPA6YsF5c0zjN4DIckG95yKljLVml3lpYdphTR_mvNqFxTlXv5mKpcU5XnVIvx_X9G7fIpmBzBzU_bP5ztWHb64DDKpB16jcZF1LkM7Z5C_AFNkcdj
CitedBy_id crossref_primary_10_1016_j_enggeo_2024_107904
crossref_primary_10_3390_agronomy15020501
crossref_primary_10_1111_ejss_70056
crossref_primary_10_53360_2788_7995_2024_2_14__50
Cites_doi 10.1016/j.geoderma.2021.115103
10.1016/j.geoderma.2008.05.021
10.1016/j.soilbio.2021.108483
10.1016/j.geoderma.2018.07.027
10.1016/j.geoderma.2016.04.009
10.1016/j.geoderma.2017.11.009
10.1002/jpln.202300156
10.1002/jpln.202300020
10.5194/soil-6-597-2020
10.1111/j.1365-2389.2007.00964.x
10.1111/gcb.15220
10.1080/07352680490886842
10.2136/sssaj2003.1715
10.1016/j.geoderma.2018.01.015
10.1016/bs.agron.2018.04.003
10.1016/j.geoderma.2013.10.005
10.1016/j.orggeochem.2007.04.002
10.1016/j.geoderma.2014.07.017
10.1021/acs.est.2c01973
10.1002/jpln.202300149
10.1071/SR9910815
10.2134/jeq2015.02.0085
10.1039/C6JA00027D
10.1007/s11104-017-3430-7
10.1016/j.soilbio.2008.05.004
10.1007/s10533-007-9105-3
10.1016/S0038-0717(00)00179-6
10.1023/A:1020668013524
10.1016/j.geoderma.2015.01.022
10.1016/j.envpol.2018.09.019
10.1016/j.soilbio.2014.10.018
10.2136/sssaj2001.651184x
10.1073/pnas.1913855117
10.1016/j.scitotenv.2018.06.004
10.1046/j.1365-2389.2001.00417.x
10.1016/j.geoderma.2017.07.004
10.1016/S0269-7491(02)00181-1
10.1080/1064119X.2016.1168498
10.1016/0167-1987(94)90005-1
10.1002/jpln.201100073
10.1111/j.1365-2389.1996.tb01843.x
10.1002/jpln.200521732
10.3390/soilsystems2020032
10.2136/vzj2017.05.0090
10.1016/j.geoderma.2004.03.005
10.1016/j.geoderma.2020.114421
10.1016/j.geoderma.2010.12.017
10.1016/0167-1987(89)90002-0
10.1002/jpln.201600451
10.1016/j.soilbio.2007.03.007
10.2136/sssaj2001.6551413x
10.1016/j.soilbio.2007.06.007
10.1016/j.still.2018.05.003
10.1016/j.clay.2019.01.002
10.5194/bg-18-1703-2021
10.1016/j.gca.2008.12.028
10.1016/j.chemosphere.2020.127910
10.2134/jeq2006.0427
10.1021/acs.est.0c07709
10.2136/sssaj2005.0001
10.1016/bs.agron.2014.10.005
10.1111/j.1365-2389.2006.00809.x
10.1111/gcb.16230
10.1007/s11104-013-1910-y
10.1007/s10533-017-0410-1
10.2478/s11756-009-0089-4
10.1016/j.enggeo.2022.106538
10.1111/ejss.12774
10.1029/93WR02403
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.geoderma.2024.116830
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_afdb5aee35b848ffb7992191baf25040
10_1016_j_geoderma_2024_116830
S0016706124000594
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c459t-49f6d9bc3f68ef7ffddb0b25102c15b6a2d8ef3382b42f513ba98960d40d58573
IEDL.DBID AIKHN
ISSN 0016-7061
IngestDate Wed Aug 27 01:32:03 EDT 2025
Fri Sep 05 15:06:04 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Tue Jul 01 04:05:02 EDT 2025
Sat Mar 30 16:17:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Size distribution of aggregates
Field flow fractionation
Elemental composition
Soil microaggregation
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-49f6d9bc3f68ef7ffddb0b25102c15b6a2d8ef3382b42f513ba98960d40d58573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6726-2481
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706124000594
PQID 3242051410
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_afdb5aee35b848ffb7992191baf25040
proquest_miscellaneous_3242051410
crossref_primary_10_1016_j_geoderma_2024_116830
crossref_citationtrail_10_1016_j_geoderma_2024_116830
elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_116830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Jiang, Bol, Nischwitz, Siebers, Willbold, Vereecken, Amelung, Klumpp (b0120) 2015; 44
Virto, Barré, Chenu (b0295) 2008; 146
Asano, Wagai (b0010) 2014; 216
Chassé, Lutfalla, Cécillon, Baudin, Abiven, Chenu, Barré (b0040) 2021; 18
Jiang, Séquaris, Wacha, Bóta, Vereecken, Klumpp (b0125) 2014; 235–236
Nam, Kim, Oh (b0210) 2003; 121
Majzik, Tombácz (b0185) 2007; 38
Paradiś, Brueck, Meisenheimer, Wanzek, Dragila (b0235) 2017; 16
Bai, Wang, Hall, Wang, Ye, Li, Li, Zhou, Qiu, Guo, Guo, Wang, Hu (b0020) 2020; 26
Mikutta, Schaumann, Gildemeister, Bonneville, Kramer, Chorover, Chadwick, Guggenberger (b0195) 2009; 73
Holthusen, Peth, Horn, Kühn (b0095) 2012; 175
Guhra, Stolze, Totsche (b0075) 2022; 164
Lehmann, Kinyangi, Solomon (b0165) 2007; 85
Seiphoori, Ma, Arratia, Jerolmack (b0260) 2020; 117
Zech, Schweizer, Bucka, Ray, Kögel-Knabner, Prechtel (b0335) 2022; 28
Albalasmeh, Ghezzehei (b0005) 2014; 374
Li, Zhang, Klumpp, Bol, Nischwitz, Ge, Liang (b0170) 2021; 55
Horn, Dexter (b0100) 1989; 13
Zhang, Liu (b0345) 2018; 642
Hochman, Dor, Mishael (b0090) 2021; 263
Wang, Xue, Zhang, Li, Liu, Pan, Chen, Liu (b0320) 2018; 243
Paradelo, van Oort, Barré, Billiou, Chenu (b0230) 2016; 275
Schweizer, Aehnelt, Bucka, Totsche, Kögel-Knabner (bib346) 2024; 187
Dultz, Woche, Mikutta, Schrapel, Guggenberger (b0055) 2019; 170
Horn, Peth (b0105) 2009; 64
Park, Sul, Smucker (b0240) 2007; 39
Lützow, Kögel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner, Flessa (b0175) 2006; 57
Totsche, Amelung, Gerzabek, Guggenberger, Klumpp, Knief, Lehndorff, Mikutta, Peth, Prechtel, Ray, Kögel-Knabner (b0285) 2018; 181
Verchot, Dutaur, Shepherd, Albrecht (b0290) 2011; 161
Oades, Waters (b0225) 1991; 29
Six, Elliott, Paustian (b0275) 2000; 32
Rowley, Grand, Verrecchia (b0255) 2018; 137
Christensen (b0045) 2001; 52
Missong, Bol, Nischwitz, Krüger, Lang, Siemens, Klumpp (b0200) 2018; 427
Horn, Taubner, Wuttke, Baumgartl (b0110) 1994; 30
Xiang, Doyle, Holden, Schimel (b0325) 2008; 40
Nischwitz, Gottselig, Missong, Meyn, Klumpp (b0220) 2016; 31
Seiphoori, Zamanian (b0265) 2022; 298
He, Chu (b0085) 2017; 35
Kleber, Eusterhues, Keiluweit, Mikutta, Mikutta, Nico (b0135) 2015
Hallett, Baumgartl, Young (b0080) 2001; 65
Majdalani, Michel, Di-Pietro, Angulo-Jaramillo (b0180) 2008; 59
Kaiser, Kleber, Berhe (b0130) 2015; 80
Wagner, Cattle, Scholten (b0310) 2007; 170
Krause, Klumpp, Nofz, Missong, Amelung, Siebers (b0150) 2020; 374
Laird, Martens, Kingery (b0155) 2001; 65
Le Bissonnais (b0160) 1996; 47
Tang, Siebers, Leinweber, Eckhardt, Dultz, Nischwitz, Klumpp (b0280) 2022; 56
Bieganowski, Ryżak, Sochan, Barna, Hernádi, Beczek, Polakowski, Makó (b0025) 2018
Klitzke, Lang (b0140) 2007; 36
Gonzalez, Laird (b0060) 2003; 67
Zaher, Caron, Ouaki (b0330) 2005; 69
Wagai, Kajiura, Asano (b0305) 2020; 6
Asano, Wagai, Yamaguchi, Takeichi, Maeda, Suga, Takahashi (b0015) 2018; 2
von Lützow, Kögel-Knabner, Ekschmitt, Flessa, Guggenberger, Matzner, Marschner (b0300) 2007; 39
Nguyen, Dultz, Meharg, Pham, Hoang, Dam, Nguyen, Nguyen, Nguyen, Nguyen (b0215) 2019; 333
Guhra, Ritschel, Totsche (b0070) 2019; 70
Mitchell, Soga (b0205) 2005
Siebers, Voggenreiter, Joshi, Rethemeyer, Wang (b0270) 2024; 187
Bronick, Lal (b0035) 2005; 124
Krause, Rodionov, Schweizer, Siebers, Lehndorff, Klumpp, Amelung (b0145) 2018; 182
Denef, Six, Merckx, Paustian (b0050) 2002; 246
Wan, Wilson (b0315) 1994; 30
Amelung, Tang, Siebers, Aehnelt, Eusterhues, Felde, Guggenberger, Kaiser, Kögel-Knabner, Klumpp, Knief, Kruse, Lehndorff, Mikutta, Peth, Ray, Prechtel, Ritschel, Schweizer, Woche, Wu, Totsche (bib347) 2024; 187
Meyer, Bornemann, Welp, Schiedung, Herbst, Amelung (b0190) 2017; 306
Gu, Gruau, Malique, Dupas, Petitjean, Gascuel-Odoux (b0065) 2018; 321
(b0115) 2007
Blanco-Canqui, Lal (b0030) 2004; 23
Rabot, Wiesmeier, Schlüter, Vogel (b0245) 2018; 314
Regelink, Stoof, Rousseva, Weng, Lair, Kram, Nikolaidis, Kercheva, Banwart, Comans (b0250) 2015; 247–248
Zhang, Bol, Amelung, Missong, Siemens, Mulder, Willbold, Müller, Westphal Muniz, Klumpp (b0340) 2021; 397
Hochman (10.1016/j.geoderma.2024.116830_b0090) 2021; 263
Laird (10.1016/j.geoderma.2024.116830_b0155) 2001; 65
Kleber (10.1016/j.geoderma.2024.116830_b0135) 2015
Wan (10.1016/j.geoderma.2024.116830_b0315) 1994; 30
Chassé (10.1016/j.geoderma.2024.116830_b0040) 2021; 18
Schweizer (10.1016/j.geoderma.2024.116830_bib346) 2024; 187
Siebers (10.1016/j.geoderma.2024.116830_b0270) 2024; 187
Christensen (10.1016/j.geoderma.2024.116830_b0045) 2001; 52
Klitzke (10.1016/j.geoderma.2024.116830_b0140) 2007; 36
Zech (10.1016/j.geoderma.2024.116830_b0335) 2022; 28
Blanco-Canqui (10.1016/j.geoderma.2024.116830_b0030) 2004; 23
Zhang (10.1016/j.geoderma.2024.116830_b0340) 2021; 397
Tang (10.1016/j.geoderma.2024.116830_b0280) 2022; 56
Holthusen (10.1016/j.geoderma.2024.116830_b0095) 2012; 175
von Lützow (10.1016/j.geoderma.2024.116830_b0300) 2007; 39
Seiphoori (10.1016/j.geoderma.2024.116830_b0265) 2022; 298
He (10.1016/j.geoderma.2024.116830_b0085) 2017; 35
Mikutta (10.1016/j.geoderma.2024.116830_b0195) 2009; 73
Lehmann (10.1016/j.geoderma.2024.116830_b0165) 2007; 85
Bieganowski (10.1016/j.geoderma.2024.116830_b0025) 2018
Majzik (10.1016/j.geoderma.2024.116830_b0185) 2007; 38
Guhra (10.1016/j.geoderma.2024.116830_b0070) 2019; 70
Krause (10.1016/j.geoderma.2024.116830_b0150) 2020; 374
Kaiser (10.1016/j.geoderma.2024.116830_b0130) 2015; 80
Nischwitz (10.1016/j.geoderma.2024.116830_b0220) 2016; 31
Virto (10.1016/j.geoderma.2024.116830_b0295) 2008; 146
Denef (10.1016/j.geoderma.2024.116830_b0050) 2002; 246
Paradelo (10.1016/j.geoderma.2024.116830_b0230) 2016; 275
Regelink (10.1016/j.geoderma.2024.116830_b0250) 2015; 247–248
Asano (10.1016/j.geoderma.2024.116830_b0010) 2014; 216
(10.1016/j.geoderma.2024.116830_b0115) 2007
Gu (10.1016/j.geoderma.2024.116830_b0065) 2018; 321
Hallett (10.1016/j.geoderma.2024.116830_b0080) 2001; 65
Horn (10.1016/j.geoderma.2024.116830_b0100) 1989; 13
Rowley (10.1016/j.geoderma.2024.116830_b0255) 2018; 137
Nam (10.1016/j.geoderma.2024.116830_b0210) 2003; 121
Wang (10.1016/j.geoderma.2024.116830_b0320) 2018; 243
Meyer (10.1016/j.geoderma.2024.116830_b0190) 2017; 306
Verchot (10.1016/j.geoderma.2024.116830_b0290) 2011; 161
Bronick (10.1016/j.geoderma.2024.116830_b0035) 2005; 124
Li (10.1016/j.geoderma.2024.116830_b0170) 2021; 55
Oades (10.1016/j.geoderma.2024.116830_b0225) 1991; 29
Gonzalez (10.1016/j.geoderma.2024.116830_b0060) 2003; 67
Totsche (10.1016/j.geoderma.2024.116830_b0285) 2018; 181
Jiang (10.1016/j.geoderma.2024.116830_b0125) 2014; 235–236
Majdalani (10.1016/j.geoderma.2024.116830_b0180) 2008; 59
Six (10.1016/j.geoderma.2024.116830_b0275) 2000; 32
Horn (10.1016/j.geoderma.2024.116830_b0110) 1994; 30
Rabot (10.1016/j.geoderma.2024.116830_b0245) 2018; 314
Xiang (10.1016/j.geoderma.2024.116830_b0325) 2008; 40
Mitchell (10.1016/j.geoderma.2024.116830_b0205) 2005
Wagai (10.1016/j.geoderma.2024.116830_b0305) 2020; 6
Wagner (10.1016/j.geoderma.2024.116830_b0310) 2007; 170
Missong (10.1016/j.geoderma.2024.116830_b0200) 2018; 427
Albalasmeh (10.1016/j.geoderma.2024.116830_b0005) 2014; 374
Nguyen (10.1016/j.geoderma.2024.116830_b0215) 2019; 333
Asano (10.1016/j.geoderma.2024.116830_b0015) 2018; 2
Bai (10.1016/j.geoderma.2024.116830_b0020) 2020; 26
Krause (10.1016/j.geoderma.2024.116830_b0145) 2018; 182
Lützow (10.1016/j.geoderma.2024.116830_b0175) 2006; 57
Le Bissonnais (10.1016/j.geoderma.2024.116830_b0160) 1996; 47
Paradiś (10.1016/j.geoderma.2024.116830_b0235) 2017; 16
Park (10.1016/j.geoderma.2024.116830_b0240) 2007; 39
Horn (10.1016/j.geoderma.2024.116830_b0105) 2009; 64
Guhra (10.1016/j.geoderma.2024.116830_b0075) 2022; 164
Seiphoori (10.1016/j.geoderma.2024.116830_b0260) 2020; 117
Amelung (10.1016/j.geoderma.2024.116830_bib347) 2024; 187
Dultz (10.1016/j.geoderma.2024.116830_b0055) 2019; 170
Zaher (10.1016/j.geoderma.2024.116830_b0330) 2005; 69
Jiang (10.1016/j.geoderma.2024.116830_b0120) 2015; 44
Zhang (10.1016/j.geoderma.2024.116830_b0345) 2018; 642
References_xml – volume: 306
  start-page: 89
  year: 2017
  end-page: 98
  ident: b0190
  article-title: Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow
  publication-title: Geoderma
– volume: 247–248
  start-page: 24
  year: 2015
  end-page: 37
  ident: b0250
  article-title: Linkages between aggregate formation, porosity and soil chemical properties
  publication-title: Geoderma
– volume: 187
  start-page: 17
  year: 2024
  end-page: 50
  ident: bib347
  article-title: Architecture of soil microaggregates: Advanced methodologies to explore properties and functions
  publication-title: J. Plant Nutrit. Soil Sci.
– volume: 26
  start-page: 5320
  year: 2020
  end-page: 5332
  ident: b0020
  article-title: Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland
  publication-title: Glob. Change Biol.
– volume: 70
  start-page: 604
  year: 2019
  end-page: 615
  ident: b0070
  article-title: Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances
  publication-title: European Journal of Soil Science
– volume: 161
  start-page: 182
  year: 2011
  end-page: 193
  ident: b0290
  article-title: Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils
  publication-title: Geoderma
– volume: 170
  start-page: 173
  year: 2007
  end-page: 180
  ident: b0310
  article-title: Soil-aggregate formation as influenced by clay content and organic-matter amendment
  publication-title: J. Plant Nutrit. Soil Sci.
– volume: 32
  start-page: 2099
  year: 2000
  end-page: 2103
  ident: b0275
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
– volume: 263
  year: 2021
  ident: b0090
  article-title: Diverse effects of wetting and drying cycles on soil aggregation: Implications on pesticide leaching
  publication-title: Chemosphere
– volume: 187
  start-page: 77
  year: 2024
  end-page: 88
  ident: b0270
  article-title: Synergistic relationships between the age of soil organic matter, Fe speciation, and aggregate stability in an arable Luvisol
  publication-title: J. Plant Nutrit. Soil Sci.
– volume: 69
  start-page: 1
  year: 2005
  end-page: 12
  ident: b0330
  article-title: Modeling aggregate internal pressure evolution following immersion to quantify mechanisms of structural stability
  publication-title: Soil Sci. Soc. Am. J.
– volume: 124
  start-page: 3
  year: 2005
  end-page: 22
  ident: b0035
  article-title: Soil structure and management: a review
  publication-title: Geoderma
– volume: 235–236
  start-page: 260
  year: 2014
  end-page: 270
  ident: b0125
  article-title: Effect of metal oxide on surface area and pore size of water-dispersible colloids from three German silt loam topsoils
  publication-title: Geoderma
– volume: 427
  start-page: 71
  year: 2018
  end-page: 86
  ident: b0200
  article-title: Phosphorus in water dispersible-colloids of forest soil profiles
  publication-title: Plant Soil
– volume: 314
  start-page: 122
  year: 2018
  end-page: 137
  ident: b0245
  article-title: Soil structure as an indicator of soil functions: A review
  publication-title: Geoderma
– volume: 137
  start-page: 27
  year: 2018
  end-page: 49
  ident: b0255
  article-title: Calcium-mediated stabilisation of soil organic carbon
  publication-title: Biogeochemistry
– volume: 246
  start-page: 185
  year: 2002
  end-page: 200
  ident: b0050
  article-title: Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy
  publication-title: Plant Soil
– volume: 6
  start-page: 597
  year: 2020
  end-page: 627
  ident: b0305
  article-title: Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
  publication-title: Soil
– volume: 30
  start-page: 11
  year: 1994
  end-page: 23
  ident: b0315
  article-title: Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media
  publication-title: Water Resour. Res.
– volume: 642
  start-page: 12
  year: 2018
  end-page: 20
  ident: b0345
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
– volume: 117
  start-page: 3375
  year: 2020
  end-page: 3381
  ident: b0260
  article-title: Formation of stable aggregates by fluid-assembled solid bridges
  publication-title: Proc. Natl. Acad. Sci. u.s.a.
– volume: 28
  start-page: 4589
  year: 2022
  end-page: 4604
  ident: b0335
  article-title: Explicit spatial modeling at the pore scale unravels the interplay of soil organic carbon storage and structure dynamics
  publication-title: Glob. Change Biol.
– volume: 18
  start-page: 1703
  year: 2021
  end-page: 1718
  ident: b0040
  article-title: Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
  publication-title: Biogeosciences
– volume: 59
  start-page: 147
  year: 2008
  end-page: 155
  ident: b0180
  article-title: Effects of wetting and drying cycles on in situ soil particle mobilization
  publication-title: Eur. J. Soil Sci.
– volume: 275
  start-page: 48
  year: 2016
  end-page: 54
  ident: b0230
  article-title: Soil organic matter stabilization at the pluri-decadal scale: Insight from bare fallow soils with contrasting physicochemical properties and macrostructures
  publication-title: Geoderma
– volume: 374
  year: 2020
  ident: b0150
  article-title: Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols
  publication-title: Geoderma
– volume: 39
  start-page: 2183
  year: 2007
  end-page: 2207
  ident: b0300
  article-title: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms
  publication-title: Soil Biol. Biochem.
– volume: 67
  start-page: 1715
  year: 2003
  end-page: 1720
  ident: b0060
  article-title: Carbon Sequestration in Clay Mineral Fractions from 14C-Labeled Plant Residues
  publication-title: Soil Science Society of America Journal
– volume: 47
  start-page: 425
  year: 1996
  end-page: 437
  ident: b0160
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology
  publication-title: Eur. J. Soil Sci.
– volume: 65
  start-page: 1413
  year: 2001
  end-page: 1418
  ident: b0155
  article-title: Nature of Clay-Humic Complexes in an Agricultural Soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 164
  year: 2022
  ident: b0075
  article-title: Pathways of biogenically excreted organic matter into soil aggregates
  publication-title: Soil Biol. Biochem.
– volume: 36
  start-page: 1187
  year: 2007
  end-page: 1193
  ident: b0140
  article-title: Hydrophobicity of soil colloids and heavy metal mobilization
  publication-title: J. Environ. Quality
– volume: 29
  start-page: 815
  year: 1991
  end-page: 828
  ident: b0225
  article-title: Aggregate hierarchy in soils
  publication-title: Soil Res.
– start-page: 1
  year: 2015
  end-page: 140
  ident: b0135
  article-title: Chapter one - mineral-organic associations: formation, properties, and relevance in soil environments
  publication-title: Adv. Agron
– volume: 35
  start-page: 441
  year: 2017
  end-page: 445
  ident: b0085
  article-title: Cementation of sand due to salt precipitation in drying process
  publication-title: Mar. Georesources Geotechnol.
– volume: 64
  start-page: 449
  year: 2009
  end-page: 453
  ident: b0105
  article-title: Soil structure formation and management effects on gas emission
  publication-title: Biologia
– volume: 40
  start-page: 2281
  year: 2008
  end-page: 2289
  ident: b0325
  article-title: Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils
  publication-title: Soil Biol. Biochem.
– volume: 146
  start-page: 326
  year: 2008
  end-page: 335
  ident: b0295
  article-title: Microaggregation and organic matter storage at the silt-size scale
  publication-title: Geoderma
– volume: 374
  start-page: 739
  year: 2014
  end-page: 751
  ident: b0005
  article-title: Interplay between soil drying and root exudation in rhizosheath development
  publication-title: Plant and Soil
– volume: 321
  start-page: 32
  year: 2018
  end-page: 41
  ident: b0065
  article-title: Drying/rewetting cycles stimulate release of colloidal-bound phosphorus in riparian soils
  publication-title: Geoderma
– volume: 30
  start-page: 187
  year: 1994
  end-page: 216
  ident: b0110
  article-title: Soil physical properties related to soil structure
  publication-title: Soil Tillage Res.
– volume: 39
  start-page: 2758
  year: 2007
  end-page: 2768
  ident: b0240
  article-title: Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability
  publication-title: Soil Biol. Biochem.
– volume: 181
  start-page: 104
  year: 2018
  end-page: 136
  ident: b0285
  article-title: Microaggregates in soils
  publication-title: J. Plant. Nutr. Soil Sci.
– year: 2007
  ident: b0115
  publication-title: World Reference Base for Soil Resources 2006, first update 2007
– volume: 2
  start-page: 32
  year: 2018
  ident: b0015
  article-title: In search of a binding agent: nano-scale evidence of preferential carbon associations with poorly-crystalline mineral phases in physically-stable, clay-sized aggregates
  publication-title: Soil Syst.
– volume: 80
  start-page: 324
  year: 2015
  end-page: 340
  ident: b0130
  article-title: How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference
  publication-title: Soil Biol. Biochem.
– volume: 44
  start-page: 1772
  year: 2015
  end-page: 1781
  ident: b0120
  article-title: Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil
  publication-title: J. Environ. Qual.
– volume: 57
  start-page: 426
  year: 2006
  end-page: 445
  ident: b0175
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review
  publication-title: Eur. J. Soil Sci.
– volume: 38
  start-page: 1330
  year: 2007
  end-page: 1340
  ident: b0185
  article-title: Interaction between humic acid and montmorillonite in the presence of calcium ions II. Colloidal interactions: Charge state, dispersing and/or aggregation of particles in suspension
  publication-title: Org. Geochem.
– volume: 175
  start-page: 535
  year: 2012
  end-page: 547
  ident: b0095
  article-title: Flow and deformation behavior at the microscale of soils from several long-term potassium fertilization trials in Germany
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 13
  start-page: 253
  year: 1989
  end-page: 266
  ident: b0100
  article-title: Dynamics of soil aggregation in an irrigated desert loess
  publication-title: Soil Tillage Res.
– volume: 397
  year: 2021
  ident: b0340
  article-title: Water dispersible colloids and related nutrient availability in Amazonian Terra Preta soils
  publication-title: Geoderma
– volume: 52
  start-page: 345
  year: 2001
  end-page: 353
  ident: b0045
  article-title: Physical fractionation of soil and structural and functional complexity in organic matter turnover
  publication-title: Eur. J. Soil Sci.
– volume: 333
  start-page: 200
  year: 2019
  end-page: 213
  ident: b0215
  article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties
  publication-title: Geoderma
– start-page: 215
  year: 2018
  end-page: 279
  ident: b0025
  article-title: Chapter Five - laser diffractometry in the measurements of soil and sediment particle size distribution
  publication-title: Adv. Agron
– volume: 55
  start-page: 5815
  year: 2021
  end-page: 5825
  ident: b0170
  article-title: Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles
  publication-title: Environ. Sci. Technol.
– volume: 243
  start-page: 734
  year: 2018
  end-page: 742
  ident: b0320
  article-title: Soil aggregate-associated distribution of DDTs and HCHs in farmland and bareland soils in the Danjiangkou Reservoir Area of China
  publication-title: Environ. Pollut.
– volume: 56
  start-page: 14133
  year: 2022
  end-page: 14145
  ident: b0280
  article-title: Implications of Free and Occluded Fine Colloids for Organic Matter Preservation in Arable Soils
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 184
  year: 2001
  end-page: 190
  ident: b0080
  article-title: Subcritical Water Repellency of Aggregates from a Range of Soil Management Practices
  publication-title: Soil Science Society of America Journal
– volume: 121
  start-page: 147
  year: 2003
  end-page: 151
  ident: b0210
  article-title: Effect of soil aggregation on the biodegradation of phenanthrene aged in soil
  publication-title: Environ. Pollut.
– volume: 85
  start-page: 45
  year: 2007
  end-page: 57
  ident: b0165
  article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms
  publication-title: Biogeochemistry
– volume: 298
  year: 2022
  ident: b0265
  article-title: Improving mechanical behaviour of collapsible soils by grouting clay nanoparticles
  publication-title: Eng. Geol.
– volume: 23
  start-page: 481
  year: 2004
  end-page: 504
  ident: b0030
  article-title: Mechanisms of Carbon Sequestration in Soil Aggregates
  publication-title: Crit. Rev. Plant Sci.
– volume: 182
  start-page: 123
  year: 2018
  end-page: 129
  ident: b0145
  article-title: Microaggregate stability and storage of organic carbon is affected by clay content in arable Luvisols
  publication-title: Soil Tillage Res.
– volume: 216
  start-page: 62
  year: 2014
  end-page: 74
  ident: b0010
  article-title: Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol
  publication-title: Geoderma
– volume: 16
  year: 2017
  ident: b0235
  article-title: Sandy soil microaggregates: rethinking our understanding of hydraulic function
  publication-title: Vadose Zone J.
– volume: 170
  start-page: 29
  year: 2019
  end-page: 40
  ident: b0055
  article-title: Size and charge constraints in microaggregation: Model experiments with mineral particle size fractions
  publication-title: Applied Clay Science
– volume: 187
  start-page: 118
  year: 2024
  end-page: 129
  ident: bib346
  article-title: Impact of bare fallow management on soil carbon storage and aggregates across a rock fragment gradient
  publication-title: J. Plant Nutrit. Soil Sci.
– volume: 73
  start-page: 2034
  year: 2009
  end-page: 2060
  ident: b0195
  article-title: Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100kyr), Hawaiian Islands
  publication-title: Geochim. Cosmochim. Acta.
– volume: 31
  start-page: 1858
  year: 2016
  end-page: 1868
  ident: b0220
  article-title: Field flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts
  publication-title: J. Anal. At. Spectrom
– year: 2005
  ident: b0205
  article-title: Fundamentals of soil behavior
– volume: 397
  year: 2021
  ident: 10.1016/j.geoderma.2024.116830_b0340
  article-title: Water dispersible colloids and related nutrient availability in Amazonian Terra Preta soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115103
– volume: 146
  start-page: 326
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2024.116830_b0295
  article-title: Microaggregation and organic matter storage at the silt-size scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2008.05.021
– volume: 164
  year: 2022
  ident: 10.1016/j.geoderma.2024.116830_b0075
  article-title: Pathways of biogenically excreted organic matter into soil aggregates
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108483
– volume: 333
  start-page: 200
  year: 2019
  ident: 10.1016/j.geoderma.2024.116830_b0215
  article-title: Phytolith content in Vietnamese paddy soils in relation to soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.07.027
– volume: 275
  start-page: 48
  year: 2016
  ident: 10.1016/j.geoderma.2024.116830_b0230
  article-title: Soil organic matter stabilization at the pluri-decadal scale: Insight from bare fallow soils with contrasting physicochemical properties and macrostructures
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.04.009
– volume: 314
  start-page: 122
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0245
  article-title: Soil structure as an indicator of soil functions: A review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.009
– volume: 187
  start-page: 118
  issue: 1
  year: 2024
  ident: 10.1016/j.geoderma.2024.116830_bib346
  article-title: Impact of bare fallow management on soil carbon storage and aggregates across a rock fragment gradient
  publication-title: J. Plant Nutrit. Soil Sci.
  doi: 10.1002/jpln.202300156
– volume: 187
  start-page: 77
  issue: 1
  year: 2024
  ident: 10.1016/j.geoderma.2024.116830_b0270
  article-title: Synergistic relationships between the age of soil organic matter, Fe speciation, and aggregate stability in an arable Luvisol
  publication-title: J. Plant Nutrit. Soil Sci.
  doi: 10.1002/jpln.202300020
– volume: 6
  start-page: 597
  issue: 2
  year: 2020
  ident: 10.1016/j.geoderma.2024.116830_b0305
  article-title: Iron and aluminum association with microbially processed organic matter via meso-density aggregate formation across soils: organo-metallic glue hypothesis
  publication-title: Soil
  doi: 10.5194/soil-6-597-2020
– volume: 59
  start-page: 147
  issue: 2
  year: 2008
  ident: 10.1016/j.geoderma.2024.116830_b0180
  article-title: Effects of wetting and drying cycles on in situ soil particle mobilization
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2007.00964.x
– volume: 26
  start-page: 5320
  issue: 9
  year: 2020
  ident: 10.1016/j.geoderma.2024.116830_b0020
  article-title: Interactive global change factors mitigate soil aggregation and carbon change in a semi-arid grassland
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15220
– volume: 23
  start-page: 481
  issue: 6
  year: 2004
  ident: 10.1016/j.geoderma.2024.116830_b0030
  article-title: Mechanisms of Carbon Sequestration in Soil Aggregates
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680490886842
– volume: 67
  start-page: 1715
  issue: 6
  year: 2003
  ident: 10.1016/j.geoderma.2024.116830_b0060
  article-title: Carbon Sequestration in Clay Mineral Fractions from 14C-Labeled Plant Residues
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2003.1715
– volume: 321
  start-page: 32
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0065
  article-title: Drying/rewetting cycles stimulate release of colloidal-bound phosphorus in riparian soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.01.015
– start-page: 215
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0025
  article-title: Chapter Five - laser diffractometry in the measurements of soil and sediment particle size distribution
  doi: 10.1016/bs.agron.2018.04.003
– volume: 216
  start-page: 62
  year: 2014
  ident: 10.1016/j.geoderma.2024.116830_b0010
  article-title: Evidence of aggregate hierarchy at micro- to submicron scales in an allophanic Andisol
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.10.005
– volume: 38
  start-page: 1330
  issue: 8
  year: 2007
  ident: 10.1016/j.geoderma.2024.116830_b0185
  article-title: Interaction between humic acid and montmorillonite in the presence of calcium ions II. Colloidal interactions: Charge state, dispersing and/or aggregation of particles in suspension
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2007.04.002
– volume: 235–236
  start-page: 260
  year: 2014
  ident: 10.1016/j.geoderma.2024.116830_b0125
  article-title: Effect of metal oxide on surface area and pore size of water-dispersible colloids from three German silt loam topsoils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.017
– volume: 56
  start-page: 14133
  issue: 19
  year: 2022
  ident: 10.1016/j.geoderma.2024.116830_b0280
  article-title: Implications of Free and Occluded Fine Colloids for Organic Matter Preservation in Arable Soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01973
– year: 2007
  ident: 10.1016/j.geoderma.2024.116830_b0115
– volume: 187
  start-page: 17
  issue: 1
  year: 2024
  ident: 10.1016/j.geoderma.2024.116830_bib347
  article-title: Architecture of soil microaggregates: Advanced methodologies to explore properties and functions
  publication-title: J. Plant Nutrit. Soil Sci.
  doi: 10.1002/jpln.202300149
– volume: 29
  start-page: 815
  issue: 6
  year: 1991
  ident: 10.1016/j.geoderma.2024.116830_b0225
  article-title: Aggregate hierarchy in soils
  publication-title: Soil Res.
  doi: 10.1071/SR9910815
– volume: 44
  start-page: 1772
  issue: 6
  year: 2015
  ident: 10.1016/j.geoderma.2024.116830_b0120
  article-title: Phosphorus Containing Water Dispersible Nanoparticles in Arable Soil
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2015.02.0085
– volume: 31
  start-page: 1858
  issue: 9
  year: 2016
  ident: 10.1016/j.geoderma.2024.116830_b0220
  article-title: Field flow fractionation online with ICP-MS as novel approach for the quantification of fine particulate carbon in stream water samples and soil extracts
  publication-title: J. Anal. At. Spectrom
  doi: 10.1039/C6JA00027D
– volume: 427
  start-page: 71
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0200
  article-title: Phosphorus in water dispersible-colloids of forest soil profiles
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3430-7
– volume: 40
  start-page: 2281
  issue: 9
  year: 2008
  ident: 10.1016/j.geoderma.2024.116830_b0325
  article-title: Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.05.004
– volume: 85
  start-page: 45
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2024.116830_b0165
  article-title: Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9105-3
– volume: 32
  start-page: 2099
  issue: 14
  year: 2000
  ident: 10.1016/j.geoderma.2024.116830_b0275
  article-title: Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00179-6
– volume: 246
  start-page: 185
  issue: 2
  year: 2002
  ident: 10.1016/j.geoderma.2024.116830_b0050
  article-title: Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy
  publication-title: Plant Soil
  doi: 10.1023/A:1020668013524
– volume: 247–248
  start-page: 24
  year: 2015
  ident: 10.1016/j.geoderma.2024.116830_b0250
  article-title: Linkages between aggregate formation, porosity and soil chemical properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.01.022
– volume: 243
  start-page: 734
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0320
  article-title: Soil aggregate-associated distribution of DDTs and HCHs in farmland and bareland soils in the Danjiangkou Reservoir Area of China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.09.019
– volume: 80
  start-page: 324
  year: 2015
  ident: 10.1016/j.geoderma.2024.116830_b0130
  article-title: How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.10.018
– volume: 65
  start-page: 184
  issue: 1
  year: 2001
  ident: 10.1016/j.geoderma.2024.116830_b0080
  article-title: Subcritical Water Repellency of Aggregates from a Range of Soil Management Practices
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2001.651184x
– volume: 117
  start-page: 3375
  issue: 7
  year: 2020
  ident: 10.1016/j.geoderma.2024.116830_b0260
  article-title: Formation of stable aggregates by fluid-assembled solid bridges
  publication-title: Proc. Natl. Acad. Sci. u.s.a.
  doi: 10.1073/pnas.1913855117
– year: 2005
  ident: 10.1016/j.geoderma.2024.116830_b0205
– volume: 642
  start-page: 12
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0345
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.004
– volume: 52
  start-page: 345
  issue: 3
  year: 2001
  ident: 10.1016/j.geoderma.2024.116830_b0045
  article-title: Physical fractionation of soil and structural and functional complexity in organic matter turnover
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2001.00417.x
– volume: 306
  start-page: 89
  year: 2017
  ident: 10.1016/j.geoderma.2024.116830_b0190
  article-title: Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.07.004
– volume: 121
  start-page: 147
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2024.116830_b0210
  article-title: Effect of soil aggregation on the biodegradation of phenanthrene aged in soil
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(02)00181-1
– volume: 35
  start-page: 441
  issue: 3
  year: 2017
  ident: 10.1016/j.geoderma.2024.116830_b0085
  article-title: Cementation of sand due to salt precipitation in drying process
  publication-title: Mar. Georesources Geotechnol.
  doi: 10.1080/1064119X.2016.1168498
– volume: 30
  start-page: 187
  issue: 2
  year: 1994
  ident: 10.1016/j.geoderma.2024.116830_b0110
  article-title: Soil physical properties related to soil structure
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(94)90005-1
– volume: 175
  start-page: 535
  issue: 4
  year: 2012
  ident: 10.1016/j.geoderma.2024.116830_b0095
  article-title: Flow and deformation behavior at the microscale of soils from several long-term potassium fertilization trials in Germany
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201100073
– volume: 47
  start-page: 425
  issue: 4
  year: 1996
  ident: 10.1016/j.geoderma.2024.116830_b0160
  article-title: Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1996.tb01843.x
– volume: 170
  start-page: 173
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2024.116830_b0310
  article-title: Soil-aggregate formation as influenced by clay content and organic-matter amendment
  publication-title: J. Plant Nutrit. Soil Sci.
  doi: 10.1002/jpln.200521732
– volume: 2
  start-page: 32
  issue: 2
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0015
  article-title: In search of a binding agent: nano-scale evidence of preferential carbon associations with poorly-crystalline mineral phases in physically-stable, clay-sized aggregates
  publication-title: Soil Syst.
  doi: 10.3390/soilsystems2020032
– volume: 16
  issue: 9
  year: 2017
  ident: 10.1016/j.geoderma.2024.116830_b0235
  article-title: Sandy soil microaggregates: rethinking our understanding of hydraulic function
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2017.05.0090
– volume: 124
  start-page: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2024.116830_b0035
  article-title: Soil structure and management: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.03.005
– volume: 374
  year: 2020
  ident: 10.1016/j.geoderma.2024.116830_b0150
  article-title: Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114421
– volume: 161
  start-page: 182
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2024.116830_b0290
  article-title: Organic matter stabilization in soil aggregates: Understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.12.017
– volume: 13
  start-page: 253
  issue: 3
  year: 1989
  ident: 10.1016/j.geoderma.2024.116830_b0100
  article-title: Dynamics of soil aggregation in an irrigated desert loess
  publication-title: Soil Tillage Res.
  doi: 10.1016/0167-1987(89)90002-0
– volume: 181
  start-page: 104
  issue: 1
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0285
  article-title: Microaggregates in soils
  publication-title: J. Plant. Nutr. Soil Sci.
  doi: 10.1002/jpln.201600451
– volume: 39
  start-page: 2183
  issue: 9
  year: 2007
  ident: 10.1016/j.geoderma.2024.116830_b0300
  article-title: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.03.007
– volume: 65
  start-page: 1413
  issue: 5
  year: 2001
  ident: 10.1016/j.geoderma.2024.116830_b0155
  article-title: Nature of Clay-Humic Complexes in an Agricultural Soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.6551413x
– volume: 39
  start-page: 2758
  issue: 11
  year: 2007
  ident: 10.1016/j.geoderma.2024.116830_b0240
  article-title: Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.06.007
– volume: 182
  start-page: 123
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0145
  article-title: Microaggregate stability and storage of organic carbon is affected by clay content in arable Luvisols
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.05.003
– volume: 170
  start-page: 29
  year: 2019
  ident: 10.1016/j.geoderma.2024.116830_b0055
  article-title: Size and charge constraints in microaggregation: Model experiments with mineral particle size fractions
  publication-title: Applied Clay Science
  doi: 10.1016/j.clay.2019.01.002
– volume: 18
  start-page: 1703
  issue: 5
  year: 2021
  ident: 10.1016/j.geoderma.2024.116830_b0040
  article-title: Long-term bare-fallow soil fractions reveal thermo-chemical properties controlling soil organic carbon dynamics
  publication-title: Biogeosciences
  doi: 10.5194/bg-18-1703-2021
– volume: 73
  start-page: 2034
  issue: 7
  year: 2009
  ident: 10.1016/j.geoderma.2024.116830_b0195
  article-title: Biogeochemistry of mineral–organic associations across a long-term mineralogical soil gradient (0.3–4100kyr), Hawaiian Islands
  publication-title: Geochim. Cosmochim. Acta.
  doi: 10.1016/j.gca.2008.12.028
– volume: 263
  year: 2021
  ident: 10.1016/j.geoderma.2024.116830_b0090
  article-title: Diverse effects of wetting and drying cycles on soil aggregation: Implications on pesticide leaching
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127910
– volume: 36
  start-page: 1187
  issue: 4
  year: 2007
  ident: 10.1016/j.geoderma.2024.116830_b0140
  article-title: Hydrophobicity of soil colloids and heavy metal mobilization
  publication-title: J. Environ. Quality
  doi: 10.2134/jeq2006.0427
– volume: 55
  start-page: 5815
  issue: 9
  year: 2021
  ident: 10.1016/j.geoderma.2024.116830_b0170
  article-title: Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c07709
– volume: 69
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2024.116830_b0330
  article-title: Modeling aggregate internal pressure evolution following immersion to quantify mechanisms of structural stability
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0001
– start-page: 1
  year: 2015
  ident: 10.1016/j.geoderma.2024.116830_b0135
  article-title: Chapter one - mineral-organic associations: formation, properties, and relevance in soil environments
  doi: 10.1016/bs.agron.2014.10.005
– volume: 57
  start-page: 426
  issue: 4
  year: 2006
  ident: 10.1016/j.geoderma.2024.116830_b0175
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00809.x
– volume: 28
  start-page: 4589
  issue: 15
  year: 2022
  ident: 10.1016/j.geoderma.2024.116830_b0335
  article-title: Explicit spatial modeling at the pore scale unravels the interplay of soil organic carbon storage and structure dynamics
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.16230
– volume: 374
  start-page: 739
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2024.116830_b0005
  article-title: Interplay between soil drying and root exudation in rhizosheath development
  publication-title: Plant and Soil
  doi: 10.1007/s11104-013-1910-y
– volume: 137
  start-page: 27
  issue: 1–2
  year: 2018
  ident: 10.1016/j.geoderma.2024.116830_b0255
  article-title: Calcium-mediated stabilisation of soil organic carbon
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-017-0410-1
– volume: 64
  start-page: 449
  issue: 3
  year: 2009
  ident: 10.1016/j.geoderma.2024.116830_b0105
  article-title: Soil structure formation and management effects on gas emission
  publication-title: Biologia
  doi: 10.2478/s11756-009-0089-4
– volume: 298
  year: 2022
  ident: 10.1016/j.geoderma.2024.116830_b0265
  article-title: Improving mechanical behaviour of collapsible soils by grouting clay nanoparticles
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2022.106538
– volume: 70
  start-page: 604
  issue: 3
  year: 2019
  ident: 10.1016/j.geoderma.2024.116830_b0070
  article-title: Formation of mineral–mineral and organo–mineral composite building units from microaggregate-forming materials including microbially produced extracellular polymeric substances
  publication-title: European Journal of Soil Science
  doi: 10.1111/ejss.12774
– volume: 30
  start-page: 11
  issue: 1
  year: 1994
  ident: 10.1016/j.geoderma.2024.116830_b0315
  article-title: Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR02403
SSID ssj0017020
Score 2.4638512
Snippet •In Ap horizons of arable Luvisols, colloids control the aggregation of small soil microaggregates (<20 μm) in wet-dry cycles.•The presence of <450 nm colloids...
In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the...
In the hierarchical model of soil aggregates, small soil microaggregates (small SMA; <20 μm) are often considered to be fundamental building units at the...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116830
SubjectTerms A horizons
case studies
centrifugation
Elemental composition
fallow
Field flow fractionation
fractionation
Luvisols
microaggregates
organic carbon
Size distribution of aggregates
Soil microaggregation
spectrometers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT-WAoIBYKGiQuEbNw07i3hZEVSHgApV6s_ysUrUJSrKg_hL-LjNOstr2sheulu1YnrHnm3jmG8Y-eOtNiW5XIl2tE17oNKl5kSY8Nz6gjZUhUmx8-16eX_Avl-Jyp9QXxYRN9MDTxp3o4IzQ3hfC1LwOwVRS4inLjA7EvhW99VSmizM1vx9UiIJ28oGvURpUWiwyDeUc74myprjnHVMUGfvvWaQHd3M0OGdP2ZMZKcJ6WuEz9si3R-zx-qqf2TL8c_b3R9fcAImya9wAegDTxCwV0JQxNUDTAgI82GYoQhdgoDG3FIenr9DZpt9oseMfPyauvwN7R4Fyp7AGixYOIv8szQC6pzQr-Lr53aDCDkDpZz0sFVZGuN1G0rxgF2eff346T-ZKC4nlQo4Jl6F00tgilLUPVQjOmdQg9ElzmwlT6txhO3qzueF5EFlhtKzR93E8dehvVMVLdtB2rX_FQFuCIDzkzqZc59gzFMGLzOe8EsJXKyaWTVd2piGnahg3aok3u1aLsBQJS03CWrGT7bhfExHH3hEfSabb3kSkHRtQvdSsXmqfeq2YXDRCzZhkwho4VbN3Ae8XFVJ4aOklRre-2wyKUCwRz2fp6_-xyDfskD47hcYds4Ox3_i3iJVG8y4ei3_IfxaK
  priority: 102
  providerName: Directory of Open Access Journals
Title Soil colloids as binding agents in the formation of soil microaggregates in wet-dry cycles: A case study for arable Luvisols under different management
URI https://dx.doi.org/10.1016/j.geoderma.2024.116830
https://www.proquest.com/docview/3242051410
https://doaj.org/article/afdb5aee35b848ffb7992191baf25040
Volume 443
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELba7QUOiKcoj5WRuIbNw05ibktFtbx6gUq9WXZsr1K1SZVkQb3wN_i7zDhO1HLpgWMsz8jKjOdhz3wm5K2trM4h7YqEKVXEMhVHJcviiKXaOvCxwnmIjW8n-eaUfT7jZ3vkaOqFwbLKYPtHm-6tdRhZhb-5uqpr7PFN8gI9NBtRR_bJQZqJnC_IwfrTl83JfJlQxAGdMckjJLjRKHwOYsI3xzwEUcrAgOQlFkTf8FEeyv-Wq_rHaHtPdPyQPAghJF2Pq3xE9mzzmNxfb7sAo2GfkD_f2_qCoozb2vRU9VTXvn2FKmyl6mndUIj86Ny6SFtHe6S5xAI9tYUsHM_X_MRfdohMd02ra6yge0_XtALXRz0wLXKgqsP-K_p197MGTe4p9qV1dHp6ZaCXc4nNU3J6_PHH0SYKTzBEFeNiiJhwuRG6ylxeWlc4Z4yONcREcVolXOcqNTAOaW6qWep4kmklSkiKDIsNJCJF9owsmraxzwlVFcYmzKWmiplKYabLnOWJTVnBuS0OCZ9-uqwCPjk-k3Ehp0K0czkJS6Kw5CisQ7Ka6a5GhI47KT6gTOfZiLDtB9puK4OKSeWM5srajOuSlc7pQgiw7gksG1HfgImYNELeUlhgVd-5gDeTCknYzXhFoxrb7nqJ4S0i0ifxi__g_5Lcw6-xVO4VWQzdzr6G2GnQS7L_7neyDDtk6U8g_gL5zxyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELZKOQAHxCrKOkhcw8tiZ-H2qKge8NoLrdSbZcf2U6o2qZI8UC_8Df4uM86ilksPXB3bsjLjWZJvvmHsgy2tTjHtCgqTq4AnKgxynoQBj7V16GML5yk2Do_S1Qn_dipOd9j-VAtDsMrR9g823VvrcWQxvs3FZVVRjW-UZuSh-cA6cofd5SLJCNf38feM84iycORmjNKApl8rEz5DIVHHMU9AFHM0H2lOcOhrHsoT-d9wVP-YbO-HDh6xh2MACcvhjI_Zjq2fsAfLTTuSaNin7M-PpjoHknBTmQ5UB7ryxSugqJCqg6oGjPtgLlyExkFHay4Inqc2mIPT1zU_8ZftA9NeQXlF-LlPsIQSHR94WlraAVRL1Vew3v6sUI87oKq0FqbGKz1czACbZ-zk4Mvx_ioYGzAEJRdFH_DCpabQZeLS3LrMOWN0qDEiCuMyEjpVscFxTHJjzWMnokSrIseUyPDQYBqSJc_Zbt3U9gUDVVJkwl1sypCrGGe6xFkR2ZhnQthsj4nppctyZCenJhnncoKhnclJWJKEJQdh7bHFvO5y4Oe4dcVnkuk8m_i1_UDTbuSoYFI5o4WyNhE657lzOisKtO0RHps433CTYtIIeUNdcavq1gO8n1RI4l2mHzSqts22kxTcEh99FL78j_3fsXur48O1XH89-v6K3acnA2juNdvt2619g1FUr9_6W_IXwokcZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+colloids+as+binding+agents+in+the+formation+of+soil+microaggregates+in+wet-dry+cycles%3A+A+case+study+for+arable+Luvisols+under+different+management&rft.jtitle=Geoderma&rft.au=Tang%2C+Ni&rft.au=Dultz%2C+Stefan&rft.au=Gerth%2C+Daniel&rft.au=Klumpp%2C+Erwin&rft.date=2024-03-01&rft.issn=0016-7061&rft.volume=443+p.116830-&rft_id=info:doi/10.1016%2Fj.geoderma.2024.116830&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon