CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering
Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in a...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 19; no. 3; pp. 2381 - 2402 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1551-0018 1551-0018 |
DOI | 10.3934/mbe.2022110 |
Cover
Abstract | Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis. |
---|---|
AbstractList | Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis. Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis. |
Author | Shoeibi, Afshin Sharifrazi, Danial Alizadehsani, Roohallah Sookhak, Mehdi Alinejad-Rokny, Hamid Hasanzadeh, Fereshteh Sani, Zahra Alizadeh Dehzangi, Abdollah Joloudari, Javad Hassannataj Band, Shahab S. Hussain, Sadiq |
Author_xml | – sequence: 1 givenname: Danial surname: Sharifrazi fullname: Sharifrazi, Danial – sequence: 2 givenname: Roohallah surname: Alizadehsani fullname: Alizadehsani, Roohallah – sequence: 3 givenname: Javad Hassannataj surname: Joloudari fullname: Joloudari, Javad Hassannataj – sequence: 4 givenname: Shahab S. surname: Band fullname: Band, Shahab S. – sequence: 5 givenname: Sadiq surname: Hussain fullname: Hussain, Sadiq – sequence: 6 givenname: Zahra Alizadeh surname: Sani fullname: Sani, Zahra Alizadeh – sequence: 7 givenname: Fereshteh surname: Hasanzadeh fullname: Hasanzadeh, Fereshteh – sequence: 8 givenname: Afshin surname: Shoeibi fullname: Shoeibi, Afshin – sequence: 9 givenname: Abdollah surname: Dehzangi fullname: Dehzangi, Abdollah – sequence: 10 givenname: Mehdi surname: Sookhak fullname: Sookhak, Mehdi – sequence: 11 givenname: Hamid surname: Alinejad-Rokny fullname: Alinejad-Rokny, Hamid |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35240789$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1P3DAQxa0KVD7aU-9VjpWqUDu2k7g3tCot6goucLbG9mRrSGxqOyD-ewK7VFXV04xmfu9ZnndE9kIMSMgHRk-44uLLZPCkoU3DGH1DDpmUrKaU9Xt_9QfkKOcbSrngXLwlB1w2gna9OiTj6uKi_rlaf61O5xInKN5W02O0kJwvPlfOwybEvHRz9mFT2Rju4zgXHwOMVcA5vZTyENPtspyMD-iqB19-Vbf1hBByZcc5F0yL-h3ZH2DM-H5Xj8n12ber1Y96ffn9fHW6rq2QqtRCKaOokb1AAT1FpHSgpgHaKul6hM45QJS9AsWNs2JowUnW28EMrGsHwY_J-dbXRbjRd8lPkB51BK9fBjFtNKTlpyNqZalkQtnOghXGdr2Q0lBj6GBY67hbvD5tve5S_D1jLnry2eI4QsA4Z920vGWi7Xq5oB936GwmdH8efr32ArAtYFPMOeGgrS_wfMuSwI-aUf2cqF4S1btEF83nfzSvtv-jnwDuX6NJ |
CitedBy_id | crossref_primary_10_1007_s10741_024_10431_9 crossref_primary_10_1088_1361_6579_ac7fd9 crossref_primary_10_1109_TII_2023_3274913 crossref_primary_10_1142_S0129065723500612 crossref_primary_10_1016_j_pcad_2024_06_004 crossref_primary_10_31083_j_rcm2512452 crossref_primary_10_2478_amns_2025_0206 crossref_primary_10_1142_S0219519424400530 crossref_primary_10_1155_2022_8733632 crossref_primary_10_1177_20552076231198643 crossref_primary_10_2478_jce_2023_0019 crossref_primary_10_1186_s12911_023_02179_3 crossref_primary_10_1016_j_cpcardiol_2023_102020 crossref_primary_10_1007_s00521_022_07738_9 crossref_primary_10_1186_s12880_024_01217_4 crossref_primary_10_3389_fcvm_2024_1408574 crossref_primary_10_1177_24056456241305805 crossref_primary_10_1038_s41598_024_79426_8 crossref_primary_10_1186_s12889_023_15539_5 crossref_primary_10_1016_j_jocmr_2024_101051 |
Cites_doi | 10.1145/1830483.1830706 10.1145/3065386 10.1007/s10479-021-04006-2 10.1148/radiol.2019191476 10.1016/j.jaccas.2020.01.004 10.1109/ICSCAN49426.2020.9262317 10.1109/AINA.2015.254 10.1016/j.jacc.2016.08.062 10.1109/TMI.2016.2528162 10.5120/18405-9674 10.1007/s00500-019-04531-0 10.1016/j.measurement.2004.11.015 10.1186/s12968-019-0550-7 10.1109/ICCSCE.2012.6487109 10.1016/j.ejrad.2018.03.013 10.1056/NEJMoa055202 10.1016/j.rec.2015.10.015 10.1038/s41598-021-81506-y 10.5120/ijca2016908178 10.1016/j.chemolab.2020.104171 10.1016/j.patrec.2020.02.010 10.1109/TMI.2016.2553401 10.1074/mcp.RA119.001586 10.1109/CVPR.2015.7298594 10.1198/1061860032238 10.1111/anec.12726 10.1038/s41746-019-0130-0 10.1016/j.cma.2020.113552 10.1016/j.eswa.2020.113788 10.12688/f1000research.14857.1 10.1007/BF03086308 10.1109/72.554195 10.1007/s11517-021-02424-9 10.1109/ICCUBEA.2018.8697795 10.1016/j.diii.2019.10.005 10.1016/j.pcad.2009.11.006 10.1016/j.imu.2019.100255 10.1016/j.acra.2013.01.004 10.1109/CVPR.2016.90 10.1109/TNB.2015.2426213 10.1038/s41597-019-0206-3 10.14569/IJACSA.2014.050605 10.1155/2021/8387680 10.1109/ACCESS.2020.3007561 10.3390/ijerph17030731 10.1023/A:1010933404324 10.1016/j.neucom.2019.09.070 10.1016/j.knosys.2017.06.003 10.1097/MD.0000000000012246 10.1056/NEJM200011093431908 10.3390/ijerph18115780 10.18653/v1/W18-2303 10.1016/j.patrec.2009.09.011 10.1007/s11517-021-02412-z 10.1016/j.compbiomed.2021.104949 10.1016/j.inffus.2020.06.008 10.1016/j.inffus.2021.02.013 10.1111/echo.14220 10.1016/j.jacc.2011.09.074 10.1109/JIOT.2021.3053420 10.1161/CIRCIMAGING.115.004330 10.3390/info11040207 10.35940/ijitee.C9009.019320 10.1111/exsy.12573 10.1016/j.compbiomed.2017.12.023 10.1007/s10489-018-1179-1 10.1016/j.compmedimag.2020.101812 10.3390/s20041020 10.1038/s41551-018-0195-0 10.1038/s41591-021-01354-1 10.1016/j.knosys.2016.07.004 |
ContentType | Journal Article |
CorporateAuthor | Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, AU Omid hospital, Iran University of Medical Sciences, Tehran, IR Health Data Analytics Program, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney 2109, AU Department of Computer Science, Rutgers University, Camden, NJ 08102, USA Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand, IR System Administrator, Dibrugarh University, Assam 786004, IN Future Technology Research Center, College of Future, National Yunlin University of Science and Technology 123 University Road, Section 3, Douliou, Yunlin 64002, TW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, AU FPGA Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, IR Department of Computer Science, Texas A & M University at Corpus Christi, Corpus Christi, TX 78412, USA Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, IR |
CorporateAuthor_xml | – name: Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand, IR – name: Future Technology Research Center, College of Future, National Yunlin University of Science and Technology 123 University Road, Section 3, Douliou, Yunlin 64002, TW – name: BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, AU – name: Department of Computer Science, Texas A & M University at Corpus Christi, Corpus Christi, TX 78412, USA – name: Department of Computer Science, Rutgers University, Camden, NJ 08102, USA – name: Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA – name: Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, IR – name: FPGA Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, IR – name: System Administrator, Dibrugarh University, Assam 786004, IN – name: Omid hospital, Iran University of Medical Sciences, Tehran, IR – name: Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran – name: Health Data Analytics Program, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney 2109, AU – name: Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, AU |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.3934/mbe.2022110 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1551-0018 |
EndPage | 2402 |
ExternalDocumentID | oai_doaj_org_article_9c05149c7cac4bc78455b0bb0fb16d3d 35240789 10_3934_mbe_2022110 |
Genre | Journal Article |
GroupedDBID | --- 53G 5GY AAYXX AENEX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBD EBS EJD EMOBN F5P GROUPED_DOAJ IAO ITC J9A ML0 OK1 P2P RAN SV3 TUS CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c459t-499b90b584e4a80ee00f0b2a0695d8ea7ddaee589a93bdc4f6ad518cfbf176f43 |
IEDL.DBID | DOA |
ISSN | 1551-0018 |
IngestDate | Wed Aug 27 00:43:56 EDT 2025 Fri Jul 11 11:35:35 EDT 2025 Thu Jan 02 22:55:34 EST 2025 Tue Jul 01 02:58:34 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | prediction diagnosis cardiac MRI convolutional neural network myocarditis biomedical machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-499b90b584e4a80ee00f0b2a0695d8ea7ddaee589a93bdc4f6ad518cfbf176f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/9c05149c7cac4bc78455b0bb0fb16d3d |
PMID | 35240789 |
PQID | 2636146785 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9c05149c7cac4bc78455b0bb0fb16d3d proquest_miscellaneous_2636146785 pubmed_primary_35240789 crossref_citationtrail_10_3934_mbe_2022110 crossref_primary_10_3934_mbe_2022110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Mathematical biosciences and engineering : MBE |
PublicationTitleAlternate | Math Biosci Eng |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/mbe.2022110-37 key-10.3934/mbe.2022110-38 key-10.3934/mbe.2022110-39 key-10.3934/mbe.2022110-33 key-10.3934/mbe.2022110-77 key-10.3934/mbe.2022110-34 key-10.3934/mbe.2022110-78 key-10.3934/mbe.2022110-35 key-10.3934/mbe.2022110-36 key-10.3934/mbe.2022110-40 key-10.3934/mbe.2022110-41 key-10.3934/mbe.2022110-42 key-10.3934/mbe.2022110-43 key-10.3934/mbe.2022110-26 key-10.3934/mbe.2022110-27 key-10.3934/mbe.2022110-28 key-10.3934/mbe.2022110-29 key-10.3934/mbe.2022110-22 key-10.3934/mbe.2022110-66 key-10.3934/mbe.2022110-23 key-10.3934/mbe.2022110-67 key-10.3934/mbe.2022110-24 key-10.3934/mbe.2022110-68 key-10.3934/mbe.2022110-25 key-10.3934/mbe.2022110-69 key-10.3934/mbe.2022110-73 key-10.3934/mbe.2022110-30 key-10.3934/mbe.2022110-74 key-10.3934/mbe.2022110-31 key-10.3934/mbe.2022110-75 key-10.3934/mbe.2022110-32 key-10.3934/mbe.2022110-76 key-10.3934/mbe.2022110-70 key-10.3934/mbe.2022110-71 key-10.3934/mbe.2022110-72 key-10.3934/mbe.2022110-19 key-10.3934/mbe.2022110-15 key-10.3934/mbe.2022110-59 key-10.3934/mbe.2022110-16 key-10.3934/mbe.2022110-17 key-10.3934/mbe.2022110-18 key-10.3934/mbe.2022110-11 key-10.3934/mbe.2022110-55 key-10.3934/mbe.2022110-12 key-10.3934/mbe.2022110-56 key-10.3934/mbe.2022110-13 key-10.3934/mbe.2022110-57 key-10.3934/mbe.2022110-14 key-10.3934/mbe.2022110-58 key-10.3934/mbe.2022110-62 key-10.3934/mbe.2022110-63 key-10.3934/mbe.2022110-20 key-10.3934/mbe.2022110-64 key-10.3934/mbe.2022110-21 key-10.3934/mbe.2022110-65 key-10.3934/mbe.2022110-60 key-10.3934/mbe.2022110-61 key-10.3934/mbe.2022110-8 key-10.3934/mbe.2022110-9 key-10.3934/mbe.2022110-2 key-10.3934/mbe.2022110-48 key-10.3934/mbe.2022110-3 key-10.3934/mbe.2022110-49 key-10.3934/mbe.2022110-1 key-10.3934/mbe.2022110-6 key-10.3934/mbe.2022110-44 key-10.3934/mbe.2022110-7 key-10.3934/mbe.2022110-45 key-10.3934/mbe.2022110-4 key-10.3934/mbe.2022110-46 key-10.3934/mbe.2022110-5 key-10.3934/mbe.2022110-47 key-10.3934/mbe.2022110-51 key-10.3934/mbe.2022110-52 key-10.3934/mbe.2022110-53 key-10.3934/mbe.2022110-10 key-10.3934/mbe.2022110-54 key-10.3934/mbe.2022110-50 |
References_xml | – ident: key-10.3934/mbe.2022110-12 doi: 10.1145/1830483.1830706 – ident: key-10.3934/mbe.2022110-47 doi: 10.1145/3065386 – ident: key-10.3934/mbe.2022110-52 doi: 10.1007/s10479-021-04006-2 – ident: key-10.3934/mbe.2022110-75 doi: 10.1148/radiol.2019191476 – ident: key-10.3934/mbe.2022110-74 doi: 10.1016/j.jaccas.2020.01.004 – ident: key-10.3934/mbe.2022110-31 doi: 10.1109/ICSCAN49426.2020.9262317 – ident: key-10.3934/mbe.2022110-2 doi: 10.1109/AINA.2015.254 – ident: key-10.3934/mbe.2022110-21 doi: 10.1016/j.jacc.2016.08.062 – ident: key-10.3934/mbe.2022110-53 doi: 10.1109/TMI.2016.2528162 – ident: key-10.3934/mbe.2022110-78 doi: 10.5120/18405-9674 – ident: key-10.3934/mbe.2022110-9 doi: 10.1007/s00500-019-04531-0 – ident: key-10.3934/mbe.2022110-20 doi: 10.1016/j.measurement.2004.11.015 – ident: key-10.3934/mbe.2022110-37 doi: 10.1186/s12968-019-0550-7 – ident: key-10.3934/mbe.2022110-46 – ident: key-10.3934/mbe.2022110-13 doi: 10.1109/ICCSCE.2012.6487109 – ident: key-10.3934/mbe.2022110-11 doi: 10.1016/j.ejrad.2018.03.013 – ident: key-10.3934/mbe.2022110-3 doi: 10.1056/NEJMoa055202 – ident: key-10.3934/mbe.2022110-58 – ident: key-10.3934/mbe.2022110-76 doi: 10.1016/j.rec.2015.10.015 – ident: key-10.3934/mbe.2022110-65 doi: 10.1038/s41598-021-81506-y – ident: key-10.3934/mbe.2022110-17 doi: 10.5120/ijca2016908178 – ident: key-10.3934/mbe.2022110-42 doi: 10.1016/j.chemolab.2020.104171 – ident: key-10.3934/mbe.2022110-7 doi: 10.1016/j.patrec.2020.02.010 – ident: key-10.3934/mbe.2022110-10 doi: 10.1109/TMI.2016.2553401 – ident: key-10.3934/mbe.2022110-24 doi: 10.1074/mcp.RA119.001586 – ident: key-10.3934/mbe.2022110-49 doi: 10.1109/CVPR.2015.7298594 – ident: key-10.3934/mbe.2022110-70 doi: 10.1198/1061860032238 – ident: key-10.3934/mbe.2022110-77 doi: 10.1111/anec.12726 – ident: key-10.3934/mbe.2022110-19 doi: 10.1038/s41746-019-0130-0 – ident: key-10.3934/mbe.2022110-63 doi: 10.1016/j.cma.2020.113552 – ident: key-10.3934/mbe.2022110-57 doi: 10.1016/j.eswa.2020.113788 – ident: key-10.3934/mbe.2022110-36 doi: 10.12688/f1000research.14857.1 – ident: key-10.3934/mbe.2022110-38 doi: 10.1007/BF03086308 – ident: key-10.3934/mbe.2022110-51 doi: 10.1109/72.554195 – ident: key-10.3934/mbe.2022110-71 doi: 10.1007/s11517-021-02424-9 – ident: key-10.3934/mbe.2022110-68 – ident: key-10.3934/mbe.2022110-15 doi: 10.1109/ICCUBEA.2018.8697795 – ident: key-10.3934/mbe.2022110-43 – ident: key-10.3934/mbe.2022110-14 doi: 10.1016/j.diii.2019.10.005 – ident: key-10.3934/mbe.2022110-4 doi: 10.1016/j.pcad.2009.11.006 – ident: key-10.3934/mbe.2022110-18 doi: 10.1016/j.imu.2019.100255 – ident: key-10.3934/mbe.2022110-39 doi: 10.1016/j.acra.2013.01.004 – ident: key-10.3934/mbe.2022110-50 doi: 10.1109/CVPR.2016.90 – ident: key-10.3934/mbe.2022110-22 doi: 10.1109/TNB.2015.2426213 – ident: key-10.3934/mbe.2022110-60 doi: 10.1038/s41597-019-0206-3 – ident: key-10.3934/mbe.2022110-62 doi: 10.14569/IJACSA.2014.050605 – ident: key-10.3934/mbe.2022110-32 doi: 10.1155/2021/8387680 – ident: key-10.3934/mbe.2022110-29 doi: 10.1109/ACCESS.2020.3007561 – ident: key-10.3934/mbe.2022110-1 doi: 10.3390/ijerph17030731 – ident: key-10.3934/mbe.2022110-72 doi: 10.1023/A:1010933404324 – ident: key-10.3934/mbe.2022110-41 doi: 10.1016/j.neucom.2019.09.070 – ident: key-10.3934/mbe.2022110-55 doi: 10.1016/j.knosys.2017.06.003 – ident: key-10.3934/mbe.2022110-69 doi: 10.3390/ijerph17030731 – ident: key-10.3934/mbe.2022110-23 doi: 10.1097/MD.0000000000012246 – ident: key-10.3934/mbe.2022110-5 doi: 10.1056/NEJM200011093431908 – ident: key-10.3934/mbe.2022110-44 doi: 10.3390/ijerph18115780 – ident: key-10.3934/mbe.2022110-27 doi: 10.18653/v1/W18-2303 – ident: key-10.3934/mbe.2022110-48 – ident: key-10.3934/mbe.2022110-59 doi: 10.1016/j.patrec.2009.09.011 – ident: key-10.3934/mbe.2022110-67 doi: 10.1007/s11517-021-02412-z – ident: key-10.3934/mbe.2022110-40 doi: 10.1016/j.compbiomed.2021.104949 – ident: key-10.3934/mbe.2022110-25 doi: 10.1016/j.inffus.2020.06.008 – ident: key-10.3934/mbe.2022110-61 doi: 10.1016/j.inffus.2021.02.013 – ident: key-10.3934/mbe.2022110-33 doi: 10.1111/echo.14220 – ident: key-10.3934/mbe.2022110-73 doi: 10.1016/j.jacc.2011.09.074 – ident: key-10.3934/mbe.2022110-28 doi: 10.1109/JIOT.2021.3053420 – ident: key-10.3934/mbe.2022110-16 doi: 10.1161/CIRCIMAGING.115.004330 – ident: key-10.3934/mbe.2022110-26 doi: 10.3390/info11040207 – ident: key-10.3934/mbe.2022110-34 doi: 10.35940/ijitee.C9009.019320 – ident: key-10.3934/mbe.2022110-8 doi: 10.1111/exsy.12573 – ident: key-10.3934/mbe.2022110-56 doi: 10.1016/j.compbiomed.2017.12.023 – ident: key-10.3934/mbe.2022110-54 doi: 10.1007/s10489-018-1179-1 – ident: key-10.3934/mbe.2022110-64 doi: 10.1016/j.compmedimag.2020.101812 – ident: key-10.3934/mbe.2022110-45 doi: 10.3390/s20041020 – ident: key-10.3934/mbe.2022110-35 doi: 10.1038/s41551-018-0195-0 – ident: key-10.3934/mbe.2022110-30 doi: 10.1038/s41591-021-01354-1 – ident: key-10.3934/mbe.2022110-66 – ident: key-10.3934/mbe.2022110-6 doi: 10.1016/j.knosys.2016.07.004 |
SSID | ssj0034334 |
Score | 2.4074273 |
Snippet | Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 2381 |
SubjectTerms | Adult Algorithms biomedical machine learning cardiac mri Cluster Analysis convolutional neural network diagnosis Humans Magnetic Resonance Imaging myocarditis Myocarditis - diagnostic imaging Neural Networks, Computer prediction |
Title | CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35240789 https://www.proquest.com/docview/2636146785 https://doaj.org/article/9c05149c7cac4bc78455b0bb0fb16d3d |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR364vIngSymY3jzbedHERH3tS2FvJU8R9iHYP_ntnmq4oKF48tbTTJp2ZZGaS6TeEnDirCgZ-RmY0jCYRbS_TLIQsIniZ4NGoGnj-bqiuHsT1SI6-lPrCnLAED5wY19EOEbq1y51xwrq8EFJaZi2Ltqs89zj7Ms0WwVSag7ngXKS_8bjmojOxiIjZw2Dnm_2pYfp_9y1rGzNYI6uNc0jPU6fWyVKYbpDlVC7yfZOM-8NhdtO_PaPn82pWY63SyTsYIxBy9fRGfUqbgzPMZn-kmFHeaBa8FZEr60Od9w03JxAUB09xJZY-Z5MARou68RyRE-DpLfIwuLzvX2VNtYTMCamrDEIXq5kFhyIIUwC_GYvM9gxTWvoimNx7E4IsNEjFeieiMl52Cxdt7OYqCr5NWtPZNOwSmtucSxcgOga6oJnh0RXKArkxClzKNjld8LB0DZQ4VrQYlxBSIMNLYHjZMLwNCrEgfkkIGj-TXaAwPkkQ9rq-AMpQNspQ_qUMbXK8EGUJwwT3Psw0zOZvZU9xhUahkG2yk2T82RT4oLibqff-owv7ZAW_KK3SHJBW9ToPh-C3VPaoVtEPGe7t8g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-KCL%3A+Automatic+myocarditis+diagnosis+using+convolutional+neural+network+combined+with+k-means+clustering&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Danial+Sharifrazi&rft.au=Roohallah+Alizadehsani&rft.au=Javad+Hassannataj+Joloudari&rft.au=Shahab+S.+Band&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=1551-0018&rft.volume=19&rft.issue=3&rft.spage=2381&rft.epage=2402&rft_id=info:doi/10.3934%2Fmbe.2022110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9c05149c7cac4bc78455b0bb0fb16d3d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon |