CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering

Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in a...

Full description

Saved in:
Bibliographic Details
Published inMathematical biosciences and engineering : MBE Vol. 19; no. 3; pp. 2381 - 2402
Main Authors Sharifrazi, Danial, Alizadehsani, Roohallah, Joloudari, Javad Hassannataj, Band, Shahab S., Hussain, Sadiq, Sani, Zahra Alizadeh, Hasanzadeh, Fereshteh, Shoeibi, Afshin, Dehzangi, Abdollah, Sookhak, Mehdi, Alinejad-Rokny, Hamid
Format Journal Article
LanguageEnglish
Published United States AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN1551-0018
1551-0018
DOI10.3934/mbe.2022110

Cover

Abstract Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.
AbstractList Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.
Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its electrical system. It has remained one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep learning algorithms for the diagnosis of myocarditis.
Author Shoeibi, Afshin
Sharifrazi, Danial
Alizadehsani, Roohallah
Sookhak, Mehdi
Alinejad-Rokny, Hamid
Hasanzadeh, Fereshteh
Sani, Zahra Alizadeh
Dehzangi, Abdollah
Joloudari, Javad Hassannataj
Band, Shahab S.
Hussain, Sadiq
Author_xml – sequence: 1
  givenname: Danial
  surname: Sharifrazi
  fullname: Sharifrazi, Danial
– sequence: 2
  givenname: Roohallah
  surname: Alizadehsani
  fullname: Alizadehsani, Roohallah
– sequence: 3
  givenname: Javad Hassannataj
  surname: Joloudari
  fullname: Joloudari, Javad Hassannataj
– sequence: 4
  givenname: Shahab S.
  surname: Band
  fullname: Band, Shahab S.
– sequence: 5
  givenname: Sadiq
  surname: Hussain
  fullname: Hussain, Sadiq
– sequence: 6
  givenname: Zahra Alizadeh
  surname: Sani
  fullname: Sani, Zahra Alizadeh
– sequence: 7
  givenname: Fereshteh
  surname: Hasanzadeh
  fullname: Hasanzadeh, Fereshteh
– sequence: 8
  givenname: Afshin
  surname: Shoeibi
  fullname: Shoeibi, Afshin
– sequence: 9
  givenname: Abdollah
  surname: Dehzangi
  fullname: Dehzangi, Abdollah
– sequence: 10
  givenname: Mehdi
  surname: Sookhak
  fullname: Sookhak, Mehdi
– sequence: 11
  givenname: Hamid
  surname: Alinejad-Rokny
  fullname: Alinejad-Rokny, Hamid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35240789$$D View this record in MEDLINE/PubMed
BookMark eNptkc1P3DAQxa0KVD7aU-9VjpWqUDu2k7g3tCot6goucLbG9mRrSGxqOyD-ewK7VFXV04xmfu9ZnndE9kIMSMgHRk-44uLLZPCkoU3DGH1DDpmUrKaU9Xt_9QfkKOcbSrngXLwlB1w2gna9OiTj6uKi_rlaf61O5xInKN5W02O0kJwvPlfOwybEvHRz9mFT2Rju4zgXHwOMVcA5vZTyENPtspyMD-iqB19-Vbf1hBByZcc5F0yL-h3ZH2DM-H5Xj8n12ber1Y96ffn9fHW6rq2QqtRCKaOokb1AAT1FpHSgpgHaKul6hM45QJS9AsWNs2JowUnW28EMrGsHwY_J-dbXRbjRd8lPkB51BK9fBjFtNKTlpyNqZalkQtnOghXGdr2Q0lBj6GBY67hbvD5tve5S_D1jLnry2eI4QsA4Z920vGWi7Xq5oB936GwmdH8efr32ArAtYFPMOeGgrS_wfMuSwI-aUf2cqF4S1btEF83nfzSvtv-jnwDuX6NJ
CitedBy_id crossref_primary_10_1007_s10741_024_10431_9
crossref_primary_10_1088_1361_6579_ac7fd9
crossref_primary_10_1109_TII_2023_3274913
crossref_primary_10_1142_S0129065723500612
crossref_primary_10_1016_j_pcad_2024_06_004
crossref_primary_10_31083_j_rcm2512452
crossref_primary_10_2478_amns_2025_0206
crossref_primary_10_1142_S0219519424400530
crossref_primary_10_1155_2022_8733632
crossref_primary_10_1177_20552076231198643
crossref_primary_10_2478_jce_2023_0019
crossref_primary_10_1186_s12911_023_02179_3
crossref_primary_10_1016_j_cpcardiol_2023_102020
crossref_primary_10_1007_s00521_022_07738_9
crossref_primary_10_1186_s12880_024_01217_4
crossref_primary_10_3389_fcvm_2024_1408574
crossref_primary_10_1177_24056456241305805
crossref_primary_10_1038_s41598_024_79426_8
crossref_primary_10_1186_s12889_023_15539_5
crossref_primary_10_1016_j_jocmr_2024_101051
Cites_doi 10.1145/1830483.1830706
10.1145/3065386
10.1007/s10479-021-04006-2
10.1148/radiol.2019191476
10.1016/j.jaccas.2020.01.004
10.1109/ICSCAN49426.2020.9262317
10.1109/AINA.2015.254
10.1016/j.jacc.2016.08.062
10.1109/TMI.2016.2528162
10.5120/18405-9674
10.1007/s00500-019-04531-0
10.1016/j.measurement.2004.11.015
10.1186/s12968-019-0550-7
10.1109/ICCSCE.2012.6487109
10.1016/j.ejrad.2018.03.013
10.1056/NEJMoa055202
10.1016/j.rec.2015.10.015
10.1038/s41598-021-81506-y
10.5120/ijca2016908178
10.1016/j.chemolab.2020.104171
10.1016/j.patrec.2020.02.010
10.1109/TMI.2016.2553401
10.1074/mcp.RA119.001586
10.1109/CVPR.2015.7298594
10.1198/1061860032238
10.1111/anec.12726
10.1038/s41746-019-0130-0
10.1016/j.cma.2020.113552
10.1016/j.eswa.2020.113788
10.12688/f1000research.14857.1
10.1007/BF03086308
10.1109/72.554195
10.1007/s11517-021-02424-9
10.1109/ICCUBEA.2018.8697795
10.1016/j.diii.2019.10.005
10.1016/j.pcad.2009.11.006
10.1016/j.imu.2019.100255
10.1016/j.acra.2013.01.004
10.1109/CVPR.2016.90
10.1109/TNB.2015.2426213
10.1038/s41597-019-0206-3
10.14569/IJACSA.2014.050605
10.1155/2021/8387680
10.1109/ACCESS.2020.3007561
10.3390/ijerph17030731
10.1023/A:1010933404324
10.1016/j.neucom.2019.09.070
10.1016/j.knosys.2017.06.003
10.1097/MD.0000000000012246
10.1056/NEJM200011093431908
10.3390/ijerph18115780
10.18653/v1/W18-2303
10.1016/j.patrec.2009.09.011
10.1007/s11517-021-02412-z
10.1016/j.compbiomed.2021.104949
10.1016/j.inffus.2020.06.008
10.1016/j.inffus.2021.02.013
10.1111/echo.14220
10.1016/j.jacc.2011.09.074
10.1109/JIOT.2021.3053420
10.1161/CIRCIMAGING.115.004330
10.3390/info11040207
10.35940/ijitee.C9009.019320
10.1111/exsy.12573
10.1016/j.compbiomed.2017.12.023
10.1007/s10489-018-1179-1
10.1016/j.compmedimag.2020.101812
10.3390/s20041020
10.1038/s41551-018-0195-0
10.1038/s41591-021-01354-1
10.1016/j.knosys.2016.07.004
ContentType Journal Article
CorporateAuthor Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, AU
Omid hospital, Iran University of Medical Sciences, Tehran, IR
Health Data Analytics Program, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney 2109, AU
Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand, IR
System Administrator, Dibrugarh University, Assam 786004, IN
Future Technology Research Center, College of Future, National Yunlin University of Science and Technology 123 University Road, Section 3, Douliou, Yunlin 64002, TW
BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, AU
FPGA Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, IR
Department of Computer Science, Texas A & M University at Corpus Christi, Corpus Christi, TX 78412, USA
Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, IR
CorporateAuthor_xml – name: Department of Computer Engineering, Faculty of Engineering, University of Birjand, Birjand, IR
– name: Future Technology Research Center, College of Future, National Yunlin University of Science and Technology 123 University Road, Section 3, Douliou, Yunlin 64002, TW
– name: BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, AU
– name: Department of Computer Science, Texas A & M University at Corpus Christi, Corpus Christi, TX 78412, USA
– name: Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
– name: Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
– name: Department of Computer Engineering, School of Technical and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, IR
– name: FPGA Laboratory, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, IR
– name: System Administrator, Dibrugarh University, Assam 786004, IN
– name: Omid hospital, Iran University of Medical Sciences, Tehran, IR
– name: Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
– name: Health Data Analytics Program, AI-enabled Processes (AIP) Research Centre, Macquarie University, Sydney 2109, AU
– name: Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, AU
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.3934/mbe.2022110
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1551-0018
EndPage 2402
ExternalDocumentID oai_doaj_org_article_9c05149c7cac4bc78455b0bb0fb16d3d
35240789
10_3934_mbe_2022110
Genre Journal Article
GroupedDBID ---
53G
5GY
AAYXX
AENEX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
IAO
ITC
J9A
ML0
OK1
P2P
RAN
SV3
TUS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c459t-499b90b584e4a80ee00f0b2a0695d8ea7ddaee589a93bdc4f6ad518cfbf176f43
IEDL.DBID DOA
ISSN 1551-0018
IngestDate Wed Aug 27 00:43:56 EDT 2025
Fri Jul 11 11:35:35 EDT 2025
Thu Jan 02 22:55:34 EST 2025
Tue Jul 01 02:58:34 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords prediction
diagnosis
cardiac MRI
convolutional neural network
myocarditis
biomedical machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-499b90b584e4a80ee00f0b2a0695d8ea7ddaee589a93bdc4f6ad518cfbf176f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/9c05149c7cac4bc78455b0bb0fb16d3d
PMID 35240789
PQID 2636146785
PQPubID 23479
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_9c05149c7cac4bc78455b0bb0fb16d3d
proquest_miscellaneous_2636146785
pubmed_primary_35240789
crossref_citationtrail_10_3934_mbe_2022110
crossref_primary_10_3934_mbe_2022110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences and engineering : MBE
PublicationTitleAlternate Math Biosci Eng
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/mbe.2022110-37
key-10.3934/mbe.2022110-38
key-10.3934/mbe.2022110-39
key-10.3934/mbe.2022110-33
key-10.3934/mbe.2022110-77
key-10.3934/mbe.2022110-34
key-10.3934/mbe.2022110-78
key-10.3934/mbe.2022110-35
key-10.3934/mbe.2022110-36
key-10.3934/mbe.2022110-40
key-10.3934/mbe.2022110-41
key-10.3934/mbe.2022110-42
key-10.3934/mbe.2022110-43
key-10.3934/mbe.2022110-26
key-10.3934/mbe.2022110-27
key-10.3934/mbe.2022110-28
key-10.3934/mbe.2022110-29
key-10.3934/mbe.2022110-22
key-10.3934/mbe.2022110-66
key-10.3934/mbe.2022110-23
key-10.3934/mbe.2022110-67
key-10.3934/mbe.2022110-24
key-10.3934/mbe.2022110-68
key-10.3934/mbe.2022110-25
key-10.3934/mbe.2022110-69
key-10.3934/mbe.2022110-73
key-10.3934/mbe.2022110-30
key-10.3934/mbe.2022110-74
key-10.3934/mbe.2022110-31
key-10.3934/mbe.2022110-75
key-10.3934/mbe.2022110-32
key-10.3934/mbe.2022110-76
key-10.3934/mbe.2022110-70
key-10.3934/mbe.2022110-71
key-10.3934/mbe.2022110-72
key-10.3934/mbe.2022110-19
key-10.3934/mbe.2022110-15
key-10.3934/mbe.2022110-59
key-10.3934/mbe.2022110-16
key-10.3934/mbe.2022110-17
key-10.3934/mbe.2022110-18
key-10.3934/mbe.2022110-11
key-10.3934/mbe.2022110-55
key-10.3934/mbe.2022110-12
key-10.3934/mbe.2022110-56
key-10.3934/mbe.2022110-13
key-10.3934/mbe.2022110-57
key-10.3934/mbe.2022110-14
key-10.3934/mbe.2022110-58
key-10.3934/mbe.2022110-62
key-10.3934/mbe.2022110-63
key-10.3934/mbe.2022110-20
key-10.3934/mbe.2022110-64
key-10.3934/mbe.2022110-21
key-10.3934/mbe.2022110-65
key-10.3934/mbe.2022110-60
key-10.3934/mbe.2022110-61
key-10.3934/mbe.2022110-8
key-10.3934/mbe.2022110-9
key-10.3934/mbe.2022110-2
key-10.3934/mbe.2022110-48
key-10.3934/mbe.2022110-3
key-10.3934/mbe.2022110-49
key-10.3934/mbe.2022110-1
key-10.3934/mbe.2022110-6
key-10.3934/mbe.2022110-44
key-10.3934/mbe.2022110-7
key-10.3934/mbe.2022110-45
key-10.3934/mbe.2022110-4
key-10.3934/mbe.2022110-46
key-10.3934/mbe.2022110-5
key-10.3934/mbe.2022110-47
key-10.3934/mbe.2022110-51
key-10.3934/mbe.2022110-52
key-10.3934/mbe.2022110-53
key-10.3934/mbe.2022110-10
key-10.3934/mbe.2022110-54
key-10.3934/mbe.2022110-50
References_xml – ident: key-10.3934/mbe.2022110-12
  doi: 10.1145/1830483.1830706
– ident: key-10.3934/mbe.2022110-47
  doi: 10.1145/3065386
– ident: key-10.3934/mbe.2022110-52
  doi: 10.1007/s10479-021-04006-2
– ident: key-10.3934/mbe.2022110-75
  doi: 10.1148/radiol.2019191476
– ident: key-10.3934/mbe.2022110-74
  doi: 10.1016/j.jaccas.2020.01.004
– ident: key-10.3934/mbe.2022110-31
  doi: 10.1109/ICSCAN49426.2020.9262317
– ident: key-10.3934/mbe.2022110-2
  doi: 10.1109/AINA.2015.254
– ident: key-10.3934/mbe.2022110-21
  doi: 10.1016/j.jacc.2016.08.062
– ident: key-10.3934/mbe.2022110-53
  doi: 10.1109/TMI.2016.2528162
– ident: key-10.3934/mbe.2022110-78
  doi: 10.5120/18405-9674
– ident: key-10.3934/mbe.2022110-9
  doi: 10.1007/s00500-019-04531-0
– ident: key-10.3934/mbe.2022110-20
  doi: 10.1016/j.measurement.2004.11.015
– ident: key-10.3934/mbe.2022110-37
  doi: 10.1186/s12968-019-0550-7
– ident: key-10.3934/mbe.2022110-46
– ident: key-10.3934/mbe.2022110-13
  doi: 10.1109/ICCSCE.2012.6487109
– ident: key-10.3934/mbe.2022110-11
  doi: 10.1016/j.ejrad.2018.03.013
– ident: key-10.3934/mbe.2022110-3
  doi: 10.1056/NEJMoa055202
– ident: key-10.3934/mbe.2022110-58
– ident: key-10.3934/mbe.2022110-76
  doi: 10.1016/j.rec.2015.10.015
– ident: key-10.3934/mbe.2022110-65
  doi: 10.1038/s41598-021-81506-y
– ident: key-10.3934/mbe.2022110-17
  doi: 10.5120/ijca2016908178
– ident: key-10.3934/mbe.2022110-42
  doi: 10.1016/j.chemolab.2020.104171
– ident: key-10.3934/mbe.2022110-7
  doi: 10.1016/j.patrec.2020.02.010
– ident: key-10.3934/mbe.2022110-10
  doi: 10.1109/TMI.2016.2553401
– ident: key-10.3934/mbe.2022110-24
  doi: 10.1074/mcp.RA119.001586
– ident: key-10.3934/mbe.2022110-49
  doi: 10.1109/CVPR.2015.7298594
– ident: key-10.3934/mbe.2022110-70
  doi: 10.1198/1061860032238
– ident: key-10.3934/mbe.2022110-77
  doi: 10.1111/anec.12726
– ident: key-10.3934/mbe.2022110-19
  doi: 10.1038/s41746-019-0130-0
– ident: key-10.3934/mbe.2022110-63
  doi: 10.1016/j.cma.2020.113552
– ident: key-10.3934/mbe.2022110-57
  doi: 10.1016/j.eswa.2020.113788
– ident: key-10.3934/mbe.2022110-36
  doi: 10.12688/f1000research.14857.1
– ident: key-10.3934/mbe.2022110-38
  doi: 10.1007/BF03086308
– ident: key-10.3934/mbe.2022110-51
  doi: 10.1109/72.554195
– ident: key-10.3934/mbe.2022110-71
  doi: 10.1007/s11517-021-02424-9
– ident: key-10.3934/mbe.2022110-68
– ident: key-10.3934/mbe.2022110-15
  doi: 10.1109/ICCUBEA.2018.8697795
– ident: key-10.3934/mbe.2022110-43
– ident: key-10.3934/mbe.2022110-14
  doi: 10.1016/j.diii.2019.10.005
– ident: key-10.3934/mbe.2022110-4
  doi: 10.1016/j.pcad.2009.11.006
– ident: key-10.3934/mbe.2022110-18
  doi: 10.1016/j.imu.2019.100255
– ident: key-10.3934/mbe.2022110-39
  doi: 10.1016/j.acra.2013.01.004
– ident: key-10.3934/mbe.2022110-50
  doi: 10.1109/CVPR.2016.90
– ident: key-10.3934/mbe.2022110-22
  doi: 10.1109/TNB.2015.2426213
– ident: key-10.3934/mbe.2022110-60
  doi: 10.1038/s41597-019-0206-3
– ident: key-10.3934/mbe.2022110-62
  doi: 10.14569/IJACSA.2014.050605
– ident: key-10.3934/mbe.2022110-32
  doi: 10.1155/2021/8387680
– ident: key-10.3934/mbe.2022110-29
  doi: 10.1109/ACCESS.2020.3007561
– ident: key-10.3934/mbe.2022110-1
  doi: 10.3390/ijerph17030731
– ident: key-10.3934/mbe.2022110-72
  doi: 10.1023/A:1010933404324
– ident: key-10.3934/mbe.2022110-41
  doi: 10.1016/j.neucom.2019.09.070
– ident: key-10.3934/mbe.2022110-55
  doi: 10.1016/j.knosys.2017.06.003
– ident: key-10.3934/mbe.2022110-69
  doi: 10.3390/ijerph17030731
– ident: key-10.3934/mbe.2022110-23
  doi: 10.1097/MD.0000000000012246
– ident: key-10.3934/mbe.2022110-5
  doi: 10.1056/NEJM200011093431908
– ident: key-10.3934/mbe.2022110-44
  doi: 10.3390/ijerph18115780
– ident: key-10.3934/mbe.2022110-27
  doi: 10.18653/v1/W18-2303
– ident: key-10.3934/mbe.2022110-48
– ident: key-10.3934/mbe.2022110-59
  doi: 10.1016/j.patrec.2009.09.011
– ident: key-10.3934/mbe.2022110-67
  doi: 10.1007/s11517-021-02412-z
– ident: key-10.3934/mbe.2022110-40
  doi: 10.1016/j.compbiomed.2021.104949
– ident: key-10.3934/mbe.2022110-25
  doi: 10.1016/j.inffus.2020.06.008
– ident: key-10.3934/mbe.2022110-61
  doi: 10.1016/j.inffus.2021.02.013
– ident: key-10.3934/mbe.2022110-33
  doi: 10.1111/echo.14220
– ident: key-10.3934/mbe.2022110-73
  doi: 10.1016/j.jacc.2011.09.074
– ident: key-10.3934/mbe.2022110-28
  doi: 10.1109/JIOT.2021.3053420
– ident: key-10.3934/mbe.2022110-16
  doi: 10.1161/CIRCIMAGING.115.004330
– ident: key-10.3934/mbe.2022110-26
  doi: 10.3390/info11040207
– ident: key-10.3934/mbe.2022110-34
  doi: 10.35940/ijitee.C9009.019320
– ident: key-10.3934/mbe.2022110-8
  doi: 10.1111/exsy.12573
– ident: key-10.3934/mbe.2022110-56
  doi: 10.1016/j.compbiomed.2017.12.023
– ident: key-10.3934/mbe.2022110-54
  doi: 10.1007/s10489-018-1179-1
– ident: key-10.3934/mbe.2022110-64
  doi: 10.1016/j.compmedimag.2020.101812
– ident: key-10.3934/mbe.2022110-45
  doi: 10.3390/s20041020
– ident: key-10.3934/mbe.2022110-35
  doi: 10.1038/s41551-018-0195-0
– ident: key-10.3934/mbe.2022110-30
  doi: 10.1038/s41591-021-01354-1
– ident: key-10.3934/mbe.2022110-66
– ident: key-10.3934/mbe.2022110-6
  doi: 10.1016/j.knosys.2016.07.004
SSID ssj0034334
Score 2.4074273
Snippet Myocarditis is the form of an inflammation of the middle layer of the heart wall which is caused by a viral infection and can affect the heart muscle and its...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 2381
SubjectTerms Adult
Algorithms
biomedical machine learning
cardiac mri
Cluster Analysis
convolutional neural network
diagnosis
Humans
Magnetic Resonance Imaging
myocarditis
Myocarditis - diagnostic imaging
Neural Networks, Computer
prediction
Title CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined with k-means clustering
URI https://www.ncbi.nlm.nih.gov/pubmed/35240789
https://www.proquest.com/docview/2636146785
https://doaj.org/article/9c05149c7cac4bc78455b0bb0fb16d3d
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR364vIngSymY3jzbedHERH3tS2FvJU8R9iHYP_ntnmq4oKF48tbTTJp2ZZGaS6TeEnDirCgZ-RmY0jCYRbS_TLIQsIniZ4NGoGnj-bqiuHsT1SI6-lPrCnLAED5wY19EOEbq1y51xwrq8EFJaZi2Ltqs89zj7Ms0WwVSag7ngXKS_8bjmojOxiIjZw2Dnm_2pYfp_9y1rGzNYI6uNc0jPU6fWyVKYbpDlVC7yfZOM-8NhdtO_PaPn82pWY63SyTsYIxBy9fRGfUqbgzPMZn-kmFHeaBa8FZEr60Od9w03JxAUB09xJZY-Z5MARou68RyRE-DpLfIwuLzvX2VNtYTMCamrDEIXq5kFhyIIUwC_GYvM9gxTWvoimNx7E4IsNEjFeieiMl52Cxdt7OYqCr5NWtPZNOwSmtucSxcgOga6oJnh0RXKArkxClzKNjld8LB0DZQ4VrQYlxBSIMNLYHjZMLwNCrEgfkkIGj-TXaAwPkkQ9rq-AMpQNspQ_qUMbXK8EGUJwwT3Psw0zOZvZU9xhUahkG2yk2T82RT4oLibqff-owv7ZAW_KK3SHJBW9ToPh-C3VPaoVtEPGe7t8g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CNN-KCL%3A+Automatic+myocarditis+diagnosis+using+convolutional+neural+network+combined+with+k-means+clustering&rft.jtitle=Mathematical+biosciences+and+engineering+%3A+MBE&rft.au=Danial+Sharifrazi&rft.au=Roohallah+Alizadehsani&rft.au=Javad+Hassannataj+Joloudari&rft.au=Shahab+S.+Band&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=1551-0018&rft.volume=19&rft.issue=3&rft.spage=2381&rft.epage=2402&rft_id=info:doi/10.3934%2Fmbe.2022110&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9c05149c7cac4bc78455b0bb0fb16d3d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-0018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-0018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-0018&client=summon