Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications
Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially c...
Saved in:
Published in | Pharmacological reviews Vol. 73; no. 2; pp. 763 - 791 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2021
The American Society for Pharmacology and Experimental Therapeutics |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses.
Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications. |
---|---|
AbstractList | Hydroxynorketamines (HNKs) are formed in vivo after (
,
)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (
,
)- and (
)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (
,
)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications. Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications. Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications. Hydroxynorketamines (HNKs) are formed in vivo after ( R , S )-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, ( 2R , 6R )- and ( 2S 6 )-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of ( 2R , 6R )-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. |
Author | Zanos, Panos Pereira, Edna F.R. Thomas, Craig J. Highland, Jaclyn N. Riggs, Lace M. Morris, Patrick J. Georgiou, Polymnia Gould, Todd D. Clark, Sarah M. Moaddel, Ruin Zarate, Carlos A. |
Author_xml | – sequence: 1 givenname: Jaclyn N. surname: Highland fullname: Highland, Jaclyn N. – sequence: 2 givenname: Panos surname: Zanos fullname: Zanos, Panos – sequence: 3 givenname: Lace M. surname: Riggs fullname: Riggs, Lace M. – sequence: 4 givenname: Polymnia surname: Georgiou fullname: Georgiou, Polymnia – sequence: 5 givenname: Sarah M. surname: Clark fullname: Clark, Sarah M. – sequence: 6 givenname: Patrick J. surname: Morris fullname: Morris, Patrick J. – sequence: 7 givenname: Ruin surname: Moaddel fullname: Moaddel, Ruin – sequence: 8 givenname: Craig J. surname: Thomas fullname: Thomas, Craig J. – sequence: 9 givenname: Carlos A. surname: Zarate fullname: Zarate, Carlos A. – sequence: 10 givenname: Edna F.R. surname: Pereira fullname: Pereira, Edna F.R. – sequence: 11 givenname: Todd D. surname: Gould fullname: Gould, Todd D. email: gouldlab@me.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33674359$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1U1G5LfwESypFLFjt2EhsJpKoCFqkSPZSz5UwmXUNiB9u76v57vGxb0R7gNIf53pvRe6fkyHmHhLxmdMlYJd7NaxOmgNslq-iSUsqEekEWrK5YSalkR2RBKWdlo1R7Qk5j_LFHalkfkxPOm1bwWi3IarXrg7_bOR9-YjKTdRjfF9d7awN-9Le7wri-uPYJXbJmLG7WGMyMm2ShuJjn0YJJ1rv4irwczBjx_H6eke-fP91crsqrb1--Xl5clSBqlUohDcUaKjMo7DsqeIt1NUhgIGsGauhBNQ0VXdXTQXLgFUhlOtO0rMOBiYGfkY8H33nTTdhDfiuYUc_BTibstDdWP904u9a3fqtbxWW2zgZv7w2C_7XBmPRkI-A4God-E3UllBRSsLbJ6Ju_bz0eeYgvA_wAQPAxBhweEUb1viT9UJLOJelDSVmlnqnApj8p5oft-B_th4MWc8Zbi0FHsOgAexsQku69_af-N5OSsjM |
CitedBy_id | crossref_primary_10_1016_j_eclinm_2022_101439 crossref_primary_10_1016_j_neuropharm_2021_108936 crossref_primary_10_1002_elps_202400213 crossref_primary_10_1016_j_jpsychires_2022_04_035 crossref_primary_10_1186_s10194_023_01667_1 crossref_primary_10_3390_ph16050742 crossref_primary_10_1080_17512433_2023_2198703 crossref_primary_10_1016_j_neuropharm_2022_109276 crossref_primary_10_1016_j_neuropharm_2022_109153 crossref_primary_10_1021_acschemneuro_1c00761 crossref_primary_10_3390_ijms25021150 crossref_primary_10_1124_pharmrev_120_000131 crossref_primary_10_1152_jn_00326_2023 crossref_primary_10_1016_j_bbr_2024_115273 crossref_primary_10_1016_j_ejphar_2025_177470 crossref_primary_10_1038_s41593_022_01146_x crossref_primary_10_1038_s41398_024_02744_y crossref_primary_10_1016_j_lfs_2023_121803 crossref_primary_10_3390_jcm12093256 crossref_primary_10_1016_j_neubiorev_2023_105191 crossref_primary_10_1016_j_neuropharm_2022_108984 crossref_primary_10_1111_bcp_15467 crossref_primary_10_1124_jpet_123_001823 crossref_primary_10_3390_ijms25126804 crossref_primary_10_1016_j_bcp_2021_114892 crossref_primary_10_1021_acs_jmedchem_4c02467 crossref_primary_10_1021_acschemneuro_4c00051 crossref_primary_10_1038_s41591_024_03063_x crossref_primary_10_1016_j_biopsych_2024_09_024 crossref_primary_10_1523_JNEUROSCI_1121_22_2022 crossref_primary_10_1038_s41380_022_01652_1 crossref_primary_10_3389_fpain_2022_946486 crossref_primary_10_1111_bcp_15374 crossref_primary_10_1002_cpdd_993 crossref_primary_10_1038_s41398_021_01685_0 crossref_primary_10_1080_17460441_2022_2111415 crossref_primary_10_1146_annurev_clinpsy_072120_014126 crossref_primary_10_1021_acsnano_3c11154 crossref_primary_10_1111_cns_14464 crossref_primary_10_1016_j_psiq_2024_100547 crossref_primary_10_1192_bjo_2023_577 crossref_primary_10_1016_j_neuropharm_2022_109402 crossref_primary_10_1002_cpt_3391 crossref_primary_10_1002_elps_202200175 crossref_primary_10_1016_j_ntt_2021_106993 crossref_primary_10_3389_fnins_2021_672526 crossref_primary_10_1089_neu_2023_0252 crossref_primary_10_1177_02698811241301215 crossref_primary_10_1124_jpet_122_001278 crossref_primary_10_3390_cells11040645 crossref_primary_10_1177_02698811211064922 crossref_primary_10_1016_j_bbrc_2022_01_025 crossref_primary_10_1016_j_jad_2023_04_101 crossref_primary_10_1016_j_neuropharm_2021_108743 crossref_primary_10_1213_ANE_0000000000006590 crossref_primary_10_1007_s00115_021_01225_7 crossref_primary_10_1038_s41422_021_00500_1 crossref_primary_10_1016_j_pbb_2023_173531 crossref_primary_10_1038_s41380_022_01673_w crossref_primary_10_1038_s41386_025_02085_4 crossref_primary_10_1021_acs_joc_3c01226 crossref_primary_10_3389_fnbeh_2021_749180 crossref_primary_10_14336_AD_2024_0239 crossref_primary_10_1371_journal_pone_0301848 crossref_primary_10_3390_biomedicines12102283 crossref_primary_10_1002_mco2_156 |
Cites_doi | 10.1002/bmc.1379 10.33549/physiolres.932678 10.1523/JNEUROSCI.19-07-02693.1999 10.4088/JCP.09m05327blu 10.1085/jgp.201812032 10.1002/da.22536 10.1016/j.biopsych.2016.12.020 10.1038/nature22085 10.1016/j.neuropharm.2018.06.033 10.1016/j.biopsych.2017.01.002 10.1177/2398212820957847 10.1146/annurev-pharmtox-010617-052811 10.1093/ijnp/pyx108 10.1016/j.neuropharm.2019.107667 10.1016/j.talanta.2020.121094 10.1124/mol.120.119784 10.1073/pnas.1816071116 10.1038/mp.2017.255 10.1016/j.neubiorev.2019.07.007 10.1016/j.jpba.2017.02.035 10.1016/j.cell.2021.01.034 10.1136/rapm-2018-000013 10.1016/j.neuropharm.2020.108068 10.1002/elps.201500468 10.1016/j.neuropharm.2019.04.019 10.1016/j.ynstr.2020.100239 10.1038/nrn2055 10.1038/tp.2015.136 10.3109/00498258709043993 10.1186/s13041-020-00627-z 10.1016/j.biopsych.2017.05.016 10.1016/S0022-3565(24)29296-X 10.1016/j.bja.2020.06.067 10.1016/j.neuron.2020.05.015 10.1016/j.pbb.2013.11.033 10.1001/archpsyc.1994.03950030035004 10.1002/elps.201700016 10.1038/s41386-019-0443-3 10.1073/pnas.1819540116 10.1016/j.jpba.2017.09.007 10.1016/j.bbr.2019.111904 10.1111/j.1365-2885.2006.00794.x 10.1038/nrn2174 10.1016/j.neuropharm.2020.107947 10.1016/j.chroma.2010.06.028 10.1038/s41598-018-22449-9 10.3109/00498254.2012.685777 10.1016/j.biopsych.2017.10.020 10.1016/j.jpba.2016.03.030 10.1111/apha.13211 10.1016/j.bbagen.2018.03.008 10.1016/j.bcp.2018.03.032 10.1093/ijnp/pyy053 10.1097/00000542-199704000-00021 10.1038/nrn1846 10.1097/00000542-199212000-00022 10.3389/fphar.2020.590221 10.1002/prp2.157 10.1038/npp.2013.150 10.1016/j.talanta.2010.08.005 10.1038/s41380-018-0083-8 10.1038/s41386-020-0714-z 10.1016/j.pbb.2020.172973 10.1038/s41386-020-0663-6 10.1111/j.1476-5381.1983.tb11031.x 10.1111/bph.14683 10.1016/j.chroma.2016.07.060 10.1097/00000539-199512001-00003 10.1007/s00213-018-5017-2 10.1016/j.pbb.2020.172876 10.1111/bcpt.12941 10.1093/ijnp/pyz041 10.3389/fncel.2014.00401 10.1097/WNR.0000000000001131 10.1073/pnas.1814709116 10.1097/00004311-197412020-00018 10.1002/elps.201500147 10.1074/jbc.RA119.008837 10.1124/jpet.116.235838 10.1016/0304-3940(82)90330-5 10.1038/mp.2017.241 10.1113/jphysiol.2006.124958 10.1124/pr.117.015198 10.1002/elps.201800012 10.1038/npp.2017.210 10.1177/0269881118812095 10.3389/fnins.2020.00254 10.1002/bms.1200081103 10.1021/jm00161a043 10.1097/ALN.0000000000001392 10.1038/s41398-017-0031-4 10.3389/fphar.2019.01302 10.1002/elps.201700017 10.1038/nature22084 10.1016/j.ejphar.2012.11.023 10.1038/aps.2010.184 10.1124/dmd.108.026328 10.1152/jn.1987.58.2.251 10.1038/mp.2017.239 10.1002/prca.201900094 10.1002/elps.200900221 10.1080/20961790.2017.1285219 10.1039/C6CC09061C 10.1038/s41386-018-0084-y 10.1111/j.1365-2125.2012.04198.x 10.1016/j.mcn.2018.05.002 10.1002/da.22253 10.1016/j.jchromb.2020.122214 10.1016/S0006-3223(99)00230-9 10.1038/s41386-020-0668-1 10.1124/jpet.116.239228 10.1097/ALN.0000000000000285 10.3390/ijms21062142 10.1038/nature17998 10.1016/j.neuropharm.2019.107684 10.1016/j.biopsych.2012.03.004 10.1111/bph.14785 10.1001/archpsyc.63.8.856 10.1016/j.jpsychires.2019.08.005 10.1021/acs.orglett.7b02177 |
ContentType | Journal Article |
Copyright | 2021 American Society for Pharmacology and Experimental Therapeutics U.S. Government work not protected by U.S. copyright. U.S. Government work not protected by U.S. copyright 2021 |
Copyright_xml | – notice: 2021 American Society for Pharmacology and Experimental Therapeutics – notice: U.S. Government work not protected by U.S. copyright. – notice: U.S. Government work not protected by U.S. copyright 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1124/pharmrev.120.000149 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Hydroxynorketamines Pharmacology |
EISSN | 1521-0081 |
EndPage | 791 |
ExternalDocumentID | PMC7938660 33674359 10_1124_pharmrev_120_000149 S0031699724006653 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R21 AI145211 – fundername: BLRD VA grantid: I01 BX004062 – fundername: BLRD VA grantid: I01 BX003631 – fundername: NIMH NIH HHS grantid: F31 MH123066 – fundername: NIGMS NIH HHS grantid: T32 GM008181 – fundername: NIGMS NIH HHS grantid: R25 GM055036 – fundername: NIMH NIH HHS grantid: R01 MH107615 – fundername: NINDS NIH HHS grantid: T32 NS063391 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 18M 1KJ 2WC 3O- 4.4 53G 5RE 5VS AAJMC AALRI AAXUO AAYOK ABCQX ABJNI ABOCM ABSQV ACGFO ACGFS ADBBV ADCOW AENEX AERNN AFHIN AFOSN AGFXO ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD F5P F9R FDB GX1 H13 HZ~ INIJC KQ8 L7B LSO MVM N4W N9A O9- OK1 P2P RHF RHI RPT SJN TR2 W8F WOQ X7M YBU YHG YNH ZGI ZKB ZXP AAYXX AETEA CITATION M41 ROL CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c459t-48a0e5c2af9edb0437e52f8c1c851c9fdc96604b2d0f83c32c89aba671bef14f3 |
ISSN | 0031-6997 1521-0081 |
IngestDate | Thu Aug 21 13:28:19 EDT 2025 Fri Jul 11 11:20:21 EDT 2025 Mon Jul 21 06:00:24 EDT 2025 Thu Apr 24 22:51:08 EDT 2025 Tue Jul 01 05:29:21 EDT 2025 Sat Jan 25 15:58:37 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | p4E-BP1 eEF2 AMPA HK HNK mEPSC AP-2 AUC GluA CA1 fEPSP CSF mTOR NMDA malus GluN BDNF ERα iPSC CRPS1 AMPAR TrkB NMDAR mTORC1 pERK |
Language | English |
License | U.S. Government work not protected by U.S. copyright. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c459t-48a0e5c2af9edb0437e52f8c1c851c9fdc96604b2d0f83c32c89aba671bef14f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pharmrev.aspetjournals.org/content/pharmrev/73/2/763.full.pdf |
PMID | 33674359 |
PQID | 2498484176 |
PQPubID | 23479 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938660 proquest_miscellaneous_2498484176 pubmed_primary_33674359 crossref_primary_10_1124_pharmrev_120_000149 crossref_citationtrail_10_1124_pharmrev_120_000149 elsevier_sciencedirect_doi_10_1124_pharmrev_120_000149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Pharmacological reviews |
PublicationTitleAlternate | Pharmacol Rev |
PublicationYear | 2021 |
Publisher | Elsevier Inc The American Society for Pharmacology and Experimental Therapeutics |
Publisher_xml | – name: Elsevier Inc – name: The American Society for Pharmacology and Experimental Therapeutics |
References | Ye, Ko, Huang, Zheng, Zheng, Chou (bib109) 2019; 157 Lilius, Viisanen, Jokinen, Niemi, Kalso, Rauhala (bib61) 2018; 122 Sandbaumhüter, Theurillat, Thormann (bib84) 2015; 36 Riggs, Aracava, Zanos, Fischell, Albuquerque, Pereira, Thompson, Gould (bib80) 2019; 45 Zanos, Moaddel, Morris, Georgiou, Fischell, Elmer, Alkondon, Yuan, Pribut, Singh (bib115) 2016; 533 Adams, Baillie, Trevor, Castagnoli (bib4) 1981; 8 Abdallah (bib3) 2020; 45 Lankveld, Driessen, Soma, Moate, Rudy, Uboh, van Dijk, Hellebrekers (bib59) 2006; 29 Rodriguez, Kegeles, Levinson, Feng, Marcus, Vermes, Flood, Simpson (bib81) 2013; 38 Schmitz, Theurillat, Lassahn, Mevissen, Thormann (bib89) 2009; 30 Hare, Pothula, DiLeone, Duman (bib42) 2020; 166 Michaëlsson, Andersson, Svensson, Karlsson, Ehn, Culley, Engström, Bergström, Savvidi, Kuhn (bib66) 2019; 225 Gould, Zarate, Thompson (bib39) 2019; 59 Grunebaum, Galfalvy, Choo, Parris, Burke, Suckow, Cooper, Mann (bib40) 2019; 117 Anderzhanova, Hafner, Genewsky, Soliman, Pöhlmann, Schmidt, Blum, Wotjak, Gassen (bib11) 2020; 13 Rahman, Hao, He, Li, Yang, Ye, Ali, Zhou, Li (bib78) 2020; 14 Xiong, Fujita, Zhang, Pu, Chang, Ma, Chen, Hashimoto (bib102) 2019; 368 Morris, Moaddel, Zanos, Moore, Gould, Zarate, Thomas (bib71) 2017; 19 Chen, Luna, LaGamma, Xu, Deng, Suckow, Cooper, Shah, Brachman, Mendez-David (bib20) 2020; 45 Chou, Peng, Lin, Lai, Hsieh, Wen, Lee, Wang, Yang, Chen (bib22) 2018; 139 Zhang, Toki, Fujita, Ma, Chang, Qu, Harada, Nemoto, Mizuno-Yasuhira, Yamaguchi (bib122) 2018; 235 Shaffer, Dutra, Tseng, Weber, Bogart, Hales, Pang, Volfson, Am Ende, Green (bib91) 2019; 153 Hasan, Hofstetter, Fassauer, Link, Siegmund, Oswald (bib43) 2017; 139 Aleksandrova, Wang, Phillips (bib8) 2019; 105 Derkach, Oh, Guire, Soderling (bib24) 2007; 8 Elmer, Tapocik, Mayo, Zanos, Gould (bib32) 2020; 196 Yamaguchi, Toki, Qu, Yang, Koike, Hashimoto, Mizuno-Yasuhira, Chaki (bib103) 2018; 43 Can, Zanos, Moaddel, Kang, Dossou, Wainer, Cheer, Frost, Huang, Gould (bib15) 2016; 359 Hillhouse, Rice, Porter (bib46) 2019; 176 Ho, Zhang, Zhang, Li, Weinshilboum (bib48) 2019; 10 Tůma, Koval, Sommerová, Vaculín (bib96) 2020; 217 Sassano-Higgins, Baron, Juarez, Esmaili, Gold (bib87) 2016; 33 Lumsden, Troppoli, Myers, Zanos, Aracava, Kehr, Lovett, Kim, Wang, Schmidt (bib63) 2019; 116 Farmer, Gilbert, Moaddel, George, Adeojo, Lovett, Nugent, Kadriu, Yuan, Gould (bib34) 2020; 45 Orser, Pennefather, MacDonald (bib73) 1997; 86 Zhang, Li, Hashimoto (bib120) 2014; 116 Price, Iosifescu, Murrough, Chang, Al Jurdi, Iqbal, Soleimani, Charney, Foulkes, Mathew (bib77) 2014; 31 Scheefhals, MacGillavry (bib88) 2018; 91 Abbott, Popescu (bib1) 2020; 98 Zanos, Highland, Stewart, Georgiou, Jenne, Lovett, Morris, Thomas, Moaddel, Zarate (bib114) 2019; 116 Herzog, Mellema, Remmers, Lutz, Müller, Treccani (bib44) 2020; 21 Cavalleri, Merlo Pich, Millan, Chiamulera, Kunath, Spano, Collo (bib16) 2018; 23 Kohtala, Theilmann, Rosenholm, Müller, Kiuru, Wegener, Yli-Kauhaluoma, Rantamäki (bib55) 2019; 157 Duhamel, Troncy, Beaudry (bib29) 2010; 24 Fred, Laukkanen, Brunello, Vesa, Göös, Cardon, Moliner, Maritzen, Varjosalo, Casarotto (bib36) 2019; 294 Moaddel, Sanghvi, Dossou, Ramamoorthy, Green, Bupp, Swezey, O’Loughlin, Wainer (bib68) 2015; 3 Rao, Flaker, Friedel, Kharasch (bib79) 2016; 125 Berton, Nestler (bib14) 2006; 7 MacDonald, Miljkovic, Pennefather (bib64) 1987; 58 Suzuki, Nosyreva, Hunt, Kavalali, Monteggia (bib94) 2017; 546 Portmann, Kwan, Theurillat, Schmitz, Mevissen, Thormann (bib76) 2010; 1217 DiazGranados, Ibrahim, Brutsche, Ameli, Henter, Luckenbaugh, Machado-Vieira, Zarate (bib26) 2010; 71 Desta, Moaddel, Ogburn, Xu, Ramamoorthy, Venkata, Sanghvi, Goldberg, Torjman, Wainer (bib25) 2012; 42 Kamp, Jonkman, van Velzen, Aarts, Niesters, Dahan, Olofsen (bib49) 2020; 125 Zarate, Singh, Carlson, Brutsche, Ameli, Luckenbaugh, Charney, Manji (bib119) 2006; 63 Sandbaumhüter, Thormann (bib86) 2018; 39 Moaddel, Venkata, Tanga, Bupp, Green, Iyer, Furimsky, Goldberg, Torjman, Wainer (bib70) 2010; 82 Chang, Glazko (bib18) 1974; 12 Kharasch, Labroo (bib53) 1992; 77 Ebert (bib30) 1996; 47 Hansen, Yi, Perszyk, Furukawa, Wollmuth, Gibb, Traynelis (bib41) 2018; 150 Moaddel, Abdrakhmanova, Kozak, Jozwiak, Toll, Jimenez, Rosenberg, Tran, Xiao, Zarate (bib67) 2013; 698 Kroin, Das, Moric, Buvanendran (bib56) 2019; 44 Shirayama, Hashimoto (bib92) 2018; 21 Woolf, Adams (bib100) 1987; 17 Schoepp (bib90) 2001; 299 Zanos, Moaddel, Morris, Riggs, Highland, Georgiou, Pereira, Albuquerque, Thomas, Zarate (bib117) 2018; 70 Zarate, Brutsche, Laje, Luckenbaugh, Venkata, Ramamoorthy, Moaddel, Wainer (bib118) 2012; 72 Zhao, Venkata, Moaddel, Luckenbaugh, Brutsche, Ibrahim, Zarate, Mager, Wainer (bib123) 2012; 74 Paul, Singh, Khadeer, Moaddel, Sanghvi, Green, O’Loughlin, Torjman, Bernier, Wainer (bib74) 2014; 121 Kurzweil, Danyeli, Şen, Fejtova, Walter, Gensberger-Reigl (bib58) 2020; 1152 Moaddel, Sanghvi, Ramamoorthy, Jozwiak, Singh, Green, O’Loughlin, Torjman, Wainer (bib69) 2016; 127 Lodge, Anis, Burton (bib62) 1982; 29 Vyklicky, Korinek, Smejkalova, Balik, Krausova, Kaniakova, Lichnerova, Cerny, Krusek, Dittert (bib98) 2014; 63 Yokoyama, Higuchi, Tanabe, Tsukada, Naito, Yamaguchi, Chen, Kasai, Seiriki, Nakazawa (bib110) 2020; 191 Chater, Goda (bib19) 2014; 8 Collo, Cavalleri, Chiamulera, Merlo Pich (bib23) 2018; 29 Fukumoto, Toki, Iijima, Hashihayata, Yamaguchi, Hashimoto, Chaki (bib38) 2017; 361 Kavalali, Monteggia (bib52) 2020; 106 Nelson, Trainor (bib72) 2007; 8 Ko, Yang, Chou, Xu (bib54) 2020; 14 Chou (bib21) 2020; 170 Dinis-Oliveira (bib27) 2017; 2 Yang, Shirayama, Zhang, Ren, Yao, Ma, Dong, Hashimoto (bib107) 2015; 5 Yu, Chen (bib111) 2011; 32 Aguilar-Valles, De Gregorio, Matta-Camacho, Eslamizade, Khlaifia, Skaleka, Lopez-Canul, Torres-Berrio, Bermudez, Rurak (bib6) 2020 Turfus, Parkin, Cowan, Halket, Smith, Braithwaite, Elliot, Steventon, Kicman (bib97) 2009; 37 Dravid, Erreger, Yuan, Nicholson, Le, Lyuboslavsky, Almonte, Murray, Mosely, Barber (bib28) 2007; 581 Casarotto, Girych, Fred, Kovaleva, Moliner, Enkavi, Biojone, Cannarozzo, Sahu, Kaurinkoski (bib124) 2021 Zanos, Moaddel, Morris, Georgiou, Fischell, Elmer, Alkondon, Yuan, Pribut, Singh (bib116) 2017; 546 Ago, Tanabe, Higuchi, Tsukada, Tanaka, Yamaguchi, Igarashi, Yokoyama, Seiriki, Kasai (bib5) 2019; 22 Wegman-Points, Pope, Zobel-Mask, Winter, Wauson, Duric, Yuan (bib99) 2020; 11 Ho, Correia, Ingle, Kaddurah-Daouk, Wang, Kaufmann, Weinshilboum (bib47) 2018; 152 Berman, Cappiello, Anand, Oren, Heninger, Charney, Krystal (bib13) 2000; 47 Kang, Park, Han, Tidball, Georgiou, Bortolotto, Lodge, Kaang, Collingridge (bib50) 2020; 4 Alkondon, Pereira, Eisenberg, Albuquerque (bib10) 1999; 19 Martinez-Lozano Sinues, Kohler, Brown, Zenobi, Dallmann (bib65) 2017; 53 Highland, Morris, Zanos, Lovett, Ghosh, Wang, Zarate, Thomas, Moaddel, Gould (bib45) 2019; 33 Wray, Schappi, Singh, Senese, Rasenick (bib101) 2019; 24 Fukumoto, Fogaça, Liu, Duman, Kato, Li, Duman (bib37) 2019; 116 Kavalali, Monteggia (bib51) 2018; 43 Pham, Defaix, Xu, Deng, Fabresse, Alvarez, Landry, Brachman, Denny, Gardier (bib75) 2018; 84 Ebert, Harkin, Muzi (bib31) 1995; 81 Sandbaumhüter, Theurillat, Bektas, Kutter, Bettschart-Wolfensberger, Thormann (bib82) 2016; 1467 Fassauer, Hofstetter, Hasan, Oswald, Modeß, Siegmund, Link (bib35) 2017; 146 Anis, Berry, Burton, Lodge (bib12) 1983; 79 Yang, Ren, Qu, Zhang, Ma, Dong, Hashimoto (bib106) 2018; 83 Aleksandrova, Wang, Phillips (bib7) 2017; 1 Theurillat, Sandbaumhüter, Bettschart-Wolfensberger, Thormann (bib95) 2016; 37 Abdallah (bib2) 2017; 81 Sandbaumhüter, Theurillat, Bettschart-Wolfensberger, Thormann (bib83) 2017; 38 Zanos, Highland, Liu, Troppoli, Georgiou, Lovett, Morris, Stewart, Thomas, Thompson (bib113) 2019; 176 Yang, Qu, Fujita, Ren, Ma, Dong, Hashimoto (bib105) 2017; 7 Zanos, Gould (bib112) 2018; 23 Leung, Baillie (bib60) 1986; 29 Singh, Rutkowska, Plazinska, Khadeer, Moaddel, Jozwiak, Bernier, Wainer (bib93) 2016; 11 Yang, Qu, Abe, Nozawa, Chaki, Hashimoto (bib104) 2017; 82 Sandbaumhüter, Theurillat, Thormann (bib85) 2017; 38 Krystal, Karper, Seibyl, Freeman, Delaney, Bremner, Heninger, Bowers, Charney (bib57) 1994; 51 Faccio, Ruperez, Singh, Angulo, Tavares, Bernier, Barbas, Wainer (bib33) 2018; 1862 Chang, Toki, Qu, Fujita, Mizuno-Yasuhira, Yamaguchi, Chaki, Hashimoto (bib17) 2018; 21 Zhang, Fujita, Hashimoto (bib121) 2018; 8 Aleksandrova, Wang, Phillips (bib9) 2020; 13 Yao, Skiteva, Zhang, Svenningsson, Chergui (bib108) 2018; 23 Ko (10.1124/pharmrev.120.000149_bib54) 2020; 14 Chou (10.1124/pharmrev.120.000149_bib21) 2020; 170 Zhang (10.1124/pharmrev.120.000149_bib121) 2018; 8 Kavalali (10.1124/pharmrev.120.000149_bib51) 2018; 43 Abbott (10.1124/pharmrev.120.000149_bib1) 2020; 98 Shirayama (10.1124/pharmrev.120.000149_bib92) 2018; 21 Woolf (10.1124/pharmrev.120.000149_bib100) 1987; 17 Vyklicky (10.1124/pharmrev.120.000149_bib98) 2014; 63 Yang (10.1124/pharmrev.120.000149_bib105) 2017; 7 DiazGranados (10.1124/pharmrev.120.000149_bib26) 2010; 71 Zarate (10.1124/pharmrev.120.000149_bib119) 2006; 63 Paul (10.1124/pharmrev.120.000149_bib74) 2014; 121 Ye (10.1124/pharmrev.120.000149_bib109) 2019; 157 Wray (10.1124/pharmrev.120.000149_bib101) 2019; 24 Sassano-Higgins (10.1124/pharmrev.120.000149_bib87) 2016; 33 Chang (10.1124/pharmrev.120.000149_bib18) 1974; 12 Casarotto (10.1124/pharmrev.120.000149_bib124) 2021 Chou (10.1124/pharmrev.120.000149_bib22) 2018; 139 Ago (10.1124/pharmrev.120.000149_bib5) 2019; 22 Singh (10.1124/pharmrev.120.000149_bib93) 2016; 11 Leung (10.1124/pharmrev.120.000149_bib60) 1986; 29 Ho (10.1124/pharmrev.120.000149_bib47) 2018; 152 Aleksandrova (10.1124/pharmrev.120.000149_bib9) 2020; 13 Gould (10.1124/pharmrev.120.000149_bib39) 2019; 59 Martinez-Lozano Sinues (10.1124/pharmrev.120.000149_bib65) 2017; 53 Zanos (10.1124/pharmrev.120.000149_bib117) 2018; 70 Yokoyama (10.1124/pharmrev.120.000149_bib110) 2020; 191 Kroin (10.1124/pharmrev.120.000149_bib56) 2019; 44 Desta (10.1124/pharmrev.120.000149_bib25) 2012; 42 Scheefhals (10.1124/pharmrev.120.000149_bib88) 2018; 91 Krystal (10.1124/pharmrev.120.000149_bib57) 1994; 51 Orser (10.1124/pharmrev.120.000149_bib73) 1997; 86 Faccio (10.1124/pharmrev.120.000149_bib33) 2018; 1862 Farmer (10.1124/pharmrev.120.000149_bib34) 2020; 45 Zhang (10.1124/pharmrev.120.000149_bib120) 2014; 116 Kharasch (10.1124/pharmrev.120.000149_bib53) 1992; 77 Yang (10.1124/pharmrev.120.000149_bib106) 2018; 83 Rao (10.1124/pharmrev.120.000149_bib79) 2016; 125 Lankveld (10.1124/pharmrev.120.000149_bib59) 2006; 29 Portmann (10.1124/pharmrev.120.000149_bib76) 2010; 1217 Hillhouse (10.1124/pharmrev.120.000149_bib46) 2019; 176 Berton (10.1124/pharmrev.120.000149_bib14) 2006; 7 Moaddel (10.1124/pharmrev.120.000149_bib69) 2016; 127 Dravid (10.1124/pharmrev.120.000149_bib28) 2007; 581 Duhamel (10.1124/pharmrev.120.000149_bib29) 2010; 24 Fukumoto (10.1124/pharmrev.120.000149_bib37) 2019; 116 Yang (10.1124/pharmrev.120.000149_bib107) 2015; 5 Schmitz (10.1124/pharmrev.120.000149_bib89) 2009; 30 Berman (10.1124/pharmrev.120.000149_bib13) 2000; 47 Fred (10.1124/pharmrev.120.000149_bib36) 2019; 294 Moaddel (10.1124/pharmrev.120.000149_bib68) 2015; 3 Grunebaum (10.1124/pharmrev.120.000149_bib40) 2019; 117 Ebert (10.1124/pharmrev.120.000149_bib31) 1995; 81 Wegman-Points (10.1124/pharmrev.120.000149_bib99) 2020; 11 Lilius (10.1124/pharmrev.120.000149_bib61) 2018; 122 Kang (10.1124/pharmrev.120.000149_bib50) 2020; 4 Cavalleri (10.1124/pharmrev.120.000149_bib16) 2018; 23 Sandbaumhüter (10.1124/pharmrev.120.000149_bib83) 2017; 38 Sandbaumhüter (10.1124/pharmrev.120.000149_bib86) 2018; 39 Elmer (10.1124/pharmrev.120.000149_bib32) 2020; 196 Hansen (10.1124/pharmrev.120.000149_bib41) 2018; 150 Chang (10.1124/pharmrev.120.000149_bib17) 2018; 21 Chen (10.1124/pharmrev.120.000149_bib20) 2020; 45 Herzog (10.1124/pharmrev.120.000149_bib44) 2020; 21 Suzuki (10.1124/pharmrev.120.000149_bib94) 2017; 546 Zanos (10.1124/pharmrev.120.000149_bib113) 2019; 176 Kohtala (10.1124/pharmrev.120.000149_bib55) 2019; 157 Kurzweil (10.1124/pharmrev.120.000149_bib58) 2020; 1152 Yu (10.1124/pharmrev.120.000149_bib111) 2011; 32 Lodge (10.1124/pharmrev.120.000149_bib62) 1982; 29 Turfus (10.1124/pharmrev.120.000149_bib97) 2009; 37 Alkondon (10.1124/pharmrev.120.000149_bib10) 1999; 19 Shaffer (10.1124/pharmrev.120.000149_bib91) 2019; 153 Collo (10.1124/pharmrev.120.000149_bib23) 2018; 29 Rahman (10.1124/pharmrev.120.000149_bib78) 2020; 14 Adams (10.1124/pharmrev.120.000149_bib4) 1981; 8 Highland (10.1124/pharmrev.120.000149_bib45) 2019; 33 Zanos (10.1124/pharmrev.120.000149_bib116) 2017; 546 Abdallah (10.1124/pharmrev.120.000149_bib3) 2020; 45 Aleksandrova (10.1124/pharmrev.120.000149_bib7) 2017; 1 Aleksandrova (10.1124/pharmrev.120.000149_bib8) 2019; 105 Rodriguez (10.1124/pharmrev.120.000149_bib81) 2013; 38 Yang (10.1124/pharmrev.120.000149_bib104) 2017; 82 Lumsden (10.1124/pharmrev.120.000149_bib63) 2019; 116 Zanos (10.1124/pharmrev.120.000149_bib112) 2018; 23 Sandbaumhüter (10.1124/pharmrev.120.000149_bib84) 2015; 36 Yao (10.1124/pharmrev.120.000149_bib108) 2018; 23 Chater (10.1124/pharmrev.120.000149_bib19) 2014; 8 Zanos (10.1124/pharmrev.120.000149_bib114) 2019; 116 Nelson (10.1124/pharmrev.120.000149_bib72) 2007; 8 Fassauer (10.1124/pharmrev.120.000149_bib35) 2017; 146 Zhang (10.1124/pharmrev.120.000149_bib122) 2018; 235 Aguilar-Valles (10.1124/pharmrev.120.000149_bib6) 2020 Morris (10.1124/pharmrev.120.000149_bib71) 2017; 19 Kavalali (10.1124/pharmrev.120.000149_bib52) 2020; 106 Michaëlsson (10.1124/pharmrev.120.000149_bib66) 2019; 225 Theurillat (10.1124/pharmrev.120.000149_bib95) 2016; 37 Abdallah (10.1124/pharmrev.120.000149_bib2) 2017; 81 Anderzhanova (10.1124/pharmrev.120.000149_bib11) 2020; 13 Kamp (10.1124/pharmrev.120.000149_bib49) 2020; 125 Anis (10.1124/pharmrev.120.000149_bib12) 1983; 79 Yamaguchi (10.1124/pharmrev.120.000149_bib103) 2018; 43 Fukumoto (10.1124/pharmrev.120.000149_bib38) 2017; 361 Price (10.1124/pharmrev.120.000149_bib77) 2014; 31 Zanos (10.1124/pharmrev.120.000149_bib115) 2016; 533 Sandbaumhüter (10.1124/pharmrev.120.000149_bib82) 2016; 1467 Riggs (10.1124/pharmrev.120.000149_bib80) 2019; 45 Dinis-Oliveira (10.1124/pharmrev.120.000149_bib27) 2017; 2 Moaddel (10.1124/pharmrev.120.000149_bib67) 2013; 698 Schoepp (10.1124/pharmrev.120.000149_bib90) 2001; 299 Zhao (10.1124/pharmrev.120.000149_bib123) 2012; 74 Tůma (10.1124/pharmrev.120.000149_bib96) 2020; 217 Hare (10.1124/pharmrev.120.000149_bib42) 2020; 166 Pham (10.1124/pharmrev.120.000149_bib75) 2018; 84 Can (10.1124/pharmrev.120.000149_bib15) 2016; 359 Zarate (10.1124/pharmrev.120.000149_bib118) 2012; 72 Ebert (10.1124/pharmrev.120.000149_bib30) 1996; 47 Hasan (10.1124/pharmrev.120.000149_bib43) 2017; 139 Ho (10.1124/pharmrev.120.000149_bib48) 2019; 10 Moaddel (10.1124/pharmrev.120.000149_bib70) 2010; 82 Derkach (10.1124/pharmrev.120.000149_bib24) 2007; 8 Xiong (10.1124/pharmrev.120.000149_bib102) 2019; 368 MacDonald (10.1124/pharmrev.120.000149_bib64) 1987; 58 Sandbaumhüter (10.1124/pharmrev.120.000149_bib85) 2017; 38 |
References_xml | – volume: 79 start-page: 565 year: 1983 end-page: 575 ident: bib12 article-title: The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate publication-title: Br J Pharmacol – volume: 44 start-page: 111 year: 2019 end-page: 117 ident: bib56 article-title: Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain publication-title: Reg Anesth Pain Med – volume: 225 year: 2019 ident: bib66 article-title: The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive-like rats publication-title: Acta Physiol (Oxf) – volume: 127 start-page: 3 year: 2016 end-page: 8 ident: bib69 article-title: Subchronic administration of (R,S)-ketamine induces ketamine ring hydroxylation in Wistar rats publication-title: J Pharm Biomed Anal – volume: 84 start-page: e3 year: 2018 end-page: e6 ident: bib75 article-title: Common neurotransmission recruited in (R,S)-Ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects publication-title: Biol Psychiatry – volume: 24 start-page: 1833 year: 2019 end-page: 1843 ident: bib101 article-title: NMDAR-independent, cAMP-dependent antidepressant actions of ketamine publication-title: Mol Psychiatry – volume: 82 start-page: 1892 year: 2010 end-page: 1904 ident: bib70 article-title: A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome publication-title: Talanta – volume: 7 start-page: 137 year: 2006 end-page: 151 ident: bib14 article-title: New approaches to antidepressant drug discovery: beyond monoamines publication-title: Nat Rev Neurosci – volume: 51 start-page: 199 year: 1994 end-page: 214 ident: bib57 article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses publication-title: Arch Gen Psychiatry – volume: 8 start-page: 4007 year: 2018 ident: bib121 article-title: Lack of metabolism in (R)-ketamine’s antidepressant actions in a chronic social defeat stress model publication-title: Sci Rep – volume: 42 start-page: 1076 year: 2012 end-page: 1087 ident: bib25 article-title: Stereoselective and regiospecific hydroxylation of ketamine and norketamine publication-title: Xenobiotica – volume: 24 start-page: 868 year: 2010 end-page: 877 ident: bib29 article-title: Metabolic stability and determination of cytochrome P450 isoenzymes’ contribution to the metabolism of medetomidine in dog liver microsomes publication-title: Biomed Chromatogr – volume: 21 start-page: 2142 year: 2020 ident: bib44 article-title: Sexually dimorphic behavioral profile in a transgenic model enabling targeted recombination in active neurons in response to ketamine and (2R,6R)-hydroxynorketamine administration publication-title: Int J Mol Sci – volume: 59 start-page: 213 year: 2019 end-page: 236 ident: bib39 article-title: Molecular pharmacology and neurobiology of rapid-acting antidepressants publication-title: Annu Rev Pharmacol Toxicol – volume: 43 start-page: 1900 year: 2018 end-page: 1907 ident: bib103 article-title: (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice publication-title: Neuropsychopharmacology – volume: 14 start-page: 254 year: 2020 ident: bib54 article-title: The ventrolateral periaqueductal gray contributes to depressive-like behaviors in recovery of inflammatory bowel disease rat model publication-title: Front Neurosci – volume: 45 start-page: 1398 year: 2020 end-page: 1404 ident: bib34 article-title: Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression [published correction appears in Neuropsychopharmacology (2020)] publication-title: Neuropsychopharmacology – volume: 53 start-page: 2264 year: 2017 end-page: 2267 ident: bib65 article-title: Gauging circadian variation in ketamine metabolism by real-time breath analysis publication-title: Chem Commun (Camb) – volume: 38 start-page: 1895 year: 2017 end-page: 1904 ident: bib83 article-title: Effect of the α publication-title: Electrophoresis – volume: 1862 start-page: 1505 year: 2018 end-page: 1515 ident: bib33 article-title: Stereochemical and structural effects of (2R,6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells publication-title: Biochim Biophys Acta Gen Subj – volume: 176 start-page: 2573 year: 2019 end-page: 2592 ident: bib113 article-title: (R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses publication-title: Br J Pharmacol – volume: 11 year: 2016 ident: bib93 article-title: Ketamine metabolites enantioselectively decrease intracellular D-serine concentrations in PC-12 cells publication-title: PLoS One – volume: 37 start-page: 1769 year: 2009 end-page: 1778 ident: bib97 article-title: Use of human microsomes and deuterated substrates: an alternative approach for the identification of novel metabolites of ketamine by mass spectrometry publication-title: Drug Metab Dispos – volume: 17 start-page: 839 year: 1987 end-page: 847 ident: bib100 article-title: Biotransformation of ketamine, (Z)-6-hydroxyketamine, and (E)-6-hydroxyketamine by rat, rabbit, and human liver microsomal preparations publication-title: Xenobiotica – volume: 139 start-page: 1 year: 2018 end-page: 12 ident: bib22 article-title: (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray publication-title: Neuropharmacology – volume: 37 start-page: 1129 year: 2016 end-page: 1138 ident: bib95 article-title: Microassay for ketamine and metabolites in plasma and serum based on enantioselective capillary electrophoresis with highly sulfated γ-cyclodextrin and electrokinetic analyte injection publication-title: Electrophoresis – volume: 63 start-page: 856 year: 2006 end-page: 864 ident: bib119 article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression publication-title: Arch Gen Psychiatry – volume: 361 start-page: 9 year: 2017 end-page: 16 ident: bib38 article-title: Antidepressant potential of ( publication-title: J Pharmacol Exp Ther – volume: 58 start-page: 251 year: 1987 end-page: 266 ident: bib64 article-title: Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine publication-title: J Neurophysiol – volume: 77 start-page: 1201 year: 1992 end-page: 1207 ident: bib53 article-title: Metabolism of ketamine stereoisomers by human liver microsomes publication-title: Anesthesiology – volume: 43 start-page: 221 year: 2018 end-page: 222 ident: bib51 article-title: The ketamine metabolite 2R,6R-hydroxynorketamine blocks NMDA receptors and impacts downstream signaling linked to antidepressant effects publication-title: Neuropsychopharmacology – volume: 45 start-page: 1545 year: 2020 end-page: 1556 ident: bib20 article-title: Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine publication-title: Neuropsychopharmacology – volume: 581 start-page: 107 year: 2007 end-page: 128 ident: bib28 article-title: Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block publication-title: J Physiol – volume: 29 start-page: 477 year: 2006 end-page: 488 ident: bib59 article-title: Pharmacodynamic effects and pharmacokinetic profile of a long-term continuous rate infusion of racemic ketamine in healthy conscious horses publication-title: J Vet Pharmacol Ther – volume: 29 start-page: 281 year: 1982 end-page: 286 ident: bib62 article-title: Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine publication-title: Neurosci Lett – volume: 23 start-page: 812 year: 2018 end-page: 823 ident: bib16 article-title: Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling publication-title: Mol Psychiatry – volume: 191 start-page: 172876 year: 2020 ident: bib110 article-title: (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression publication-title: Pharmacol Biochem Behav – volume: 359 start-page: 159 year: 2016 end-page: 170 ident: bib15 article-title: Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters publication-title: J Pharmacol Exp Ther – volume: 125 start-page: 1103 year: 2016 end-page: 1112 ident: bib79 article-title: Role of cytochrome P4502B6 polymorphisms in ketamine metabolism and clearance publication-title: Anesthesiology – volume: 86 start-page: 903 year: 1997 end-page: 917 ident: bib73 article-title: Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors publication-title: Anesthesiology – volume: 8 start-page: 527 year: 1981 end-page: 538 ident: bib4 article-title: Studies on the biotransformation of ketamine. 1-Identification of metabolites produced publication-title: Biomed Mass Spectrom – volume: 170 start-page: 108068 year: 2020 ident: bib21 article-title: Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions publication-title: Neuropharmacology – volume: 166 start-page: 107947 year: 2020 ident: bib42 article-title: Ketamine increases vmPFC activity: effects of (R)- and (S)-stereoisomers and (2R,6R)-hydroxynorketamine metabolite publication-title: Neuropharmacology – volume: 45 start-page: 1245 year: 2020 end-page: 1246 ident: bib3 article-title: (2R,6R)-Hydroxynorketamine (HNK) plasma level predicts poor antidepressant response: is this the end of the HNK pipeline? publication-title: Neuropsychopharmacology – volume: 36 start-page: 2703 year: 2015 end-page: 2712 ident: bib84 article-title: Effects of medetomidine and its active enantiomer dexmedetomidine on N-demethylation of ketamine in canines determined publication-title: Electrophoresis – volume: 30 start-page: 2912 year: 2009 end-page: 2921 ident: bib89 article-title: CE provides evidence of the stereoselective hydroxylation of norketamine in equines publication-title: Electrophoresis – volume: 533 start-page: 481 year: 2016 end-page: 486 ident: bib115 article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites publication-title: Nature – volume: 14 year: 2020 ident: bib78 article-title: Proteomic study reveals the involvement of energy metabolism in the fast antidepressant effect of (2R, 6R)-hydroxy norketamine publication-title: Proteomics Clin Appl – volume: 368 start-page: 111904 year: 2019 ident: bib102 article-title: Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model publication-title: Behav Brain Res – volume: 299 start-page: 12 year: 2001 end-page: 20 ident: bib90 article-title: Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system publication-title: J Pharmacol Exp Ther – volume: 116 start-page: 297 year: 2019 end-page: 302 ident: bib37 article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2 publication-title: Proc Natl Acad Sci USA – volume: 217 start-page: 121094 year: 2020 ident: bib96 article-title: Separation of anaesthetic ketamine and its derivates in PAMAPTAC coated capillaries with tuneable counter-current electroosmotic flow publication-title: Talanta – volume: 63 start-page: S191 year: 2014 end-page: S203 ident: bib98 article-title: Structure, function, and pharmacology of NMDA receptor channels publication-title: Physiol Res – volume: 81 start-page: e61 year: 2017 end-page: e63 ident: bib2 article-title: What’s the buzz about hydroxynorketamine? Is it the history, the story, the debate, or the promise? publication-title: Biol Psychiatry – volume: 8 start-page: 536 year: 2007 end-page: 546 ident: bib72 article-title: Neural mechanisms of aggression publication-title: Nat Rev Neurosci – volume: 122 start-page: 481 year: 2018 end-page: 488 ident: bib61 article-title: Interactions of (2S,6S;2R,6R)-Hydroxynorketamine, a secondary metabolite of (R,S)-Ketamine, with morphine publication-title: Basic Clin Pharmacol Toxicol – volume: 33 start-page: 718 year: 2016 end-page: 727 ident: bib87 article-title: A review of ketamine abuse and diversion publication-title: Depress Anxiety – volume: 1152 start-page: 122214 year: 2020 ident: bib58 article-title: Targeted mass spectrometry of ketamine and its metabolites cis-6-hydroxynorketamine and norketamine in human blood serum publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 33 start-page: 12 year: 2019 end-page: 24 ident: bib45 article-title: Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine publication-title: J Psychopharmacol – volume: 546 start-page: E4 year: 2017 end-page: E5 ident: bib116 article-title: Zanos et al. reply publication-title: Nature – volume: 116 start-page: 137 year: 2014 end-page: 141 ident: bib120 article-title: R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine publication-title: Pharmacol Biochem Behav – volume: 31 start-page: 335 year: 2014 end-page: 343 ident: bib77 article-title: Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression publication-title: Depress Anxiety – volume: 7 start-page: 1294 year: 2017 ident: bib105 article-title: Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model publication-title: Transl Psychiatry – volume: 45 start-page: 426 year: 2019 end-page: 436 ident: bib80 article-title: (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism publication-title: Neuropsychopharmacology – volume: 10 start-page: 1302 year: 2019 ident: bib48 article-title: Ketamine and active ketamine metabolites regulate STAT3 and the type I interferon pathway in human microglia: molecular mechanisms linked to the antidepressant effects of ketamine publication-title: Front Pharmacol – volume: 1217 start-page: 7942 year: 2010 end-page: 7948 ident: bib76 article-title: Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine publication-title: J Chromatogr A – volume: 21 start-page: 84 year: 2018 end-page: 88 ident: bib92 article-title: Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine publication-title: Int J Neuropsychopharmacol – volume: 29 start-page: 2396 year: 1986 end-page: 2399 ident: bib60 article-title: Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine publication-title: J Med Chem – volume: 29 start-page: 1425 year: 2018 end-page: 1430 ident: bib23 article-title: (2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans publication-title: Neuroreport – volume: 3 year: 2015 ident: bib68 article-title: The distribution and clearance of (2S,6S)-hydroxynorketamine, an active ketamine metabolite, in Wistar rats publication-title: Pharmacol Res Perspect – volume: 38 start-page: 2475 year: 2013 end-page: 2483 ident: bib81 article-title: Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept publication-title: Neuropsychopharmacology – volume: 39 start-page: 1478 year: 2018 end-page: 1481 ident: bib86 article-title: Enantioselective capillary electrophoresis provides insight into the phase II metabolism of ketamine and its metabolites publication-title: Electrophoresis – volume: 2 start-page: 2 year: 2017 end-page: 10 ident: bib27 article-title: Metabolism and metabolomics of ketamine: a toxicological approach publication-title: Forensic Sci Res – volume: 13 start-page: 92 year: 2020 ident: bib9 article-title: Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression publication-title: Mol Brain – volume: 146 start-page: 410 year: 2017 end-page: 419 ident: bib35 article-title: Ketamine metabolites with antidepressant effects: fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection publication-title: J Pharm Biomed Anal – volume: 13 start-page: 100239 year: 2020 ident: bib11 article-title: The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice publication-title: Neurobiol Stress – volume: 8 start-page: 101 year: 2007 end-page: 113 ident: bib24 article-title: Regulatory mechanisms of AMPA receptors in synaptic plasticity publication-title: Nat Rev Neurosci – volume: 71 start-page: 1605 year: 2010 end-page: 1611 ident: bib26 article-title: Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder publication-title: J Clin Psychiatry – volume: 4 year: 2020 ident: bib50 article-title: (2 publication-title: Brain Neurosci Adv – volume: 125 start-page: 750 year: 2020 end-page: 761 ident: bib49 article-title: Pharmacokinetics of ketamine and its major metabolites norketamine, hydroxynorketamine, and dehydronorketamine: a model-based analysis publication-title: Br J Anaesth – volume: 21 start-page: 932 year: 2018 end-page: 937 ident: bib17 article-title: No sex-specific differences in the acute antidepressant actions of (R)-ketamine in an inflammation model publication-title: Int J Neuropsychopharmacol – volume: 11 start-page: 590221 year: 2020 ident: bib99 article-title: Corticosterone as a potential confounding factor in delineating mechanisms underlying ketamine’s rapid antidepressant actions publication-title: Front Pharmacol – volume: 12 start-page: 157 year: 1974 end-page: 177 ident: bib18 article-title: Biotransformation and disposition of ketamine publication-title: Int Anesthesiol Clin – volume: 91 start-page: 82 year: 2018 end-page: 94 ident: bib88 article-title: Functional organization of postsynaptic glutamate receptors publication-title: Mol Cell Neurosci – volume: 70 start-page: 621 year: 2018 end-page: 660 ident: bib117 article-title: Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms publication-title: Pharmacol Rev – volume: 22 start-page: 665 year: 2019 end-page: 674 ident: bib5 article-title: (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism publication-title: Int J Neuropsychopharmacol – volume: 8 start-page: 401 year: 2014 ident: bib19 article-title: The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity publication-title: Front Cell Neurosci – volume: 23 start-page: 801 year: 2018 end-page: 811 ident: bib112 article-title: Mechanisms of ketamine action as an antidepressant publication-title: Mol Psychiatry – volume: 82 start-page: e43 year: 2017 end-page: e44 ident: bib104 article-title: (R)-Ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine publication-title: Biol Psychiatry – volume: 74 start-page: 304 year: 2012 end-page: 314 ident: bib123 article-title: Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression publication-title: Br J Clin Pharmacol – volume: 157 start-page: 107684 year: 2019 ident: bib55 article-title: Ketamine-induced regulation of TrkB-GSK3β signaling is accompanied by slow EEG oscillations and sedation but is independent of hydroxynorketamine metabolites publication-title: Neuropharmacology – volume: 1 year: 2017 ident: bib7 article-title: Hydroxynorketamine: implications for the NMDA receptor hypothesis of ketamine’s antidepressant action publication-title: Chronic Stress (Thousand Oaks) – volume: 152 start-page: 279 year: 2018 end-page: 292 ident: bib47 article-title: Ketamine and ketamine metabolites as novel estrogen receptor ligands: induction of cytochrome P450 and AMPA glutamate receptor gene expression publication-title: Biochem Pharmacol – volume: 83 start-page: 18 year: 2018 end-page: 28 ident: bib106 article-title: Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model publication-title: Biol Psychiatry – volume: 47 start-page: 15 year: 1996 end-page: 21 ident: bib30 article-title: Cardiovascular and autonomic effects of sevoflurane publication-title: Acta Anaesthesiol Belg – volume: 19 start-page: 2693 year: 1999 end-page: 2705 ident: bib10 article-title: Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices publication-title: J Neurosci – volume: 81 start-page: S11 year: 1995 end-page: S22 ident: bib31 article-title: Cardiovascular responses to sevoflurane: a review publication-title: Anesth Analg – volume: 1467 start-page: 436 year: 2016 end-page: 444 ident: bib82 article-title: Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. medetomidine comedication assessed by enantioselective capillary electrophoresis publication-title: J Chromatogr A – volume: 98 start-page: 203 year: 2020 end-page: 210 ident: bib1 article-title: Hydroxynorketamine blocks N-methyl-d-aspartate receptor currents by binding to closed receptors publication-title: Mol Pharmacol – volume: 116 start-page: 5160 year: 2019 end-page: 5169 ident: bib63 article-title: Antidepressant-relevant concentrations of the ketamine metabolite (2 publication-title: Proc Natl Acad Sci USA – volume: 698 start-page: 228 year: 2013 end-page: 234 ident: bib67 article-title: Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors publication-title: Eur J Pharmacol – volume: 121 start-page: 149 year: 2014 end-page: 159 ident: bib74 article-title: (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function publication-title: Anesthesiology – volume: 38 start-page: 1878 year: 2017 end-page: 1885 ident: bib85 article-title: Separation of hydroxynorketamine stereoisomers using capillary electrophoresis with sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin publication-title: Electrophoresis – volume: 157 start-page: 107667 year: 2019 ident: bib109 article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission publication-title: Neuropharmacology – volume: 105 start-page: 1 year: 2019 end-page: 23 ident: bib8 article-title: Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response publication-title: Neurosci Biobehav Rev – volume: 176 start-page: 3886 year: 2019 end-page: 3888 ident: bib46 article-title: What role does the (2R,6R)-hydronorketamine metabolite play in the antidepressant-like and abuse-related effects of (R)-ketamine? publication-title: Br J Pharmacol – volume: 106 start-page: 715 year: 2020 end-page: 726 ident: bib52 article-title: Targeting homeostatic synaptic plasticity for treatment of mood disorders publication-title: Neuron – volume: 546 start-page: E1 year: 2017 end-page: E3 ident: bib94 article-title: Effects of a ketamine metabolite on synaptic NMDAR function publication-title: Nature – volume: 5 year: 2015 ident: bib107 article-title: R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects publication-title: Transl Psychiatry – year: 2021 ident: bib124 article-title: Antidepressant drugs act by directly binding to TRKB neurotrophin receptors publication-title: Cell – volume: 153 start-page: 73 year: 2019 end-page: 81 ident: bib91 article-title: Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine publication-title: Neuropharmacology – year: 2020 ident: bib6 article-title: Antidepressant actions of ketamine engage cell-specific translation via eIF4E publication-title: Nature – volume: 294 start-page: 18150 year: 2019 end-page: 18161 ident: bib36 article-title: Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2 publication-title: J Biol Chem – volume: 196 start-page: 172973 year: 2020 ident: bib32 article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma publication-title: Pharmacol Biochem Behav – volume: 235 start-page: 3177 year: 2018 end-page: 3185 ident: bib122 article-title: Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model publication-title: Psychopharmacology (Berl) – volume: 32 start-page: 3 year: 2011 end-page: 11 ident: bib111 article-title: The role of BDNF in depression on the basis of its location in the neural circuitry publication-title: Acta Pharmacol Sin – volume: 23 start-page: 2066 year: 2018 end-page: 2077 ident: bib108 article-title: Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit publication-title: Mol Psychiatry – volume: 47 start-page: 351 year: 2000 end-page: 354 ident: bib13 article-title: Antidepressant effects of ketamine in depressed patients publication-title: Biol Psychiatry – volume: 72 start-page: 331 year: 2012 end-page: 338 ident: bib118 article-title: Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression publication-title: Biol Psychiatry – volume: 116 start-page: 6441 year: 2019 end-page: 6450 ident: bib114 article-title: ( publication-title: Proc Natl Acad Sci USA – volume: 117 start-page: 129 year: 2019 end-page: 134 ident: bib40 article-title: Ketamine metabolite pilot study in a suicidal depression trial publication-title: J Psychiatr Res – volume: 150 start-page: 1081 year: 2018 end-page: 1105 ident: bib41 article-title: Structure, function, and allosteric modulation of NMDA receptors publication-title: J Gen Physiol – volume: 139 start-page: 87 year: 2017 end-page: 97 ident: bib43 article-title: Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples publication-title: J Pharm Biomed Anal – volume: 19 start-page: 4572 year: 2017 end-page: 4575 ident: bib71 article-title: Synthesis and N-Methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites publication-title: Org Lett – volume: 24 start-page: 868 year: 2010 ident: 10.1124/pharmrev.120.000149_bib29 article-title: Metabolic stability and determination of cytochrome P450 isoenzymes’ contribution to the metabolism of medetomidine in dog liver microsomes publication-title: Biomed Chromatogr doi: 10.1002/bmc.1379 – volume: 63 start-page: S191 issue: Suppl 1 year: 2014 ident: 10.1124/pharmrev.120.000149_bib98 article-title: Structure, function, and pharmacology of NMDA receptor channels publication-title: Physiol Res doi: 10.33549/physiolres.932678 – volume: 19 start-page: 2693 year: 1999 ident: 10.1124/pharmrev.120.000149_bib10 article-title: Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-07-02693.1999 – volume: 71 start-page: 1605 year: 2010 ident: 10.1124/pharmrev.120.000149_bib26 article-title: Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder publication-title: J Clin Psychiatry doi: 10.4088/JCP.09m05327blu – volume: 150 start-page: 1081 year: 2018 ident: 10.1124/pharmrev.120.000149_bib41 article-title: Structure, function, and allosteric modulation of NMDA receptors publication-title: J Gen Physiol doi: 10.1085/jgp.201812032 – volume: 33 start-page: 718 year: 2016 ident: 10.1124/pharmrev.120.000149_bib87 article-title: A review of ketamine abuse and diversion publication-title: Depress Anxiety doi: 10.1002/da.22536 – volume: 82 start-page: e43 year: 2017 ident: 10.1124/pharmrev.120.000149_bib104 article-title: (R)-Ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2016.12.020 – volume: 546 start-page: E4 year: 2017 ident: 10.1124/pharmrev.120.000149_bib116 article-title: Zanos et al. reply publication-title: Nature doi: 10.1038/nature22085 – volume: 139 start-page: 1 year: 2018 ident: 10.1124/pharmrev.120.000149_bib22 article-title: (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.06.033 – volume: 81 start-page: e61 year: 2017 ident: 10.1124/pharmrev.120.000149_bib2 article-title: What’s the buzz about hydroxynorketamine? Is it the history, the story, the debate, or the promise? publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.01.002 – volume: 4 year: 2020 ident: 10.1124/pharmrev.120.000149_bib50 article-title: (2S,6S)- and (2R,6R)-hydroxynorketamine inhibit the induction of NMDA receptor-dependent LTP at hippocampal CA1 synapses in mice publication-title: Brain Neurosci Adv doi: 10.1177/2398212820957847 – volume: 59 start-page: 213 year: 2019 ident: 10.1124/pharmrev.120.000149_bib39 article-title: Molecular pharmacology and neurobiology of rapid-acting antidepressants publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-010617-052811 – volume: 21 start-page: 84 year: 2018 ident: 10.1124/pharmrev.120.000149_bib92 article-title: Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyx108 – volume: 157 start-page: 107667 year: 2019 ident: 10.1124/pharmrev.120.000149_bib109 article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2019.107667 – volume: 217 start-page: 121094 year: 2020 ident: 10.1124/pharmrev.120.000149_bib96 article-title: Separation of anaesthetic ketamine and its derivates in PAMAPTAC coated capillaries with tuneable counter-current electroosmotic flow publication-title: Talanta doi: 10.1016/j.talanta.2020.121094 – volume: 98 start-page: 203 year: 2020 ident: 10.1124/pharmrev.120.000149_bib1 article-title: Hydroxynorketamine blocks N-methyl-d-aspartate receptor currents by binding to closed receptors publication-title: Mol Pharmacol doi: 10.1124/mol.120.119784 – volume: 116 start-page: 5160 year: 2019 ident: 10.1124/pharmrev.120.000149_bib63 article-title: Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1816071116 – volume: 23 start-page: 801 year: 2018 ident: 10.1124/pharmrev.120.000149_bib112 article-title: Mechanisms of ketamine action as an antidepressant publication-title: Mol Psychiatry doi: 10.1038/mp.2017.255 – volume: 105 start-page: 1 year: 2019 ident: 10.1124/pharmrev.120.000149_bib8 article-title: Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2019.07.007 – volume: 139 start-page: 87 year: 2017 ident: 10.1124/pharmrev.120.000149_bib43 article-title: Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2017.02.035 – year: 2021 ident: 10.1124/pharmrev.120.000149_bib124 article-title: Antidepressant drugs act by directly binding to TRKB neurotrophin receptors publication-title: Cell doi: 10.1016/j.cell.2021.01.034 – volume: 44 start-page: 111 year: 2019 ident: 10.1124/pharmrev.120.000149_bib56 article-title: Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain publication-title: Reg Anesth Pain Med doi: 10.1136/rapm-2018-000013 – volume: 170 start-page: 108068 year: 2020 ident: 10.1124/pharmrev.120.000149_bib21 article-title: Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2020.108068 – volume: 37 start-page: 1129 year: 2016 ident: 10.1124/pharmrev.120.000149_bib95 article-title: Microassay for ketamine and metabolites in plasma and serum based on enantioselective capillary electrophoresis with highly sulfated γ-cyclodextrin and electrokinetic analyte injection publication-title: Electrophoresis doi: 10.1002/elps.201500468 – volume: 153 start-page: 73 year: 2019 ident: 10.1124/pharmrev.120.000149_bib91 article-title: Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2019.04.019 – volume: 1 year: 2017 ident: 10.1124/pharmrev.120.000149_bib7 article-title: Hydroxynorketamine: implications for the NMDA receptor hypothesis of ketamine’s antidepressant action publication-title: Chronic Stress (Thousand Oaks) – volume: 13 start-page: 100239 year: 2020 ident: 10.1124/pharmrev.120.000149_bib11 article-title: The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice publication-title: Neurobiol Stress doi: 10.1016/j.ynstr.2020.100239 – volume: 8 start-page: 101 year: 2007 ident: 10.1124/pharmrev.120.000149_bib24 article-title: Regulatory mechanisms of AMPA receptors in synaptic plasticity publication-title: Nat Rev Neurosci doi: 10.1038/nrn2055 – volume: 5 year: 2015 ident: 10.1124/pharmrev.120.000149_bib107 article-title: R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects publication-title: Transl Psychiatry doi: 10.1038/tp.2015.136 – volume: 17 start-page: 839 year: 1987 ident: 10.1124/pharmrev.120.000149_bib100 article-title: Biotransformation of ketamine, (Z)-6-hydroxyketamine, and (E)-6-hydroxyketamine by rat, rabbit, and human liver microsomal preparations publication-title: Xenobiotica doi: 10.3109/00498258709043993 – volume: 13 start-page: 92 year: 2020 ident: 10.1124/pharmrev.120.000149_bib9 article-title: Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression publication-title: Mol Brain doi: 10.1186/s13041-020-00627-z – volume: 83 start-page: 18 year: 2018 ident: 10.1124/pharmrev.120.000149_bib106 article-title: Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.05.016 – volume: 299 start-page: 12 year: 2001 ident: 10.1124/pharmrev.120.000149_bib90 article-title: Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(24)29296-X – volume: 125 start-page: 750 year: 2020 ident: 10.1124/pharmrev.120.000149_bib49 article-title: Pharmacokinetics of ketamine and its major metabolites norketamine, hydroxynorketamine, and dehydronorketamine: a model-based analysis publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.06.067 – volume: 106 start-page: 715 year: 2020 ident: 10.1124/pharmrev.120.000149_bib52 article-title: Targeting homeostatic synaptic plasticity for treatment of mood disorders publication-title: Neuron doi: 10.1016/j.neuron.2020.05.015 – volume: 116 start-page: 137 year: 2014 ident: 10.1124/pharmrev.120.000149_bib120 article-title: R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine publication-title: Pharmacol Biochem Behav doi: 10.1016/j.pbb.2013.11.033 – volume: 51 start-page: 199 year: 1994 ident: 10.1124/pharmrev.120.000149_bib57 article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1994.03950030035004 – volume: 38 start-page: 1878 year: 2017 ident: 10.1124/pharmrev.120.000149_bib85 article-title: Separation of hydroxynorketamine stereoisomers using capillary electrophoresis with sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin publication-title: Electrophoresis doi: 10.1002/elps.201700016 – volume: 45 start-page: 426 year: 2019 ident: 10.1124/pharmrev.120.000149_bib80 article-title: (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism publication-title: Neuropsychopharmacology doi: 10.1038/s41386-019-0443-3 – volume: 116 start-page: 6441 year: 2019 ident: 10.1124/pharmrev.120.000149_bib114 article-title: (2R,6R)-hydroxynorketamine exerts mGlu2 receptor-dependent antidepressant actions publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1819540116 – volume: 146 start-page: 410 year: 2017 ident: 10.1124/pharmrev.120.000149_bib35 article-title: Ketamine metabolites with antidepressant effects: fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2017.09.007 – volume: 368 start-page: 111904 year: 2019 ident: 10.1124/pharmrev.120.000149_bib102 article-title: Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model publication-title: Behav Brain Res doi: 10.1016/j.bbr.2019.111904 – volume: 29 start-page: 477 year: 2006 ident: 10.1124/pharmrev.120.000149_bib59 article-title: Pharmacodynamic effects and pharmacokinetic profile of a long-term continuous rate infusion of racemic ketamine in healthy conscious horses publication-title: J Vet Pharmacol Ther doi: 10.1111/j.1365-2885.2006.00794.x – volume: 8 start-page: 536 year: 2007 ident: 10.1124/pharmrev.120.000149_bib72 article-title: Neural mechanisms of aggression publication-title: Nat Rev Neurosci doi: 10.1038/nrn2174 – volume: 166 start-page: 107947 year: 2020 ident: 10.1124/pharmrev.120.000149_bib42 article-title: Ketamine increases vmPFC activity: effects of (R)- and (S)-stereoisomers and (2R,6R)-hydroxynorketamine metabolite publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2020.107947 – volume: 1217 start-page: 7942 year: 2010 ident: 10.1124/pharmrev.120.000149_bib76 article-title: Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine in vitro publication-title: J Chromatogr A doi: 10.1016/j.chroma.2010.06.028 – volume: 8 start-page: 4007 year: 2018 ident: 10.1124/pharmrev.120.000149_bib121 article-title: Lack of metabolism in (R)-ketamine’s antidepressant actions in a chronic social defeat stress model publication-title: Sci Rep doi: 10.1038/s41598-018-22449-9 – volume: 42 start-page: 1076 year: 2012 ident: 10.1124/pharmrev.120.000149_bib25 article-title: Stereoselective and regiospecific hydroxylation of ketamine and norketamine publication-title: Xenobiotica doi: 10.3109/00498254.2012.685777 – volume: 84 start-page: e3 year: 2018 ident: 10.1124/pharmrev.120.000149_bib75 article-title: Common neurotransmission recruited in (R,S)-Ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2017.10.020 – volume: 127 start-page: 3 year: 2016 ident: 10.1124/pharmrev.120.000149_bib69 article-title: Subchronic administration of (R,S)-ketamine induces ketamine ring hydroxylation in Wistar rats publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2016.03.030 – volume: 225 year: 2019 ident: 10.1124/pharmrev.120.000149_bib66 article-title: The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive-like rats publication-title: Acta Physiol (Oxf) doi: 10.1111/apha.13211 – volume: 1862 start-page: 1505 year: 2018 ident: 10.1124/pharmrev.120.000149_bib33 article-title: Stereochemical and structural effects of (2R,6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells publication-title: Biochim Biophys Acta Gen Subj doi: 10.1016/j.bbagen.2018.03.008 – volume: 152 start-page: 279 year: 2018 ident: 10.1124/pharmrev.120.000149_bib47 article-title: Ketamine and ketamine metabolites as novel estrogen receptor ligands: induction of cytochrome P450 and AMPA glutamate receptor gene expression publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2018.03.032 – volume: 21 start-page: 932 year: 2018 ident: 10.1124/pharmrev.120.000149_bib17 article-title: No sex-specific differences in the acute antidepressant actions of (R)-ketamine in an inflammation model publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyy053 – volume: 86 start-page: 903 year: 1997 ident: 10.1124/pharmrev.120.000149_bib73 article-title: Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors publication-title: Anesthesiology doi: 10.1097/00000542-199704000-00021 – volume: 7 start-page: 137 year: 2006 ident: 10.1124/pharmrev.120.000149_bib14 article-title: New approaches to antidepressant drug discovery: beyond monoamines publication-title: Nat Rev Neurosci doi: 10.1038/nrn1846 – volume: 77 start-page: 1201 year: 1992 ident: 10.1124/pharmrev.120.000149_bib53 article-title: Metabolism of ketamine stereoisomers by human liver microsomes publication-title: Anesthesiology doi: 10.1097/00000542-199212000-00022 – volume: 11 start-page: 590221 year: 2020 ident: 10.1124/pharmrev.120.000149_bib99 article-title: Corticosterone as a potential confounding factor in delineating mechanisms underlying ketamine’s rapid antidepressant actions publication-title: Front Pharmacol doi: 10.3389/fphar.2020.590221 – volume: 3 year: 2015 ident: 10.1124/pharmrev.120.000149_bib68 article-title: The distribution and clearance of (2S,6S)-hydroxynorketamine, an active ketamine metabolite, in Wistar rats publication-title: Pharmacol Res Perspect doi: 10.1002/prp2.157 – volume: 38 start-page: 2475 year: 2013 ident: 10.1124/pharmrev.120.000149_bib81 article-title: Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.150 – volume: 82 start-page: 1892 year: 2010 ident: 10.1124/pharmrev.120.000149_bib70 article-title: A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome publication-title: Talanta doi: 10.1016/j.talanta.2010.08.005 – volume: 24 start-page: 1833 year: 2019 ident: 10.1124/pharmrev.120.000149_bib101 article-title: NMDAR-independent, cAMP-dependent antidepressant actions of ketamine publication-title: Mol Psychiatry doi: 10.1038/s41380-018-0083-8 – volume: 45 start-page: 1545 year: 2020 ident: 10.1124/pharmrev.120.000149_bib20 article-title: Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-0714-z – volume: 196 start-page: 172973 year: 2020 ident: 10.1124/pharmrev.120.000149_bib32 article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma publication-title: Pharmacol Biochem Behav doi: 10.1016/j.pbb.2020.172973 – volume: 45 start-page: 1398 year: 2020 ident: 10.1124/pharmrev.120.000149_bib34 article-title: Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression [published correction appears in Neuropsychopharmacology (2020)] publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-0663-6 – volume: 79 start-page: 565 year: 1983 ident: 10.1124/pharmrev.120.000149_bib12 article-title: The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.1983.tb11031.x – volume: 176 start-page: 2573 year: 2019 ident: 10.1124/pharmrev.120.000149_bib113 article-title: (R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses publication-title: Br J Pharmacol doi: 10.1111/bph.14683 – volume: 1467 start-page: 436 year: 2016 ident: 10.1124/pharmrev.120.000149_bib82 article-title: Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. medetomidine comedication assessed by enantioselective capillary electrophoresis publication-title: J Chromatogr A doi: 10.1016/j.chroma.2016.07.060 – volume: 11 year: 2016 ident: 10.1124/pharmrev.120.000149_bib93 article-title: Ketamine metabolites enantioselectively decrease intracellular D-serine concentrations in PC-12 cells publication-title: PLoS One – volume: 81 start-page: S11 issue: Suppl year: 1995 ident: 10.1124/pharmrev.120.000149_bib31 article-title: Cardiovascular responses to sevoflurane: a review publication-title: Anesth Analg doi: 10.1097/00000539-199512001-00003 – volume: 235 start-page: 3177 year: 2018 ident: 10.1124/pharmrev.120.000149_bib122 article-title: Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model publication-title: Psychopharmacology (Berl) doi: 10.1007/s00213-018-5017-2 – volume: 191 start-page: 172876 year: 2020 ident: 10.1124/pharmrev.120.000149_bib110 article-title: (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression publication-title: Pharmacol Biochem Behav doi: 10.1016/j.pbb.2020.172876 – volume: 122 start-page: 481 year: 2018 ident: 10.1124/pharmrev.120.000149_bib61 article-title: Interactions of (2S,6S;2R,6R)-Hydroxynorketamine, a secondary metabolite of (R,S)-Ketamine, with morphine publication-title: Basic Clin Pharmacol Toxicol doi: 10.1111/bcpt.12941 – volume: 22 start-page: 665 year: 2019 ident: 10.1124/pharmrev.120.000149_bib5 article-title: (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyz041 – volume: 8 start-page: 401 year: 2014 ident: 10.1124/pharmrev.120.000149_bib19 article-title: The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity publication-title: Front Cell Neurosci doi: 10.3389/fncel.2014.00401 – volume: 29 start-page: 1425 year: 2018 ident: 10.1124/pharmrev.120.000149_bib23 article-title: (2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans publication-title: Neuroreport doi: 10.1097/WNR.0000000000001131 – volume: 116 start-page: 297 year: 2019 ident: 10.1124/pharmrev.120.000149_bib37 article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1814709116 – volume: 12 start-page: 157 year: 1974 ident: 10.1124/pharmrev.120.000149_bib18 article-title: Biotransformation and disposition of ketamine publication-title: Int Anesthesiol Clin doi: 10.1097/00004311-197412020-00018 – volume: 36 start-page: 2703 year: 2015 ident: 10.1124/pharmrev.120.000149_bib84 article-title: Effects of medetomidine and its active enantiomer dexmedetomidine on N-demethylation of ketamine in canines determined in vitro using enantioselective capillary electrophoresis publication-title: Electrophoresis doi: 10.1002/elps.201500147 – volume: 294 start-page: 18150 year: 2019 ident: 10.1124/pharmrev.120.000149_bib36 article-title: Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2 publication-title: J Biol Chem doi: 10.1074/jbc.RA119.008837 – volume: 359 start-page: 159 year: 2016 ident: 10.1124/pharmrev.120.000149_bib15 article-title: Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.116.235838 – volume: 29 start-page: 281 year: 1982 ident: 10.1124/pharmrev.120.000149_bib62 article-title: Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine publication-title: Neurosci Lett doi: 10.1016/0304-3940(82)90330-5 – volume: 23 start-page: 812 year: 2018 ident: 10.1124/pharmrev.120.000149_bib16 article-title: Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling publication-title: Mol Psychiatry doi: 10.1038/mp.2017.241 – volume: 581 start-page: 107 year: 2007 ident: 10.1124/pharmrev.120.000149_bib28 article-title: Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block publication-title: J Physiol doi: 10.1113/jphysiol.2006.124958 – volume: 70 start-page: 621 year: 2018 ident: 10.1124/pharmrev.120.000149_bib117 article-title: Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms publication-title: Pharmacol Rev doi: 10.1124/pr.117.015198 – volume: 47 start-page: 15 year: 1996 ident: 10.1124/pharmrev.120.000149_bib30 article-title: Cardiovascular and autonomic effects of sevoflurane publication-title: Acta Anaesthesiol Belg – volume: 39 start-page: 1478 year: 2018 ident: 10.1124/pharmrev.120.000149_bib86 article-title: Enantioselective capillary electrophoresis provides insight into the phase II metabolism of ketamine and its metabolites in vivo and in vitro publication-title: Electrophoresis doi: 10.1002/elps.201800012 – volume: 43 start-page: 221 year: 2018 ident: 10.1124/pharmrev.120.000149_bib51 article-title: The ketamine metabolite 2R,6R-hydroxynorketamine blocks NMDA receptors and impacts downstream signaling linked to antidepressant effects publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.210 – volume: 33 start-page: 12 year: 2019 ident: 10.1124/pharmrev.120.000149_bib45 article-title: Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine publication-title: J Psychopharmacol doi: 10.1177/0269881118812095 – volume: 14 start-page: 254 year: 2020 ident: 10.1124/pharmrev.120.000149_bib54 article-title: The ventrolateral periaqueductal gray contributes to depressive-like behaviors in recovery of inflammatory bowel disease rat model publication-title: Front Neurosci doi: 10.3389/fnins.2020.00254 – volume: 8 start-page: 527 year: 1981 ident: 10.1124/pharmrev.120.000149_bib4 article-title: Studies on the biotransformation of ketamine. 1-Identification of metabolites produced in vitro from rat liver microsomal preparations publication-title: Biomed Mass Spectrom doi: 10.1002/bms.1200081103 – volume: 29 start-page: 2396 year: 1986 ident: 10.1124/pharmrev.120.000149_bib60 article-title: Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine publication-title: J Med Chem doi: 10.1021/jm00161a043 – volume: 125 start-page: 1103 year: 2016 ident: 10.1124/pharmrev.120.000149_bib79 article-title: Role of cytochrome P4502B6 polymorphisms in ketamine metabolism and clearance publication-title: Anesthesiology doi: 10.1097/ALN.0000000000001392 – volume: 7 start-page: 1294 year: 2017 ident: 10.1124/pharmrev.120.000149_bib105 article-title: Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model publication-title: Transl Psychiatry doi: 10.1038/s41398-017-0031-4 – volume: 10 start-page: 1302 year: 2019 ident: 10.1124/pharmrev.120.000149_bib48 article-title: Ketamine and active ketamine metabolites regulate STAT3 and the type I interferon pathway in human microglia: molecular mechanisms linked to the antidepressant effects of ketamine publication-title: Front Pharmacol doi: 10.3389/fphar.2019.01302 – volume: 38 start-page: 1895 year: 2017 ident: 10.1124/pharmrev.120.000149_bib83 article-title: Effect of the α2 -receptor agonists medetomidine, detomidine, xylazine, and romifidine on the ketamine metabolism in equines assessed with enantioselective capillary electrophoresis publication-title: Electrophoresis doi: 10.1002/elps.201700017 – year: 2020 ident: 10.1124/pharmrev.120.000149_bib6 article-title: Antidepressant actions of ketamine engage cell-specific translation via eIF4E publication-title: Nature – volume: 546 start-page: E1 year: 2017 ident: 10.1124/pharmrev.120.000149_bib94 article-title: Effects of a ketamine metabolite on synaptic NMDAR function publication-title: Nature doi: 10.1038/nature22084 – volume: 698 start-page: 228 year: 2013 ident: 10.1124/pharmrev.120.000149_bib67 article-title: Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors publication-title: Eur J Pharmacol doi: 10.1016/j.ejphar.2012.11.023 – volume: 32 start-page: 3 year: 2011 ident: 10.1124/pharmrev.120.000149_bib111 article-title: The role of BDNF in depression on the basis of its location in the neural circuitry publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2010.184 – volume: 37 start-page: 1769 year: 2009 ident: 10.1124/pharmrev.120.000149_bib97 article-title: Use of human microsomes and deuterated substrates: an alternative approach for the identification of novel metabolites of ketamine by mass spectrometry publication-title: Drug Metab Dispos doi: 10.1124/dmd.108.026328 – volume: 58 start-page: 251 year: 1987 ident: 10.1124/pharmrev.120.000149_bib64 article-title: Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine publication-title: J Neurophysiol doi: 10.1152/jn.1987.58.2.251 – volume: 23 start-page: 2066 year: 2018 ident: 10.1124/pharmrev.120.000149_bib108 article-title: Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit publication-title: Mol Psychiatry doi: 10.1038/mp.2017.239 – volume: 14 year: 2020 ident: 10.1124/pharmrev.120.000149_bib78 article-title: Proteomic study reveals the involvement of energy metabolism in the fast antidepressant effect of (2R, 6R)-hydroxy norketamine publication-title: Proteomics Clin Appl doi: 10.1002/prca.201900094 – volume: 30 start-page: 2912 year: 2009 ident: 10.1124/pharmrev.120.000149_bib89 article-title: CE provides evidence of the stereoselective hydroxylation of norketamine in equines publication-title: Electrophoresis doi: 10.1002/elps.200900221 – volume: 2 start-page: 2 year: 2017 ident: 10.1124/pharmrev.120.000149_bib27 article-title: Metabolism and metabolomics of ketamine: a toxicological approach publication-title: Forensic Sci Res doi: 10.1080/20961790.2017.1285219 – volume: 53 start-page: 2264 year: 2017 ident: 10.1124/pharmrev.120.000149_bib65 article-title: Gauging circadian variation in ketamine metabolism by real-time breath analysis publication-title: Chem Commun (Camb) doi: 10.1039/C6CC09061C – volume: 43 start-page: 1900 year: 2018 ident: 10.1124/pharmrev.120.000149_bib103 article-title: (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice publication-title: Neuropsychopharmacology doi: 10.1038/s41386-018-0084-y – volume: 74 start-page: 304 year: 2012 ident: 10.1124/pharmrev.120.000149_bib123 article-title: Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2012.04198.x – volume: 91 start-page: 82 year: 2018 ident: 10.1124/pharmrev.120.000149_bib88 article-title: Functional organization of postsynaptic glutamate receptors publication-title: Mol Cell Neurosci doi: 10.1016/j.mcn.2018.05.002 – volume: 31 start-page: 335 year: 2014 ident: 10.1124/pharmrev.120.000149_bib77 article-title: Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression publication-title: Depress Anxiety doi: 10.1002/da.22253 – volume: 1152 start-page: 122214 year: 2020 ident: 10.1124/pharmrev.120.000149_bib58 article-title: Targeted mass spectrometry of ketamine and its metabolites cis-6-hydroxynorketamine and norketamine in human blood serum publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/j.jchromb.2020.122214 – volume: 47 start-page: 351 year: 2000 ident: 10.1124/pharmrev.120.000149_bib13 article-title: Antidepressant effects of ketamine in depressed patients publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(99)00230-9 – volume: 45 start-page: 1245 year: 2020 ident: 10.1124/pharmrev.120.000149_bib3 article-title: (2R,6R)-Hydroxynorketamine (HNK) plasma level predicts poor antidepressant response: is this the end of the HNK pipeline? publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-0668-1 – volume: 361 start-page: 9 year: 2017 ident: 10.1124/pharmrev.120.000149_bib38 article-title: Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.116.239228 – volume: 121 start-page: 149 year: 2014 ident: 10.1124/pharmrev.120.000149_bib74 article-title: (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function publication-title: Anesthesiology doi: 10.1097/ALN.0000000000000285 – volume: 21 start-page: 2142 year: 2020 ident: 10.1124/pharmrev.120.000149_bib44 article-title: Sexually dimorphic behavioral profile in a transgenic model enabling targeted recombination in active neurons in response to ketamine and (2R,6R)-hydroxynorketamine administration publication-title: Int J Mol Sci doi: 10.3390/ijms21062142 – volume: 533 start-page: 481 year: 2016 ident: 10.1124/pharmrev.120.000149_bib115 article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites publication-title: Nature doi: 10.1038/nature17998 – volume: 157 start-page: 107684 year: 2019 ident: 10.1124/pharmrev.120.000149_bib55 article-title: Ketamine-induced regulation of TrkB-GSK3β signaling is accompanied by slow EEG oscillations and sedation but is independent of hydroxynorketamine metabolites publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2019.107684 – volume: 72 start-page: 331 year: 2012 ident: 10.1124/pharmrev.120.000149_bib118 article-title: Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2012.03.004 – volume: 176 start-page: 3886 year: 2019 ident: 10.1124/pharmrev.120.000149_bib46 article-title: What role does the (2R,6R)-hydronorketamine metabolite play in the antidepressant-like and abuse-related effects of (R)-ketamine? publication-title: Br J Pharmacol doi: 10.1111/bph.14785 – volume: 63 start-page: 856 year: 2006 ident: 10.1124/pharmrev.120.000149_bib119 article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.63.8.856 – volume: 117 start-page: 129 year: 2019 ident: 10.1124/pharmrev.120.000149_bib40 article-title: Ketamine metabolite pilot study in a suicidal depression trial publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2019.08.005 – volume: 19 start-page: 4572 year: 2017 ident: 10.1124/pharmrev.120.000149_bib71 article-title: Synthesis and N-Methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites publication-title: Org Lett doi: 10.1021/acs.orglett.7b02177 |
SSID | ssj0014585 |
Score | 2.5698478 |
SecondaryResourceType | review_article |
Snippet | Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of... Hydroxynorketamines (HNKs) are formed in vivo after ( , )-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of... Hydroxynorketamines (HNKs) are formed in vivo after ( R , S )-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 763 |
SubjectTerms | Anesthetics Antidepressive Agents - pharmacology Depression Humans Ketamine - pharmacology Review Synaptic Transmission |
Title | Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications |
URI | https://dx.doi.org/10.1124/pharmrev.120.000149 https://www.ncbi.nlm.nih.gov/pubmed/33674359 https://www.proquest.com/docview/2498484176 https://pubmed.ncbi.nlm.nih.gov/PMC7938660 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLgg3mwLKEioFzZl4ziOww3x0FKgWolW6i1ynFhdaZugNntYfj0z8WO9dKmglyhK7NjyNxnPjOdByGsuq4Ji6stGaFBQmKpiISdZXKcahAUF_G8oyfL9iE9P2OFpdro2ZQ_RJX11oH5tjSu5CarwDHDFKNn_QNZ_FB7APeALV0AYrv-E8XRVoxdK22HksjxHD3bU8GfrdNQmu9Ks69EpyITiu3ArI4CGFjsrowbdBwRtwtLASH3m3CEPpVqs2jdHB97-LK3f3gxv_GmOs8B_k8hGfOvBID_vlkOHbrE6b-cyNEPQJPBeGWxjLj5mw30TWUbMC-OB6_itKV1i6YoGzNOxOrMP56aK11UWTxnWJcalwCo9CUXfPFT01jua9zP8gRPA8dFTlvMsvU3uUNAnsNTFxy9f_XETy4QpdWGna9NTwVBvtwz0NxHmqoryp6dtILoc3yf3rM4RvTcE9IDcatqHZN_CvBpHAVFcjqP9KKSfR2S6hcrebbSJgBoiT2Ph56KQxh6Tk8-fjj9MY1t_I1YsK_qYwV_bZIpKXTR1hUmwmoxqoRIFYroqdK0wtSuraD3RIlUpVaKQleR5UjU6YTp9Qnbarm2ekahKEj4RoIuDPsIENNSMK5WLRNFMTJQeEeqWtFQ2OT3WSFmUg5JKWelwKAGH0uAwImPf6afJzXJ9c-6wKq14acTGEkjr-o6vHLIlMF88UZNt0y0vS8oKwQRLcj4iTw3SfiZpivE9GfTON2jAN8DE7ptv2vnZkOAd9kwBK7t70wnvkbvrX_Q52ekvls0LkJ376uVA978BWxrK1A |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxynorketamines%3A+Pharmacology+and+Potential+Therapeutic+Applications&rft.jtitle=Pharmacological+reviews&rft.au=Highland%2C+Jaclyn+N.&rft.au=Zanos%2C+Panos&rft.au=Riggs%2C+Lace+M.&rft.au=Georgiou%2C+Polymnia&rft.date=2021-04-01&rft.pub=Elsevier+Inc&rft.issn=0031-6997&rft.volume=73&rft.issue=2&rft.spage=763&rft.epage=791&rft_id=info:doi/10.1124%2Fpharmrev.120.000149&rft.externalDocID=S0031699724006653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-6997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-6997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-6997&client=summon |