Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications

Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially c...

Full description

Saved in:
Bibliographic Details
Published inPharmacological reviews Vol. 73; no. 2; pp. 763 - 791
Main Authors Highland, Jaclyn N., Zanos, Panos, Riggs, Lace M., Georgiou, Polymnia, Clark, Sarah M., Morris, Patrick J., Moaddel, Ruin, Thomas, Craig J., Zarate, Carlos A., Pereira, Edna F.R., Gould, Todd D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2021
The American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
AbstractList Hydroxynorketamines (HNKs) are formed in vivo after ( , )-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, ( , )- and ( )-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of ( , )-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S 6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. SIGNIFICANCE STATEMENT: Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, (2R,6R)- and (2S6)-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of (2R,6R)-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses. Preclinical studies indicate that hydroxynorketamines (HNKs) exert antidepressant-relevant behavioral actions and may also have analgesic, anti-inflammatory, and other physiological effects that are relevant for the treatment of a variety of human diseases. This review details the pharmacokinetics and pharmacodynamics of the HNKs, as well as their behavioral actions, putative mechanisms of action, and potential therapeutic applications.
Hydroxynorketamines (HNKs) are formed in vivo after ( R , S )-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of cyclohexyl ring hydroxylation (at the 4, 5, or 6 position) and their unique stereochemistry at two stereocenters. Although HNKs were initially classified as inactive metabolites because of their lack of anesthetic effects, more recent studies have begun to reveal their biologic activities. In particular, ( 2R , 6R )- and ( 2S 6 )-HNK exert antidepressant-relevant behavioral and physiologic effects in preclinical models, which led to a rapid increase in studies seeking to clarify the mechanisms by which HNKs exert their pharmacological effects. To date, the majority of HNK research has focused on the actions of ( 2R , 6R )-HNK because of its robust behavioral actions in tests of antidepressant effectiveness and its limited adverse effects. This review describes HNK pharmacokinetics and pharmacodynamics, as well as the putative cellular, molecular, and synaptic mechanisms thought to underlie their behavioral effects, both following their metabolism from ketamine and after direct administration in preclinical studies. Converging preclinical evidence indicates that HNKs modulate glutamatergic neurotransmission and downstream signaling pathways in several brain regions, including the hippocampus and prefrontal cortex. Effects on other neurotransmitter systems, as well as possible effects on neurotrophic and inflammatory processes, and energy metabolism, are also discussed. Additionally, the behavioral effects of HNKs and possible therapeutic applications are described, including the treatment of unipolar and bipolar depression, post-traumatic stress disorder, chronic pain, neuroinflammation, and other anti-inflammatory and analgesic uses.
Author Zanos, Panos
Pereira, Edna F.R.
Thomas, Craig J.
Highland, Jaclyn N.
Riggs, Lace M.
Morris, Patrick J.
Georgiou, Polymnia
Gould, Todd D.
Clark, Sarah M.
Moaddel, Ruin
Zarate, Carlos A.
Author_xml – sequence: 1
  givenname: Jaclyn N.
  surname: Highland
  fullname: Highland, Jaclyn N.
– sequence: 2
  givenname: Panos
  surname: Zanos
  fullname: Zanos, Panos
– sequence: 3
  givenname: Lace M.
  surname: Riggs
  fullname: Riggs, Lace M.
– sequence: 4
  givenname: Polymnia
  surname: Georgiou
  fullname: Georgiou, Polymnia
– sequence: 5
  givenname: Sarah M.
  surname: Clark
  fullname: Clark, Sarah M.
– sequence: 6
  givenname: Patrick J.
  surname: Morris
  fullname: Morris, Patrick J.
– sequence: 7
  givenname: Ruin
  surname: Moaddel
  fullname: Moaddel, Ruin
– sequence: 8
  givenname: Craig J.
  surname: Thomas
  fullname: Thomas, Craig J.
– sequence: 9
  givenname: Carlos A.
  surname: Zarate
  fullname: Zarate, Carlos A.
– sequence: 10
  givenname: Edna F.R.
  surname: Pereira
  fullname: Pereira, Edna F.R.
– sequence: 11
  givenname: Todd D.
  surname: Gould
  fullname: Gould, Todd D.
  email: gouldlab@me.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33674359$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1U1G5LfwESypFLFjt2EhsJpKoCFqkSPZSz5UwmXUNiB9u76v57vGxb0R7gNIf53pvRe6fkyHmHhLxmdMlYJd7NaxOmgNslq-iSUsqEekEWrK5YSalkR2RBKWdlo1R7Qk5j_LFHalkfkxPOm1bwWi3IarXrg7_bOR9-YjKTdRjfF9d7awN-9Le7wri-uPYJXbJmLG7WGMyMm2ShuJjn0YJJ1rv4irwczBjx_H6eke-fP91crsqrb1--Xl5clSBqlUohDcUaKjMo7DsqeIt1NUhgIGsGauhBNQ0VXdXTQXLgFUhlOtO0rMOBiYGfkY8H33nTTdhDfiuYUc_BTibstDdWP904u9a3fqtbxWW2zgZv7w2C_7XBmPRkI-A4God-E3UllBRSsLbJ6Ju_bz0eeYgvA_wAQPAxBhweEUb1viT9UJLOJelDSVmlnqnApj8p5oft-B_th4MWc8Zbi0FHsOgAexsQku69_af-N5OSsjM
CitedBy_id crossref_primary_10_1016_j_eclinm_2022_101439
crossref_primary_10_1016_j_neuropharm_2021_108936
crossref_primary_10_1002_elps_202400213
crossref_primary_10_1016_j_jpsychires_2022_04_035
crossref_primary_10_1186_s10194_023_01667_1
crossref_primary_10_3390_ph16050742
crossref_primary_10_1080_17512433_2023_2198703
crossref_primary_10_1016_j_neuropharm_2022_109276
crossref_primary_10_1016_j_neuropharm_2022_109153
crossref_primary_10_1021_acschemneuro_1c00761
crossref_primary_10_3390_ijms25021150
crossref_primary_10_1124_pharmrev_120_000131
crossref_primary_10_1152_jn_00326_2023
crossref_primary_10_1016_j_bbr_2024_115273
crossref_primary_10_1016_j_ejphar_2025_177470
crossref_primary_10_1038_s41593_022_01146_x
crossref_primary_10_1038_s41398_024_02744_y
crossref_primary_10_1016_j_lfs_2023_121803
crossref_primary_10_3390_jcm12093256
crossref_primary_10_1016_j_neubiorev_2023_105191
crossref_primary_10_1016_j_neuropharm_2022_108984
crossref_primary_10_1111_bcp_15467
crossref_primary_10_1124_jpet_123_001823
crossref_primary_10_3390_ijms25126804
crossref_primary_10_1016_j_bcp_2021_114892
crossref_primary_10_1021_acs_jmedchem_4c02467
crossref_primary_10_1021_acschemneuro_4c00051
crossref_primary_10_1038_s41591_024_03063_x
crossref_primary_10_1016_j_biopsych_2024_09_024
crossref_primary_10_1523_JNEUROSCI_1121_22_2022
crossref_primary_10_1038_s41380_022_01652_1
crossref_primary_10_3389_fpain_2022_946486
crossref_primary_10_1111_bcp_15374
crossref_primary_10_1002_cpdd_993
crossref_primary_10_1038_s41398_021_01685_0
crossref_primary_10_1080_17460441_2022_2111415
crossref_primary_10_1146_annurev_clinpsy_072120_014126
crossref_primary_10_1021_acsnano_3c11154
crossref_primary_10_1111_cns_14464
crossref_primary_10_1016_j_psiq_2024_100547
crossref_primary_10_1192_bjo_2023_577
crossref_primary_10_1016_j_neuropharm_2022_109402
crossref_primary_10_1002_cpt_3391
crossref_primary_10_1002_elps_202200175
crossref_primary_10_1016_j_ntt_2021_106993
crossref_primary_10_3389_fnins_2021_672526
crossref_primary_10_1089_neu_2023_0252
crossref_primary_10_1177_02698811241301215
crossref_primary_10_1124_jpet_122_001278
crossref_primary_10_3390_cells11040645
crossref_primary_10_1177_02698811211064922
crossref_primary_10_1016_j_bbrc_2022_01_025
crossref_primary_10_1016_j_jad_2023_04_101
crossref_primary_10_1016_j_neuropharm_2021_108743
crossref_primary_10_1213_ANE_0000000000006590
crossref_primary_10_1007_s00115_021_01225_7
crossref_primary_10_1038_s41422_021_00500_1
crossref_primary_10_1016_j_pbb_2023_173531
crossref_primary_10_1038_s41380_022_01673_w
crossref_primary_10_1038_s41386_025_02085_4
crossref_primary_10_1021_acs_joc_3c01226
crossref_primary_10_3389_fnbeh_2021_749180
crossref_primary_10_14336_AD_2024_0239
crossref_primary_10_1371_journal_pone_0301848
crossref_primary_10_3390_biomedicines12102283
crossref_primary_10_1002_mco2_156
Cites_doi 10.1002/bmc.1379
10.33549/physiolres.932678
10.1523/JNEUROSCI.19-07-02693.1999
10.4088/JCP.09m05327blu
10.1085/jgp.201812032
10.1002/da.22536
10.1016/j.biopsych.2016.12.020
10.1038/nature22085
10.1016/j.neuropharm.2018.06.033
10.1016/j.biopsych.2017.01.002
10.1177/2398212820957847
10.1146/annurev-pharmtox-010617-052811
10.1093/ijnp/pyx108
10.1016/j.neuropharm.2019.107667
10.1016/j.talanta.2020.121094
10.1124/mol.120.119784
10.1073/pnas.1816071116
10.1038/mp.2017.255
10.1016/j.neubiorev.2019.07.007
10.1016/j.jpba.2017.02.035
10.1016/j.cell.2021.01.034
10.1136/rapm-2018-000013
10.1016/j.neuropharm.2020.108068
10.1002/elps.201500468
10.1016/j.neuropharm.2019.04.019
10.1016/j.ynstr.2020.100239
10.1038/nrn2055
10.1038/tp.2015.136
10.3109/00498258709043993
10.1186/s13041-020-00627-z
10.1016/j.biopsych.2017.05.016
10.1016/S0022-3565(24)29296-X
10.1016/j.bja.2020.06.067
10.1016/j.neuron.2020.05.015
10.1016/j.pbb.2013.11.033
10.1001/archpsyc.1994.03950030035004
10.1002/elps.201700016
10.1038/s41386-019-0443-3
10.1073/pnas.1819540116
10.1016/j.jpba.2017.09.007
10.1016/j.bbr.2019.111904
10.1111/j.1365-2885.2006.00794.x
10.1038/nrn2174
10.1016/j.neuropharm.2020.107947
10.1016/j.chroma.2010.06.028
10.1038/s41598-018-22449-9
10.3109/00498254.2012.685777
10.1016/j.biopsych.2017.10.020
10.1016/j.jpba.2016.03.030
10.1111/apha.13211
10.1016/j.bbagen.2018.03.008
10.1016/j.bcp.2018.03.032
10.1093/ijnp/pyy053
10.1097/00000542-199704000-00021
10.1038/nrn1846
10.1097/00000542-199212000-00022
10.3389/fphar.2020.590221
10.1002/prp2.157
10.1038/npp.2013.150
10.1016/j.talanta.2010.08.005
10.1038/s41380-018-0083-8
10.1038/s41386-020-0714-z
10.1016/j.pbb.2020.172973
10.1038/s41386-020-0663-6
10.1111/j.1476-5381.1983.tb11031.x
10.1111/bph.14683
10.1016/j.chroma.2016.07.060
10.1097/00000539-199512001-00003
10.1007/s00213-018-5017-2
10.1016/j.pbb.2020.172876
10.1111/bcpt.12941
10.1093/ijnp/pyz041
10.3389/fncel.2014.00401
10.1097/WNR.0000000000001131
10.1073/pnas.1814709116
10.1097/00004311-197412020-00018
10.1002/elps.201500147
10.1074/jbc.RA119.008837
10.1124/jpet.116.235838
10.1016/0304-3940(82)90330-5
10.1038/mp.2017.241
10.1113/jphysiol.2006.124958
10.1124/pr.117.015198
10.1002/elps.201800012
10.1038/npp.2017.210
10.1177/0269881118812095
10.3389/fnins.2020.00254
10.1002/bms.1200081103
10.1021/jm00161a043
10.1097/ALN.0000000000001392
10.1038/s41398-017-0031-4
10.3389/fphar.2019.01302
10.1002/elps.201700017
10.1038/nature22084
10.1016/j.ejphar.2012.11.023
10.1038/aps.2010.184
10.1124/dmd.108.026328
10.1152/jn.1987.58.2.251
10.1038/mp.2017.239
10.1002/prca.201900094
10.1002/elps.200900221
10.1080/20961790.2017.1285219
10.1039/C6CC09061C
10.1038/s41386-018-0084-y
10.1111/j.1365-2125.2012.04198.x
10.1016/j.mcn.2018.05.002
10.1002/da.22253
10.1016/j.jchromb.2020.122214
10.1016/S0006-3223(99)00230-9
10.1038/s41386-020-0668-1
10.1124/jpet.116.239228
10.1097/ALN.0000000000000285
10.3390/ijms21062142
10.1038/nature17998
10.1016/j.neuropharm.2019.107684
10.1016/j.biopsych.2012.03.004
10.1111/bph.14785
10.1001/archpsyc.63.8.856
10.1016/j.jpsychires.2019.08.005
10.1021/acs.orglett.7b02177
ContentType Journal Article
Copyright 2021 American Society for Pharmacology and Experimental Therapeutics
U.S. Government work not protected by U.S. copyright.
U.S. Government work not protected by U.S. copyright 2021
Copyright_xml – notice: 2021 American Society for Pharmacology and Experimental Therapeutics
– notice: U.S. Government work not protected by U.S. copyright.
– notice: U.S. Government work not protected by U.S. copyright 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1124/pharmrev.120.000149
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Hydroxynorketamines Pharmacology
EISSN 1521-0081
EndPage 791
ExternalDocumentID PMC7938660
33674359
10_1124_pharmrev_120_000149
S0031699724006653
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R21 AI145211
– fundername: BLRD VA
  grantid: I01 BX004062
– fundername: BLRD VA
  grantid: I01 BX003631
– fundername: NIMH NIH HHS
  grantid: F31 MH123066
– fundername: NIGMS NIH HHS
  grantid: T32 GM008181
– fundername: NIGMS NIH HHS
  grantid: R25 GM055036
– fundername: NIMH NIH HHS
  grantid: R01 MH107615
– fundername: NINDS NIH HHS
  grantid: T32 NS063391
GroupedDBID ---
-~X
.55
.GJ
0R~
123
18M
1KJ
2WC
3O-
4.4
53G
5RE
5VS
AAJMC
AALRI
AAXUO
AAYOK
ABCQX
ABJNI
ABOCM
ABSQV
ACGFO
ACGFS
ADBBV
ADCOW
AENEX
AERNN
AFHIN
AFOSN
AGFXO
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
INIJC
KQ8
L7B
LSO
MVM
N4W
N9A
O9-
OK1
P2P
RHF
RHI
RPT
SJN
TR2
W8F
WOQ
X7M
YBU
YHG
YNH
ZGI
ZKB
ZXP
AAYXX
AETEA
CITATION
M41
ROL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-48a0e5c2af9edb0437e52f8c1c851c9fdc96604b2d0f83c32c89aba671bef14f3
ISSN 0031-6997
1521-0081
IngestDate Thu Aug 21 13:28:19 EDT 2025
Fri Jul 11 11:20:21 EDT 2025
Mon Jul 21 06:00:24 EDT 2025
Thu Apr 24 22:51:08 EDT 2025
Tue Jul 01 05:29:21 EDT 2025
Sat Jan 25 15:58:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords p4E-BP1
eEF2
AMPA
HK
HNK
mEPSC
AP-2
AUC
GluA
CA1
fEPSP
CSF
mTOR
NMDA
malus
GluN
BDNF
ERα
iPSC
CRPS1
AMPAR
TrkB
NMDAR
mTORC1
pERK
Language English
License U.S. Government work not protected by U.S. copyright.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-48a0e5c2af9edb0437e52f8c1c851c9fdc96604b2d0f83c32c89aba671bef14f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pharmrev.aspetjournals.org/content/pharmrev/73/2/763.full.pdf
PMID 33674359
PQID 2498484176
PQPubID 23479
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7938660
proquest_miscellaneous_2498484176
pubmed_primary_33674359
crossref_primary_10_1124_pharmrev_120_000149
crossref_citationtrail_10_1124_pharmrev_120_000149
elsevier_sciencedirect_doi_10_1124_pharmrev_120_000149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Pharmacological reviews
PublicationTitleAlternate Pharmacol Rev
PublicationYear 2021
Publisher Elsevier Inc
The American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: The American Society for Pharmacology and Experimental Therapeutics
References Ye, Ko, Huang, Zheng, Zheng, Chou (bib109) 2019; 157
Lilius, Viisanen, Jokinen, Niemi, Kalso, Rauhala (bib61) 2018; 122
Sandbaumhüter, Theurillat, Thormann (bib84) 2015; 36
Riggs, Aracava, Zanos, Fischell, Albuquerque, Pereira, Thompson, Gould (bib80) 2019; 45
Zanos, Moaddel, Morris, Georgiou, Fischell, Elmer, Alkondon, Yuan, Pribut, Singh (bib115) 2016; 533
Adams, Baillie, Trevor, Castagnoli (bib4) 1981; 8
Abdallah (bib3) 2020; 45
Lankveld, Driessen, Soma, Moate, Rudy, Uboh, van Dijk, Hellebrekers (bib59) 2006; 29
Rodriguez, Kegeles, Levinson, Feng, Marcus, Vermes, Flood, Simpson (bib81) 2013; 38
Schmitz, Theurillat, Lassahn, Mevissen, Thormann (bib89) 2009; 30
Hare, Pothula, DiLeone, Duman (bib42) 2020; 166
Michaëlsson, Andersson, Svensson, Karlsson, Ehn, Culley, Engström, Bergström, Savvidi, Kuhn (bib66) 2019; 225
Gould, Zarate, Thompson (bib39) 2019; 59
Grunebaum, Galfalvy, Choo, Parris, Burke, Suckow, Cooper, Mann (bib40) 2019; 117
Anderzhanova, Hafner, Genewsky, Soliman, Pöhlmann, Schmidt, Blum, Wotjak, Gassen (bib11) 2020; 13
Rahman, Hao, He, Li, Yang, Ye, Ali, Zhou, Li (bib78) 2020; 14
Xiong, Fujita, Zhang, Pu, Chang, Ma, Chen, Hashimoto (bib102) 2019; 368
Morris, Moaddel, Zanos, Moore, Gould, Zarate, Thomas (bib71) 2017; 19
Chen, Luna, LaGamma, Xu, Deng, Suckow, Cooper, Shah, Brachman, Mendez-David (bib20) 2020; 45
Chou, Peng, Lin, Lai, Hsieh, Wen, Lee, Wang, Yang, Chen (bib22) 2018; 139
Zhang, Toki, Fujita, Ma, Chang, Qu, Harada, Nemoto, Mizuno-Yasuhira, Yamaguchi (bib122) 2018; 235
Shaffer, Dutra, Tseng, Weber, Bogart, Hales, Pang, Volfson, Am Ende, Green (bib91) 2019; 153
Hasan, Hofstetter, Fassauer, Link, Siegmund, Oswald (bib43) 2017; 139
Aleksandrova, Wang, Phillips (bib8) 2019; 105
Derkach, Oh, Guire, Soderling (bib24) 2007; 8
Elmer, Tapocik, Mayo, Zanos, Gould (bib32) 2020; 196
Yamaguchi, Toki, Qu, Yang, Koike, Hashimoto, Mizuno-Yasuhira, Chaki (bib103) 2018; 43
Can, Zanos, Moaddel, Kang, Dossou, Wainer, Cheer, Frost, Huang, Gould (bib15) 2016; 359
Hillhouse, Rice, Porter (bib46) 2019; 176
Ho, Zhang, Zhang, Li, Weinshilboum (bib48) 2019; 10
Tůma, Koval, Sommerová, Vaculín (bib96) 2020; 217
Sassano-Higgins, Baron, Juarez, Esmaili, Gold (bib87) 2016; 33
Lumsden, Troppoli, Myers, Zanos, Aracava, Kehr, Lovett, Kim, Wang, Schmidt (bib63) 2019; 116
Farmer, Gilbert, Moaddel, George, Adeojo, Lovett, Nugent, Kadriu, Yuan, Gould (bib34) 2020; 45
Orser, Pennefather, MacDonald (bib73) 1997; 86
Zhang, Li, Hashimoto (bib120) 2014; 116
Price, Iosifescu, Murrough, Chang, Al Jurdi, Iqbal, Soleimani, Charney, Foulkes, Mathew (bib77) 2014; 31
Scheefhals, MacGillavry (bib88) 2018; 91
Abbott, Popescu (bib1) 2020; 98
Zanos, Highland, Stewart, Georgiou, Jenne, Lovett, Morris, Thomas, Moaddel, Zarate (bib114) 2019; 116
Herzog, Mellema, Remmers, Lutz, Müller, Treccani (bib44) 2020; 21
Cavalleri, Merlo Pich, Millan, Chiamulera, Kunath, Spano, Collo (bib16) 2018; 23
Kohtala, Theilmann, Rosenholm, Müller, Kiuru, Wegener, Yli-Kauhaluoma, Rantamäki (bib55) 2019; 157
Duhamel, Troncy, Beaudry (bib29) 2010; 24
Fred, Laukkanen, Brunello, Vesa, Göös, Cardon, Moliner, Maritzen, Varjosalo, Casarotto (bib36) 2019; 294
Moaddel, Sanghvi, Dossou, Ramamoorthy, Green, Bupp, Swezey, O’Loughlin, Wainer (bib68) 2015; 3
Rao, Flaker, Friedel, Kharasch (bib79) 2016; 125
Berton, Nestler (bib14) 2006; 7
MacDonald, Miljkovic, Pennefather (bib64) 1987; 58
Suzuki, Nosyreva, Hunt, Kavalali, Monteggia (bib94) 2017; 546
Portmann, Kwan, Theurillat, Schmitz, Mevissen, Thormann (bib76) 2010; 1217
DiazGranados, Ibrahim, Brutsche, Ameli, Henter, Luckenbaugh, Machado-Vieira, Zarate (bib26) 2010; 71
Desta, Moaddel, Ogburn, Xu, Ramamoorthy, Venkata, Sanghvi, Goldberg, Torjman, Wainer (bib25) 2012; 42
Kamp, Jonkman, van Velzen, Aarts, Niesters, Dahan, Olofsen (bib49) 2020; 125
Zarate, Singh, Carlson, Brutsche, Ameli, Luckenbaugh, Charney, Manji (bib119) 2006; 63
Sandbaumhüter, Thormann (bib86) 2018; 39
Moaddel, Venkata, Tanga, Bupp, Green, Iyer, Furimsky, Goldberg, Torjman, Wainer (bib70) 2010; 82
Chang, Glazko (bib18) 1974; 12
Kharasch, Labroo (bib53) 1992; 77
Ebert (bib30) 1996; 47
Hansen, Yi, Perszyk, Furukawa, Wollmuth, Gibb, Traynelis (bib41) 2018; 150
Moaddel, Abdrakhmanova, Kozak, Jozwiak, Toll, Jimenez, Rosenberg, Tran, Xiao, Zarate (bib67) 2013; 698
Kroin, Das, Moric, Buvanendran (bib56) 2019; 44
Shirayama, Hashimoto (bib92) 2018; 21
Woolf, Adams (bib100) 1987; 17
Schoepp (bib90) 2001; 299
Zanos, Moaddel, Morris, Riggs, Highland, Georgiou, Pereira, Albuquerque, Thomas, Zarate (bib117) 2018; 70
Zarate, Brutsche, Laje, Luckenbaugh, Venkata, Ramamoorthy, Moaddel, Wainer (bib118) 2012; 72
Zhao, Venkata, Moaddel, Luckenbaugh, Brutsche, Ibrahim, Zarate, Mager, Wainer (bib123) 2012; 74
Paul, Singh, Khadeer, Moaddel, Sanghvi, Green, O’Loughlin, Torjman, Bernier, Wainer (bib74) 2014; 121
Kurzweil, Danyeli, Şen, Fejtova, Walter, Gensberger-Reigl (bib58) 2020; 1152
Moaddel, Sanghvi, Ramamoorthy, Jozwiak, Singh, Green, O’Loughlin, Torjman, Wainer (bib69) 2016; 127
Lodge, Anis, Burton (bib62) 1982; 29
Vyklicky, Korinek, Smejkalova, Balik, Krausova, Kaniakova, Lichnerova, Cerny, Krusek, Dittert (bib98) 2014; 63
Yokoyama, Higuchi, Tanabe, Tsukada, Naito, Yamaguchi, Chen, Kasai, Seiriki, Nakazawa (bib110) 2020; 191
Chater, Goda (bib19) 2014; 8
Collo, Cavalleri, Chiamulera, Merlo Pich (bib23) 2018; 29
Fukumoto, Toki, Iijima, Hashihayata, Yamaguchi, Hashimoto, Chaki (bib38) 2017; 361
Kavalali, Monteggia (bib52) 2020; 106
Nelson, Trainor (bib72) 2007; 8
Ko, Yang, Chou, Xu (bib54) 2020; 14
Chou (bib21) 2020; 170
Dinis-Oliveira (bib27) 2017; 2
Yang, Shirayama, Zhang, Ren, Yao, Ma, Dong, Hashimoto (bib107) 2015; 5
Yu, Chen (bib111) 2011; 32
Aguilar-Valles, De Gregorio, Matta-Camacho, Eslamizade, Khlaifia, Skaleka, Lopez-Canul, Torres-Berrio, Bermudez, Rurak (bib6) 2020
Turfus, Parkin, Cowan, Halket, Smith, Braithwaite, Elliot, Steventon, Kicman (bib97) 2009; 37
Dravid, Erreger, Yuan, Nicholson, Le, Lyuboslavsky, Almonte, Murray, Mosely, Barber (bib28) 2007; 581
Casarotto, Girych, Fred, Kovaleva, Moliner, Enkavi, Biojone, Cannarozzo, Sahu, Kaurinkoski (bib124) 2021
Zanos, Moaddel, Morris, Georgiou, Fischell, Elmer, Alkondon, Yuan, Pribut, Singh (bib116) 2017; 546
Ago, Tanabe, Higuchi, Tsukada, Tanaka, Yamaguchi, Igarashi, Yokoyama, Seiriki, Kasai (bib5) 2019; 22
Wegman-Points, Pope, Zobel-Mask, Winter, Wauson, Duric, Yuan (bib99) 2020; 11
Ho, Correia, Ingle, Kaddurah-Daouk, Wang, Kaufmann, Weinshilboum (bib47) 2018; 152
Berman, Cappiello, Anand, Oren, Heninger, Charney, Krystal (bib13) 2000; 47
Kang, Park, Han, Tidball, Georgiou, Bortolotto, Lodge, Kaang, Collingridge (bib50) 2020; 4
Alkondon, Pereira, Eisenberg, Albuquerque (bib10) 1999; 19
Martinez-Lozano Sinues, Kohler, Brown, Zenobi, Dallmann (bib65) 2017; 53
Highland, Morris, Zanos, Lovett, Ghosh, Wang, Zarate, Thomas, Moaddel, Gould (bib45) 2019; 33
Wray, Schappi, Singh, Senese, Rasenick (bib101) 2019; 24
Fukumoto, Fogaça, Liu, Duman, Kato, Li, Duman (bib37) 2019; 116
Kavalali, Monteggia (bib51) 2018; 43
Pham, Defaix, Xu, Deng, Fabresse, Alvarez, Landry, Brachman, Denny, Gardier (bib75) 2018; 84
Ebert, Harkin, Muzi (bib31) 1995; 81
Sandbaumhüter, Theurillat, Bektas, Kutter, Bettschart-Wolfensberger, Thormann (bib82) 2016; 1467
Fassauer, Hofstetter, Hasan, Oswald, Modeß, Siegmund, Link (bib35) 2017; 146
Anis, Berry, Burton, Lodge (bib12) 1983; 79
Yang, Ren, Qu, Zhang, Ma, Dong, Hashimoto (bib106) 2018; 83
Aleksandrova, Wang, Phillips (bib7) 2017; 1
Theurillat, Sandbaumhüter, Bettschart-Wolfensberger, Thormann (bib95) 2016; 37
Abdallah (bib2) 2017; 81
Sandbaumhüter, Theurillat, Bettschart-Wolfensberger, Thormann (bib83) 2017; 38
Zanos, Highland, Liu, Troppoli, Georgiou, Lovett, Morris, Stewart, Thomas, Thompson (bib113) 2019; 176
Yang, Qu, Fujita, Ren, Ma, Dong, Hashimoto (bib105) 2017; 7
Zanos, Gould (bib112) 2018; 23
Leung, Baillie (bib60) 1986; 29
Singh, Rutkowska, Plazinska, Khadeer, Moaddel, Jozwiak, Bernier, Wainer (bib93) 2016; 11
Yang, Qu, Abe, Nozawa, Chaki, Hashimoto (bib104) 2017; 82
Sandbaumhüter, Theurillat, Thormann (bib85) 2017; 38
Krystal, Karper, Seibyl, Freeman, Delaney, Bremner, Heninger, Bowers, Charney (bib57) 1994; 51
Faccio, Ruperez, Singh, Angulo, Tavares, Bernier, Barbas, Wainer (bib33) 2018; 1862
Chang, Toki, Qu, Fujita, Mizuno-Yasuhira, Yamaguchi, Chaki, Hashimoto (bib17) 2018; 21
Zhang, Fujita, Hashimoto (bib121) 2018; 8
Aleksandrova, Wang, Phillips (bib9) 2020; 13
Yao, Skiteva, Zhang, Svenningsson, Chergui (bib108) 2018; 23
Ko (10.1124/pharmrev.120.000149_bib54) 2020; 14
Chou (10.1124/pharmrev.120.000149_bib21) 2020; 170
Zhang (10.1124/pharmrev.120.000149_bib121) 2018; 8
Kavalali (10.1124/pharmrev.120.000149_bib51) 2018; 43
Abbott (10.1124/pharmrev.120.000149_bib1) 2020; 98
Shirayama (10.1124/pharmrev.120.000149_bib92) 2018; 21
Woolf (10.1124/pharmrev.120.000149_bib100) 1987; 17
Vyklicky (10.1124/pharmrev.120.000149_bib98) 2014; 63
Yang (10.1124/pharmrev.120.000149_bib105) 2017; 7
DiazGranados (10.1124/pharmrev.120.000149_bib26) 2010; 71
Zarate (10.1124/pharmrev.120.000149_bib119) 2006; 63
Paul (10.1124/pharmrev.120.000149_bib74) 2014; 121
Ye (10.1124/pharmrev.120.000149_bib109) 2019; 157
Wray (10.1124/pharmrev.120.000149_bib101) 2019; 24
Sassano-Higgins (10.1124/pharmrev.120.000149_bib87) 2016; 33
Chang (10.1124/pharmrev.120.000149_bib18) 1974; 12
Casarotto (10.1124/pharmrev.120.000149_bib124) 2021
Chou (10.1124/pharmrev.120.000149_bib22) 2018; 139
Ago (10.1124/pharmrev.120.000149_bib5) 2019; 22
Singh (10.1124/pharmrev.120.000149_bib93) 2016; 11
Leung (10.1124/pharmrev.120.000149_bib60) 1986; 29
Ho (10.1124/pharmrev.120.000149_bib47) 2018; 152
Aleksandrova (10.1124/pharmrev.120.000149_bib9) 2020; 13
Gould (10.1124/pharmrev.120.000149_bib39) 2019; 59
Martinez-Lozano Sinues (10.1124/pharmrev.120.000149_bib65) 2017; 53
Zanos (10.1124/pharmrev.120.000149_bib117) 2018; 70
Yokoyama (10.1124/pharmrev.120.000149_bib110) 2020; 191
Kroin (10.1124/pharmrev.120.000149_bib56) 2019; 44
Desta (10.1124/pharmrev.120.000149_bib25) 2012; 42
Scheefhals (10.1124/pharmrev.120.000149_bib88) 2018; 91
Krystal (10.1124/pharmrev.120.000149_bib57) 1994; 51
Orser (10.1124/pharmrev.120.000149_bib73) 1997; 86
Faccio (10.1124/pharmrev.120.000149_bib33) 2018; 1862
Farmer (10.1124/pharmrev.120.000149_bib34) 2020; 45
Zhang (10.1124/pharmrev.120.000149_bib120) 2014; 116
Kharasch (10.1124/pharmrev.120.000149_bib53) 1992; 77
Yang (10.1124/pharmrev.120.000149_bib106) 2018; 83
Rao (10.1124/pharmrev.120.000149_bib79) 2016; 125
Lankveld (10.1124/pharmrev.120.000149_bib59) 2006; 29
Portmann (10.1124/pharmrev.120.000149_bib76) 2010; 1217
Hillhouse (10.1124/pharmrev.120.000149_bib46) 2019; 176
Berton (10.1124/pharmrev.120.000149_bib14) 2006; 7
Moaddel (10.1124/pharmrev.120.000149_bib69) 2016; 127
Dravid (10.1124/pharmrev.120.000149_bib28) 2007; 581
Duhamel (10.1124/pharmrev.120.000149_bib29) 2010; 24
Fukumoto (10.1124/pharmrev.120.000149_bib37) 2019; 116
Yang (10.1124/pharmrev.120.000149_bib107) 2015; 5
Schmitz (10.1124/pharmrev.120.000149_bib89) 2009; 30
Berman (10.1124/pharmrev.120.000149_bib13) 2000; 47
Fred (10.1124/pharmrev.120.000149_bib36) 2019; 294
Moaddel (10.1124/pharmrev.120.000149_bib68) 2015; 3
Grunebaum (10.1124/pharmrev.120.000149_bib40) 2019; 117
Ebert (10.1124/pharmrev.120.000149_bib31) 1995; 81
Wegman-Points (10.1124/pharmrev.120.000149_bib99) 2020; 11
Lilius (10.1124/pharmrev.120.000149_bib61) 2018; 122
Kang (10.1124/pharmrev.120.000149_bib50) 2020; 4
Cavalleri (10.1124/pharmrev.120.000149_bib16) 2018; 23
Sandbaumhüter (10.1124/pharmrev.120.000149_bib83) 2017; 38
Sandbaumhüter (10.1124/pharmrev.120.000149_bib86) 2018; 39
Elmer (10.1124/pharmrev.120.000149_bib32) 2020; 196
Hansen (10.1124/pharmrev.120.000149_bib41) 2018; 150
Chang (10.1124/pharmrev.120.000149_bib17) 2018; 21
Chen (10.1124/pharmrev.120.000149_bib20) 2020; 45
Herzog (10.1124/pharmrev.120.000149_bib44) 2020; 21
Suzuki (10.1124/pharmrev.120.000149_bib94) 2017; 546
Zanos (10.1124/pharmrev.120.000149_bib113) 2019; 176
Kohtala (10.1124/pharmrev.120.000149_bib55) 2019; 157
Kurzweil (10.1124/pharmrev.120.000149_bib58) 2020; 1152
Yu (10.1124/pharmrev.120.000149_bib111) 2011; 32
Lodge (10.1124/pharmrev.120.000149_bib62) 1982; 29
Turfus (10.1124/pharmrev.120.000149_bib97) 2009; 37
Alkondon (10.1124/pharmrev.120.000149_bib10) 1999; 19
Shaffer (10.1124/pharmrev.120.000149_bib91) 2019; 153
Collo (10.1124/pharmrev.120.000149_bib23) 2018; 29
Rahman (10.1124/pharmrev.120.000149_bib78) 2020; 14
Adams (10.1124/pharmrev.120.000149_bib4) 1981; 8
Highland (10.1124/pharmrev.120.000149_bib45) 2019; 33
Zanos (10.1124/pharmrev.120.000149_bib116) 2017; 546
Abdallah (10.1124/pharmrev.120.000149_bib3) 2020; 45
Aleksandrova (10.1124/pharmrev.120.000149_bib7) 2017; 1
Aleksandrova (10.1124/pharmrev.120.000149_bib8) 2019; 105
Rodriguez (10.1124/pharmrev.120.000149_bib81) 2013; 38
Yang (10.1124/pharmrev.120.000149_bib104) 2017; 82
Lumsden (10.1124/pharmrev.120.000149_bib63) 2019; 116
Zanos (10.1124/pharmrev.120.000149_bib112) 2018; 23
Sandbaumhüter (10.1124/pharmrev.120.000149_bib84) 2015; 36
Yao (10.1124/pharmrev.120.000149_bib108) 2018; 23
Chater (10.1124/pharmrev.120.000149_bib19) 2014; 8
Zanos (10.1124/pharmrev.120.000149_bib114) 2019; 116
Nelson (10.1124/pharmrev.120.000149_bib72) 2007; 8
Fassauer (10.1124/pharmrev.120.000149_bib35) 2017; 146
Zhang (10.1124/pharmrev.120.000149_bib122) 2018; 235
Aguilar-Valles (10.1124/pharmrev.120.000149_bib6) 2020
Morris (10.1124/pharmrev.120.000149_bib71) 2017; 19
Kavalali (10.1124/pharmrev.120.000149_bib52) 2020; 106
Michaëlsson (10.1124/pharmrev.120.000149_bib66) 2019; 225
Theurillat (10.1124/pharmrev.120.000149_bib95) 2016; 37
Abdallah (10.1124/pharmrev.120.000149_bib2) 2017; 81
Anderzhanova (10.1124/pharmrev.120.000149_bib11) 2020; 13
Kamp (10.1124/pharmrev.120.000149_bib49) 2020; 125
Anis (10.1124/pharmrev.120.000149_bib12) 1983; 79
Yamaguchi (10.1124/pharmrev.120.000149_bib103) 2018; 43
Fukumoto (10.1124/pharmrev.120.000149_bib38) 2017; 361
Price (10.1124/pharmrev.120.000149_bib77) 2014; 31
Zanos (10.1124/pharmrev.120.000149_bib115) 2016; 533
Sandbaumhüter (10.1124/pharmrev.120.000149_bib82) 2016; 1467
Riggs (10.1124/pharmrev.120.000149_bib80) 2019; 45
Dinis-Oliveira (10.1124/pharmrev.120.000149_bib27) 2017; 2
Moaddel (10.1124/pharmrev.120.000149_bib67) 2013; 698
Schoepp (10.1124/pharmrev.120.000149_bib90) 2001; 299
Zhao (10.1124/pharmrev.120.000149_bib123) 2012; 74
Tůma (10.1124/pharmrev.120.000149_bib96) 2020; 217
Hare (10.1124/pharmrev.120.000149_bib42) 2020; 166
Pham (10.1124/pharmrev.120.000149_bib75) 2018; 84
Can (10.1124/pharmrev.120.000149_bib15) 2016; 359
Zarate (10.1124/pharmrev.120.000149_bib118) 2012; 72
Ebert (10.1124/pharmrev.120.000149_bib30) 1996; 47
Hasan (10.1124/pharmrev.120.000149_bib43) 2017; 139
Ho (10.1124/pharmrev.120.000149_bib48) 2019; 10
Moaddel (10.1124/pharmrev.120.000149_bib70) 2010; 82
Derkach (10.1124/pharmrev.120.000149_bib24) 2007; 8
Xiong (10.1124/pharmrev.120.000149_bib102) 2019; 368
MacDonald (10.1124/pharmrev.120.000149_bib64) 1987; 58
Sandbaumhüter (10.1124/pharmrev.120.000149_bib85) 2017; 38
References_xml – volume: 79
  start-page: 565
  year: 1983
  end-page: 575
  ident: bib12
  article-title: The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate
  publication-title: Br J Pharmacol
– volume: 44
  start-page: 111
  year: 2019
  end-page: 117
  ident: bib56
  article-title: Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain
  publication-title: Reg Anesth Pain Med
– volume: 225
  year: 2019
  ident: bib66
  article-title: The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive-like rats
  publication-title: Acta Physiol (Oxf)
– volume: 127
  start-page: 3
  year: 2016
  end-page: 8
  ident: bib69
  article-title: Subchronic administration of (R,S)-ketamine induces ketamine ring hydroxylation in Wistar rats
  publication-title: J Pharm Biomed Anal
– volume: 84
  start-page: e3
  year: 2018
  end-page: e6
  ident: bib75
  article-title: Common neurotransmission recruited in (R,S)-Ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects
  publication-title: Biol Psychiatry
– volume: 24
  start-page: 1833
  year: 2019
  end-page: 1843
  ident: bib101
  article-title: NMDAR-independent, cAMP-dependent antidepressant actions of ketamine
  publication-title: Mol Psychiatry
– volume: 82
  start-page: 1892
  year: 2010
  end-page: 1904
  ident: bib70
  article-title: A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome
  publication-title: Talanta
– volume: 7
  start-page: 137
  year: 2006
  end-page: 151
  ident: bib14
  article-title: New approaches to antidepressant drug discovery: beyond monoamines
  publication-title: Nat Rev Neurosci
– volume: 51
  start-page: 199
  year: 1994
  end-page: 214
  ident: bib57
  article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses
  publication-title: Arch Gen Psychiatry
– volume: 8
  start-page: 4007
  year: 2018
  ident: bib121
  article-title: Lack of metabolism in (R)-ketamine’s antidepressant actions in a chronic social defeat stress model
  publication-title: Sci Rep
– volume: 42
  start-page: 1076
  year: 2012
  end-page: 1087
  ident: bib25
  article-title: Stereoselective and regiospecific hydroxylation of ketamine and norketamine
  publication-title: Xenobiotica
– volume: 24
  start-page: 868
  year: 2010
  end-page: 877
  ident: bib29
  article-title: Metabolic stability and determination of cytochrome P450 isoenzymes’ contribution to the metabolism of medetomidine in dog liver microsomes
  publication-title: Biomed Chromatogr
– volume: 21
  start-page: 2142
  year: 2020
  ident: bib44
  article-title: Sexually dimorphic behavioral profile in a transgenic model enabling targeted recombination in active neurons in response to ketamine and (2R,6R)-hydroxynorketamine administration
  publication-title: Int J Mol Sci
– volume: 59
  start-page: 213
  year: 2019
  end-page: 236
  ident: bib39
  article-title: Molecular pharmacology and neurobiology of rapid-acting antidepressants
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 43
  start-page: 1900
  year: 2018
  end-page: 1907
  ident: bib103
  article-title: (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice
  publication-title: Neuropsychopharmacology
– volume: 14
  start-page: 254
  year: 2020
  ident: bib54
  article-title: The ventrolateral periaqueductal gray contributes to depressive-like behaviors in recovery of inflammatory bowel disease rat model
  publication-title: Front Neurosci
– volume: 45
  start-page: 1398
  year: 2020
  end-page: 1404
  ident: bib34
  article-title: Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression [published correction appears in Neuropsychopharmacology (2020)]
  publication-title: Neuropsychopharmacology
– volume: 53
  start-page: 2264
  year: 2017
  end-page: 2267
  ident: bib65
  article-title: Gauging circadian variation in ketamine metabolism by real-time breath analysis
  publication-title: Chem Commun (Camb)
– volume: 38
  start-page: 1895
  year: 2017
  end-page: 1904
  ident: bib83
  article-title: Effect of the α
  publication-title: Electrophoresis
– volume: 1862
  start-page: 1505
  year: 2018
  end-page: 1515
  ident: bib33
  article-title: Stereochemical and structural effects of (2R,6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells
  publication-title: Biochim Biophys Acta Gen Subj
– volume: 176
  start-page: 2573
  year: 2019
  end-page: 2592
  ident: bib113
  article-title: (R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses
  publication-title: Br J Pharmacol
– volume: 11
  year: 2016
  ident: bib93
  article-title: Ketamine metabolites enantioselectively decrease intracellular D-serine concentrations in PC-12 cells
  publication-title: PLoS One
– volume: 37
  start-page: 1769
  year: 2009
  end-page: 1778
  ident: bib97
  article-title: Use of human microsomes and deuterated substrates: an alternative approach for the identification of novel metabolites of ketamine by mass spectrometry
  publication-title: Drug Metab Dispos
– volume: 17
  start-page: 839
  year: 1987
  end-page: 847
  ident: bib100
  article-title: Biotransformation of ketamine, (Z)-6-hydroxyketamine, and (E)-6-hydroxyketamine by rat, rabbit, and human liver microsomal preparations
  publication-title: Xenobiotica
– volume: 139
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib22
  article-title: (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray
  publication-title: Neuropharmacology
– volume: 37
  start-page: 1129
  year: 2016
  end-page: 1138
  ident: bib95
  article-title: Microassay for ketamine and metabolites in plasma and serum based on enantioselective capillary electrophoresis with highly sulfated γ-cyclodextrin and electrokinetic analyte injection
  publication-title: Electrophoresis
– volume: 63
  start-page: 856
  year: 2006
  end-page: 864
  ident: bib119
  article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression
  publication-title: Arch Gen Psychiatry
– volume: 361
  start-page: 9
  year: 2017
  end-page: 16
  ident: bib38
  article-title: Antidepressant potential of (
  publication-title: J Pharmacol Exp Ther
– volume: 58
  start-page: 251
  year: 1987
  end-page: 266
  ident: bib64
  article-title: Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine
  publication-title: J Neurophysiol
– volume: 77
  start-page: 1201
  year: 1992
  end-page: 1207
  ident: bib53
  article-title: Metabolism of ketamine stereoisomers by human liver microsomes
  publication-title: Anesthesiology
– volume: 43
  start-page: 221
  year: 2018
  end-page: 222
  ident: bib51
  article-title: The ketamine metabolite 2R,6R-hydroxynorketamine blocks NMDA receptors and impacts downstream signaling linked to antidepressant effects
  publication-title: Neuropsychopharmacology
– volume: 45
  start-page: 1545
  year: 2020
  end-page: 1556
  ident: bib20
  article-title: Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine
  publication-title: Neuropsychopharmacology
– volume: 581
  start-page: 107
  year: 2007
  end-page: 128
  ident: bib28
  article-title: Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block
  publication-title: J Physiol
– volume: 29
  start-page: 477
  year: 2006
  end-page: 488
  ident: bib59
  article-title: Pharmacodynamic effects and pharmacokinetic profile of a long-term continuous rate infusion of racemic ketamine in healthy conscious horses
  publication-title: J Vet Pharmacol Ther
– volume: 29
  start-page: 281
  year: 1982
  end-page: 286
  ident: bib62
  article-title: Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine
  publication-title: Neurosci Lett
– volume: 23
  start-page: 812
  year: 2018
  end-page: 823
  ident: bib16
  article-title: Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling
  publication-title: Mol Psychiatry
– volume: 191
  start-page: 172876
  year: 2020
  ident: bib110
  article-title: (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression
  publication-title: Pharmacol Biochem Behav
– volume: 359
  start-page: 159
  year: 2016
  end-page: 170
  ident: bib15
  article-title: Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters
  publication-title: J Pharmacol Exp Ther
– volume: 125
  start-page: 1103
  year: 2016
  end-page: 1112
  ident: bib79
  article-title: Role of cytochrome P4502B6 polymorphisms in ketamine metabolism and clearance
  publication-title: Anesthesiology
– volume: 86
  start-page: 903
  year: 1997
  end-page: 917
  ident: bib73
  article-title: Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors
  publication-title: Anesthesiology
– volume: 8
  start-page: 527
  year: 1981
  end-page: 538
  ident: bib4
  article-title: Studies on the biotransformation of ketamine. 1-Identification of metabolites produced
  publication-title: Biomed Mass Spectrom
– volume: 170
  start-page: 108068
  year: 2020
  ident: bib21
  article-title: Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions
  publication-title: Neuropharmacology
– volume: 166
  start-page: 107947
  year: 2020
  ident: bib42
  article-title: Ketamine increases vmPFC activity: effects of (R)- and (S)-stereoisomers and (2R,6R)-hydroxynorketamine metabolite
  publication-title: Neuropharmacology
– volume: 45
  start-page: 1245
  year: 2020
  end-page: 1246
  ident: bib3
  article-title: (2R,6R)-Hydroxynorketamine (HNK) plasma level predicts poor antidepressant response: is this the end of the HNK pipeline?
  publication-title: Neuropsychopharmacology
– volume: 36
  start-page: 2703
  year: 2015
  end-page: 2712
  ident: bib84
  article-title: Effects of medetomidine and its active enantiomer dexmedetomidine on N-demethylation of ketamine in canines determined
  publication-title: Electrophoresis
– volume: 30
  start-page: 2912
  year: 2009
  end-page: 2921
  ident: bib89
  article-title: CE provides evidence of the stereoselective hydroxylation of norketamine in equines
  publication-title: Electrophoresis
– volume: 533
  start-page: 481
  year: 2016
  end-page: 486
  ident: bib115
  article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites
  publication-title: Nature
– volume: 14
  year: 2020
  ident: bib78
  article-title: Proteomic study reveals the involvement of energy metabolism in the fast antidepressant effect of (2R, 6R)-hydroxy norketamine
  publication-title: Proteomics Clin Appl
– volume: 368
  start-page: 111904
  year: 2019
  ident: bib102
  article-title: Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model
  publication-title: Behav Brain Res
– volume: 299
  start-page: 12
  year: 2001
  end-page: 20
  ident: bib90
  article-title: Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system
  publication-title: J Pharmacol Exp Ther
– volume: 116
  start-page: 297
  year: 2019
  end-page: 302
  ident: bib37
  article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2
  publication-title: Proc Natl Acad Sci USA
– volume: 217
  start-page: 121094
  year: 2020
  ident: bib96
  article-title: Separation of anaesthetic ketamine and its derivates in PAMAPTAC coated capillaries with tuneable counter-current electroosmotic flow
  publication-title: Talanta
– volume: 63
  start-page: S191
  year: 2014
  end-page: S203
  ident: bib98
  article-title: Structure, function, and pharmacology of NMDA receptor channels
  publication-title: Physiol Res
– volume: 81
  start-page: e61
  year: 2017
  end-page: e63
  ident: bib2
  article-title: What’s the buzz about hydroxynorketamine? Is it the history, the story, the debate, or the promise?
  publication-title: Biol Psychiatry
– volume: 8
  start-page: 536
  year: 2007
  end-page: 546
  ident: bib72
  article-title: Neural mechanisms of aggression
  publication-title: Nat Rev Neurosci
– volume: 122
  start-page: 481
  year: 2018
  end-page: 488
  ident: bib61
  article-title: Interactions of (2S,6S;2R,6R)-Hydroxynorketamine, a secondary metabolite of (R,S)-Ketamine, with morphine
  publication-title: Basic Clin Pharmacol Toxicol
– volume: 33
  start-page: 718
  year: 2016
  end-page: 727
  ident: bib87
  article-title: A review of ketamine abuse and diversion
  publication-title: Depress Anxiety
– volume: 1152
  start-page: 122214
  year: 2020
  ident: bib58
  article-title: Targeted mass spectrometry of ketamine and its metabolites cis-6-hydroxynorketamine and norketamine in human blood serum
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 33
  start-page: 12
  year: 2019
  end-page: 24
  ident: bib45
  article-title: Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine
  publication-title: J Psychopharmacol
– volume: 546
  start-page: E4
  year: 2017
  end-page: E5
  ident: bib116
  article-title: Zanos et al. reply
  publication-title: Nature
– volume: 116
  start-page: 137
  year: 2014
  end-page: 141
  ident: bib120
  article-title: R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine
  publication-title: Pharmacol Biochem Behav
– volume: 31
  start-page: 335
  year: 2014
  end-page: 343
  ident: bib77
  article-title: Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression
  publication-title: Depress Anxiety
– volume: 7
  start-page: 1294
  year: 2017
  ident: bib105
  article-title: Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model
  publication-title: Transl Psychiatry
– volume: 45
  start-page: 426
  year: 2019
  end-page: 436
  ident: bib80
  article-title: (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism
  publication-title: Neuropsychopharmacology
– volume: 10
  start-page: 1302
  year: 2019
  ident: bib48
  article-title: Ketamine and active ketamine metabolites regulate STAT3 and the type I interferon pathway in human microglia: molecular mechanisms linked to the antidepressant effects of ketamine
  publication-title: Front Pharmacol
– volume: 1217
  start-page: 7942
  year: 2010
  end-page: 7948
  ident: bib76
  article-title: Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine
  publication-title: J Chromatogr A
– volume: 21
  start-page: 84
  year: 2018
  end-page: 88
  ident: bib92
  article-title: Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine
  publication-title: Int J Neuropsychopharmacol
– volume: 29
  start-page: 2396
  year: 1986
  end-page: 2399
  ident: bib60
  article-title: Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine
  publication-title: J Med Chem
– volume: 29
  start-page: 1425
  year: 2018
  end-page: 1430
  ident: bib23
  article-title: (2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans
  publication-title: Neuroreport
– volume: 3
  year: 2015
  ident: bib68
  article-title: The distribution and clearance of (2S,6S)-hydroxynorketamine, an active ketamine metabolite, in Wistar rats
  publication-title: Pharmacol Res Perspect
– volume: 38
  start-page: 2475
  year: 2013
  end-page: 2483
  ident: bib81
  article-title: Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept
  publication-title: Neuropsychopharmacology
– volume: 39
  start-page: 1478
  year: 2018
  end-page: 1481
  ident: bib86
  article-title: Enantioselective capillary electrophoresis provides insight into the phase II metabolism of ketamine and its metabolites
  publication-title: Electrophoresis
– volume: 2
  start-page: 2
  year: 2017
  end-page: 10
  ident: bib27
  article-title: Metabolism and metabolomics of ketamine: a toxicological approach
  publication-title: Forensic Sci Res
– volume: 13
  start-page: 92
  year: 2020
  ident: bib9
  article-title: Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression
  publication-title: Mol Brain
– volume: 146
  start-page: 410
  year: 2017
  end-page: 419
  ident: bib35
  article-title: Ketamine metabolites with antidepressant effects: fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection
  publication-title: J Pharm Biomed Anal
– volume: 13
  start-page: 100239
  year: 2020
  ident: bib11
  article-title: The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice
  publication-title: Neurobiol Stress
– volume: 8
  start-page: 101
  year: 2007
  end-page: 113
  ident: bib24
  article-title: Regulatory mechanisms of AMPA receptors in synaptic plasticity
  publication-title: Nat Rev Neurosci
– volume: 71
  start-page: 1605
  year: 2010
  end-page: 1611
  ident: bib26
  article-title: Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder
  publication-title: J Clin Psychiatry
– volume: 4
  year: 2020
  ident: bib50
  article-title: (2
  publication-title: Brain Neurosci Adv
– volume: 125
  start-page: 750
  year: 2020
  end-page: 761
  ident: bib49
  article-title: Pharmacokinetics of ketamine and its major metabolites norketamine, hydroxynorketamine, and dehydronorketamine: a model-based analysis
  publication-title: Br J Anaesth
– volume: 21
  start-page: 932
  year: 2018
  end-page: 937
  ident: bib17
  article-title: No sex-specific differences in the acute antidepressant actions of (R)-ketamine in an inflammation model
  publication-title: Int J Neuropsychopharmacol
– volume: 11
  start-page: 590221
  year: 2020
  ident: bib99
  article-title: Corticosterone as a potential confounding factor in delineating mechanisms underlying ketamine’s rapid antidepressant actions
  publication-title: Front Pharmacol
– volume: 12
  start-page: 157
  year: 1974
  end-page: 177
  ident: bib18
  article-title: Biotransformation and disposition of ketamine
  publication-title: Int Anesthesiol Clin
– volume: 91
  start-page: 82
  year: 2018
  end-page: 94
  ident: bib88
  article-title: Functional organization of postsynaptic glutamate receptors
  publication-title: Mol Cell Neurosci
– volume: 70
  start-page: 621
  year: 2018
  end-page: 660
  ident: bib117
  article-title: Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms
  publication-title: Pharmacol Rev
– volume: 22
  start-page: 665
  year: 2019
  end-page: 674
  ident: bib5
  article-title: (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism
  publication-title: Int J Neuropsychopharmacol
– volume: 8
  start-page: 401
  year: 2014
  ident: bib19
  article-title: The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity
  publication-title: Front Cell Neurosci
– volume: 23
  start-page: 801
  year: 2018
  end-page: 811
  ident: bib112
  article-title: Mechanisms of ketamine action as an antidepressant
  publication-title: Mol Psychiatry
– volume: 82
  start-page: e43
  year: 2017
  end-page: e44
  ident: bib104
  article-title: (R)-Ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine
  publication-title: Biol Psychiatry
– volume: 74
  start-page: 304
  year: 2012
  end-page: 314
  ident: bib123
  article-title: Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression
  publication-title: Br J Clin Pharmacol
– volume: 157
  start-page: 107684
  year: 2019
  ident: bib55
  article-title: Ketamine-induced regulation of TrkB-GSK3β signaling is accompanied by slow EEG oscillations and sedation but is independent of hydroxynorketamine metabolites
  publication-title: Neuropharmacology
– volume: 1
  year: 2017
  ident: bib7
  article-title: Hydroxynorketamine: implications for the NMDA receptor hypothesis of ketamine’s antidepressant action
  publication-title: Chronic Stress (Thousand Oaks)
– volume: 152
  start-page: 279
  year: 2018
  end-page: 292
  ident: bib47
  article-title: Ketamine and ketamine metabolites as novel estrogen receptor ligands: induction of cytochrome P450 and AMPA glutamate receptor gene expression
  publication-title: Biochem Pharmacol
– volume: 83
  start-page: 18
  year: 2018
  end-page: 28
  ident: bib106
  article-title: Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model
  publication-title: Biol Psychiatry
– volume: 47
  start-page: 15
  year: 1996
  end-page: 21
  ident: bib30
  article-title: Cardiovascular and autonomic effects of sevoflurane
  publication-title: Acta Anaesthesiol Belg
– volume: 19
  start-page: 2693
  year: 1999
  end-page: 2705
  ident: bib10
  article-title: Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices
  publication-title: J Neurosci
– volume: 81
  start-page: S11
  year: 1995
  end-page: S22
  ident: bib31
  article-title: Cardiovascular responses to sevoflurane: a review
  publication-title: Anesth Analg
– volume: 1467
  start-page: 436
  year: 2016
  end-page: 444
  ident: bib82
  article-title: Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. medetomidine comedication assessed by enantioselective capillary electrophoresis
  publication-title: J Chromatogr A
– volume: 98
  start-page: 203
  year: 2020
  end-page: 210
  ident: bib1
  article-title: Hydroxynorketamine blocks N-methyl-d-aspartate receptor currents by binding to closed receptors
  publication-title: Mol Pharmacol
– volume: 116
  start-page: 5160
  year: 2019
  end-page: 5169
  ident: bib63
  article-title: Antidepressant-relevant concentrations of the ketamine metabolite (2
  publication-title: Proc Natl Acad Sci USA
– volume: 698
  start-page: 228
  year: 2013
  end-page: 234
  ident: bib67
  article-title: Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors
  publication-title: Eur J Pharmacol
– volume: 121
  start-page: 149
  year: 2014
  end-page: 159
  ident: bib74
  article-title: (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function
  publication-title: Anesthesiology
– volume: 38
  start-page: 1878
  year: 2017
  end-page: 1885
  ident: bib85
  article-title: Separation of hydroxynorketamine stereoisomers using capillary electrophoresis with sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin
  publication-title: Electrophoresis
– volume: 157
  start-page: 107667
  year: 2019
  ident: bib109
  article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission
  publication-title: Neuropharmacology
– volume: 105
  start-page: 1
  year: 2019
  end-page: 23
  ident: bib8
  article-title: Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response
  publication-title: Neurosci Biobehav Rev
– volume: 176
  start-page: 3886
  year: 2019
  end-page: 3888
  ident: bib46
  article-title: What role does the (2R,6R)-hydronorketamine metabolite play in the antidepressant-like and abuse-related effects of (R)-ketamine?
  publication-title: Br J Pharmacol
– volume: 106
  start-page: 715
  year: 2020
  end-page: 726
  ident: bib52
  article-title: Targeting homeostatic synaptic plasticity for treatment of mood disorders
  publication-title: Neuron
– volume: 546
  start-page: E1
  year: 2017
  end-page: E3
  ident: bib94
  article-title: Effects of a ketamine metabolite on synaptic NMDAR function
  publication-title: Nature
– volume: 5
  year: 2015
  ident: bib107
  article-title: R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects
  publication-title: Transl Psychiatry
– year: 2021
  ident: bib124
  article-title: Antidepressant drugs act by directly binding to TRKB neurotrophin receptors
  publication-title: Cell
– volume: 153
  start-page: 73
  year: 2019
  end-page: 81
  ident: bib91
  article-title: Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine
  publication-title: Neuropharmacology
– year: 2020
  ident: bib6
  article-title: Antidepressant actions of ketamine engage cell-specific translation via eIF4E
  publication-title: Nature
– volume: 294
  start-page: 18150
  year: 2019
  end-page: 18161
  ident: bib36
  article-title: Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2
  publication-title: J Biol Chem
– volume: 196
  start-page: 172973
  year: 2020
  ident: bib32
  article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma
  publication-title: Pharmacol Biochem Behav
– volume: 235
  start-page: 3177
  year: 2018
  end-page: 3185
  ident: bib122
  article-title: Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model
  publication-title: Psychopharmacology (Berl)
– volume: 32
  start-page: 3
  year: 2011
  end-page: 11
  ident: bib111
  article-title: The role of BDNF in depression on the basis of its location in the neural circuitry
  publication-title: Acta Pharmacol Sin
– volume: 23
  start-page: 2066
  year: 2018
  end-page: 2077
  ident: bib108
  article-title: Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit
  publication-title: Mol Psychiatry
– volume: 47
  start-page: 351
  year: 2000
  end-page: 354
  ident: bib13
  article-title: Antidepressant effects of ketamine in depressed patients
  publication-title: Biol Psychiatry
– volume: 72
  start-page: 331
  year: 2012
  end-page: 338
  ident: bib118
  article-title: Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression
  publication-title: Biol Psychiatry
– volume: 116
  start-page: 6441
  year: 2019
  end-page: 6450
  ident: bib114
  article-title: (
  publication-title: Proc Natl Acad Sci USA
– volume: 117
  start-page: 129
  year: 2019
  end-page: 134
  ident: bib40
  article-title: Ketamine metabolite pilot study in a suicidal depression trial
  publication-title: J Psychiatr Res
– volume: 150
  start-page: 1081
  year: 2018
  end-page: 1105
  ident: bib41
  article-title: Structure, function, and allosteric modulation of NMDA receptors
  publication-title: J Gen Physiol
– volume: 139
  start-page: 87
  year: 2017
  end-page: 97
  ident: bib43
  article-title: Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples
  publication-title: J Pharm Biomed Anal
– volume: 19
  start-page: 4572
  year: 2017
  end-page: 4575
  ident: bib71
  article-title: Synthesis and N-Methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites
  publication-title: Org Lett
– volume: 24
  start-page: 868
  year: 2010
  ident: 10.1124/pharmrev.120.000149_bib29
  article-title: Metabolic stability and determination of cytochrome P450 isoenzymes’ contribution to the metabolism of medetomidine in dog liver microsomes
  publication-title: Biomed Chromatogr
  doi: 10.1002/bmc.1379
– volume: 63
  start-page: S191
  issue: Suppl 1
  year: 2014
  ident: 10.1124/pharmrev.120.000149_bib98
  article-title: Structure, function, and pharmacology of NMDA receptor channels
  publication-title: Physiol Res
  doi: 10.33549/physiolres.932678
– volume: 19
  start-page: 2693
  year: 1999
  ident: 10.1124/pharmrev.120.000149_bib10
  article-title: Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-07-02693.1999
– volume: 71
  start-page: 1605
  year: 2010
  ident: 10.1124/pharmrev.120.000149_bib26
  article-title: Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder
  publication-title: J Clin Psychiatry
  doi: 10.4088/JCP.09m05327blu
– volume: 150
  start-page: 1081
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib41
  article-title: Structure, function, and allosteric modulation of NMDA receptors
  publication-title: J Gen Physiol
  doi: 10.1085/jgp.201812032
– volume: 33
  start-page: 718
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib87
  article-title: A review of ketamine abuse and diversion
  publication-title: Depress Anxiety
  doi: 10.1002/da.22536
– volume: 82
  start-page: e43
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib104
  article-title: (R)-Ketamine shows greater potency and longer lasting antidepressant effects than its metabolite (2R,6R)-hydroxynorketamine
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2016.12.020
– volume: 546
  start-page: E4
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib116
  article-title: Zanos et al. reply
  publication-title: Nature
  doi: 10.1038/nature22085
– volume: 139
  start-page: 1
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib22
  article-title: (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2018.06.033
– volume: 81
  start-page: e61
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib2
  article-title: What’s the buzz about hydroxynorketamine? Is it the history, the story, the debate, or the promise?
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.01.002
– volume: 4
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib50
  article-title: (2S,6S)- and (2R,6R)-hydroxynorketamine inhibit the induction of NMDA receptor-dependent LTP at hippocampal CA1 synapses in mice
  publication-title: Brain Neurosci Adv
  doi: 10.1177/2398212820957847
– volume: 59
  start-page: 213
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib39
  article-title: Molecular pharmacology and neurobiology of rapid-acting antidepressants
  publication-title: Annu Rev Pharmacol Toxicol
  doi: 10.1146/annurev-pharmtox-010617-052811
– volume: 21
  start-page: 84
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib92
  article-title: Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyx108
– volume: 157
  start-page: 107667
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib109
  article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2019.107667
– volume: 217
  start-page: 121094
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib96
  article-title: Separation of anaesthetic ketamine and its derivates in PAMAPTAC coated capillaries with tuneable counter-current electroosmotic flow
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121094
– volume: 98
  start-page: 203
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib1
  article-title: Hydroxynorketamine blocks N-methyl-d-aspartate receptor currents by binding to closed receptors
  publication-title: Mol Pharmacol
  doi: 10.1124/mol.120.119784
– volume: 116
  start-page: 5160
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib63
  article-title: Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1816071116
– volume: 23
  start-page: 801
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib112
  article-title: Mechanisms of ketamine action as an antidepressant
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.255
– volume: 105
  start-page: 1
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib8
  article-title: Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2019.07.007
– volume: 139
  start-page: 87
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib43
  article-title: Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2017.02.035
– year: 2021
  ident: 10.1124/pharmrev.120.000149_bib124
  article-title: Antidepressant drugs act by directly binding to TRKB neurotrophin receptors
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.034
– volume: 44
  start-page: 111
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib56
  article-title: Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain
  publication-title: Reg Anesth Pain Med
  doi: 10.1136/rapm-2018-000013
– volume: 170
  start-page: 108068
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib21
  article-title: Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2020.108068
– volume: 37
  start-page: 1129
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib95
  article-title: Microassay for ketamine and metabolites in plasma and serum based on enantioselective capillary electrophoresis with highly sulfated γ-cyclodextrin and electrokinetic analyte injection
  publication-title: Electrophoresis
  doi: 10.1002/elps.201500468
– volume: 153
  start-page: 73
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib91
  article-title: Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2019.04.019
– volume: 1
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib7
  article-title: Hydroxynorketamine: implications for the NMDA receptor hypothesis of ketamine’s antidepressant action
  publication-title: Chronic Stress (Thousand Oaks)
– volume: 13
  start-page: 100239
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib11
  article-title: The stress susceptibility factor FKBP51 controls S-ketamine-evoked release of mBDNF in the prefrontal cortex of mice
  publication-title: Neurobiol Stress
  doi: 10.1016/j.ynstr.2020.100239
– volume: 8
  start-page: 101
  year: 2007
  ident: 10.1124/pharmrev.120.000149_bib24
  article-title: Regulatory mechanisms of AMPA receptors in synaptic plasticity
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2055
– volume: 5
  year: 2015
  ident: 10.1124/pharmrev.120.000149_bib107
  article-title: R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2015.136
– volume: 17
  start-page: 839
  year: 1987
  ident: 10.1124/pharmrev.120.000149_bib100
  article-title: Biotransformation of ketamine, (Z)-6-hydroxyketamine, and (E)-6-hydroxyketamine by rat, rabbit, and human liver microsomal preparations
  publication-title: Xenobiotica
  doi: 10.3109/00498258709043993
– volume: 13
  start-page: 92
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib9
  article-title: Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression
  publication-title: Mol Brain
  doi: 10.1186/s13041-020-00627-z
– volume: 83
  start-page: 18
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib106
  article-title: Mechanistic target of rapamycin-independent antidepressant effects of (R)-ketamine in a social defeat stress model
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.05.016
– volume: 299
  start-page: 12
  year: 2001
  ident: 10.1124/pharmrev.120.000149_bib90
  article-title: Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(24)29296-X
– volume: 125
  start-page: 750
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib49
  article-title: Pharmacokinetics of ketamine and its major metabolites norketamine, hydroxynorketamine, and dehydronorketamine: a model-based analysis
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.06.067
– volume: 106
  start-page: 715
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib52
  article-title: Targeting homeostatic synaptic plasticity for treatment of mood disorders
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.05.015
– volume: 116
  start-page: 137
  year: 2014
  ident: 10.1124/pharmrev.120.000149_bib120
  article-title: R (-)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/j.pbb.2013.11.033
– volume: 51
  start-page: 199
  year: 1994
  ident: 10.1124/pharmrev.120.000149_bib57
  article-title: Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1994.03950030035004
– volume: 38
  start-page: 1878
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib85
  article-title: Separation of hydroxynorketamine stereoisomers using capillary electrophoresis with sulfated β-cyclodextrin and highly sulfated γ-cyclodextrin
  publication-title: Electrophoresis
  doi: 10.1002/elps.201700016
– volume: 45
  start-page: 426
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib80
  article-title: (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-019-0443-3
– volume: 116
  start-page: 6441
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib114
  article-title: (2R,6R)-hydroxynorketamine exerts mGlu2 receptor-dependent antidepressant actions
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1819540116
– volume: 146
  start-page: 410
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib35
  article-title: Ketamine metabolites with antidepressant effects: fast, economical, and eco-friendly enantioselective separation based on supercritical-fluid chromatography (SFC) and single quadrupole MS detection
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2017.09.007
– volume: 368
  start-page: 111904
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib102
  article-title: Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2019.111904
– volume: 29
  start-page: 477
  year: 2006
  ident: 10.1124/pharmrev.120.000149_bib59
  article-title: Pharmacodynamic effects and pharmacokinetic profile of a long-term continuous rate infusion of racemic ketamine in healthy conscious horses
  publication-title: J Vet Pharmacol Ther
  doi: 10.1111/j.1365-2885.2006.00794.x
– volume: 8
  start-page: 536
  year: 2007
  ident: 10.1124/pharmrev.120.000149_bib72
  article-title: Neural mechanisms of aggression
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2174
– volume: 166
  start-page: 107947
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib42
  article-title: Ketamine increases vmPFC activity: effects of (R)- and (S)-stereoisomers and (2R,6R)-hydroxynorketamine metabolite
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2020.107947
– volume: 1217
  start-page: 7942
  year: 2010
  ident: 10.1124/pharmrev.120.000149_bib76
  article-title: Enantioselective capillary electrophoresis for identification and characterization of human cytochrome P450 enzymes which metabolize ketamine and norketamine in vitro
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2010.06.028
– volume: 8
  start-page: 4007
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib121
  article-title: Lack of metabolism in (R)-ketamine’s antidepressant actions in a chronic social defeat stress model
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-22449-9
– volume: 42
  start-page: 1076
  year: 2012
  ident: 10.1124/pharmrev.120.000149_bib25
  article-title: Stereoselective and regiospecific hydroxylation of ketamine and norketamine
  publication-title: Xenobiotica
  doi: 10.3109/00498254.2012.685777
– volume: 84
  start-page: e3
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib75
  article-title: Common neurotransmission recruited in (R,S)-Ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2017.10.020
– volume: 127
  start-page: 3
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib69
  article-title: Subchronic administration of (R,S)-ketamine induces ketamine ring hydroxylation in Wistar rats
  publication-title: J Pharm Biomed Anal
  doi: 10.1016/j.jpba.2016.03.030
– volume: 225
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib66
  article-title: The novel antidepressant ketamine enhances dentate gyrus proliferation with no effects on synaptic plasticity or hippocampal function in depressive-like rats
  publication-title: Acta Physiol (Oxf)
  doi: 10.1111/apha.13211
– volume: 1862
  start-page: 1505
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib33
  article-title: Stereochemical and structural effects of (2R,6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells
  publication-title: Biochim Biophys Acta Gen Subj
  doi: 10.1016/j.bbagen.2018.03.008
– volume: 152
  start-page: 279
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib47
  article-title: Ketamine and ketamine metabolites as novel estrogen receptor ligands: induction of cytochrome P450 and AMPA glutamate receptor gene expression
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2018.03.032
– volume: 21
  start-page: 932
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib17
  article-title: No sex-specific differences in the acute antidepressant actions of (R)-ketamine in an inflammation model
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyy053
– volume: 86
  start-page: 903
  year: 1997
  ident: 10.1124/pharmrev.120.000149_bib73
  article-title: Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199704000-00021
– volume: 7
  start-page: 137
  year: 2006
  ident: 10.1124/pharmrev.120.000149_bib14
  article-title: New approaches to antidepressant drug discovery: beyond monoamines
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn1846
– volume: 77
  start-page: 1201
  year: 1992
  ident: 10.1124/pharmrev.120.000149_bib53
  article-title: Metabolism of ketamine stereoisomers by human liver microsomes
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199212000-00022
– volume: 11
  start-page: 590221
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib99
  article-title: Corticosterone as a potential confounding factor in delineating mechanisms underlying ketamine’s rapid antidepressant actions
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.590221
– volume: 3
  year: 2015
  ident: 10.1124/pharmrev.120.000149_bib68
  article-title: The distribution and clearance of (2S,6S)-hydroxynorketamine, an active ketamine metabolite, in Wistar rats
  publication-title: Pharmacol Res Perspect
  doi: 10.1002/prp2.157
– volume: 38
  start-page: 2475
  year: 2013
  ident: 10.1124/pharmrev.120.000149_bib81
  article-title: Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.150
– volume: 82
  start-page: 1892
  year: 2010
  ident: 10.1124/pharmrev.120.000149_bib70
  article-title: A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome
  publication-title: Talanta
  doi: 10.1016/j.talanta.2010.08.005
– volume: 24
  start-page: 1833
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib101
  article-title: NMDAR-independent, cAMP-dependent antidepressant actions of ketamine
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-018-0083-8
– volume: 45
  start-page: 1545
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib20
  article-title: Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-0714-z
– volume: 196
  start-page: 172973
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib32
  article-title: Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/j.pbb.2020.172973
– volume: 45
  start-page: 1398
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib34
  article-title: Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression [published correction appears in Neuropsychopharmacology (2020)]
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-0663-6
– volume: 79
  start-page: 565
  year: 1983
  ident: 10.1124/pharmrev.120.000149_bib12
  article-title: The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.1983.tb11031.x
– volume: 176
  start-page: 2573
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib113
  article-title: (R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14683
– volume: 1467
  start-page: 436
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib82
  article-title: Pharmacokinetics of ketamine and three metabolites in Beagle dogs under sevoflurane vs. medetomidine comedication assessed by enantioselective capillary electrophoresis
  publication-title: J Chromatogr A
  doi: 10.1016/j.chroma.2016.07.060
– volume: 11
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib93
  article-title: Ketamine metabolites enantioselectively decrease intracellular D-serine concentrations in PC-12 cells
  publication-title: PLoS One
– volume: 81
  start-page: S11
  issue: Suppl
  year: 1995
  ident: 10.1124/pharmrev.120.000149_bib31
  article-title: Cardiovascular responses to sevoflurane: a review
  publication-title: Anesth Analg
  doi: 10.1097/00000539-199512001-00003
– volume: 235
  start-page: 3177
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib122
  article-title: Lack of deuterium isotope effects in the antidepressant effects of (R)-ketamine in a chronic social defeat stress model
  publication-title: Psychopharmacology (Berl)
  doi: 10.1007/s00213-018-5017-2
– volume: 191
  start-page: 172876
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib110
  article-title: (S)-norketamine and (2S,6S)-hydroxynorketamine exert potent antidepressant-like effects in a chronic corticosterone-induced mouse model of depression
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/j.pbb.2020.172876
– volume: 122
  start-page: 481
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib61
  article-title: Interactions of (2S,6S;2R,6R)-Hydroxynorketamine, a secondary metabolite of (R,S)-Ketamine, with morphine
  publication-title: Basic Clin Pharmacol Toxicol
  doi: 10.1111/bcpt.12941
– volume: 22
  start-page: 665
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib5
  article-title: (R)-ketamine induces a greater increase in prefrontal 5-HT release than (S)-ketamine and ketamine metabolites via an AMPA receptor-independent mechanism
  publication-title: Int J Neuropsychopharmacol
  doi: 10.1093/ijnp/pyz041
– volume: 8
  start-page: 401
  year: 2014
  ident: 10.1124/pharmrev.120.000149_bib19
  article-title: The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2014.00401
– volume: 29
  start-page: 1425
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib23
  article-title: (2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000001131
– volume: 116
  start-page: 297
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib37
  article-title: Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1814709116
– volume: 12
  start-page: 157
  year: 1974
  ident: 10.1124/pharmrev.120.000149_bib18
  article-title: Biotransformation and disposition of ketamine
  publication-title: Int Anesthesiol Clin
  doi: 10.1097/00004311-197412020-00018
– volume: 36
  start-page: 2703
  year: 2015
  ident: 10.1124/pharmrev.120.000149_bib84
  article-title: Effects of medetomidine and its active enantiomer dexmedetomidine on N-demethylation of ketamine in canines determined in vitro using enantioselective capillary electrophoresis
  publication-title: Electrophoresis
  doi: 10.1002/elps.201500147
– volume: 294
  start-page: 18150
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib36
  article-title: Pharmacologically diverse antidepressants facilitate TRKB receptor activation by disrupting its interaction with the endocytic adaptor complex AP-2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA119.008837
– volume: 359
  start-page: 159
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib15
  article-title: Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.116.235838
– volume: 29
  start-page: 281
  year: 1982
  ident: 10.1124/pharmrev.120.000149_bib62
  article-title: Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(82)90330-5
– volume: 23
  start-page: 812
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib16
  article-title: Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.241
– volume: 581
  start-page: 107
  year: 2007
  ident: 10.1124/pharmrev.120.000149_bib28
  article-title: Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block
  publication-title: J Physiol
  doi: 10.1113/jphysiol.2006.124958
– volume: 70
  start-page: 621
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib117
  article-title: Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.117.015198
– volume: 47
  start-page: 15
  year: 1996
  ident: 10.1124/pharmrev.120.000149_bib30
  article-title: Cardiovascular and autonomic effects of sevoflurane
  publication-title: Acta Anaesthesiol Belg
– volume: 39
  start-page: 1478
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib86
  article-title: Enantioselective capillary electrophoresis provides insight into the phase II metabolism of ketamine and its metabolites in vivo and in vitro
  publication-title: Electrophoresis
  doi: 10.1002/elps.201800012
– volume: 43
  start-page: 221
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib51
  article-title: The ketamine metabolite 2R,6R-hydroxynorketamine blocks NMDA receptors and impacts downstream signaling linked to antidepressant effects
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2017.210
– volume: 33
  start-page: 12
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib45
  article-title: Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine
  publication-title: J Psychopharmacol
  doi: 10.1177/0269881118812095
– volume: 14
  start-page: 254
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib54
  article-title: The ventrolateral periaqueductal gray contributes to depressive-like behaviors in recovery of inflammatory bowel disease rat model
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.00254
– volume: 8
  start-page: 527
  year: 1981
  ident: 10.1124/pharmrev.120.000149_bib4
  article-title: Studies on the biotransformation of ketamine. 1-Identification of metabolites produced in vitro from rat liver microsomal preparations
  publication-title: Biomed Mass Spectrom
  doi: 10.1002/bms.1200081103
– volume: 29
  start-page: 2396
  year: 1986
  ident: 10.1124/pharmrev.120.000149_bib60
  article-title: Comparative pharmacology in the rat of ketamine and its two principal metabolites, norketamine and (Z)-6-hydroxynorketamine
  publication-title: J Med Chem
  doi: 10.1021/jm00161a043
– volume: 125
  start-page: 1103
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib79
  article-title: Role of cytochrome P4502B6 polymorphisms in ketamine metabolism and clearance
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001392
– volume: 7
  start-page: 1294
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib105
  article-title: Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-017-0031-4
– volume: 10
  start-page: 1302
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib48
  article-title: Ketamine and active ketamine metabolites regulate STAT3 and the type I interferon pathway in human microglia: molecular mechanisms linked to the antidepressant effects of ketamine
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.01302
– volume: 38
  start-page: 1895
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib83
  article-title: Effect of the α2 -receptor agonists medetomidine, detomidine, xylazine, and romifidine on the ketamine metabolism in equines assessed with enantioselective capillary electrophoresis
  publication-title: Electrophoresis
  doi: 10.1002/elps.201700017
– year: 2020
  ident: 10.1124/pharmrev.120.000149_bib6
  article-title: Antidepressant actions of ketamine engage cell-specific translation via eIF4E
  publication-title: Nature
– volume: 546
  start-page: E1
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib94
  article-title: Effects of a ketamine metabolite on synaptic NMDAR function
  publication-title: Nature
  doi: 10.1038/nature22084
– volume: 698
  start-page: 228
  year: 2013
  ident: 10.1124/pharmrev.120.000149_bib67
  article-title: Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors
  publication-title: Eur J Pharmacol
  doi: 10.1016/j.ejphar.2012.11.023
– volume: 32
  start-page: 3
  year: 2011
  ident: 10.1124/pharmrev.120.000149_bib111
  article-title: The role of BDNF in depression on the basis of its location in the neural circuitry
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/aps.2010.184
– volume: 37
  start-page: 1769
  year: 2009
  ident: 10.1124/pharmrev.120.000149_bib97
  article-title: Use of human microsomes and deuterated substrates: an alternative approach for the identification of novel metabolites of ketamine by mass spectrometry
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.108.026328
– volume: 58
  start-page: 251
  year: 1987
  ident: 10.1124/pharmrev.120.000149_bib64
  article-title: Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1987.58.2.251
– volume: 23
  start-page: 2066
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib108
  article-title: Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2017.239
– volume: 14
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib78
  article-title: Proteomic study reveals the involvement of energy metabolism in the fast antidepressant effect of (2R, 6R)-hydroxy norketamine
  publication-title: Proteomics Clin Appl
  doi: 10.1002/prca.201900094
– volume: 30
  start-page: 2912
  year: 2009
  ident: 10.1124/pharmrev.120.000149_bib89
  article-title: CE provides evidence of the stereoselective hydroxylation of norketamine in equines
  publication-title: Electrophoresis
  doi: 10.1002/elps.200900221
– volume: 2
  start-page: 2
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib27
  article-title: Metabolism and metabolomics of ketamine: a toxicological approach
  publication-title: Forensic Sci Res
  doi: 10.1080/20961790.2017.1285219
– volume: 53
  start-page: 2264
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib65
  article-title: Gauging circadian variation in ketamine metabolism by real-time breath analysis
  publication-title: Chem Commun (Camb)
  doi: 10.1039/C6CC09061C
– volume: 43
  start-page: 1900
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib103
  article-title: (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-018-0084-y
– volume: 74
  start-page: 304
  year: 2012
  ident: 10.1124/pharmrev.120.000149_bib123
  article-title: Simultaneous population pharmacokinetic modelling of ketamine and three major metabolites in patients with treatment-resistant bipolar depression
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2012.04198.x
– volume: 91
  start-page: 82
  year: 2018
  ident: 10.1124/pharmrev.120.000149_bib88
  article-title: Functional organization of postsynaptic glutamate receptors
  publication-title: Mol Cell Neurosci
  doi: 10.1016/j.mcn.2018.05.002
– volume: 31
  start-page: 335
  year: 2014
  ident: 10.1124/pharmrev.120.000149_bib77
  article-title: Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression
  publication-title: Depress Anxiety
  doi: 10.1002/da.22253
– volume: 1152
  start-page: 122214
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib58
  article-title: Targeted mass spectrometry of ketamine and its metabolites cis-6-hydroxynorketamine and norketamine in human blood serum
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2020.122214
– volume: 47
  start-page: 351
  year: 2000
  ident: 10.1124/pharmrev.120.000149_bib13
  article-title: Antidepressant effects of ketamine in depressed patients
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(99)00230-9
– volume: 45
  start-page: 1245
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib3
  article-title: (2R,6R)-Hydroxynorketamine (HNK) plasma level predicts poor antidepressant response: is this the end of the HNK pipeline?
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-0668-1
– volume: 361
  start-page: 9
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib38
  article-title: Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.116.239228
– volume: 121
  start-page: 149
  year: 2014
  ident: 10.1124/pharmrev.120.000149_bib74
  article-title: (R,S)-Ketamine metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine increase the mammalian target of rapamycin function
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000000285
– volume: 21
  start-page: 2142
  year: 2020
  ident: 10.1124/pharmrev.120.000149_bib44
  article-title: Sexually dimorphic behavioral profile in a transgenic model enabling targeted recombination in active neurons in response to ketamine and (2R,6R)-hydroxynorketamine administration
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21062142
– volume: 533
  start-page: 481
  year: 2016
  ident: 10.1124/pharmrev.120.000149_bib115
  article-title: NMDAR inhibition-independent antidepressant actions of ketamine metabolites
  publication-title: Nature
  doi: 10.1038/nature17998
– volume: 157
  start-page: 107684
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib55
  article-title: Ketamine-induced regulation of TrkB-GSK3β signaling is accompanied by slow EEG oscillations and sedation but is independent of hydroxynorketamine metabolites
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2019.107684
– volume: 72
  start-page: 331
  year: 2012
  ident: 10.1124/pharmrev.120.000149_bib118
  article-title: Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2012.03.004
– volume: 176
  start-page: 3886
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib46
  article-title: What role does the (2R,6R)-hydronorketamine metabolite play in the antidepressant-like and abuse-related effects of (R)-ketamine?
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14785
– volume: 63
  start-page: 856
  year: 2006
  ident: 10.1124/pharmrev.120.000149_bib119
  article-title: A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.63.8.856
– volume: 117
  start-page: 129
  year: 2019
  ident: 10.1124/pharmrev.120.000149_bib40
  article-title: Ketamine metabolite pilot study in a suicidal depression trial
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2019.08.005
– volume: 19
  start-page: 4572
  year: 2017
  ident: 10.1124/pharmrev.120.000149_bib71
  article-title: Synthesis and N-Methyl-d-aspartate (NMDA) receptor activity of ketamine metabolites
  publication-title: Org Lett
  doi: 10.1021/acs.orglett.7b02177
SSID ssj0014585
Score 2.5698478
SecondaryResourceType review_article
Snippet Hydroxynorketamines (HNKs) are formed in vivo after (R,S)-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of...
Hydroxynorketamines (HNKs) are formed in vivo after ( , )-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of...
Hydroxynorketamines (HNKs) are formed in vivo after ( R , S )-ketamine (ketamine) administration. The 12 HNK stereoisomers are distinguished by the position of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 763
SubjectTerms Anesthetics
Antidepressive Agents - pharmacology
Depression
Humans
Ketamine - pharmacology
Review
Synaptic Transmission
Title Hydroxynorketamines: Pharmacology and Potential Therapeutic Applications
URI https://dx.doi.org/10.1124/pharmrev.120.000149
https://www.ncbi.nlm.nih.gov/pubmed/33674359
https://www.proquest.com/docview/2498484176
https://pubmed.ncbi.nlm.nih.gov/PMC7938660
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLgg3mwLKEioFzZl4ziOww3x0FKgWolW6i1ynFhdaZugNntYfj0z8WO9dKmglyhK7NjyNxnPjOdByGsuq4Ji6stGaFBQmKpiISdZXKcahAUF_G8oyfL9iE9P2OFpdro2ZQ_RJX11oH5tjSu5CarwDHDFKNn_QNZ_FB7APeALV0AYrv-E8XRVoxdK22HksjxHD3bU8GfrdNQmu9Ks69EpyITiu3ArI4CGFjsrowbdBwRtwtLASH3m3CEPpVqs2jdHB97-LK3f3gxv_GmOs8B_k8hGfOvBID_vlkOHbrE6b-cyNEPQJPBeGWxjLj5mw30TWUbMC-OB6_itKV1i6YoGzNOxOrMP56aK11UWTxnWJcalwCo9CUXfPFT01jua9zP8gRPA8dFTlvMsvU3uUNAnsNTFxy9f_XETy4QpdWGna9NTwVBvtwz0NxHmqoryp6dtILoc3yf3rM4RvTcE9IDcatqHZN_CvBpHAVFcjqP9KKSfR2S6hcrebbSJgBoiT2Ph56KQxh6Tk8-fjj9MY1t_I1YsK_qYwV_bZIpKXTR1hUmwmoxqoRIFYroqdK0wtSuraD3RIlUpVaKQleR5UjU6YTp9Qnbarm2ekahKEj4RoIuDPsIENNSMK5WLRNFMTJQeEeqWtFQ2OT3WSFmUg5JKWelwKAGH0uAwImPf6afJzXJ9c-6wKq14acTGEkjr-o6vHLIlMF88UZNt0y0vS8oKwQRLcj4iTw3SfiZpivE9GfTON2jAN8DE7ptv2vnZkOAd9kwBK7t70wnvkbvrX_Q52ekvls0LkJ376uVA978BWxrK1A
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydroxynorketamines%3A+Pharmacology+and+Potential+Therapeutic+Applications&rft.jtitle=Pharmacological+reviews&rft.au=Highland%2C+Jaclyn+N.&rft.au=Zanos%2C+Panos&rft.au=Riggs%2C+Lace+M.&rft.au=Georgiou%2C+Polymnia&rft.date=2021-04-01&rft.pub=Elsevier+Inc&rft.issn=0031-6997&rft.volume=73&rft.issue=2&rft.spage=763&rft.epage=791&rft_id=info:doi/10.1124%2Fpharmrev.120.000149&rft.externalDocID=S0031699724006653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-6997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-6997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-6997&client=summon