Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species ( , , , , ) treated with or without 100 mg P kg in two soils (aci...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 7; p. 1939
Main Authors Lyu, Yang, Tang, Hongliang, Li, Haigang, Zhang, Fusuo, Rengel, Zed, Whalley, William R., Shen, Jianbo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 21.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species ( , , , , ) treated with or without 100 mg P kg in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species ( ) than legumes. and had higher root/shoot biomass ratio and had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. and depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas had higher root morphology dependence, with and in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production.
AbstractList The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species ( Zea mays , Triticum aestivum , Brassica napus , Lupinus albus, Glycine max, Vicia faba , Cicer arietinum ) treated with or without 100 mg P kg -1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species ( Zea mays, Triticum aestivum, Brassica napus ) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production.
The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species ( , , , , ) treated with or without 100 mg P kg in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species ( ) than legumes. and had higher root/shoot biomass ratio and had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. and depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas had higher root morphology dependence, with and in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production.
The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production.The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production.
Author Zhang, Fusuo
Shen, Jianbo
Tang, Hongliang
Lyu, Yang
Li, Haigang
Rengel, Zed
Whalley, William R.
AuthorAffiliation 3 Soil Science and Plant Nutrition, School of Earth and Environment, The UWA Institute of Agriculture, The University of Western Australia, Crawley WA, Australia
2 College of Life Science, Hebei University Baoding, China
1 Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University Beijing, China
4 Rothamsted Research Harpenden, UK
AuthorAffiliation_xml – name: 3 Soil Science and Plant Nutrition, School of Earth and Environment, The UWA Institute of Agriculture, The University of Western Australia, Crawley WA, Australia
– name: 4 Rothamsted Research Harpenden, UK
– name: 1 Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University Beijing, China
– name: 2 College of Life Science, Hebei University Baoding, China
Author_xml – sequence: 1
  givenname: Yang
  surname: Lyu
  fullname: Lyu, Yang
– sequence: 2
  givenname: Hongliang
  surname: Tang
  fullname: Tang, Hongliang
– sequence: 3
  givenname: Haigang
  surname: Li
  fullname: Li, Haigang
– sequence: 4
  givenname: Fusuo
  surname: Zhang
  fullname: Zhang, Fusuo
– sequence: 5
  givenname: Zed
  surname: Rengel
  fullname: Rengel, Zed
– sequence: 6
  givenname: William R.
  surname: Whalley
  fullname: Whalley, William R.
– sequence: 7
  givenname: Jianbo
  surname: Shen
  fullname: Shen, Jianbo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28066491$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vFSEUxYmpsbV27c6wdPNeYfiYYWOiz68mbWpaNe4Iw9zpo-ENCDM2b-l_LtPWl9ZENhDu75wL9zxHe0MYAKGXlCwZa9RxH31eVoTKJaGKqSfogErJF1xWP_YenPfRUc7XpCxBiFL1M7RfNaRUFT1Av8_MdUh4lULElxGsg4wv1-EGv3d9DwmG0RmP3xlvBgu4hfEGYMAXIYz4LKS4Dj5cOVsQM3T4y3qb3e7mAnIMQy6GY8DfTXKm9VCYkIssTaXPFKPfvkBPe-MzHN3vh-jbxw9fV58Xp-efTlZvTxeWCzWWnxALikshjOQN62rFWysbwSpBKpCi47yVQhned8wUUlrWyKZlQtR93VPCDtGbO984tRvobPlaMl7H5DYmbXUwTj-uDG6tr8IvLWjNy9yKwet7gxR-TpBHvXHZgi-jgTBlTRshG8lpPaOvHvbaNfk79wIc3wE2hZwT9DuEEj2Hq-dw9Ryuvg23KMQ_CutGM7owP9b5_-r-AFEorEk
CitedBy_id crossref_primary_10_1093_jxb_erab123
crossref_primary_10_1007_s11104_024_07106_7
crossref_primary_10_1016_j_envexpbot_2024_105954
crossref_primary_10_7717_peerj_12766
crossref_primary_10_1007_s11104_021_05178_3
crossref_primary_10_1111_nph_16499
crossref_primary_10_1016_j_soilbio_2021_108537
crossref_primary_10_1007_s11104_018_3616_7
crossref_primary_10_1186_s12870_022_03683_w
crossref_primary_10_3389_fpls_2024_1470719
crossref_primary_10_1111_sum_13110
crossref_primary_10_3389_fpls_2021_677767
crossref_primary_10_3390_agronomy14010169
crossref_primary_10_1080_00380768_2023_2283487
crossref_primary_10_1093_aob_mcz011
crossref_primary_10_3390_agronomy14050901
crossref_primary_10_1016_j_indcrop_2024_118624
crossref_primary_10_1111_ppl_14247
crossref_primary_10_1016_j_molp_2019_08_001
crossref_primary_10_3390_agronomy12102539
crossref_primary_10_1093_aob_mcaa159
crossref_primary_10_3389_fpls_2021_728527
crossref_primary_10_1016_j_scitotenv_2019_06_344
crossref_primary_10_1017_S1479262124000236
crossref_primary_10_1111_jipb_13090
crossref_primary_10_1016_j_apsoil_2024_105414
crossref_primary_10_3390_f15030515
crossref_primary_10_1007_s42729_024_01727_8
crossref_primary_10_1016_j_geoderma_2020_114621
crossref_primary_10_1007_s11104_024_06623_9
crossref_primary_10_1007_s42398_019_00047_3
crossref_primary_10_15302_J_FASE_2019283
crossref_primary_10_1016_j_fcr_2021_108426
crossref_primary_10_1093_aob_mcab097
crossref_primary_10_1111_nph_15833
crossref_primary_10_1111_nph_17854
crossref_primary_10_3389_fpls_2022_1080014
crossref_primary_10_1093_aobpla_plz033
crossref_primary_10_3389_fpls_2022_1051080
crossref_primary_10_1007_s13593_023_00916_6
crossref_primary_10_1093_aob_mcaa068
crossref_primary_10_1111_1365_2435_13823
crossref_primary_10_5010_JPB_2024_51_014_129
crossref_primary_10_1016_j_agee_2024_108886
crossref_primary_10_1080_00103624_2020_1836199
crossref_primary_10_3390_agronomy13030900
crossref_primary_10_3390_f9110666
crossref_primary_10_1016_j_scienta_2024_113551
crossref_primary_10_3389_fenvs_2022_855815
crossref_primary_10_1111_1365_2435_14193
crossref_primary_10_3389_fpls_2019_00157
crossref_primary_10_1002_csc2_20852
crossref_primary_10_1093_aob_mcz154
crossref_primary_10_1007_s11270_019_4383_7
crossref_primary_10_3390_ijms18071253
crossref_primary_10_1002_jpln_202200115
crossref_primary_10_1007_s42729_021_00605_x
crossref_primary_10_1016_j_foreco_2019_117750
crossref_primary_10_1111_tpj_15261
crossref_primary_10_3390_plants8110514
crossref_primary_10_1007_s11104_021_04988_9
crossref_primary_10_3390_agronomy11101918
crossref_primary_10_1002_saj2_20613
crossref_primary_10_1007_s11104_022_05309_4
crossref_primary_10_1080_15427528_2021_1872754
crossref_primary_10_1016_j_still_2024_106276
crossref_primary_10_3390_microorganisms11020326
crossref_primary_10_3390_plants12061295
crossref_primary_10_1007_s40502_021_00627_8
crossref_primary_10_1016_j_rhisph_2021_100391
crossref_primary_10_3389_fgene_2020_574547
crossref_primary_10_1007_s00572_023_01126_4
crossref_primary_10_1007_s11104_023_06171_8
crossref_primary_10_1016_j_jenvman_2019_109885
crossref_primary_10_1111_gcb_17001
crossref_primary_10_3390_plants11223105
crossref_primary_10_1002_jeq2_20037
crossref_primary_10_1007_s11104_025_07232_w
crossref_primary_10_1016_j_scitotenv_2024_173667
crossref_primary_10_3389_fpls_2019_00183
crossref_primary_10_1016_j_sjbs_2021_05_066
crossref_primary_10_1007_s11104_020_04584_3
crossref_primary_10_1093_aob_mcae169
crossref_primary_10_1007_s11104_022_05340_5
crossref_primary_10_1111_tpj_15630
crossref_primary_10_3390_plants11060752
crossref_primary_10_1016_j_envres_2020_109319
crossref_primary_10_1016_j_fecs_2022_100055
crossref_primary_10_1111_nph_16170
crossref_primary_10_1016_j_eja_2024_127393
crossref_primary_10_1007_s42729_024_01755_4
crossref_primary_10_3389_fpls_2022_1006806
crossref_primary_10_1007_s11104_018_3664_z
crossref_primary_10_1016_j_apsoil_2021_104346
crossref_primary_10_1016_j_still_2023_105915
crossref_primary_10_1111_oik_08606
crossref_primary_10_1111_1365_2435_13562
crossref_primary_10_1002_saj2_20065
crossref_primary_10_1093_insilicoplants_diab028
crossref_primary_10_1007_s11104_020_04698_8
crossref_primary_10_1016_j_tplants_2020_04_013
crossref_primary_10_1016_j_geoderma_2022_116281
crossref_primary_10_3389_fpls_2021_631314
crossref_primary_10_1002_agj2_21018
crossref_primary_10_1016_j_agee_2021_107661
crossref_primary_10_1016_j_stress_2022_100121
crossref_primary_10_1080_01904167_2024_2380778
crossref_primary_10_1111_1365_2745_14064
crossref_primary_10_1007_s11104_017_3214_0
crossref_primary_10_1007_s42729_024_01833_7
crossref_primary_10_1016_j_plantsci_2024_112211
crossref_primary_10_3390_plants12051110
crossref_primary_10_1007_s11104_024_07188_3
crossref_primary_10_1002_fes3_252
crossref_primary_10_1080_00380768_2021_2022965
crossref_primary_10_15302_J_FASE_2019275
crossref_primary_10_1007_s13593_020_00661_0
crossref_primary_10_1016_j_still_2020_104754
crossref_primary_10_1186_s12870_021_03249_2
crossref_primary_10_1016_j_micres_2022_127094
crossref_primary_10_3389_fpls_2022_861574
crossref_primary_10_1007_s11104_019_04138_2
crossref_primary_10_1016_j_fcr_2020_107960
crossref_primary_10_1186_s12870_020_02538_6
crossref_primary_10_3390_plants11081006
crossref_primary_10_1016_j_jare_2021_08_014
crossref_primary_10_1016_j_envexpbot_2019_103827
crossref_primary_10_1080_01904167_2022_2046079
crossref_primary_10_1007_s10725_018_0451_z
crossref_primary_10_3389_fpls_2021_738172
crossref_primary_10_1007_s11104_023_06426_4
crossref_primary_10_1007_s11104_019_04259_8
crossref_primary_10_3389_fpls_2023_1150832
crossref_primary_10_1002_jpln_202000471
crossref_primary_10_1093_jxb_eraa482
crossref_primary_10_3390_ijms24129879
crossref_primary_10_1016_j_plantsci_2018_09_015
crossref_primary_10_1007_s11104_023_06136_x
crossref_primary_10_1016_j_ijagro_2024_100024
crossref_primary_10_1093_aob_mcae060
crossref_primary_10_1016_S2095_3119_18_62115_X
crossref_primary_10_3389_fpls_2024_1377626
crossref_primary_10_1007_s10705_022_10234_0
crossref_primary_10_1016_j_scienta_2022_111779
crossref_primary_10_1111_jac_12514
crossref_primary_10_1007_s10661_024_12779_9
crossref_primary_10_1016_j_envexpbot_2020_104049
Cites_doi 10.1023/A:1022367312851
10.1023/A:1012724821957
10.1007/s00374-007-0188-8
10.1111/j.1399-3054.1994.tb02539.x
10.1007/s11104-004-2386-6
10.1038/478029a
10.1093/aobpla/plw058
10.1104/pp.010869
10.1007/BF02181353
10.1007/BF02376789
10.1146/annurev.arplant.52.1.527
10.1007/BF00024992
10.1104/pp.111.175414
10.1007/s11104-015-2518-1
10.1111/j.1469-8137.2005.01558.x
10.1080/01904169209364361
10.1093/aob/mcs293
10.1007/s11104-008-9589-1
10.1071/CP07125
10.1016/j.chemosphere.2011.02.032
10.1007/s11104-005-8295-5
10.2134/agronj1967.00021962005900030010x
10.1007/s00572-004-0324-3
10.1007/BF02374724
10.1007/s00374-009-0411-x
10.1104/pp.111.175232
10.1007/BF02280176
10.1023/A:1022332700686
10.1111/nph.12778
10.1007/s11104-009-9990-4
10.1023/A:1013351617532
10.1023/A:1004380832118
10.1038/nature07028
10.1111/j.1469-8137.2010.03323.x
10.1073/pnas.0704591104
10.1093/jxb/erp083
10.2113/GSELEMENTS.4.2.83
10.1111/j.1469-8137.2006.01897.x
10.1021/jf60127a017
10.1007/978-0-387-79418-1_19
10.1080/00380768.1992.10416486
10.1007/s11104-009-0249-x
10.1007/s11104-005-3936-2
10.1007/s11104-006-9099-y
10.1071/S96047
10.1016/j.scitotenv.2009.02.006
10.1007/s004250050572
10.1111/j.1469-8137.2005.01614.x
10.1093/jxb/eru135
10.1016/j.plantsci.2004.10.017
10.1016/j.jplph.2013.04.015
10.1016/j.plantsci.2010.06.007
10.1002/jpln.201000085
10.1093/jxb/ers342
10.1111/j.1365-2389.2006.00767.x
10.1023/A:1010386800937
10.1146/annurev.arplant.50.1.665
10.1046/j.1469-8137.2003.00695.x
10.1007/s11104-010-0545-5
10.2134/agronj14.0122
10.1007/s003740000222
10.1093/aob/mcl114
10.2136/sssabookser3.3ed
10.3390/agronomy3010086
10.1111/j.1469-8137.2007.02206.x
10.3389/fpls.2011.00073
10.1007/s11427-013-4461-9
10.1111/j.1469-8137.2004.01070.x
10.1071/FP07222
10.1007/BF02280175
10.1007/s11104-006-0014-3
10.1016/j.soilbio.2006.06.014
10.1007/BF02143545
10.1093/aob/mch140
10.1007/s11104-008-9873-0
10.1023/A:1022375229625
ContentType Journal Article
Copyright Copyright © 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen. 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen
Copyright_xml – notice: Copyright © 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen. 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3389/fpls.2016.01939
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID PMC5174099
28066491
10_3389_fpls_2016_01939
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31330070, 31210103906, 30925024
– fundername: Australian Research Council
  grantid: DP160104434
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: 20:20 Wheat Programme
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-460ce94655a6483d794bc68532502e65d44b659a4fd3ace96c3868b3557f7f103
IEDL.DBID M48
ISSN 1664-462X
IngestDate Thu Aug 21 14:11:02 EDT 2025
Fri Jul 11 12:25:32 EDT 2025
Thu Apr 03 07:07:12 EDT 2025
Thu Apr 24 23:00:48 EDT 2025
Tue Jul 01 00:51:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords phosphorus supply
root exudation
phosphorus uptake
fibrous root species
legume species
root morphological traits
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-460ce94655a6483d794bc68532502e65d44b659a4fd3ace96c3868b3557f7f103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science
Edited by: Karl H. Muehling, University of Kiel, Germany
Reviewed by: Uwe Ludewig, University of Hohenheim, Germany; Caixian Tang, La Trobe University, Australia
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2016.01939
PMID 28066491
PQID 1856864179
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5174099
proquest_miscellaneous_1856864179
pubmed_primary_28066491
crossref_primary_10_3389_fpls_2016_01939
crossref_citationtrail_10_3389_fpls_2016_01939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-21
PublicationDateYYYYMMDD 2016-12-21
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-21
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2016
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hinsinger (B18) 2001; 237
Shen (B56) 2005; 168
Vu (B66) 2010; 337
Neumann (B39) 1999; 211
Hammond (B16) 2009; 60
Li (B29) 2014; 203
Nuruzzaman (B41) 2006; 281
Li (B28) 2007; 104
Ryan (B53) 2001; 52
Westerman (B72) 1990
Pearse (B47) 2007; 173
Thomas (B63) 1967; 59
Pearse (B46) 2006b; 288
Wang (B67) 2007; 176
Alvey (B1) 2001; 231
Raghothama (B48) 1999; 50
Oelkers (B42) 2008; 4
Elser (B11) 2011; 478
Wang (B69) 2008; 312
Rengel (B49) 2005; 168
Wouterlood (B73) 2004; 162
Duff (B9) 1994; 90
Li (B30) 2004; 94
Maltais-Landry (B34) 2015; 394
Vance (B64) 2003; 157
George (B15) 2006; 57
Kerley (B24) 2001; 236
Watt (B71) 2003; 248
Pang (B44) 2010; 331
Yan (B74) 2002; 129
Zhou (B77) 2009; 407
Föhse (B13) 1988; 110
Tadano (B60) 1993; 155
Solaiman (B59) 2007; 44
Zhang (B75) 2010; 107
Marschner (B36) 2007; 39
Carvalhais (B5) 2011; 174
Hill (B17) 2006; 286
Wang (B70) 2010; 179
Schroeder (B54) 2005; 15
Kerley (B23) 2000; 32
Lynch (B33) 2013; 112
Richardson (B50) 2009; 60
Li (B27) 2008; 35
Hoffland (B20) 1989b; 113
Wang (B68) 2010; 187
Nuruzzaman (B40) 2005; 271
Lynch (B32) 2011; 156
Zhang (B76) 2009; 320
Barker (B3) 2007
Eissenstat (B10) 1992; 15
Liu (B31) 2016; 8
Cordell (B8) 2013; 3
Shen (B55) 2013; 64
Foehse (B12) 1983; 74
Marschner (B35) 2006; 283
Neumann (B38) 1999; 208
Li (B26) 2010; 46
Rose (B52) 2011; 2
Lambers (B25) 2006; 98
Shen (B57) 2003; 248
Moorby (B37) 1988; 105
Cordell (B7) 2011; 84
Tang (B61) 2013a; 170
Veneklaas (B65) 2003; 248
Ohwaki (B43) 1992; 38
Cheng (B6) 2014; 65
Gardner (B14) 1982; 68
Rose (B51) 2010; 326
Calderón-Vázquez (B4) 2009
Shen (B58) 2011; 156
Houlton (B22) 2008; 454
Pearse (B45) 2006a; 169
Tang (B62) 2013b; 56
Barber (B2) 1963; 11
Hoffland (B19) 1989a; 113
Holford (B21) 1997; 35
References_xml – volume: 248
  start-page: 187
  year: 2003
  ident: B65
  article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake.
  publication-title: Plant Soil
  doi: 10.1023/A:1022367312851
– volume: 236
  start-page: 275
  year: 2001
  ident: B24
  article-title: Comparison of acid and alkaline soil and liquid culture growth systems for studies of shoot and root characteristics of white lupin (Lupinus albus L.) genotypes.
  publication-title: Plant Soil
  doi: 10.1023/A:1012724821957
– volume: 44
  start-page: 143
  year: 2007
  ident: B59
  article-title: Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability.
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-007-0188-8
– volume: 90
  start-page: 791
  year: 1994
  ident: B9
  article-title: The role of acid phosphatases in plant phosphorus metabolism.
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1994.tb02539.x
– volume: 271
  start-page: 175
  year: 2005
  ident: B40
  article-title: Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia.
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-2386-6
– volume: 478
  start-page: 29
  year: 2011
  ident: B11
  article-title: Phosphorus cycle: a broken biogeochemical cycle.
  publication-title: Nature
  doi: 10.1038/478029a
– volume: 8
  issue: lw058
  year: 2016
  ident: B31
  article-title: The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency.
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plw058
– volume: 129
  start-page: 50
  year: 2002
  ident: B74
  article-title: Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010869
– volume: 74
  start-page: 359
  year: 1983
  ident: B12
  article-title: Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants.
  publication-title: Plant Soil
  doi: 10.1007/BF02181353
– volume: 105
  start-page: 247
  year: 1988
  ident: B37
  article-title: The influence of phosphate nutrition on H ion efflux from the roots of young rape plants.
  publication-title: Plant Soil
  doi: 10.1007/BF02376789
– volume: 52
  start-page: 527
  year: 2001
  ident: B53
  article-title: Function and mechanism of organic anion exudation from plant roots.
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.52.1.527
– volume: 155
  start-page: 95
  year: 1993
  ident: B60
  article-title: Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupin roots.
  publication-title: Plant Soil
  doi: 10.1007/BF00024992
– volume: 156
  start-page: 1041
  year: 2011
  ident: B32
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175414
– volume: 394
  start-page: 139
  year: 2015
  ident: B34
  article-title: Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops.
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2518-1
– volume: 168
  start-page: 305
  year: 2005
  ident: B49
  article-title: Nutrient availability and management in the rhizosphere: exploiting genotypic differences.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2005.01558.x
– volume: 15
  start-page: 763
  year: 1992
  ident: B10
  article-title: Costs and benefits of constructing roots of small diameter.
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904169209364361
– volume: 112
  start-page: 347
  year: 2013
  ident: B33
  article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs293
– volume: 312
  start-page: 117
  year: 2008
  ident: B69
  article-title: Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions.
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9589-1
– volume: 60
  start-page: 124
  year: 2009
  ident: B50
  article-title: Plant mechanisms to optimise access to soil phosphorus.
  publication-title: Crop Pasture Sci.
  doi: 10.1071/CP07125
– volume: 84
  start-page: 747
  year: 2011
  ident: B7
  article-title: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.032
– volume: 283
  start-page: 11
  year: 2006
  ident: B35
  article-title: Rhizosphere properties of Poaceae genotypes under P-limiting conditions.
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-8295-5
– volume: 59
  start-page: 240
  year: 1967
  ident: B63
  article-title: Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion.
  publication-title: Agron. J.
  doi: 10.2134/agronj1967.00021962005900030010x
– volume: 15
  start-page: 203
  year: 2005
  ident: B54
  article-title: Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density.
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-004-0324-3
– volume: 68
  start-page: 19
  year: 1982
  ident: B14
  article-title: The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface.
  publication-title: Plant Soil
  doi: 10.1007/BF02374724
– volume: 46
  start-page: 79
  year: 2010
  ident: B26
  article-title: Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil.
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s00374-009-0411-x
– volume: 156
  start-page: 997
  year: 2011
  ident: B58
  article-title: Phosphorus dynamics: from soil to plant.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175232
– volume: 113
  start-page: 161
  year: 1989b
  ident: B20
  article-title: Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation.
  publication-title: Plant Soil
  doi: 10.1007/BF02280176
– volume: 248
  start-page: 271
  year: 2003
  ident: B71
  article-title: Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development.
  publication-title: Plant Soil
  doi: 10.1023/A:1022332700686
– volume: 203
  start-page: 63
  year: 2014
  ident: B29
  article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture.
  publication-title: New Phytol.
  doi: 10.1111/nph.12778
– volume: 326
  start-page: 159
  year: 2010
  ident: B51
  article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics.
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9990-4
– volume: 237
  start-page: 173
  year: 2001
  ident: B18
  article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review.
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– volume: 211
  start-page: 121
  year: 1999
  ident: B39
  article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants.
  publication-title: Plant Soil
  doi: 10.1023/A:1004380832118
– volume: 454
  start-page: 327
  year: 2008
  ident: B22
  article-title: A unifying framework for dinitrogen fixation in the terrestrial biosphere.
  publication-title: Nature
  doi: 10.1038/nature07028
– volume: 187
  start-page: 1112
  year: 2010
  ident: B68
  article-title: Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03323.x
– volume: 104
  start-page: 11192
  year: 2007
  ident: B28
  article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0704591104
– volume: 60
  start-page: 1953
  year: 2009
  ident: B16
  article-title: Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp083
– year: 2007
  ident: B3
  publication-title: Handbook of Plant Nutrition.
– volume: 4
  start-page: 83
  year: 2008
  ident: B42
  article-title: Phosphate mineral reactivity and global sustainability.
  publication-title: Elements
  doi: 10.2113/GSELEMENTS.4.2.83
– volume: 173
  start-page: 181
  year: 2007
  ident: B47
  article-title: Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01897.x
– volume: 11
  start-page: 204
  year: 1963
  ident: B2
  article-title: Mechanisms for movement of plant nutrients from soil and fertilizer to plant root.
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60127a017
– start-page: 381
  year: 2009
  ident: B4
  article-title: “Maize under phosphate limitation,” in
  publication-title: Handbook of Maize: Its Biology
  doi: 10.1007/978-0-387-79418-1_19
– volume: 38
  start-page: 235
  year: 1992
  ident: B43
  article-title: Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots.
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1992.10416486
– volume: 331
  start-page: 241
  year: 2010
  ident: B44
  article-title: Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply.
  publication-title: Plant Soil.
  doi: 10.1007/s11104-009-0249-x
– volume: 281
  start-page: 109
  year: 2006
  ident: B41
  article-title: Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes.
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-3936-2
– volume: 288
  start-page: 127
  year: 2006b
  ident: B46
  article-title: Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status.
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9099-y
– volume: 35
  start-page: 227
  year: 1997
  ident: B21
  article-title: Soil phosphorus: its measurement, and its uptake by plants.
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/S96047
– volume: 407
  start-page: 4356
  year: 2009
  ident: B77
  article-title: Rhizosphere acidification of faba bean, soybean and maize.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.02.006
– volume: 208
  start-page: 373
  year: 1999
  ident: B38
  article-title: Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin.
  publication-title: Planta
  doi: 10.1007/s004250050572
– volume: 169
  start-page: 515
  year: 2006a
  ident: B45
  article-title: Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2005.01614.x
– volume: 65
  start-page: 2995
  year: 2014
  ident: B6
  article-title: Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.).
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru135
– volume: 168
  start-page: 837
  year: 2005
  ident: B56
  article-title: Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system.
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.10.017
– volume: 170
  start-page: 1243
  year: 2013a
  ident: B61
  article-title: Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2013.04.015
– volume: 179
  start-page: 302
  year: 2010
  ident: B70
  article-title: Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.06.007
– volume: 174
  start-page: 3
  year: 2011
  ident: B5
  article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency.
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201000085
– volume: 64
  start-page: 1181
  year: 2013
  ident: B55
  article-title: Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers342
– volume: 57
  start-page: 47
  year: 2006
  ident: B15
  article-title: Depletion of organic phosphorus from oxisols in relation to phosphatase activities in the rhizosphere.
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00767.x
– volume: 231
  start-page: 45
  year: 2001
  ident: B1
  article-title: Cereal/legume rotations affect chemical properties and biological activities in two West African soils.
  publication-title: Plant Soil
  doi: 10.1023/A:1010386800937
– volume: 50
  start-page: 665
  year: 1999
  ident: B48
  article-title: Phosphate acquisition.
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.50.1.665
– volume: 157
  start-page: 423
  year: 2003
  ident: B64
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource.
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume: 337
  start-page: 497
  year: 2010
  ident: B66
  article-title: Phosphorus availability for three crop species as a function of soil type and fertilizer history.
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0545-5
– volume: 107
  start-page: 1
  year: 2010
  ident: B75
  article-title: Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China.
  publication-title: Adv. Agron.
  doi: 10.2134/agronj14.0122
– volume: 32
  start-page: 94
  year: 2000
  ident: B23
  article-title: The effect of soil liming on shoot development, root growth, and cluster root activity of white lupin.
  publication-title: Biol. Fert. Soils
  doi: 10.1007/s003740000222
– volume: 98
  start-page: 693
  year: 2006
  ident: B25
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcl114
– year: 1990
  ident: B72
  publication-title: Soil Testing and Plant Analysis
  doi: 10.2136/sssabookser3.3ed
– volume: 3
  start-page: 86
  year: 2013
  ident: B8
  article-title: Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security.
  publication-title: Agronomy
  doi: 10.3390/agronomy3010086
– volume: 176
  start-page: 581
  year: 2007
  ident: B67
  article-title: Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02206.x
– volume: 2
  issue: 73
  year: 2011
  ident: B52
  article-title: The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2011.00073
– volume: 56
  start-page: 313
  year: 2013b
  ident: B62
  article-title: Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.).
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-013-4461-9
– volume: 162
  start-page: 745
  year: 2004
  ident: B73
  article-title: Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants.
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2004.01070.x
– volume: 35
  start-page: 328
  year: 2008
  ident: B27
  article-title: Is there a critical level of shoot phosphorus concentration for cluster-root formation in
  publication-title: Lupinus albus?
  doi: 10.1071/FP07222
– volume: 113
  start-page: 155
  year: 1989a
  ident: B19
  article-title: Solubilization of rock phosphate by rape. I. Evaluation of the role of the nutrient uptake pattern.
  publication-title: Plant Soil
  doi: 10.1007/BF02280175
– volume: 286
  start-page: 7
  year: 2006
  ident: B17
  article-title: Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition.
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0014-3
– volume: 39
  start-page: 87
  year: 2007
  ident: B36
  article-title: Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.06.014
– volume: 110
  start-page: 101
  year: 1988
  ident: B13
  article-title: Phosphorus efficiency of plants. I. external and internal p requirement and p uptake efficiency of different plant species.
  publication-title: Plant Soil
  doi: 10.1007/BF02143545
– volume: 94
  start-page: 297
  year: 2004
  ident: B30
  article-title: Acid phosphatase role in chickpea/maize intercropping.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mch140
– volume: 320
  start-page: 91
  year: 2009
  ident: B76
  article-title: Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress.
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9873-0
– volume: 248
  start-page: 199
  year: 2003
  ident: B57
  article-title: Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus.
  publication-title: Plant Soil
  doi: 10.1023/A:1022375229625
SSID ssj0000500997
Score 2.5157356
Snippet The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1939
SubjectTerms Plant Science
Title Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply
URI https://www.ncbi.nlm.nih.gov/pubmed/28066491
https://www.proquest.com/docview/1856864179
https://pubmed.ncbi.nlm.nih.gov/PMC5174099
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcYcNgFAfug40OetMMuKUntvCYHhPhGk8qBrai3yHYcAariLk219ch_zntJWigwaZccEtux_Oy834uffz_Gvtks1FFqMw-dh_Bk7AtPZ0J7vq8y8G2qRXXqvXcFl335YxAOnuSAmgEcvxnakZ5Uvxi2__6eHuKCP6CIE_3tfjYaEvF2AG3EKyJ-x1bQLXVJzqDXYP2a6JvQUCW2AiA9CZ1BTfXzVhuLXuoV9HyZQfnMJZ2vs7UGS_Kj2vgbbMnmm2z12CHem35gDz117wp-UrgRr1Tm7Zj_vHV_-GmjiYJre8iPKbXRWN7ka_Fr50reczj6s68iV3nKq0TR-Z3rOrEWGywdv8Fom85fYRk3xmrFBN9DWqHTj6x_fvbr5NJrBBc8I8O4xDHxjY2JUU2BjESKa1UbQIeOOKljIUyl1BDGSmapUFgSjIgg0ghZulk3C3zxiS3nLrdbjAMYEwoJJjIYg6ggSjUYjfiHtm1DFbRYezbAiWnYyEkUY5hgVEIWScgiCVkkqSzSYt_nFUY1Ece_i36dWSzBxUI7ICq3bjJOEJxABCS61mKfawvOG6MtZuwe9qy7YNt5ASLiXnyS391WhNzE9o1z68t_vHebvaeOUkJMJ9hhy2UxsbsIa0q9V_0OwOvFINirpu4jZJz6GQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Major+Crop+Species+Show+Differential+Balance+between+Root+Morphological+and+Physiological+Responses+to+Variable+Phosphorus+Supply&rft.jtitle=Frontiers+in+plant+science&rft.au=Lyu%2C+Yang&rft.au=Tang%2C+Hongliang&rft.au=Li%2C+Haigang&rft.au=Zhang%2C+Fusuo&rft.date=2016-12-21&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=7&rft.spage=1939&rft_id=info:doi/10.3389%2Ffpls.2016.01939&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon