Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply
The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species ( , , , , ) treated with or without 100 mg P kg in two soils (aci...
Saved in:
Published in | Frontiers in plant science Vol. 7; p. 1939 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
21.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (
,
,
,
,
) treated with or without 100 mg P kg
in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (
) than legumes.
and
had higher root/shoot biomass ratio and
had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species.
exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases.
and
depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas
had higher root morphology dependence, with
and
in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. |
---|---|
AbstractList | The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (
Zea mays
,
Triticum aestivum
,
Brassica napus
,
Lupinus albus, Glycine max, Vicia faba
,
Cicer arietinum
) treated with or without 100 mg P kg
-1
in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (
Zea mays, Triticum aestivum, Brassica napus
) than legumes.
Zea mays
and
Triticum aestivum
had higher root/shoot biomass ratio and
Brassica napus
had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species.
Lupinus albus
exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases.
Lupinus albus
and
Cicer arietinum
depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas
Zea mays, Triticum aestivum and Brassica napus
had higher root morphology dependence, with
Glycine max
and
Vicia faba
in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species ( , , , , ) treated with or without 100 mg P kg in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species ( ) than legumes. and had higher root/shoot biomass ratio and had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. and depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas had higher root morphology dependence, with and in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production.The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. |
Author | Zhang, Fusuo Shen, Jianbo Tang, Hongliang Lyu, Yang Li, Haigang Rengel, Zed Whalley, William R. |
AuthorAffiliation | 3 Soil Science and Plant Nutrition, School of Earth and Environment, The UWA Institute of Agriculture, The University of Western Australia, Crawley WA, Australia 2 College of Life Science, Hebei University Baoding, China 1 Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University Beijing, China 4 Rothamsted Research Harpenden, UK |
AuthorAffiliation_xml | – name: 3 Soil Science and Plant Nutrition, School of Earth and Environment, The UWA Institute of Agriculture, The University of Western Australia, Crawley WA, Australia – name: 4 Rothamsted Research Harpenden, UK – name: 1 Centre for Resources, Environment and Food Security, Department of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University Beijing, China – name: 2 College of Life Science, Hebei University Baoding, China |
Author_xml | – sequence: 1 givenname: Yang surname: Lyu fullname: Lyu, Yang – sequence: 2 givenname: Hongliang surname: Tang fullname: Tang, Hongliang – sequence: 3 givenname: Haigang surname: Li fullname: Li, Haigang – sequence: 4 givenname: Fusuo surname: Zhang fullname: Zhang, Fusuo – sequence: 5 givenname: Zed surname: Rengel fullname: Rengel, Zed – sequence: 6 givenname: William R. surname: Whalley fullname: Whalley, William R. – sequence: 7 givenname: Jianbo surname: Shen fullname: Shen, Jianbo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28066491$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vFSEUxYmpsbV27c6wdPNeYfiYYWOiz68mbWpaNe4Iw9zpo-ENCDM2b-l_LtPWl9ZENhDu75wL9zxHe0MYAKGXlCwZa9RxH31eVoTKJaGKqSfogErJF1xWP_YenPfRUc7XpCxBiFL1M7RfNaRUFT1Av8_MdUh4lULElxGsg4wv1-EGv3d9DwmG0RmP3xlvBgu4hfEGYMAXIYz4LKS4Dj5cOVsQM3T4y3qb3e7mAnIMQy6GY8DfTXKm9VCYkIssTaXPFKPfvkBPe-MzHN3vh-jbxw9fV58Xp-efTlZvTxeWCzWWnxALikshjOQN62rFWysbwSpBKpCi47yVQhned8wUUlrWyKZlQtR93VPCDtGbO984tRvobPlaMl7H5DYmbXUwTj-uDG6tr8IvLWjNy9yKwet7gxR-TpBHvXHZgi-jgTBlTRshG8lpPaOvHvbaNfk79wIc3wE2hZwT9DuEEj2Hq-dw9Ryuvg23KMQ_CutGM7owP9b5_-r-AFEorEk |
CitedBy_id | crossref_primary_10_1093_jxb_erab123 crossref_primary_10_1007_s11104_024_07106_7 crossref_primary_10_1016_j_envexpbot_2024_105954 crossref_primary_10_7717_peerj_12766 crossref_primary_10_1007_s11104_021_05178_3 crossref_primary_10_1111_nph_16499 crossref_primary_10_1016_j_soilbio_2021_108537 crossref_primary_10_1007_s11104_018_3616_7 crossref_primary_10_1186_s12870_022_03683_w crossref_primary_10_3389_fpls_2024_1470719 crossref_primary_10_1111_sum_13110 crossref_primary_10_3389_fpls_2021_677767 crossref_primary_10_3390_agronomy14010169 crossref_primary_10_1080_00380768_2023_2283487 crossref_primary_10_1093_aob_mcz011 crossref_primary_10_3390_agronomy14050901 crossref_primary_10_1016_j_indcrop_2024_118624 crossref_primary_10_1111_ppl_14247 crossref_primary_10_1016_j_molp_2019_08_001 crossref_primary_10_3390_agronomy12102539 crossref_primary_10_1093_aob_mcaa159 crossref_primary_10_3389_fpls_2021_728527 crossref_primary_10_1016_j_scitotenv_2019_06_344 crossref_primary_10_1017_S1479262124000236 crossref_primary_10_1111_jipb_13090 crossref_primary_10_1016_j_apsoil_2024_105414 crossref_primary_10_3390_f15030515 crossref_primary_10_1007_s42729_024_01727_8 crossref_primary_10_1016_j_geoderma_2020_114621 crossref_primary_10_1007_s11104_024_06623_9 crossref_primary_10_1007_s42398_019_00047_3 crossref_primary_10_15302_J_FASE_2019283 crossref_primary_10_1016_j_fcr_2021_108426 crossref_primary_10_1093_aob_mcab097 crossref_primary_10_1111_nph_15833 crossref_primary_10_1111_nph_17854 crossref_primary_10_3389_fpls_2022_1080014 crossref_primary_10_1093_aobpla_plz033 crossref_primary_10_3389_fpls_2022_1051080 crossref_primary_10_1007_s13593_023_00916_6 crossref_primary_10_1093_aob_mcaa068 crossref_primary_10_1111_1365_2435_13823 crossref_primary_10_5010_JPB_2024_51_014_129 crossref_primary_10_1016_j_agee_2024_108886 crossref_primary_10_1080_00103624_2020_1836199 crossref_primary_10_3390_agronomy13030900 crossref_primary_10_3390_f9110666 crossref_primary_10_1016_j_scienta_2024_113551 crossref_primary_10_3389_fenvs_2022_855815 crossref_primary_10_1111_1365_2435_14193 crossref_primary_10_3389_fpls_2019_00157 crossref_primary_10_1002_csc2_20852 crossref_primary_10_1093_aob_mcz154 crossref_primary_10_1007_s11270_019_4383_7 crossref_primary_10_3390_ijms18071253 crossref_primary_10_1002_jpln_202200115 crossref_primary_10_1007_s42729_021_00605_x crossref_primary_10_1016_j_foreco_2019_117750 crossref_primary_10_1111_tpj_15261 crossref_primary_10_3390_plants8110514 crossref_primary_10_1007_s11104_021_04988_9 crossref_primary_10_3390_agronomy11101918 crossref_primary_10_1002_saj2_20613 crossref_primary_10_1007_s11104_022_05309_4 crossref_primary_10_1080_15427528_2021_1872754 crossref_primary_10_1016_j_still_2024_106276 crossref_primary_10_3390_microorganisms11020326 crossref_primary_10_3390_plants12061295 crossref_primary_10_1007_s40502_021_00627_8 crossref_primary_10_1016_j_rhisph_2021_100391 crossref_primary_10_3389_fgene_2020_574547 crossref_primary_10_1007_s00572_023_01126_4 crossref_primary_10_1007_s11104_023_06171_8 crossref_primary_10_1016_j_jenvman_2019_109885 crossref_primary_10_1111_gcb_17001 crossref_primary_10_3390_plants11223105 crossref_primary_10_1002_jeq2_20037 crossref_primary_10_1007_s11104_025_07232_w crossref_primary_10_1016_j_scitotenv_2024_173667 crossref_primary_10_3389_fpls_2019_00183 crossref_primary_10_1016_j_sjbs_2021_05_066 crossref_primary_10_1007_s11104_020_04584_3 crossref_primary_10_1093_aob_mcae169 crossref_primary_10_1007_s11104_022_05340_5 crossref_primary_10_1111_tpj_15630 crossref_primary_10_3390_plants11060752 crossref_primary_10_1016_j_envres_2020_109319 crossref_primary_10_1016_j_fecs_2022_100055 crossref_primary_10_1111_nph_16170 crossref_primary_10_1016_j_eja_2024_127393 crossref_primary_10_1007_s42729_024_01755_4 crossref_primary_10_3389_fpls_2022_1006806 crossref_primary_10_1007_s11104_018_3664_z crossref_primary_10_1016_j_apsoil_2021_104346 crossref_primary_10_1016_j_still_2023_105915 crossref_primary_10_1111_oik_08606 crossref_primary_10_1111_1365_2435_13562 crossref_primary_10_1002_saj2_20065 crossref_primary_10_1093_insilicoplants_diab028 crossref_primary_10_1007_s11104_020_04698_8 crossref_primary_10_1016_j_tplants_2020_04_013 crossref_primary_10_1016_j_geoderma_2022_116281 crossref_primary_10_3389_fpls_2021_631314 crossref_primary_10_1002_agj2_21018 crossref_primary_10_1016_j_agee_2021_107661 crossref_primary_10_1016_j_stress_2022_100121 crossref_primary_10_1080_01904167_2024_2380778 crossref_primary_10_1111_1365_2745_14064 crossref_primary_10_1007_s11104_017_3214_0 crossref_primary_10_1007_s42729_024_01833_7 crossref_primary_10_1016_j_plantsci_2024_112211 crossref_primary_10_3390_plants12051110 crossref_primary_10_1007_s11104_024_07188_3 crossref_primary_10_1002_fes3_252 crossref_primary_10_1080_00380768_2021_2022965 crossref_primary_10_15302_J_FASE_2019275 crossref_primary_10_1007_s13593_020_00661_0 crossref_primary_10_1016_j_still_2020_104754 crossref_primary_10_1186_s12870_021_03249_2 crossref_primary_10_1016_j_micres_2022_127094 crossref_primary_10_3389_fpls_2022_861574 crossref_primary_10_1007_s11104_019_04138_2 crossref_primary_10_1016_j_fcr_2020_107960 crossref_primary_10_1186_s12870_020_02538_6 crossref_primary_10_3390_plants11081006 crossref_primary_10_1016_j_jare_2021_08_014 crossref_primary_10_1016_j_envexpbot_2019_103827 crossref_primary_10_1080_01904167_2022_2046079 crossref_primary_10_1007_s10725_018_0451_z crossref_primary_10_3389_fpls_2021_738172 crossref_primary_10_1007_s11104_023_06426_4 crossref_primary_10_1007_s11104_019_04259_8 crossref_primary_10_3389_fpls_2023_1150832 crossref_primary_10_1002_jpln_202000471 crossref_primary_10_1093_jxb_eraa482 crossref_primary_10_3390_ijms24129879 crossref_primary_10_1016_j_plantsci_2018_09_015 crossref_primary_10_1007_s11104_023_06136_x crossref_primary_10_1016_j_ijagro_2024_100024 crossref_primary_10_1093_aob_mcae060 crossref_primary_10_1016_S2095_3119_18_62115_X crossref_primary_10_3389_fpls_2024_1377626 crossref_primary_10_1007_s10705_022_10234_0 crossref_primary_10_1016_j_scienta_2022_111779 crossref_primary_10_1111_jac_12514 crossref_primary_10_1007_s10661_024_12779_9 crossref_primary_10_1016_j_envexpbot_2020_104049 |
Cites_doi | 10.1023/A:1022367312851 10.1023/A:1012724821957 10.1007/s00374-007-0188-8 10.1111/j.1399-3054.1994.tb02539.x 10.1007/s11104-004-2386-6 10.1038/478029a 10.1093/aobpla/plw058 10.1104/pp.010869 10.1007/BF02181353 10.1007/BF02376789 10.1146/annurev.arplant.52.1.527 10.1007/BF00024992 10.1104/pp.111.175414 10.1007/s11104-015-2518-1 10.1111/j.1469-8137.2005.01558.x 10.1080/01904169209364361 10.1093/aob/mcs293 10.1007/s11104-008-9589-1 10.1071/CP07125 10.1016/j.chemosphere.2011.02.032 10.1007/s11104-005-8295-5 10.2134/agronj1967.00021962005900030010x 10.1007/s00572-004-0324-3 10.1007/BF02374724 10.1007/s00374-009-0411-x 10.1104/pp.111.175232 10.1007/BF02280176 10.1023/A:1022332700686 10.1111/nph.12778 10.1007/s11104-009-9990-4 10.1023/A:1013351617532 10.1023/A:1004380832118 10.1038/nature07028 10.1111/j.1469-8137.2010.03323.x 10.1073/pnas.0704591104 10.1093/jxb/erp083 10.2113/GSELEMENTS.4.2.83 10.1111/j.1469-8137.2006.01897.x 10.1021/jf60127a017 10.1007/978-0-387-79418-1_19 10.1080/00380768.1992.10416486 10.1007/s11104-009-0249-x 10.1007/s11104-005-3936-2 10.1007/s11104-006-9099-y 10.1071/S96047 10.1016/j.scitotenv.2009.02.006 10.1007/s004250050572 10.1111/j.1469-8137.2005.01614.x 10.1093/jxb/eru135 10.1016/j.plantsci.2004.10.017 10.1016/j.jplph.2013.04.015 10.1016/j.plantsci.2010.06.007 10.1002/jpln.201000085 10.1093/jxb/ers342 10.1111/j.1365-2389.2006.00767.x 10.1023/A:1010386800937 10.1146/annurev.arplant.50.1.665 10.1046/j.1469-8137.2003.00695.x 10.1007/s11104-010-0545-5 10.2134/agronj14.0122 10.1007/s003740000222 10.1093/aob/mcl114 10.2136/sssabookser3.3ed 10.3390/agronomy3010086 10.1111/j.1469-8137.2007.02206.x 10.3389/fpls.2011.00073 10.1007/s11427-013-4461-9 10.1111/j.1469-8137.2004.01070.x 10.1071/FP07222 10.1007/BF02280175 10.1007/s11104-006-0014-3 10.1016/j.soilbio.2006.06.014 10.1007/BF02143545 10.1093/aob/mch140 10.1007/s11104-008-9873-0 10.1023/A:1022375229625 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen. 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen |
Copyright_xml | – notice: Copyright © 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen. 2016 Lyu, Tang, Li, Zhang, Rengel, Whalley, and Shen |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3389/fpls.2016.01939 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | PMC5174099 28066491 10_3389_fpls_2016_01939 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31330070, 31210103906, 30925024 – fundername: Australian Research Council grantid: DP160104434 – fundername: Biotechnology and Biological Sciences Research Council grantid: 20:20 Wheat Programme |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-460ce94655a6483d794bc68532502e65d44b659a4fd3ace96c3868b3557f7f103 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Thu Aug 21 14:11:02 EDT 2025 Fri Jul 11 12:25:32 EDT 2025 Thu Apr 03 07:07:12 EDT 2025 Thu Apr 24 23:00:48 EDT 2025 Tue Jul 01 00:51:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | phosphorus supply root exudation phosphorus uptake fibrous root species legume species root morphological traits |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-460ce94655a6483d794bc68532502e65d44b659a4fd3ace96c3868b3557f7f103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Plant Nutrition, a section of the journal Frontiers in Plant Science Edited by: Karl H. Muehling, University of Kiel, Germany Reviewed by: Uwe Ludewig, University of Hohenheim, Germany; Caixian Tang, La Trobe University, Australia |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2016.01939 |
PMID | 28066491 |
PQID | 1856864179 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5174099 proquest_miscellaneous_1856864179 pubmed_primary_28066491 crossref_primary_10_3389_fpls_2016_01939 crossref_citationtrail_10_3389_fpls_2016_01939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-21 |
PublicationDateYYYYMMDD | 2016-12-21 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2016 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Hinsinger (B18) 2001; 237 Shen (B56) 2005; 168 Vu (B66) 2010; 337 Neumann (B39) 1999; 211 Hammond (B16) 2009; 60 Li (B29) 2014; 203 Nuruzzaman (B41) 2006; 281 Li (B28) 2007; 104 Ryan (B53) 2001; 52 Westerman (B72) 1990 Pearse (B47) 2007; 173 Thomas (B63) 1967; 59 Pearse (B46) 2006b; 288 Wang (B67) 2007; 176 Alvey (B1) 2001; 231 Raghothama (B48) 1999; 50 Oelkers (B42) 2008; 4 Elser (B11) 2011; 478 Wang (B69) 2008; 312 Rengel (B49) 2005; 168 Wouterlood (B73) 2004; 162 Duff (B9) 1994; 90 Li (B30) 2004; 94 Maltais-Landry (B34) 2015; 394 Vance (B64) 2003; 157 George (B15) 2006; 57 Kerley (B24) 2001; 236 Watt (B71) 2003; 248 Pang (B44) 2010; 331 Yan (B74) 2002; 129 Zhou (B77) 2009; 407 Föhse (B13) 1988; 110 Tadano (B60) 1993; 155 Solaiman (B59) 2007; 44 Zhang (B75) 2010; 107 Marschner (B36) 2007; 39 Carvalhais (B5) 2011; 174 Hill (B17) 2006; 286 Wang (B70) 2010; 179 Schroeder (B54) 2005; 15 Kerley (B23) 2000; 32 Lynch (B33) 2013; 112 Richardson (B50) 2009; 60 Li (B27) 2008; 35 Hoffland (B20) 1989b; 113 Wang (B68) 2010; 187 Nuruzzaman (B40) 2005; 271 Lynch (B32) 2011; 156 Zhang (B76) 2009; 320 Barker (B3) 2007 Eissenstat (B10) 1992; 15 Liu (B31) 2016; 8 Cordell (B8) 2013; 3 Shen (B55) 2013; 64 Foehse (B12) 1983; 74 Marschner (B35) 2006; 283 Neumann (B38) 1999; 208 Li (B26) 2010; 46 Rose (B52) 2011; 2 Lambers (B25) 2006; 98 Shen (B57) 2003; 248 Moorby (B37) 1988; 105 Cordell (B7) 2011; 84 Tang (B61) 2013a; 170 Veneklaas (B65) 2003; 248 Ohwaki (B43) 1992; 38 Cheng (B6) 2014; 65 Gardner (B14) 1982; 68 Rose (B51) 2010; 326 Calderón-Vázquez (B4) 2009 Shen (B58) 2011; 156 Houlton (B22) 2008; 454 Pearse (B45) 2006a; 169 Tang (B62) 2013b; 56 Barber (B2) 1963; 11 Hoffland (B19) 1989a; 113 Holford (B21) 1997; 35 |
References_xml | – volume: 248 start-page: 187 year: 2003 ident: B65 article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. publication-title: Plant Soil doi: 10.1023/A:1022367312851 – volume: 236 start-page: 275 year: 2001 ident: B24 article-title: Comparison of acid and alkaline soil and liquid culture growth systems for studies of shoot and root characteristics of white lupin (Lupinus albus L.) genotypes. publication-title: Plant Soil doi: 10.1023/A:1012724821957 – volume: 44 start-page: 143 year: 2007 ident: B59 article-title: Growth, P uptake and rhizosphere properties of wheat and canola genotypes in an alkaline soil with low P availability. publication-title: Biol. Fert. Soils doi: 10.1007/s00374-007-0188-8 – volume: 90 start-page: 791 year: 1994 ident: B9 article-title: The role of acid phosphatases in plant phosphorus metabolism. publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1994.tb02539.x – volume: 271 start-page: 175 year: 2005 ident: B40 article-title: Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. publication-title: Plant Soil doi: 10.1007/s11104-004-2386-6 – volume: 478 start-page: 29 year: 2011 ident: B11 article-title: Phosphorus cycle: a broken biogeochemical cycle. publication-title: Nature doi: 10.1038/478029a – volume: 8 issue: lw058 year: 2016 ident: B31 article-title: The effects of nitrogen form on root morphological and physiological adaptations of maize, white lupin and faba bean under phosphorus deficiency. publication-title: AoB Plants doi: 10.1093/aobpla/plw058 – volume: 129 start-page: 50 year: 2002 ident: B74 article-title: Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. publication-title: Plant Physiol. doi: 10.1104/pp.010869 – volume: 74 start-page: 359 year: 1983 ident: B12 article-title: Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. publication-title: Plant Soil doi: 10.1007/BF02181353 – volume: 105 start-page: 247 year: 1988 ident: B37 article-title: The influence of phosphate nutrition on H ion efflux from the roots of young rape plants. publication-title: Plant Soil doi: 10.1007/BF02376789 – volume: 52 start-page: 527 year: 2001 ident: B53 article-title: Function and mechanism of organic anion exudation from plant roots. publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.52.1.527 – volume: 155 start-page: 95 year: 1993 ident: B60 article-title: Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupin roots. publication-title: Plant Soil doi: 10.1007/BF00024992 – volume: 156 start-page: 1041 year: 2011 ident: B32 article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. publication-title: Plant Physiol. doi: 10.1104/pp.111.175414 – volume: 394 start-page: 139 year: 2015 ident: B34 article-title: Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. publication-title: Plant Soil doi: 10.1007/s11104-015-2518-1 – volume: 168 start-page: 305 year: 2005 ident: B49 article-title: Nutrient availability and management in the rhizosphere: exploiting genotypic differences. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01558.x – volume: 15 start-page: 763 year: 1992 ident: B10 article-title: Costs and benefits of constructing roots of small diameter. publication-title: J. Plant Nutr. doi: 10.1080/01904169209364361 – volume: 112 start-page: 347 year: 2013 ident: B33 article-title: Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. publication-title: Ann. Bot. doi: 10.1093/aob/mcs293 – volume: 312 start-page: 117 year: 2008 ident: B69 article-title: Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. publication-title: Plant Soil doi: 10.1007/s11104-008-9589-1 – volume: 60 start-page: 124 year: 2009 ident: B50 article-title: Plant mechanisms to optimise access to soil phosphorus. publication-title: Crop Pasture Sci. doi: 10.1071/CP07125 – volume: 84 start-page: 747 year: 2011 ident: B7 article-title: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.02.032 – volume: 283 start-page: 11 year: 2006 ident: B35 article-title: Rhizosphere properties of Poaceae genotypes under P-limiting conditions. publication-title: Plant Soil doi: 10.1007/s11104-005-8295-5 – volume: 59 start-page: 240 year: 1967 ident: B63 article-title: Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. publication-title: Agron. J. doi: 10.2134/agronj1967.00021962005900030010x – volume: 15 start-page: 203 year: 2005 ident: B54 article-title: Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density. publication-title: Mycorrhiza doi: 10.1007/s00572-004-0324-3 – volume: 68 start-page: 19 year: 1982 ident: B14 article-title: The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. publication-title: Plant Soil doi: 10.1007/BF02374724 – volume: 46 start-page: 79 year: 2010 ident: B26 article-title: Phosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soil. publication-title: Biol. Fert. Soils doi: 10.1007/s00374-009-0411-x – volume: 156 start-page: 997 year: 2011 ident: B58 article-title: Phosphorus dynamics: from soil to plant. publication-title: Plant Physiol. doi: 10.1104/pp.111.175232 – volume: 113 start-page: 161 year: 1989b ident: B20 article-title: Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. publication-title: Plant Soil doi: 10.1007/BF02280176 – volume: 248 start-page: 271 year: 2003 ident: B71 article-title: Phosphorus acquisition from soil by white lupin (Lupinus albus L.) and soybean (Glycine max L.), species with contrasting root development. publication-title: Plant Soil doi: 10.1023/A:1022332700686 – volume: 203 start-page: 63 year: 2014 ident: B29 article-title: Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. publication-title: New Phytol. doi: 10.1111/nph.12778 – volume: 326 start-page: 159 year: 2010 ident: B51 article-title: Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. publication-title: Plant Soil doi: 10.1007/s11104-009-9990-4 – volume: 237 start-page: 173 year: 2001 ident: B18 article-title: Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. publication-title: Plant Soil doi: 10.1023/A:1013351617532 – volume: 211 start-page: 121 year: 1999 ident: B39 article-title: Root excretion of carboxylic acids and protons in phosphorus-deficient plants. publication-title: Plant Soil doi: 10.1023/A:1004380832118 – volume: 454 start-page: 327 year: 2008 ident: B22 article-title: A unifying framework for dinitrogen fixation in the terrestrial biosphere. publication-title: Nature doi: 10.1038/nature07028 – volume: 187 start-page: 1112 year: 2010 ident: B68 article-title: Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03323.x – volume: 104 start-page: 11192 year: 2007 ident: B28 article-title: Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0704591104 – volume: 60 start-page: 1953 year: 2009 ident: B16 article-title: Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp083 – year: 2007 ident: B3 publication-title: Handbook of Plant Nutrition. – volume: 4 start-page: 83 year: 2008 ident: B42 article-title: Phosphate mineral reactivity and global sustainability. publication-title: Elements doi: 10.2113/GSELEMENTS.4.2.83 – volume: 173 start-page: 181 year: 2007 ident: B47 article-title: Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01897.x – volume: 11 start-page: 204 year: 1963 ident: B2 article-title: Mechanisms for movement of plant nutrients from soil and fertilizer to plant root. publication-title: J. Agric. Food Chem. doi: 10.1021/jf60127a017 – start-page: 381 year: 2009 ident: B4 article-title: “Maize under phosphate limitation,” in publication-title: Handbook of Maize: Its Biology doi: 10.1007/978-0-387-79418-1_19 – volume: 38 start-page: 235 year: 1992 ident: B43 article-title: Differences in carboxylic acid exudation among P-starved leguminous crops in relation to carboxylic acid contents in plant tissues and phospholipid level in roots. publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1992.10416486 – volume: 331 start-page: 241 year: 2010 ident: B44 article-title: Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. publication-title: Plant Soil. doi: 10.1007/s11104-009-0249-x – volume: 281 start-page: 109 year: 2006 ident: B41 article-title: Distribution of carboxylates and acid phosphatase and depletion of different phosphorus fractions in the rhizosphere of a cereal and three grain legumes. publication-title: Plant Soil doi: 10.1007/s11104-005-3936-2 – volume: 288 start-page: 127 year: 2006b ident: B46 article-title: Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status. publication-title: Plant Soil doi: 10.1007/s11104-006-9099-y – volume: 35 start-page: 227 year: 1997 ident: B21 article-title: Soil phosphorus: its measurement, and its uptake by plants. publication-title: Aust. J. Soil Res. doi: 10.1071/S96047 – volume: 407 start-page: 4356 year: 2009 ident: B77 article-title: Rhizosphere acidification of faba bean, soybean and maize. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.02.006 – volume: 208 start-page: 373 year: 1999 ident: B38 article-title: Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. publication-title: Planta doi: 10.1007/s004250050572 – volume: 169 start-page: 515 year: 2006a ident: B45 article-title: Triticum aestivum shows a greater biomass response to a supply of aluminium phosphate than Lupinus albus, despite releasing fewer carboxylates into the rhizosphere. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01614.x – volume: 65 start-page: 2995 year: 2014 ident: B6 article-title: Interactions between light intensity and phosphorus nutrition affect the phosphate-mining capacity of white lupin (Lupinus albus L.). publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru135 – volume: 168 start-page: 837 year: 2005 ident: B56 article-title: Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.10.017 – volume: 170 start-page: 1243 year: 2013a ident: B61 article-title: Spatial distribution and expression of intracellular and extracellular acid phosphatases of cluster roots at different developmental stages in white lupin. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.04.015 – volume: 179 start-page: 302 year: 2010 ident: B70 article-title: Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.06.007 – volume: 174 start-page: 3 year: 2011 ident: B5 article-title: Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201000085 – volume: 64 start-page: 1181 year: 2013 ident: B55 article-title: Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers342 – volume: 57 start-page: 47 year: 2006 ident: B15 article-title: Depletion of organic phosphorus from oxisols in relation to phosphatase activities in the rhizosphere. publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00767.x – volume: 231 start-page: 45 year: 2001 ident: B1 article-title: Cereal/legume rotations affect chemical properties and biological activities in two West African soils. publication-title: Plant Soil doi: 10.1023/A:1010386800937 – volume: 50 start-page: 665 year: 1999 ident: B48 article-title: Phosphate acquisition. publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.50.1.665 – volume: 157 start-page: 423 year: 2003 ident: B64 article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00695.x – volume: 337 start-page: 497 year: 2010 ident: B66 article-title: Phosphorus availability for three crop species as a function of soil type and fertilizer history. publication-title: Plant Soil doi: 10.1007/s11104-010-0545-5 – volume: 107 start-page: 1 year: 2010 ident: B75 article-title: Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. publication-title: Adv. Agron. doi: 10.2134/agronj14.0122 – volume: 32 start-page: 94 year: 2000 ident: B23 article-title: The effect of soil liming on shoot development, root growth, and cluster root activity of white lupin. publication-title: Biol. Fert. Soils doi: 10.1007/s003740000222 – volume: 98 start-page: 693 year: 2006 ident: B25 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. publication-title: Ann. Bot. doi: 10.1093/aob/mcl114 – year: 1990 ident: B72 publication-title: Soil Testing and Plant Analysis doi: 10.2136/sssabookser3.3ed – volume: 3 start-page: 86 year: 2013 ident: B8 article-title: Sustainable phosphorus measures: strategies and technologies for achieving phosphorus security. publication-title: Agronomy doi: 10.3390/agronomy3010086 – volume: 176 start-page: 581 year: 2007 ident: B67 article-title: Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02206.x – volume: 2 issue: 73 year: 2011 ident: B52 article-title: The frustration with utilization: why have improvements in internal phosphorus utilization efficiency in crops remained so elusive? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2011.00073 – volume: 56 start-page: 313 year: 2013b ident: B62 article-title: Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). publication-title: Sci. China Life Sci. doi: 10.1007/s11427-013-4461-9 – volume: 162 start-page: 745 year: 2004 ident: B73 article-title: Carboxylate concentrations in the rhizosphere of lateral roots of chickpea (Cicer arietinum) increase during plant development, but are not correlated with phosphorus status of soil or plants. publication-title: New Phytol. doi: 10.1111/j.1469-8137.2004.01070.x – volume: 35 start-page: 328 year: 2008 ident: B27 article-title: Is there a critical level of shoot phosphorus concentration for cluster-root formation in publication-title: Lupinus albus? doi: 10.1071/FP07222 – volume: 113 start-page: 155 year: 1989a ident: B19 article-title: Solubilization of rock phosphate by rape. I. Evaluation of the role of the nutrient uptake pattern. publication-title: Plant Soil doi: 10.1007/BF02280175 – volume: 286 start-page: 7 year: 2006 ident: B17 article-title: Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. publication-title: Plant Soil doi: 10.1007/s11104-006-0014-3 – volume: 39 start-page: 87 year: 2007 ident: B36 article-title: Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.06.014 – volume: 110 start-page: 101 year: 1988 ident: B13 article-title: Phosphorus efficiency of plants. I. external and internal p requirement and p uptake efficiency of different plant species. publication-title: Plant Soil doi: 10.1007/BF02143545 – volume: 94 start-page: 297 year: 2004 ident: B30 article-title: Acid phosphatase role in chickpea/maize intercropping. publication-title: Ann. Bot. doi: 10.1093/aob/mch140 – volume: 320 start-page: 91 year: 2009 ident: B76 article-title: Genotypic differences in phosphorus acquisition and the rhizosphere properties of Brassica napus in response to low phosphorus stress. publication-title: Plant Soil doi: 10.1007/s11104-008-9873-0 – volume: 248 start-page: 199 year: 2003 ident: B57 article-title: Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus. publication-title: Plant Soil doi: 10.1023/A:1022375229625 |
SSID | ssj0000500997 |
Score | 2.5157356 |
Snippet | The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1939 |
SubjectTerms | Plant Science |
Title | Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28066491 https://www.proquest.com/docview/1856864179 https://pubmed.ncbi.nlm.nih.gov/PMC5174099 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcYcNgFAfug40OetMMuKUntvCYHhPhGk8qBrai3yHYcAariLk219ch_zntJWigwaZccEtux_Oy834uffz_Gvtks1FFqMw-dh_Bk7AtPZ0J7vq8y8G2qRXXqvXcFl335YxAOnuSAmgEcvxnakZ5Uvxi2__6eHuKCP6CIE_3tfjYaEvF2AG3EKyJ-x1bQLXVJzqDXYP2a6JvQUCW2AiA9CZ1BTfXzVhuLXuoV9HyZQfnMJZ2vs7UGS_Kj2vgbbMnmm2z12CHem35gDz117wp-UrgRr1Tm7Zj_vHV_-GmjiYJre8iPKbXRWN7ka_Fr50reczj6s68iV3nKq0TR-Z3rOrEWGywdv8Fom85fYRk3xmrFBN9DWqHTj6x_fvbr5NJrBBc8I8O4xDHxjY2JUU2BjESKa1UbQIeOOKljIUyl1BDGSmapUFgSjIgg0ghZulk3C3zxiS3nLrdbjAMYEwoJJjIYg6ggSjUYjfiHtm1DFbRYezbAiWnYyEkUY5hgVEIWScgiCVkkqSzSYt_nFUY1Ece_i36dWSzBxUI7ICq3bjJOEJxABCS61mKfawvOG6MtZuwe9qy7YNt5ASLiXnyS391WhNzE9o1z68t_vHebvaeOUkJMJ9hhy2UxsbsIa0q9V_0OwOvFINirpu4jZJz6GQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Major+Crop+Species+Show+Differential+Balance+between+Root+Morphological+and+Physiological+Responses+to+Variable+Phosphorus+Supply&rft.jtitle=Frontiers+in+plant+science&rft.au=Lyu%2C+Yang&rft.au=Tang%2C+Hongliang&rft.au=Li%2C+Haigang&rft.au=Zhang%2C+Fusuo&rft.date=2016-12-21&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=7&rft.spage=1939&rft_id=info:doi/10.3389%2Ffpls.2016.01939&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |