Evaluation of the local exergy destruction in the intake and fan of a turbofan engine

Modern air crafts and aviation industry are dominant consumers of fuel. The application of exergy analysis is powerful tool in the design and performance judgment of these systems. In this study, the local entropy generated and exergy destroyed in the intake and fan of a turbofan engine are investig...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 63; pp. 245 - 251
Main Author Hassan, H.Z.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern air crafts and aviation industry are dominant consumers of fuel. The application of exergy analysis is powerful tool in the design and performance judgment of these systems. In this study, the local entropy generated and exergy destroyed in the intake and fan of a turbofan engine are investigated. The fan in concern has a highly twisted blade and is installed in the CF6-50 turbofan engine. The flow field is solved at the flight condition. Furthermore, the local entropy generated, including thermal and viscous types, is computed from the predetermined flow field. Results show regions of entropy production at the boundaries as well as across the blade-to-blade passage. Moreover, remarkable entropy is generated at the wake region near the trailing edge, at the supersonic bubble attached to the leading edge, and across the blade-to-blade passage shock wave. Exergy destruction calculated computationally through the fan and the intake shows a good agreement with that calculated analytically. It is found that, under the cruise condition, the fan contributes by 1.95 MW of losses in useful work potential while this value for the intake is found to be neglected compared with the fan, 4.6 kW. •The local entropy generated in the intake and fan of a turbofan engine is studied.•The case studied is at the cruise condition of the CF6-50 turbofan engine.•Entropy is produced at the boundaries and across the blade-to-blade passage.•The fan contributes by 1.95 MW of losses in useful work potential.
AbstractList Modern air crafts and aviation industry are dominant consumers of fuel. The application of exergy analysis is powerful tool in the design and performance judgment of these systems. In this study, the local entropy generated and exergy destroyed in the intake and fan of a turbofan engine are investigated. The fan in concern has a highly twisted blade and is installed in the CF6-50 turbofan engine. The flow field is solved at the flight condition. Furthermore, the local entropy generated, including thermal and viscous types, is computed from the predetermined flow field. Results show regions of entropy production at the boundaries as well as across the blade-to-blade passage. Moreover, remarkable entropy is generated at the wake region near the trailing edge, at the supersonic bubble attached to the leading edge, and across the blade-to-blade passage shock wave. Exergy destruction calculated computationally through the fan and the intake shows a good agreement with that calculated analytically. It is found that, under the cruise condition, the fan contributes by 1.95 MW of losses in useful work potential while this value for the intake is found to be neglected compared with the fan, 4.6 kW.
Modern air crafts and aviation industry are dominant consumers of fuel. The application of exergy analysis is powerful tool in the design and performance judgment of these systems. In this study, the local entropy generated and exergy destroyed in the intake and fan of a turbofan engine are investigated. The fan in concern has a highly twisted blade and is installed in the CF6-50 turbofan engine. The flow field is solved at the flight condition. Furthermore, the local entropy generated, including thermal and viscous types, is computed from the predetermined flow field. Results show regions of entropy production at the boundaries as well as across the blade-to-blade passage. Moreover, remarkable entropy is generated at the wake region near the trailing edge, at the supersonic bubble attached to the leading edge, and across the blade-to-blade passage shock wave. Exergy destruction calculated computationally through the fan and the intake shows a good agreement with that calculated analytically. It is found that, under the cruise condition, the fan contributes by 1.95 MW of losses in useful work potential while this value for the intake is found to be neglected compared with the fan, 4.6 kW. •The local entropy generated in the intake and fan of a turbofan engine is studied.•The case studied is at the cruise condition of the CF6-50 turbofan engine.•Entropy is produced at the boundaries and across the blade-to-blade passage.•The fan contributes by 1.95 MW of losses in useful work potential.
Modern air crafts and aviation industry are dominant consumers of fuel. The application of exergy analysis is powerful tool in the design and performance judgment of these systems. In this study, the local entropy generated and exergy destroyed in the intake and fan of a turbofan engine are investigated. The fan in concern has a highly twisted blade and is installed in the CF6-50 turbofan engine. The flow field is solved at the flight condition. Furthermore, the local entropy generated, including thermal and viscous types, is computed from the predetermined flow field. Results show regions of entropy production at the boundaries as well as across the blade-to-blade passage. Moreover, remarkable entropy is generated at the wake region near the trailing edge, at the supersonic bubble attached to the leading edge, and across the blade-to-blade passage shock wave. Exergy destruction calculated computationally through the fan and the intake shows a good agreement with that calculated analytically. It is found that, under the cruise condition, the fan contributes by 1.95 MW of losses in useful work potential while this value for the intake is found to be neglected compared with the fan, 4.6 kW.
Author Hassan, H.Z.
Author_xml – sequence: 1
  givenname: H.Z.
  surname: Hassan
  fullname: Hassan, H.Z.
  email: hzahmed@alfaisal.edu, zoheir_hasan@yahoo.com
  organization: Department of Mechanical Engineering, College of Engineering, Alfaisal University, Takhassusi St. P. Box. 50927, Riyadh 11533, Saudi Arabia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28032477$$DView record in Pascal Francis
BookMark eNqNkctuFDEQRb0IEkngD5DoDRKbGcpv9wYJReEhRWIBs7Y8dvXgoWMHuztK_h73dMQSWFmuOrfqqu4FOUs5ISGvKGwpUPXuuMWE5fC4ZUB5K21BsTNyDlzBRgrBnpOLWo8AIE3fn5Pd9b0bZzfFnLo8dNMP7Mbs3djhwzKlC1inMvtTP6ZTP6bJ_cTOpdAN7qRy3TSXfV5-mA4x4QvybHBjxZdP7yXZfbz-fvV5c_P105erDzcbL2Q_bQTnQIfgNNMYZNBMBA9gFAO9B2NML9VeKOGUNC6gonsdONNcSq8FctPzS_J2nXtX8q-5WbW3sXocR5cwz9VSpQ2AEL36NyoVU1oqJf8DZUI0f8AaKlbUl1xrwcHelXjryqOlYJc87NGuedglj6Xa8miyN08bXG3HHopLPtY_WmaAM6F1416v3OCydYfSmN23Nki1_JSkvWjE-5XAdub7iMVWHzF5DLGgn2zI8e9WfgPCl60u
CODEN ENEYDS
CitedBy_id crossref_primary_10_33140_JCRC_04_05_05
crossref_primary_10_1016_j_joei_2014_09_010
crossref_primary_10_1016_j_paerosci_2016_03_001
crossref_primary_10_1016_j_energy_2019_116804
crossref_primary_10_1051_meca_2019029
crossref_primary_10_1016_j_energy_2017_07_079
crossref_primary_10_1515_tjj_2017_0019
crossref_primary_10_1515_tjj_2016_0074
crossref_primary_10_1108_AEAT_03_2016_0045
crossref_primary_10_1016_j_energy_2020_117692
crossref_primary_10_1016_j_matpr_2019_10_105
crossref_primary_10_1016_j_energy_2015_06_071
crossref_primary_10_1016_j_ijrefrig_2021_02_002
crossref_primary_10_3390_en15030841
crossref_primary_10_18186_thermal_796753
crossref_primary_10_1515_tjj_2015_0065
crossref_primary_10_1007_s41939_023_00164_x
Cites_doi 10.1002/er.1310
10.1016/j.energy.2007.08.012
10.2514/6.2006-587
10.1016/j.ijhydene.2009.09.025
10.1016/S1164-0235(01)00005-X
10.1016/S1164-0235(01)00014-0
10.1016/j.energy.2009.06.052
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
IQODW
AAYXX
CITATION
7ST
C1K
SOI
7SP
7SU
7TB
8FD
F28
FR3
KR7
L7M
DOI 10.1016/j.energy.2013.10.062
DatabaseName AGRIS
Pascal-Francis
CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts
Environment Abstracts


Environment Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Applied Sciences
EndPage 251
ExternalDocumentID 10_1016_j_energy_2013_10_062
28032477
US201600065194
S0360544213009146
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
ABFNM
ABPIF
ABPTK
ADMUD
AHHHB
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
R2-
SAC
SEW
WUQ
AALMO
ADALY
IPNFZ
IQODW
AAHBH
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
C1K
SOI
7SP
7SU
7TB
8FD
F28
FR3
KR7
L7M
ID FETCH-LOGICAL-c459t-43301fda727ed5d724dc0086207b0888956b464a658ade61b7d327355c74e3893
IEDL.DBID AIKHN
ISSN 0360-5442
IngestDate Thu Oct 24 23:39:16 EDT 2024
Fri Oct 25 08:12:30 EDT 2024
Fri Oct 25 01:10:40 EDT 2024
Thu Sep 26 15:31:22 EDT 2024
Fri Nov 25 01:09:23 EST 2022
Wed Dec 27 19:21:12 EST 2023
Fri Feb 23 02:20:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Turbofan
Exergy destruction
Simulation
Entropy generation
Evaluation
Fan
Exergy
Turbofan engine
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-43301fda727ed5d724dc0086207b0888956b464a658ade61b7d327355c74e3893
Notes http://dx.doi.org/10.1016/j.energy.2013.10.062
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1524408802
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1678004496
proquest_miscellaneous_1562675665
proquest_miscellaneous_1524408802
crossref_primary_10_1016_j_energy_2013_10_062
pascalfrancis_primary_28032477
fao_agris_US201600065194
elsevier_sciencedirect_doi_10_1016_j_energy_2013_10_062
PublicationCentury 2000
PublicationDate 2013-12-15
PublicationDateYYYYMMDD 2013-12-15
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy (Oxford)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Etele, Rosen (bib5) 2001; 1
Iandoli, Sciubba (bib14) 2005; 8
Bejan (bib19) 1982
Murthy, Ravichandran (bib9) 1996
Qin, Zhou, Bao, Yu (bib11) 2010; 35
Spalart, Allmaras (bib18) 1992
Brilliant (bib8) 1995
International Energy Agency (IEA) (bib2) 2007
Amati, Bruno, Simone, Sciubba (bib12) 2008; 33
Tschirner, Pfitzner, Merz (bib17) June 2002
Turgut, Karakoc, Hepbasli (bib4) 2007; 31
Hassan (bib16) March 2006
Natere, Camber (bib13) 2008
Tona, Raviolo, Pellegrini, Junior (bib6) 2010; 35
Alabi K, Spakovsky M, Moorhouse D, Camberos J, Ladeinde F. Assessing CFD modeling of entropy generation for the air frame subsystem in an integrated aircraft design/synthesis procedure. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada.
Bejan, Siems (bib1) 2001; 1
Turgut, Karakoc, Hepbasli (bib3) 2007
Murthy (bib7) 1994
Roth (bib10) 2004
Turgut (10.1016/j.energy.2013.10.062_bib3) 2007
Amati (10.1016/j.energy.2013.10.062_bib12) 2008; 33
Bejan (10.1016/j.energy.2013.10.062_bib19) 1982
Qin (10.1016/j.energy.2013.10.062_bib11) 2010; 35
Brilliant (10.1016/j.energy.2013.10.062_bib8) 1995
10.1016/j.energy.2013.10.062_bib15
Tschirner (10.1016/j.energy.2013.10.062_bib17) 2002
Hassan (10.1016/j.energy.2013.10.062_bib16) 2006
International Energy Agency (IEA) (10.1016/j.energy.2013.10.062_bib2) 2007
Turgut (10.1016/j.energy.2013.10.062_bib4) 2007; 31
Etele (10.1016/j.energy.2013.10.062_bib5) 2001; 1
Iandoli (10.1016/j.energy.2013.10.062_bib14) 2005; 8
Murthy (10.1016/j.energy.2013.10.062_bib7) 1994
Bejan (10.1016/j.energy.2013.10.062_bib1) 2001; 1
Murthy (10.1016/j.energy.2013.10.062_bib9) 1996
Tona (10.1016/j.energy.2013.10.062_bib6) 2010; 35
Roth (10.1016/j.energy.2013.10.062_bib10) 2004
Natere (10.1016/j.energy.2013.10.062_bib13) 2008
Spalart (10.1016/j.energy.2013.10.062_bib18) 1992
References_xml – year: 1994
  ident: bib7
  article-title: Effectiveness of a scram engine
  contributor:
    fullname: Murthy
– volume: 1
  start-page: 91
  year: 2001
  end-page: 99
  ident: bib5
  article-title: Sensitivity of exergy efficiencies of aerospace engines to reference environment selection
  publication-title: Exergy
  contributor:
    fullname: Rosen
– year: 2008
  ident: bib13
  article-title: Entropy based design and analysis of fluids engineering systems
  contributor:
    fullname: Camber
– volume: 8
  start-page: 83
  year: 2005
  end-page: 94
  ident: bib14
  article-title: 3-D numerical calculation of the local entropy generation rates in a radial compressor stage
  publication-title: Int J Thermodyn
  contributor:
    fullname: Sciubba
– year: 2007
  ident: bib3
  article-title: Exergy analysis of a turbofan engine: CF6–80
  publication-title: 3rd International Green Energy Conference (IGEC-2007), June 18–20, Vasteras, Sweden, no. 255
  contributor:
    fullname: Hepbasli
– volume: 31
  start-page: 1383
  year: 2007
  end-page: 1397
  ident: bib4
  article-title: Exergetic analysis of an aircraft turbofan engine
  publication-title: Int J Energy Res
  contributor:
    fullname: Hepbasli
– year: March 2006
  ident: bib16
  article-title: Solid particulate flow in an axial transonic fan in a high bypass ratio turbofan engine
  contributor:
    fullname: Hassan
– year: 2004
  ident: bib10
  article-title: Work transfer analysis of turbojet and turbofan engines
  contributor:
    fullname: Roth
– year: 2007
  ident: bib2
  article-title: World energy outlook 2006
  contributor:
    fullname: International Energy Agency (IEA)
– year: June 2002
  ident: bib17
  article-title: Aerodynamic optimization of an aeroengine bypass duct OGV-pylon configuration
  publication-title: Proceedings of ASME turbo EXPO 2002
  contributor:
    fullname: Merz
– volume: 35
  start-page: 952
  year: 2010
  end-page: 959
  ident: bib6
  article-title: Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight
  publication-title: Energy
  contributor:
    fullname: Junior
– year: 1992
  ident: bib18
  article-title: A one-equation turbulence model for aerodynamic flows
  contributor:
    fullname: Allmaras
– year: 1982
  ident: bib19
  article-title: Entropy generation through heat and fluid flow
  contributor:
    fullname: Bejan
– year: 1996
  ident: bib9
  article-title: Generalized one-dimensional available energy analysis of scram combustor
  contributor:
    fullname: Ravichandran
– volume: 1
  start-page: 14
  year: 2001
  end-page: 24
  ident: bib1
  article-title: The need for exergy analysis and thermodynamic optimization in aircraft development
  publication-title: Exergy
  contributor:
    fullname: Siems
– volume: 33
  start-page: 116
  year: 2008
  end-page: 129
  ident: bib12
  article-title: Exergy analysis of hypersonic propulsion systems: performance comparison of two different scramjet configurations at cruise conditions
  publication-title: Energy
  contributor:
    fullname: Sciubba
– volume: 35
  start-page: 356
  year: 2010
  end-page: 364
  ident: bib11
  article-title: Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Yu
– year: 1995
  ident: bib8
  article-title: Analysis of scramjet engines using exergy methods
  contributor:
    fullname: Brilliant
– year: 1996
  ident: 10.1016/j.energy.2013.10.062_bib9
  contributor:
    fullname: Murthy
– year: 2006
  ident: 10.1016/j.energy.2013.10.062_bib16
  contributor:
    fullname: Hassan
– year: 2007
  ident: 10.1016/j.energy.2013.10.062_bib2
  contributor:
    fullname: International Energy Agency (IEA)
– volume: 31
  start-page: 1383
  issue: 14
  year: 2007
  ident: 10.1016/j.energy.2013.10.062_bib4
  article-title: Exergetic analysis of an aircraft turbofan engine
  publication-title: Int J Energy Res
  doi: 10.1002/er.1310
  contributor:
    fullname: Turgut
– volume: 33
  start-page: 116
  issue: 2
  year: 2008
  ident: 10.1016/j.energy.2013.10.062_bib12
  article-title: Exergy analysis of hypersonic propulsion systems: performance comparison of two different scramjet configurations at cruise conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2007.08.012
  contributor:
    fullname: Amati
– year: 2007
  ident: 10.1016/j.energy.2013.10.062_bib3
  article-title: Exergy analysis of a turbofan engine: CF6–80
  contributor:
    fullname: Turgut
– ident: 10.1016/j.energy.2013.10.062_bib15
  doi: 10.2514/6.2006-587
– year: 2002
  ident: 10.1016/j.energy.2013.10.062_bib17
  article-title: Aerodynamic optimization of an aeroengine bypass duct OGV-pylon configuration
  contributor:
    fullname: Tschirner
– volume: 35
  start-page: 356
  issue: 1
  year: 2010
  ident: 10.1016/j.energy.2013.10.062_bib11
  article-title: Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.025
  contributor:
    fullname: Qin
– volume: 1
  start-page: 14
  issue: 1
  year: 2001
  ident: 10.1016/j.energy.2013.10.062_bib1
  article-title: The need for exergy analysis and thermodynamic optimization in aircraft development
  publication-title: Exergy
  doi: 10.1016/S1164-0235(01)00005-X
  contributor:
    fullname: Bejan
– year: 1994
  ident: 10.1016/j.energy.2013.10.062_bib7
  contributor:
    fullname: Murthy
– year: 2008
  ident: 10.1016/j.energy.2013.10.062_bib13
  contributor:
    fullname: Natere
– volume: 8
  start-page: 83
  issue: 2
  year: 2005
  ident: 10.1016/j.energy.2013.10.062_bib14
  article-title: 3-D numerical calculation of the local entropy generation rates in a radial compressor stage
  publication-title: Int J Thermodyn
  contributor:
    fullname: Iandoli
– year: 1995
  ident: 10.1016/j.energy.2013.10.062_bib8
  contributor:
    fullname: Brilliant
– year: 2004
  ident: 10.1016/j.energy.2013.10.062_bib10
  contributor:
    fullname: Roth
– year: 1992
  ident: 10.1016/j.energy.2013.10.062_bib18
  contributor:
    fullname: Spalart
– year: 1982
  ident: 10.1016/j.energy.2013.10.062_bib19
  contributor:
    fullname: Bejan
– volume: 1
  start-page: 91
  issue: 2
  year: 2001
  ident: 10.1016/j.energy.2013.10.062_bib5
  article-title: Sensitivity of exergy efficiencies of aerospace engines to reference environment selection
  publication-title: Exergy
  doi: 10.1016/S1164-0235(01)00014-0
  contributor:
    fullname: Etele
– volume: 35
  start-page: 952
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2013.10.062_bib6
  article-title: Exergy and thermoeconomic analysis of a turbofan engine during a typical commercial flight
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.052
  contributor:
    fullname: Tona
SSID ssj0005899
Score 2.244963
Snippet Modern air crafts and aviation industry are dominant consumers of fuel. The application of exergy analysis is powerful tool in the design and performance...
SourceID proquest
crossref
pascalfrancis
fao
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 245
SubjectTerms Air conditioning. Ventilation
airplanes
Applied sciences
aviation
Computation
Destruction
Energy
Energy. Thermal use of fuels
Entropy
Entropy generation
Exact sciences and technology
Exergy
Exergy destruction
flight
fuels
Heating, air conditioning and ventilation
industry
Intakes
Mathematical analysis
Simulation
Turbofan
Turbofan engines
Ventilation
Title Evaluation of the local exergy destruction in the intake and fan of a turbofan engine
URI https://dx.doi.org/10.1016/j.energy.2013.10.062
https://search.proquest.com/docview/1524408802
https://search.proquest.com/docview/1562675665
https://search.proquest.com/docview/1678004496
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6i5bBd0MZAFFjlSbuGNokTO0eEirpV4zBWwc1yagd1SClS4cCFv53vOUkRmsaknaI4dpS8Z3_vs_x-EH21MFkulSqqZF5GQD8ZlcDBSMusBHu1OvZ8ovvjIp_O5ffr7HqLzrpYGHarbLG_wfSA1m3LqJXm6G65HF0Ce8E3ZMIHMgUWfI-2YY4S3aft02-z6cWLp4cOZSS5f8QDugi64OblQ4gd-3ilJ-zmlSd_s1C9yq7YddKuIb2qKXvxB4IHs3T-gXZaPilOm0_-SFu-3qV3Xbjxepf2Jy-hbOjYruX1J5pPNom-xaoSIIIiGDbBVZhuHoXzm9yyYlmH50u84tYLWztR2TDKCpgsGFLc-ZDZcI_m55NfZ9OoLbIQLWRW3HPE1DiunAWP8S5zKpFuEfY5Y1UCgTT2T6XMpQVTsc7ncalcCsqTZQslPbOdferXq9ofkICcdWzBYXzqpKxSvfBp4crK5x68ZawHFHWCNXdNLg3TOZn9No0iDCuCW6GIAalO-ubVnDCA-3-MPICyjL0BUJr5ZcJp9JhsxYUc0PCVBjdfwmW6EqnUgL50KjVYanx-Ymu_elgbUB2uz63HyVt9sENU4MjZG31AEPggvcgP__sPj-g937FjTZwdUx8Twn8GPbovh9Q7eYqH7SLg6-zn1ewZ_uMM7Q
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CcoALYmWIso15EtesTeLEybGqitoBvUAlbpZTO6hMSpHaHfjv-Z6TFKEJJu0Yx46S9_K-91l-P4guDFyWjaUKSpkWAdBPBgVwMMhkUoC9mix0fKJ7M0snc_nrPrnfoVGbC8NhlQ3215ju0boZ6TfS7D8tl_1bYC_4hoz4QCaHwe_SHthADuvcG06vJrPXSI_Mt5Hk-QEvaDPofJiX8yl2HOMV_-QwrzR6z0PtlmbFoZNmDemVdduLvxDcu6XLIzps-KQY1q_8iXZc1aX9Nt143aWT8WsqGyY2trw-pvl4W-hbrEoBIii8YxPchenhWVi3rS0rlpW_v8QjfjthKitK41cZAZcFR4or5ysbfqb55fhuNAmaJgvBQib5hjOmBmFpDXiMs4lVkbQLv88ZqAIIlGH_VMhUGjAVY10aFsrGoDxJslDSMds5oU61qtwpCcg5Cw04jIutlGWcLVyc26J0qQNvGWQ9ClrB6qe6loZug8weda0IzYrgUSiiR6qVvn7zT2jA_T9WnkJZ2jwAKPX8NuIyeky2wlz26PyNBrdvwm26IqlUj360KtUwNT4_MZVb_VlrUB3uz50Noo_mYIeowJGTD-aAIPBBep6e_fcXfqf9yd3Ntb6ezq6-0AHf4SCbMPlKHfwc7huo0qY4b0zhBRSLDT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+local+exergy+destruction+in+the+intake+and+fan+of+a+turbofan+engine&rft.jtitle=Energy+%28Oxford%29&rft.au=Hassan%2C+H+Z&rft.date=2013-12-15&rft.issn=0360-5442&rft.volume=63&rft.spage=245&rft.epage=251&rft_id=info:doi/10.1016%2Fj.energy.2013.10.062&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon