Driving factors of variation in fertilizer nitrogen recovery efficiency in maize cropping systems across China and its microbial mechanism

•Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for maize FNRE is around 6.50–6.62.•Optimal soil organic matter for maize FNRE is around 35.25–46.90 g kg−1.•Soil dissimilatory nitrate reduction...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 451; p. 117083
Main Authors Xiao, Xun, Wang, Yuekai, Dai, Wentai, Liu, Kailou, Jiang, Fahui, Xie, Zubin, Shen, Ren Fang, Zhao, Xue Qiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for maize FNRE is around 6.50–6.62.•Optimal soil organic matter for maize FNRE is around 35.25–46.90 g kg−1.•Soil dissimilatory nitrate reduction to ammonium contributes to maize FNRE. Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, 15N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg−1, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics.
AbstractList Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, 15N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg−1, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics.
•Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for maize FNRE is around 6.50–6.62.•Optimal soil organic matter for maize FNRE is around 35.25–46.90 g kg−1.•Soil dissimilatory nitrate reduction to ammonium contributes to maize FNRE. Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, 15N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg−1, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics.
Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, ¹⁵N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg⁻¹, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics.
ArticleNumber 117083
Author Liu, Kailou
Shen, Ren Fang
Jiang, Fahui
Dai, Wentai
Zhao, Xue Qiang
Wang, Yuekai
Xie, Zubin
Xiao, Xun
Author_xml – sequence: 1
  givenname: Xun
  surname: Xiao
  fullname: Xiao, Xun
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 2
  givenname: Yuekai
  orcidid: 0000-0002-8301-7611
  surname: Wang
  fullname: Wang, Yuekai
  organization: Key Laboratory of Crop Physiology, Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
– sequence: 3
  givenname: Wentai
  surname: Dai
  fullname: Dai, Wentai
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 4
  givenname: Kailou
  surname: Liu
  fullname: Liu, Kailou
  organization: National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 331717, China
– sequence: 5
  givenname: Fahui
  surname: Jiang
  fullname: Jiang, Fahui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 6
  givenname: Zubin
  surname: Xie
  fullname: Xie, Zubin
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 7
  givenname: Ren Fang
  surname: Shen
  fullname: Shen, Ren Fang
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 8
  givenname: Xue Qiang
  surname: Zhao
  fullname: Zhao, Xue Qiang
  email: xqzhao@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
BookMark eNqFkc1uGyEUhVGVSnXSvkLFsptxYZhfqYtW7l-kSN1kj67h4lxrBlwgltxHyFMXe5pNN1khrs45cM93za588MjYeynWUsju4369w2AxzrCuRd2spezFoF6xlRz6uurqdrxiK1GUVS86-YZdp7Qv117UYsWevkY6kt9xByaHmHhw_AiRIFPwnDx3GDNN9Acj95Rj2KHnEU04YjxxdI4MoTens3SGIuMmhsPhnJhOKeOcOJRJSnzzQB44eMspJz5TmW4JJj6jeQBPaX7LXjuYEr77d96w--_f7jc_q7tfP243X-4q07RjrhSMjVWma5XEph7qXoHr7Ni4TjrhXIN2MKrFUY5ysGa0LQ5K9UYZMY52i-qG3S6xNsBeHyLNEE86AOnLIMSdhrKymVD3rpXCiMa4AZry7ii3CLJWchgA5RZK1ocl6xDD70dMWc-UDE4TeAyPSSvZNrJVYmiL9NMivbQR0WlD-dJyjkCTlkKfaeq9fqapzzT1QrPYu__szz9_0fh5MWKp9EgYdboQQ0sFYy5L00sRfwFLPMM7
CitedBy_id crossref_primary_10_1016_j_jare_2025_03_030
crossref_primary_10_3390_agriculture14122300
Cites_doi 10.1016/bs.agron.2018.03.001
10.1016/j.still.2021.104970
10.3389/fmicb.2022.933722
10.1016/j.agee.2022.108089
10.1016/j.fcr.2022.108780
10.1038/s41396-022-01300-0
10.1029/2020EF001514
10.1038/s41587-019-0104-4
10.1016/S0016-7061(03)00098-3
10.1038/s41587-023-01754-3
10.1038/s43016-021-00300-1
10.1038/ismej.2012.8
10.1038/s41587-020-0548-6
10.1038/s41467-024-45925-5
10.1038/ismej.2010.58
10.1038/nature15743
10.1016/j.resconrec.2020.104913
10.1111/gcb.15119
10.1186/s40168-018-0491-7
10.1016/j.eja.2023.126797
10.1038/s41477-020-00763-3
10.2136/sssaj1993.03615995005700010021x
10.1016/j.envres.2020.109612
10.3389/fpls.2018.00807
10.1111/gcb.17101
10.1016/j.soilbio.2016.02.003
10.1016/j.still.2019.104498
10.1016/j.still.2021.105141
10.1016/j.soilbio.2017.04.010
10.1038/nrmicro.2018.9
10.3390/plants9060765
10.1111/gcb.16294
10.1007/s42729-023-01464-4
10.1007/s11368-021-03007-9
10.1073/pnas.1601070113
10.1007/s11104-022-05434-0
10.1111/geb.13373
10.5194/soil-5-15-2019
10.1007/s00248-014-0530-2
10.1111/gcb.16066
10.1016/j.soilbio.2020.107953
10.1038/s43017-022-00366-w
10.1016/j.geoderma.2020.114744
10.1007/s12633-020-00427-z
10.1016/j.scitotenv.2021.148058
10.1038/nrmicro.2017.87
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.geoderma.2024.117083
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_7f510c04cf8a43a991bea123188ae1ba
10_1016_j_geoderma_2024_117083
S0016706124003124
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c459t-3a94d3c6531e428273af6d94f61f0ff4ed8c35e91918dc9d5e8337c3c099dbe3
IEDL.DBID DOA
ISSN 0016-7061
IngestDate Wed Aug 27 01:31:07 EDT 2025
Wed Jul 02 04:56:02 EDT 2025
Thu Apr 24 23:13:00 EDT 2025
Tue Jul 01 04:05:03 EDT 2025
Sat Nov 09 15:59:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ASV
Ndfs
Absolute quantification sequencing
N
SOM
Soil pH
Nitrogen fate
Ndff
RF
Soil organic matter
Nitrogen recovery efficiency
DNRA
FNRE
SEM
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-3a94d3c6531e428273af6d94f61f0ff4ed8c35e91918dc9d5e8337c3c099dbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8301-7611
OpenAccessLink https://doaj.org/article/7f510c04cf8a43a991bea123188ae1ba
PQID 3154153085
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_7f510c04cf8a43a991bea123188ae1ba
proquest_miscellaneous_3154153085
crossref_citationtrail_10_1016_j_geoderma_2024_117083
crossref_primary_10_1016_j_geoderma_2024_117083
elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_117083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Quan, Li, Zhang, Zhu, Li, Sheng, Chen, Zhang, He, Wei, Fang (b0150) 2020; 197
Finn, Kopittke, Dennis, Dalal (b0040) 2017; 111
Philippot, Chenu, Kappler, Rillig, Fierer (b0145) 2023; 22
Oldfield, Bradford, Wood (b0135) 2019; 5
Zhao, Shen (b0255) 2018; 9
Li, Tang, Song, Chen, Tian, Tang, Wang, Wang, Liu, Wang, Li, Jiang, Luo, Niu (b0080) 2022; 28
Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer, Gormley, Gilbert, Smith, Knight (b0010) 2012; 6
Hou, Liu, Liu, Liu, Xie, Wang, Ming, Wang, Zhao, Zhang, Wang, Bian, Ren, Zhao, Liu, Chang, Zhang, Liu, Yuan, Zhao, Shi, Zhang, Yu, Gao, Yu, Shen, Yang, Zhang, Xue, Ma, Wang, Lu, Dong, Li, Ma, Li, Deng, Liu, Yang, Fu, Liu, Chen, Huang, Li (b0060) 2020; 160
Kang, Yu, Dutta, Gao (b0065) 2021; 383
Villarreal, Lozano, Melani, Polich, Salazar, Bellora, Soracco (b0200) 2021; 213
Douglas, Maffei, Zaneveld (b0025) 2020; 38
Wang, Zhang, Jiang, Guo, Peng (b0210) 2021; 209
Pan, Qin, Wang, Liu, Yu, Song, Wang, Zhu (b0140) 2020; 186
Fierer (b0035) 2017; 15
Wang, Ge, Ma, Wang, Xie, Wang, Song, Jiang, Yang, Murray, Wang, Liu, Cao, Wang (b0205) 2024; 15
Zhang, Liu, Zhang, Hu, Jin, Xu, Qin, Yan, Zhang, Guo, Hui, Cao, Wang, Wang, Wang, Qu, Fan, Yuan, Garrido-Oter, Chu, Bai (b0245) 2019; 37
Fan, He, Smith, Drury, Jiang, Grant, Shi, Song, Chen, Wang, He, Zou (b0030) 2022; 28
Quan, Zhang, Davidson, Zhu, Li, Zhao, Chen, Zhang, He, Wei, Fang (b0155) 2021; 9
Mosley, Gios, Close, Weaver, Daughney, Handley (b0110) 2022; 16
.
Schjønning, P., Jensen, J.L., Bruun, S., Jensen, L.S., Christensen, B.T., Munkholm, L.J., Oelofse, M., Baby, S., Knudsen, L., 2018. Chapter two – the role of soil organic matter for maintaining crop yields: evidence for a renewed conceptual basis. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, 150. pp. 35–79. https://doi.org/10.1016/bs.agron.2018.03.001.
Li, Chen, Wagg, Castellano, Zhang, Ding (b0075) 2024; 30
Kuypers, Marchant, Kartal (b0070) 2018; 16
Rousk, Bååth, Brookes, Lauber, Lozupone, Caporaso, Knight, Fierer (b0165) 2010; 4
Dai, Xiao, Dai, Liu, Dong, Shen, Zhao (b0015) 2023; 23
(accessed January 2024).
Gu, Wu, Hu (b0045) 2018; 34
Tkacz, Hortala, Poole (b0185) 2018; 6
Dong, Lin (b0020) 2020; 6
Smets, Leff, Bradford, McCulley, Lebeer, Fierer (b0180) 2016; 96
Zhang, Zhao, Chen, Wang, Shen (b0250) 2020; 9
Vetterlein, Phalempin, Lippold, Schlüter, Schreiter, Ahmed, Carminati, Duddek, Jorda, Bienert, Bienert, Tarkka, Ganther, Oburger, Santangeli, Javaux, Vanderborght (b0195) 2022; 478
Sirisuntornlak, Ullah, Sonjaroon, Anusontpornperm, Arirob, Datta (b0175) 2021; 13
Yu, Keitel, Zhang, Wangeci, Dijkstra (b0230) 2022; 338
Zhang, Davidson, Mauzerall, Searchinger, Dumas, Shen (b0240) 2015; 528
Hartmann, Six (b0055) 2022; 4
Li, Wang, Feng, Xu, Meng, Gao (b0085) 2023; 291
Zhu, Ros, Xu, Cai, Sun, Duan, De Vries (b0260) 2023; 146
Li, Zeng, Tian, Wang, Fu, Zhang, Zhang, Chen, Luo, Niu (b0090) 2020; 26
Nelson, Martiny, Martiny (b0120) 2016; 113
Maghini, Dvorak, Dahlen, Roos, Kuersten, Bhatt (b0105) 2024; 42
Zhalnina, Dias, de Quadros, Davis-Richardson, Camargo, Clark, McGrath, Hirsch, Triplett (b0235) 2015; 69
Ni, Yang, Ma, Zhang, Soltis, Soltis, Gilbert, Zhao, Fu, Chu (b0125) 2021; 30
(accessed 1 May 2023).
United States Department of Agriculture (USDA), 2023. World agricultural production.
Xiao, Wang, Li, Li, Dai, Shen, Zhao (b0225) 2022; 13
Xia, Rufty, Shi (b0220) 2020; 149
Liu, Ying, Chen, Bai, Xue, Yin, Batchelor, Yang, Bai, Du, Guo, Zhang, Cui, Zhang, Dou (b0095) 2021; 2
Benjamin, Nielsen, Vigil (b0005) 2003; 116
Reddy, Reddy (b0160) 1993; 57
Lu (b0100) 1999
National Bureau of Statistics (NBS), 2021. China Municipal Statistical Yearbook
Guo, Fan, Zhang, Yan, Zheng, Wu, Li, Wang, Sun, Liu, Xiang, Li (b0050) 2021; 790
Wang, Zhao, Zhang, Shen (b0215) 2021; 21
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2017. Vegan: Community ecology package. R package version 2.4-2.
Zhao (10.1016/j.geoderma.2024.117083_b0255) 2018; 9
Xia (10.1016/j.geoderma.2024.117083_b0220) 2020; 149
Fierer (10.1016/j.geoderma.2024.117083_b0035) 2017; 15
Benjamin (10.1016/j.geoderma.2024.117083_b0005) 2003; 116
Guo (10.1016/j.geoderma.2024.117083_b0050) 2021; 790
Reddy (10.1016/j.geoderma.2024.117083_b0160) 1993; 57
Li (10.1016/j.geoderma.2024.117083_b0075) 2024; 30
Oldfield (10.1016/j.geoderma.2024.117083_b0135) 2019; 5
Maghini (10.1016/j.geoderma.2024.117083_b0105) 2024; 42
Philippot (10.1016/j.geoderma.2024.117083_b0145) 2023; 22
Quan (10.1016/j.geoderma.2024.117083_b0150) 2020; 197
Liu (10.1016/j.geoderma.2024.117083_b0095) 2021; 2
Caporaso (10.1016/j.geoderma.2024.117083_b0010) 2012; 6
10.1016/j.geoderma.2024.117083_b0115
Mosley (10.1016/j.geoderma.2024.117083_b0110) 2022; 16
Xiao (10.1016/j.geoderma.2024.117083_b0225) 2022; 13
Nelson (10.1016/j.geoderma.2024.117083_b0120) 2016; 113
Rousk (10.1016/j.geoderma.2024.117083_b0165) 2010; 4
10.1016/j.geoderma.2024.117083_b0190
Wang (10.1016/j.geoderma.2024.117083_b0210) 2021; 209
Wang (10.1016/j.geoderma.2024.117083_b0205) 2024; 15
Li (10.1016/j.geoderma.2024.117083_b0085) 2023; 291
Zhang (10.1016/j.geoderma.2024.117083_b0250) 2020; 9
Hartmann (10.1016/j.geoderma.2024.117083_b0055) 2022; 4
Finn (10.1016/j.geoderma.2024.117083_b0040) 2017; 111
Zhu (10.1016/j.geoderma.2024.117083_b0260) 2023; 146
Dai (10.1016/j.geoderma.2024.117083_b0015) 2023; 23
Pan (10.1016/j.geoderma.2024.117083_b0140) 2020; 186
Zhang (10.1016/j.geoderma.2024.117083_b0245) 2019; 37
Yu (10.1016/j.geoderma.2024.117083_b0230) 2022; 338
Ni (10.1016/j.geoderma.2024.117083_b0125) 2021; 30
Tkacz (10.1016/j.geoderma.2024.117083_b0185) 2018; 6
Zhalnina (10.1016/j.geoderma.2024.117083_b0235) 2015; 69
Fan (10.1016/j.geoderma.2024.117083_b0030) 2022; 28
Li (10.1016/j.geoderma.2024.117083_b0090) 2020; 26
Gu (10.1016/j.geoderma.2024.117083_b0045) 2018; 34
Sirisuntornlak (10.1016/j.geoderma.2024.117083_b0175) 2021; 13
Smets (10.1016/j.geoderma.2024.117083_b0180) 2016; 96
Villarreal (10.1016/j.geoderma.2024.117083_b0200) 2021; 213
Kang (10.1016/j.geoderma.2024.117083_b0065) 2021; 383
Lu (10.1016/j.geoderma.2024.117083_b0100) 1999
Dong (10.1016/j.geoderma.2024.117083_b0020) 2020; 6
Li (10.1016/j.geoderma.2024.117083_b0080) 2022; 28
Hou (10.1016/j.geoderma.2024.117083_b0060) 2020; 160
10.1016/j.geoderma.2024.117083_b0130
Douglas (10.1016/j.geoderma.2024.117083_b0025) 2020; 38
Quan (10.1016/j.geoderma.2024.117083_b0155) 2021; 9
Wang (10.1016/j.geoderma.2024.117083_b0215) 2021; 21
Zhang (10.1016/j.geoderma.2024.117083_b0240) 2015; 528
Vetterlein (10.1016/j.geoderma.2024.117083_b0195) 2022; 478
Kuypers (10.1016/j.geoderma.2024.117083_b0070) 2018; 16
10.1016/j.geoderma.2024.117083_b0170
References_xml – volume: 111
  start-page: 176
  year: 2017
  end-page: 192
  ident: b0040
  article-title: Microbial energy and matter transformation in agricultural soils
  publication-title: Soil Biol. Biochem.
– volume: 478
  start-page: 119
  year: 2022
  end-page: 141
  ident: b0195
  publication-title: Plant Soil
– volume: 146
  year: 2023
  ident: b0260
  article-title: Long-term impacts of mineral and organic fertilizer inputs on nitrogen use efficiency for different cropping systems and site conditions in Southern China
  publication-title: Eur. J. Agron.
– volume: 4
  start-page: 4
  year: 2022
  end-page: 18
  ident: b0055
  article-title: Soil structure and microbiome functions in agroecosystems
  publication-title: Nat. Rev. Earth Environ.
– volume: 9
  start-page: 807
  year: 2018
  ident: b0255
  article-title: Aluminum–nitrogen interactions in the soil–plant system
  publication-title: Front. Plant Sci.
– year: 1999
  ident: b0100
  article-title: Soil and Agricultural Chemical Analysis Methods
– volume: 42
  start-page: 328
  year: 2024
  end-page: 338
  ident: b0105
  article-title: Quantifying bias introduced by sample collection in relative and absolute microbiome measurements
  publication-title: Nat. Biotechnol.
– volume: 96
  start-page: 145
  year: 2016
  end-page: 151
  ident: b0180
  article-title: A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing
  publication-title: Soil Biol. Biochem.
– volume: 149
  year: 2020
  ident: b0220
  article-title: Soil microbial diversity and composition: links to soil texture and associated properties
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 685
  year: 2020
  end-page: 688
  ident: b0025
  article-title: PICRUSt2 for prediction of metagenome functions
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 1668
  year: 2024
  ident: b0205
  article-title: Dynamic root microbiome sustains soybean productivity under unbalanced fertilization
  publication-title: Nat. Commun.
– volume: 57
  start-page: 111
  year: 1993
  end-page: 115
  ident: b0160
  article-title: Fate of Nitrogen-15 enriched ammonium nitrate applied to corn
  publication-title: Soil Sci. Soc. Am. J.
– volume: 197
  year: 2020
  ident: b0150
  article-title: Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: field
  publication-title: Soil till. Res.
– volume: 26
  start-page: 4147
  year: 2020
  end-page: 4157
  ident: b0090
  article-title: Global patterns and controlling factors of soil nitrification rate
  publication-title: Glob. Change Biol.
– volume: 22
  start-page: 1
  year: 2023
  end-page: 14
  ident: b0145
  article-title: The interplay between microbial communities and soil properties
  publication-title: Nat. Rev. Microbiol.
– volume: 16
  start-page: 263
  year: 2018
  end-page: 276
  ident: b0070
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol
– volume: 6
  start-page: 1078
  year: 2020
  end-page: 1079
  ident: b0020
  article-title: Higher yield with less nitrogen fertilizer
  publication-title: Nat. Plants
– volume: 5
  start-page: 15
  year: 2019
  end-page: 32
  ident: b0135
  article-title: Global meta-analysis of the relationship between soil organic matter and crop yields
  publication-title: Soil
– volume: 209
  year: 2021
  ident: b0210
  article-title: Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain
  publication-title: Soil till. Res.
– volume: 113
  start-page: 8033
  year: 2016
  end-page: 8040
  ident: b0120
  article-title: Global biogeography of microbial nitrogen-cycling traits in soil
  publication-title: Proc. Natl Acad. Sci. U.S.A.
– reference: (accessed January 2024).
– volume: 2
  start-page: 426
  year: 2021
  end-page: 433
  ident: b0095
  article-title: Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints
  publication-title: Nat. Food.
– reference: National Bureau of Statistics (NBS), 2021. China Municipal Statistical Yearbook
– volume: 30
  start-page: e17101
  year: 2024
  ident: b0075
  article-title: Soil organic carbon loss decreases biodiversity but stimulates multitrophic interactions that promote belowground metabolism
  publication-title: Glob. Change Biol.
– volume: 116
  start-page: 137
  year: 2003
  end-page: 148
  ident: b0005
  article-title: Quantifying effects of soil conditions on plant growth and crop production
  publication-title: Geoderma
– volume: 34
  start-page: 132
  year: 2018
  end-page: 138
  ident: b0045
  article-title: Inhibitory effect of soil pH value and moisture on soil nitrification by nitrapyrin application
  publication-title: Trans. Chin. Soc. Agric. Eng. (in Chinese)
– volume: 160
  year: 2020
  ident: b0060
  article-title: How to increase maize production without extra nitrogen input
  publication-title: Resour. Conserv. Recycl.
– volume: 13
  year: 2022
  ident: b0225
  article-title: Distinct patterns of rhizosphere microbiota associated with rice genotypes differing in aluminum tolerance in an acid sulfate soil
  publication-title: Front. Microbiol.
– volume: 28
  start-page: 2133
  year: 2022
  end-page: 2145
  ident: b0080
  article-title: Variations and controlling factors of soil denitrification rate
  publication-title: Glob. Change Biol.
– reference: (accessed 1 May 2023).
– volume: 28
  start-page: 5121
  year: 2022
  end-page: 5141
  ident: b0030
  article-title: Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: a meta-analysis
  publication-title: Glob. Change Biol.
– volume: 30
  start-page: 2164
  year: 2021
  end-page: 2177
  ident: b0125
  article-title: Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China
  publication-title: Glob. Ecol. Biogeogr.
– volume: 15
  start-page: 579
  year: 2017
  end-page: 590
  ident: b0035
  article-title: Embracing the unknown: disentangling the complexities of the soil microbiome
  publication-title: Nat. Rev. Microbiol.
– volume: 383
  year: 2021
  ident: b0065
  article-title: Soil microbial community composition and function are closely associated with soil organic matter chemistry along a latitudinal gradient
  publication-title: Geoderma
– volume: 186
  year: 2020
  ident: b0140
  article-title: Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil
  publication-title: Environ. Res.
– volume: 338
  year: 2022
  ident: b0230
  article-title: Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize
  publication-title: Agr. Ecosyst. Environ.
– volume: 291
  year: 2023
  ident: b0085
  article-title: Differential fertilizer nitrogen fates in maize cropping system among three soil textures based on
  publication-title: Field Crops Res.
– volume: 23
  start-page: 6059
  year: 2023
  end-page: 6070
  ident: b0015
  article-title: Comparison of nitrate and aammonium leaching of soils ccollected from ddifferent regions of China: a soil column experiment
  publication-title: J. Soil Sci. Plant Nut.
– volume: 9
  start-page: 765
  year: 2020
  ident: b0250
  article-title: Improved root growth by liming aluminum-sensitive rice cultivar or cultivating an aluminum-tolerant one does not enhance fertilizer nitrogen recovery efficiency in an acid paddy soil
  publication-title: Plants
– reference: Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2017. Vegan: Community ecology package. R package version 2.4-2.
– volume: 213
  year: 2021
  ident: b0200
  article-title: First-year cover crop effects on the physical and hydraulic properties of the surface layer in a loamy soil
  publication-title: Soil Till. Res.
– volume: 13
  start-page: 289
  year: 2021
  end-page: 299
  ident: b0175
  article-title: Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize
  publication-title: Silicon
– volume: 37
  start-page: 676
  year: 2019
  end-page: 684
  ident: b0245
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
  publication-title: Nat. Biotechnol.
– volume: 4
  start-page: 1340
  year: 2010
  end-page: 1351
  ident: b0165
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: ISME J.
– volume: 21
  start-page: 3019
  year: 2021
  end-page: 3033
  ident: b0215
  article-title: The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity
  publication-title: J. Soils Sedim.
– volume: 16
  start-page: 2561
  year: 2022
  end-page: 2573
  ident: b0110
  article-title: Nitrogen cycling and microbial cooperation in the terrestrial subsurface
  publication-title: ISME J.
– volume: 69
  start-page: 395
  year: 2015
  end-page: 406
  ident: b0235
  article-title: Soil pH determines microbial diversity and composition in the park grass experiment
  publication-title: Microb. Ecol.
– volume: 9
  year: 2021
  ident: b0155
  article-title: Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field
  publication-title: Earth’s Future
– volume: 6
  start-page: 1
  year: 2018
  end-page: 13
  ident: b0185
  article-title: Absolute quantitation of microbiota abundance in environmental samples
  publication-title: Microbiome
– volume: 790
  year: 2021
  ident: b0050
  article-title: Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization
  publication-title: Sci. Total Environ.
– reference: .
– reference: Schjønning, P., Jensen, J.L., Bruun, S., Jensen, L.S., Christensen, B.T., Munkholm, L.J., Oelofse, M., Baby, S., Knudsen, L., 2018. Chapter two – the role of soil organic matter for maintaining crop yields: evidence for a renewed conceptual basis. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, 150. pp. 35–79. https://doi.org/10.1016/bs.agron.2018.03.001.
– volume: 6
  start-page: 1621
  year: 2012
  end-page: 1624
  ident: b0010
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J.
– reference: United States Department of Agriculture (USDA), 2023. World agricultural production.
– volume: 528
  start-page: 51
  year: 2015
  end-page: 59
  ident: b0240
  article-title: Managing nitrogen for sustainable development
  publication-title: Nature
– ident: 10.1016/j.geoderma.2024.117083_b0170
  doi: 10.1016/bs.agron.2018.03.001
– volume: 209
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0210
  article-title: Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain
  publication-title: Soil till. Res.
  doi: 10.1016/j.still.2021.104970
– volume: 13
  year: 2022
  ident: 10.1016/j.geoderma.2024.117083_b0225
  article-title: Distinct patterns of rhizosphere microbiota associated with rice genotypes differing in aluminum tolerance in an acid sulfate soil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.933722
– volume: 338
  year: 2022
  ident: 10.1016/j.geoderma.2024.117083_b0230
  article-title: Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2022.108089
– volume: 291
  year: 2023
  ident: 10.1016/j.geoderma.2024.117083_b0085
  article-title: Differential fertilizer nitrogen fates in maize cropping system among three soil textures based on 15N
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2022.108780
– volume: 16
  start-page: 2561
  year: 2022
  ident: 10.1016/j.geoderma.2024.117083_b0110
  article-title: Nitrogen cycling and microbial cooperation in the terrestrial subsurface
  publication-title: ISME J.
  doi: 10.1038/s41396-022-01300-0
– volume: 9
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0155
  article-title: Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field 15N tracer studies
  publication-title: Earth’s Future
  doi: 10.1029/2020EF001514
– volume: 22
  start-page: 1
  issue: 4
  year: 2023
  ident: 10.1016/j.geoderma.2024.117083_b0145
  article-title: The interplay between microbial communities and soil properties
  publication-title: Nat. Rev. Microbiol.
– volume: 37
  start-page: 676
  year: 2019
  ident: 10.1016/j.geoderma.2024.117083_b0245
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0104-4
– volume: 116
  start-page: 137
  year: 2003
  ident: 10.1016/j.geoderma.2024.117083_b0005
  article-title: Quantifying effects of soil conditions on plant growth and crop production
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00098-3
– volume: 42
  start-page: 328
  year: 2024
  ident: 10.1016/j.geoderma.2024.117083_b0105
  article-title: Quantifying bias introduced by sample collection in relative and absolute microbiome measurements
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-01754-3
– volume: 2
  start-page: 426
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0095
  article-title: Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints
  publication-title: Nat. Food.
  doi: 10.1038/s43016-021-00300-1
– ident: 10.1016/j.geoderma.2024.117083_b0130
– volume: 6
  start-page: 1621
  year: 2012
  ident: 10.1016/j.geoderma.2024.117083_b0010
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.8
– volume: 38
  start-page: 685
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0025
  article-title: PICRUSt2 for prediction of metagenome functions
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0548-6
– volume: 15
  start-page: 1668
  issue: 1
  year: 2024
  ident: 10.1016/j.geoderma.2024.117083_b0205
  article-title: Dynamic root microbiome sustains soybean productivity under unbalanced fertilization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45925-5
– volume: 4
  start-page: 1340
  year: 2010
  ident: 10.1016/j.geoderma.2024.117083_b0165
  article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.58
– volume: 528
  start-page: 51
  year: 2015
  ident: 10.1016/j.geoderma.2024.117083_b0240
  article-title: Managing nitrogen for sustainable development
  publication-title: Nature
  doi: 10.1038/nature15743
– volume: 160
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0060
  article-title: How to increase maize production without extra nitrogen input
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.104913
– volume: 26
  start-page: 4147
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0090
  article-title: Global patterns and controlling factors of soil nitrification rate
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15119
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.geoderma.2024.117083_b0185
  article-title: Absolute quantitation of microbiota abundance in environmental samples
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0491-7
– volume: 146
  year: 2023
  ident: 10.1016/j.geoderma.2024.117083_b0260
  article-title: Long-term impacts of mineral and organic fertilizer inputs on nitrogen use efficiency for different cropping systems and site conditions in Southern China
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2023.126797
– volume: 6
  start-page: 1078
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0020
  article-title: Higher yield with less nitrogen fertilizer
  publication-title: Nat. Plants
  doi: 10.1038/s41477-020-00763-3
– volume: 57
  start-page: 111
  year: 1993
  ident: 10.1016/j.geoderma.2024.117083_b0160
  article-title: Fate of Nitrogen-15 enriched ammonium nitrate applied to corn
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700010021x
– volume: 186
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0140
  article-title: Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109612
– volume: 9
  start-page: 807
  year: 2018
  ident: 10.1016/j.geoderma.2024.117083_b0255
  article-title: Aluminum–nitrogen interactions in the soil–plant system
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00807
– volume: 30
  start-page: e17101
  year: 2024
  ident: 10.1016/j.geoderma.2024.117083_b0075
  article-title: Soil organic carbon loss decreases biodiversity but stimulates multitrophic interactions that promote belowground metabolism
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.17101
– volume: 96
  start-page: 145
  year: 2016
  ident: 10.1016/j.geoderma.2024.117083_b0180
  article-title: A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.02.003
– volume: 197
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0150
  article-title: Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: field 15N tracer studies
  publication-title: Soil till. Res.
  doi: 10.1016/j.still.2019.104498
– volume: 213
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0200
  article-title: First-year cover crop effects on the physical and hydraulic properties of the surface layer in a loamy soil
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2021.105141
– volume: 111
  start-page: 176
  year: 2017
  ident: 10.1016/j.geoderma.2024.117083_b0040
  article-title: Microbial energy and matter transformation in agricultural soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.04.010
– volume: 16
  start-page: 263
  year: 2018
  ident: 10.1016/j.geoderma.2024.117083_b0070
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol
  doi: 10.1038/nrmicro.2018.9
– volume: 9
  start-page: 765
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0250
  article-title: Improved root growth by liming aluminum-sensitive rice cultivar or cultivating an aluminum-tolerant one does not enhance fertilizer nitrogen recovery efficiency in an acid paddy soil
  publication-title: Plants
  doi: 10.3390/plants9060765
– volume: 28
  start-page: 5121
  year: 2022
  ident: 10.1016/j.geoderma.2024.117083_b0030
  article-title: Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: a meta-analysis
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.16294
– volume: 23
  start-page: 6059
  year: 2023
  ident: 10.1016/j.geoderma.2024.117083_b0015
  article-title: Comparison of nitrate and aammonium leaching of soils ccollected from ddifferent regions of China: a soil column experiment
  publication-title: J. Soil Sci. Plant Nut.
  doi: 10.1007/s42729-023-01464-4
– volume: 34
  start-page: 132
  issue: 8
  year: 2018
  ident: 10.1016/j.geoderma.2024.117083_b0045
  article-title: Inhibitory effect of soil pH value and moisture on soil nitrification by nitrapyrin application
  publication-title: Trans. Chin. Soc. Agric. Eng. (in Chinese)
– volume: 21
  start-page: 3019
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0215
  article-title: The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity
  publication-title: J. Soils Sedim.
  doi: 10.1007/s11368-021-03007-9
– volume: 113
  start-page: 8033
  year: 2016
  ident: 10.1016/j.geoderma.2024.117083_b0120
  article-title: Global biogeography of microbial nitrogen-cycling traits in soil
  publication-title: Proc. Natl Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1601070113
– volume: 478
  start-page: 119
  year: 2022
  ident: 10.1016/j.geoderma.2024.117083_b0195
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05434-0
– volume: 30
  start-page: 2164
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0125
  article-title: Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.13373
– volume: 5
  start-page: 15
  year: 2019
  ident: 10.1016/j.geoderma.2024.117083_b0135
  article-title: Global meta-analysis of the relationship between soil organic matter and crop yields
  publication-title: Soil
  doi: 10.5194/soil-5-15-2019
– volume: 69
  start-page: 395
  year: 2015
  ident: 10.1016/j.geoderma.2024.117083_b0235
  article-title: Soil pH determines microbial diversity and composition in the park grass experiment
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-014-0530-2
– ident: 10.1016/j.geoderma.2024.117083_b0115
– volume: 28
  start-page: 2133
  year: 2022
  ident: 10.1016/j.geoderma.2024.117083_b0080
  article-title: Variations and controlling factors of soil denitrification rate
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.16066
– year: 1999
  ident: 10.1016/j.geoderma.2024.117083_b0100
– volume: 149
  year: 2020
  ident: 10.1016/j.geoderma.2024.117083_b0220
  article-title: Soil microbial diversity and composition: links to soil texture and associated properties
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107953
– volume: 4
  start-page: 4
  year: 2022
  ident: 10.1016/j.geoderma.2024.117083_b0055
  article-title: Soil structure and microbiome functions in agroecosystems
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-022-00366-w
– volume: 383
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0065
  article-title: Soil microbial community composition and function are closely associated with soil organic matter chemistry along a latitudinal gradient
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114744
– volume: 13
  start-page: 289
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0175
  article-title: Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize
  publication-title: Silicon
  doi: 10.1007/s12633-020-00427-z
– ident: 10.1016/j.geoderma.2024.117083_b0190
– volume: 790
  year: 2021
  ident: 10.1016/j.geoderma.2024.117083_b0050
  article-title: Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148058
– volume: 15
  start-page: 579
  year: 2017
  ident: 10.1016/j.geoderma.2024.117083_b0035
  article-title: Embracing the unknown: disentangling the complexities of the soil microbiome
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.87
SSID ssj0017020
Score 2.45282
Snippet •Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for...
Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117083
SubjectTerms Absolute quantification sequencing
ammonium
biomass
China
clay
clay fraction
climate
corn
denitrification
nitrate reduction
nitrification
Nitrogen fate
nitrogen fertilizers
Nitrogen recovery efficiency
sand
sand fraction
Soil organic matter
Soil pH
texture
Zea mays
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnuCAeIqFggaJa9hk7Tx8LIWqQoJTkXqz_KxcdZMqu0WCQ38Av5oZx1mxXHrgGMu2LM945pvY8w1j74nkvOO6LqSTphBahEJrqQtbGtMGxNd1Shf7-q05-y6-XNQXB-xkzoWhZ5XZ9k82PVnr3LLMu7m8iZFyfKumJQ8tSDNXxAkqREta_uFu98yjastMzVg1BfX-K0v4CmVEBccS_9BK0P1l2fE9B5V4_Pf81D8WO7mh08fsUcaPcDwt8Qk78P1T9vD4cswcGv4Z-_1pjPSbAHItHRgC_MCQOMkAYg-B3lJfx19-BDzQ44A6BBQYo1b_BJ84JSghk7quNXYDKvNFeVUw8T5vQKe1Qyq-Dbp3ELcbWMdE6oSrW3vKJ46b9XN2fvr5_OSsyCUXCitquS24lsJx2-DJ9BiYILbRoXFShKYKZQjCu87y2kuM8jpnpat9x3lruUWg6YznL9hhP_T-JYNVHVqB8A_jT4RcwpqyMrbUognOtNKHBavnbVY205FTVYxrNb87u1KzeBSJR03iWbDlbtzNRMhx74iPJMVdbyLUTg3DeKmyRqk2oHGypbCh0wJ3QVbGa_TqVddpXxm9YHLWAbWnnzhVvHcB72alUXh46UZG93643SiOABZdDsLeV_8x_2v2gL6mDMkjdrgdb_0bhEpb8zadhT8gtRT4
  priority: 102
  providerName: Elsevier
Title Driving factors of variation in fertilizer nitrogen recovery efficiency in maize cropping systems across China and its microbial mechanism
URI https://dx.doi.org/10.1016/j.geoderma.2024.117083
https://www.proquest.com/docview/3154153085
https://doaj.org/article/7f510c04cf8a43a991bea123188ae1ba
Volume 451
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYKvcABtQXE0nY1lXoNJNh5-Lh9rLatygkkbpafKIjNouxSqRz4Af3VnXESxPayl14jOxl5ZjzfxJ5vGPtIJOcV13kinTSJ0CIkWkud2NSYMiC-zmO52M_zYnYpvl_lV89afdGdsI4euFu40zKg1dhU2FBpwTXCGeM1brdZVWmfmQiNMOYNyVR_flAiCnpWD3yD2qDWYpFp6EzQSWVa8bVQFBn71yLSP3tzDDjTV2yvR4ow6SR8zV745g3bnVy3PVuG32d_vrQ1_RCAvmsOLAL8wuQ3rjbUDQS6NX1bP_gW0HXbBVoLUAqM9vsbfGSPoNJLGjrXOAyooRdVUEHH8LwEHWWH2GYbdOOgXi1hXkf6JpRu7qlyuF7OD9jF9OvF51nSN1dIrMjlKsGlFI7bAn3QYwqCKEaHwkkRiiykIQjvKstzLzGfq5yVLvcV56XlFiGlM54fsu1m0fgjBmd5KAUCPcw0EVwJa9LM2FSLIjhTSh9GLB-WWdmeeJz6X9yq4YbZjRrUo0g9qlPPiJ0-zbvrqDc2zvhEWnwaTdTZ8QEalOoNSm0yqBGTgw2oHoV06AJfVW8U4MNgNArdlM5edOMX90vFEapicEGAe_w_hHzLduizXVHkO7a9au_9e0RHKzNmWyeP2Zi9nHz7MTsfR7f4C5B4FEg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdnkaCY9gkdh4-cCiUaksfp0XqzbIdu0rVTapk26oc-AH8HH4hM46zYrn0gHpNHMvyjGe-iWe-IeQ9kpyXTGWRqISOuOIuUkqoyMRaFw7wdebLxQ6P8tl3_u04O94gv8daGEyrDLZ_sOneWocn07Cb0_O6xhrfJC_QQ3PUzJSHzMp9e30FcVv_aW8HhPwhTXe_zr_MotBaIDI8E8uIKcErZnLQQAsAHHy4cnkluMsTFzvHbVUallkB0UxZGVFltmSsMMwAoKq0ZTDtHXKXg7XArgkff67SSpIiDlSQSR7h6v6qSj4FncAGZ57vKOV4XxqXbM0h-r4Ba37xHw_h3d7uI_Iw4FW6PWzJY7JhmyfkwfZJFzg77FPya6er8bcEDb17aOvoJYTgXua0bqjD3O2z-oftKBiQrgWdpRiIwym6ptZzWGABKA5dKBhGsa0Y1nHRgWe6p8qvnfpm31Q1Fa2XPV3UnkQKVrewWL9c94tnZH4bcnhONpu2sVuEppkrOMBNiHcB4nGj40SbWPHcVboQ1k1INm6zNIH-HLtwnMkxz-1UjuKRKB45iGdCpqvvzgcCkBu_-IxSXI1GAm__oO1OZNBgWTgwhibmxpWKwy6IRFsFKCIpS2UTrSZEjDog184DTFXfuIB3o9JIMBZ4A6Qa2170kgFgBhcHMPvFf8z_ltybzQ8P5MHe0f5Lch_fDNWZr8jmsruwrwGmLfUbfy4okbd8Dv8AruxRzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driving+factors+of+variation+in+fertilizer+nitrogen+recovery+efficiency+in+maize+cropping+systems+across+China+and+its+microbial+mechanism&rft.jtitle=Geoderma&rft.au=Xiao%2C+Xun&rft.au=Wang%2C+Yuekai&rft.au=Dai%2C+Wentai&rft.au=Liu%2C+Kailou&rft.date=2024-11-01&rft.issn=0016-7061&rft.volume=451&rft.spage=117083&rft_id=info:doi/10.1016%2Fj.geoderma.2024.117083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2024_117083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon