Driving factors of variation in fertilizer nitrogen recovery efficiency in maize cropping systems across China and its microbial mechanism
•Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for maize FNRE is around 6.50–6.62.•Optimal soil organic matter for maize FNRE is around 35.25–46.90 g kg−1.•Soil dissimilatory nitrate reduction...
Saved in:
Published in | Geoderma Vol. 451; p. 117083 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for maize FNRE is around 6.50–6.62.•Optimal soil organic matter for maize FNRE is around 35.25–46.90 g kg−1.•Soil dissimilatory nitrate reduction to ammonium contributes to maize FNRE.
Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, 15N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg−1, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics. |
---|---|
AbstractList | Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, 15N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg−1, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics. •Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for maize FNRE is around 6.50–6.62.•Optimal soil organic matter for maize FNRE is around 35.25–46.90 g kg−1.•Soil dissimilatory nitrate reduction to ammonium contributes to maize FNRE. Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, 15N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg−1, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics. Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties than by climate. However, how soil factors regulate maize FNRE is poorly understood. Herein, ¹⁵N tracer pot experiments combined with absolute microbial quantification sequencing were conducted using eight soils covering the main maize cropping systems from northern to southern China. The aim was to elucidate which soil factors affect maize FNRE and identify their optimal range for maximizing FNRE while minimizing N loss. Our results show that soil pH, soil organic matter (SOM), and clay and sand contents were the key factors affecting maize biomass and FNRE across the eight tested soils. Maize biomass and FNRE had parabolic relationships with soil pH, SOM, clay, and sand contents, whereas N loss displayed the opposite trend. The highest maize biomass and FNRE and lowest fertilizer N loss were in the soils with pH of 6.50–6.62, SOM level of 35.25–46.90 g kg⁻¹, clay content of 41.12 %–44.42 %, and sand content of 17.71 %–23.41 %. Under these soil conditions, maize growth and soil N retention capabilities exhibited a high degree of coordination. Bacterial communities differed significantly among the soils, sharing the same soil drivers as maize biomass and FNRE. The abundance of N cycling genes (nasA, narI, narJ, nrfA, and nrfB) involved in dissimilatory nitrate reduction to ammonium (DNRA) was positively correlated with FNRE and negatively correlated with fertilizer N loss, suggesting that DNRA may contribute to soil N retention and enhance FNRE by affecting substrates for nitrification and denitrification. Our study demonstrates that soil pH, SOM, and texture are three key factors driving FNRE variation in maize cropping systems across China, and high microbial-driven DNRA may account for maximum maize FNRE. These findings highlight the importance of tailored FNRE enhancement strategies based on soil characteristics. |
ArticleNumber | 117083 |
Author | Liu, Kailou Shen, Ren Fang Jiang, Fahui Dai, Wentai Zhao, Xue Qiang Wang, Yuekai Xie, Zubin Xiao, Xun |
Author_xml | – sequence: 1 givenname: Xun surname: Xiao fullname: Xiao, Xun organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 2 givenname: Yuekai orcidid: 0000-0002-8301-7611 surname: Wang fullname: Wang, Yuekai organization: Key Laboratory of Crop Physiology, Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China – sequence: 3 givenname: Wentai surname: Dai fullname: Dai, Wentai organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 4 givenname: Kailou surname: Liu fullname: Liu, Kailou organization: National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 331717, China – sequence: 5 givenname: Fahui surname: Jiang fullname: Jiang, Fahui organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 6 givenname: Zubin surname: Xie fullname: Xie, Zubin organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 7 givenname: Ren Fang surname: Shen fullname: Shen, Ren Fang organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 8 givenname: Xue Qiang surname: Zhao fullname: Zhao, Xue Qiang email: xqzhao@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China |
BookMark | eNqFkc1uGyEUhVGVSnXSvkLFsptxYZhfqYtW7l-kSN1kj67h4lxrBlwgltxHyFMXe5pNN1khrs45cM93za588MjYeynWUsju4369w2AxzrCuRd2spezFoF6xlRz6uurqdrxiK1GUVS86-YZdp7Qv117UYsWevkY6kt9xByaHmHhw_AiRIFPwnDx3GDNN9Acj95Rj2KHnEU04YjxxdI4MoTens3SGIuMmhsPhnJhOKeOcOJRJSnzzQB44eMspJz5TmW4JJj6jeQBPaX7LXjuYEr77d96w--_f7jc_q7tfP243X-4q07RjrhSMjVWma5XEph7qXoHr7Ni4TjrhXIN2MKrFUY5ysGa0LQ5K9UYZMY52i-qG3S6xNsBeHyLNEE86AOnLIMSdhrKymVD3rpXCiMa4AZry7ii3CLJWchgA5RZK1ocl6xDD70dMWc-UDE4TeAyPSSvZNrJVYmiL9NMivbQR0WlD-dJyjkCTlkKfaeq9fqapzzT1QrPYu__szz9_0fh5MWKp9EgYdboQQ0sFYy5L00sRfwFLPMM7 |
CitedBy_id | crossref_primary_10_1016_j_jare_2025_03_030 crossref_primary_10_3390_agriculture14122300 |
Cites_doi | 10.1016/bs.agron.2018.03.001 10.1016/j.still.2021.104970 10.3389/fmicb.2022.933722 10.1016/j.agee.2022.108089 10.1016/j.fcr.2022.108780 10.1038/s41396-022-01300-0 10.1029/2020EF001514 10.1038/s41587-019-0104-4 10.1016/S0016-7061(03)00098-3 10.1038/s41587-023-01754-3 10.1038/s43016-021-00300-1 10.1038/ismej.2012.8 10.1038/s41587-020-0548-6 10.1038/s41467-024-45925-5 10.1038/ismej.2010.58 10.1038/nature15743 10.1016/j.resconrec.2020.104913 10.1111/gcb.15119 10.1186/s40168-018-0491-7 10.1016/j.eja.2023.126797 10.1038/s41477-020-00763-3 10.2136/sssaj1993.03615995005700010021x 10.1016/j.envres.2020.109612 10.3389/fpls.2018.00807 10.1111/gcb.17101 10.1016/j.soilbio.2016.02.003 10.1016/j.still.2019.104498 10.1016/j.still.2021.105141 10.1016/j.soilbio.2017.04.010 10.1038/nrmicro.2018.9 10.3390/plants9060765 10.1111/gcb.16294 10.1007/s42729-023-01464-4 10.1007/s11368-021-03007-9 10.1073/pnas.1601070113 10.1007/s11104-022-05434-0 10.1111/geb.13373 10.5194/soil-5-15-2019 10.1007/s00248-014-0530-2 10.1111/gcb.16066 10.1016/j.soilbio.2020.107953 10.1038/s43017-022-00366-w 10.1016/j.geoderma.2020.114744 10.1007/s12633-020-00427-z 10.1016/j.scitotenv.2021.148058 10.1038/nrmicro.2017.87 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.geoderma.2024.117083 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_7f510c04cf8a43a991bea123188ae1ba 10_1016_j_geoderma_2024_117083 S0016706124003124 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV ADVLN AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c459t-3a94d3c6531e428273af6d94f61f0ff4ed8c35e91918dc9d5e8337c3c099dbe3 |
IEDL.DBID | DOA |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 01:31:07 EDT 2025 Wed Jul 02 04:56:02 EDT 2025 Thu Apr 24 23:13:00 EDT 2025 Tue Jul 01 04:05:03 EDT 2025 Sat Nov 09 15:59:12 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ASV Ndfs Absolute quantification sequencing N SOM Soil pH Nitrogen fate Ndff RF Soil organic matter Nitrogen recovery efficiency DNRA FNRE SEM |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-3a94d3c6531e428273af6d94f61f0ff4ed8c35e91918dc9d5e8337c3c099dbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8301-7611 |
OpenAccessLink | https://doaj.org/article/7f510c04cf8a43a991bea123188ae1ba |
PQID | 3154153085 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f510c04cf8a43a991bea123188ae1ba proquest_miscellaneous_3154153085 crossref_citationtrail_10_1016_j_geoderma_2024_117083 crossref_primary_10_1016_j_geoderma_2024_117083 elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_117083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 20241101 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Quan, Li, Zhang, Zhu, Li, Sheng, Chen, Zhang, He, Wei, Fang (b0150) 2020; 197 Finn, Kopittke, Dennis, Dalal (b0040) 2017; 111 Philippot, Chenu, Kappler, Rillig, Fierer (b0145) 2023; 22 Oldfield, Bradford, Wood (b0135) 2019; 5 Zhao, Shen (b0255) 2018; 9 Li, Tang, Song, Chen, Tian, Tang, Wang, Wang, Liu, Wang, Li, Jiang, Luo, Niu (b0080) 2022; 28 Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer, Gormley, Gilbert, Smith, Knight (b0010) 2012; 6 Hou, Liu, Liu, Liu, Xie, Wang, Ming, Wang, Zhao, Zhang, Wang, Bian, Ren, Zhao, Liu, Chang, Zhang, Liu, Yuan, Zhao, Shi, Zhang, Yu, Gao, Yu, Shen, Yang, Zhang, Xue, Ma, Wang, Lu, Dong, Li, Ma, Li, Deng, Liu, Yang, Fu, Liu, Chen, Huang, Li (b0060) 2020; 160 Kang, Yu, Dutta, Gao (b0065) 2021; 383 Villarreal, Lozano, Melani, Polich, Salazar, Bellora, Soracco (b0200) 2021; 213 Douglas, Maffei, Zaneveld (b0025) 2020; 38 Wang, Zhang, Jiang, Guo, Peng (b0210) 2021; 209 Pan, Qin, Wang, Liu, Yu, Song, Wang, Zhu (b0140) 2020; 186 Fierer (b0035) 2017; 15 Wang, Ge, Ma, Wang, Xie, Wang, Song, Jiang, Yang, Murray, Wang, Liu, Cao, Wang (b0205) 2024; 15 Zhang, Liu, Zhang, Hu, Jin, Xu, Qin, Yan, Zhang, Guo, Hui, Cao, Wang, Wang, Wang, Qu, Fan, Yuan, Garrido-Oter, Chu, Bai (b0245) 2019; 37 Fan, He, Smith, Drury, Jiang, Grant, Shi, Song, Chen, Wang, He, Zou (b0030) 2022; 28 Quan, Zhang, Davidson, Zhu, Li, Zhao, Chen, Zhang, He, Wei, Fang (b0155) 2021; 9 Mosley, Gios, Close, Weaver, Daughney, Handley (b0110) 2022; 16 . Schjønning, P., Jensen, J.L., Bruun, S., Jensen, L.S., Christensen, B.T., Munkholm, L.J., Oelofse, M., Baby, S., Knudsen, L., 2018. Chapter two – the role of soil organic matter for maintaining crop yields: evidence for a renewed conceptual basis. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, 150. pp. 35–79. https://doi.org/10.1016/bs.agron.2018.03.001. Li, Chen, Wagg, Castellano, Zhang, Ding (b0075) 2024; 30 Kuypers, Marchant, Kartal (b0070) 2018; 16 Rousk, Bååth, Brookes, Lauber, Lozupone, Caporaso, Knight, Fierer (b0165) 2010; 4 Dai, Xiao, Dai, Liu, Dong, Shen, Zhao (b0015) 2023; 23 (accessed January 2024). Gu, Wu, Hu (b0045) 2018; 34 Tkacz, Hortala, Poole (b0185) 2018; 6 Dong, Lin (b0020) 2020; 6 Smets, Leff, Bradford, McCulley, Lebeer, Fierer (b0180) 2016; 96 Zhang, Zhao, Chen, Wang, Shen (b0250) 2020; 9 Vetterlein, Phalempin, Lippold, Schlüter, Schreiter, Ahmed, Carminati, Duddek, Jorda, Bienert, Bienert, Tarkka, Ganther, Oburger, Santangeli, Javaux, Vanderborght (b0195) 2022; 478 Sirisuntornlak, Ullah, Sonjaroon, Anusontpornperm, Arirob, Datta (b0175) 2021; 13 Yu, Keitel, Zhang, Wangeci, Dijkstra (b0230) 2022; 338 Zhang, Davidson, Mauzerall, Searchinger, Dumas, Shen (b0240) 2015; 528 Hartmann, Six (b0055) 2022; 4 Li, Wang, Feng, Xu, Meng, Gao (b0085) 2023; 291 Zhu, Ros, Xu, Cai, Sun, Duan, De Vries (b0260) 2023; 146 Li, Zeng, Tian, Wang, Fu, Zhang, Zhang, Chen, Luo, Niu (b0090) 2020; 26 Nelson, Martiny, Martiny (b0120) 2016; 113 Maghini, Dvorak, Dahlen, Roos, Kuersten, Bhatt (b0105) 2024; 42 Zhalnina, Dias, de Quadros, Davis-Richardson, Camargo, Clark, McGrath, Hirsch, Triplett (b0235) 2015; 69 Ni, Yang, Ma, Zhang, Soltis, Soltis, Gilbert, Zhao, Fu, Chu (b0125) 2021; 30 (accessed 1 May 2023). United States Department of Agriculture (USDA), 2023. World agricultural production. Xiao, Wang, Li, Li, Dai, Shen, Zhao (b0225) 2022; 13 Xia, Rufty, Shi (b0220) 2020; 149 Liu, Ying, Chen, Bai, Xue, Yin, Batchelor, Yang, Bai, Du, Guo, Zhang, Cui, Zhang, Dou (b0095) 2021; 2 Benjamin, Nielsen, Vigil (b0005) 2003; 116 Reddy, Reddy (b0160) 1993; 57 Lu (b0100) 1999 National Bureau of Statistics (NBS), 2021. China Municipal Statistical Yearbook Guo, Fan, Zhang, Yan, Zheng, Wu, Li, Wang, Sun, Liu, Xiang, Li (b0050) 2021; 790 Wang, Zhao, Zhang, Shen (b0215) 2021; 21 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2017. Vegan: Community ecology package. R package version 2.4-2. Zhao (10.1016/j.geoderma.2024.117083_b0255) 2018; 9 Xia (10.1016/j.geoderma.2024.117083_b0220) 2020; 149 Fierer (10.1016/j.geoderma.2024.117083_b0035) 2017; 15 Benjamin (10.1016/j.geoderma.2024.117083_b0005) 2003; 116 Guo (10.1016/j.geoderma.2024.117083_b0050) 2021; 790 Reddy (10.1016/j.geoderma.2024.117083_b0160) 1993; 57 Li (10.1016/j.geoderma.2024.117083_b0075) 2024; 30 Oldfield (10.1016/j.geoderma.2024.117083_b0135) 2019; 5 Maghini (10.1016/j.geoderma.2024.117083_b0105) 2024; 42 Philippot (10.1016/j.geoderma.2024.117083_b0145) 2023; 22 Quan (10.1016/j.geoderma.2024.117083_b0150) 2020; 197 Liu (10.1016/j.geoderma.2024.117083_b0095) 2021; 2 Caporaso (10.1016/j.geoderma.2024.117083_b0010) 2012; 6 10.1016/j.geoderma.2024.117083_b0115 Mosley (10.1016/j.geoderma.2024.117083_b0110) 2022; 16 Xiao (10.1016/j.geoderma.2024.117083_b0225) 2022; 13 Nelson (10.1016/j.geoderma.2024.117083_b0120) 2016; 113 Rousk (10.1016/j.geoderma.2024.117083_b0165) 2010; 4 10.1016/j.geoderma.2024.117083_b0190 Wang (10.1016/j.geoderma.2024.117083_b0210) 2021; 209 Wang (10.1016/j.geoderma.2024.117083_b0205) 2024; 15 Li (10.1016/j.geoderma.2024.117083_b0085) 2023; 291 Zhang (10.1016/j.geoderma.2024.117083_b0250) 2020; 9 Hartmann (10.1016/j.geoderma.2024.117083_b0055) 2022; 4 Finn (10.1016/j.geoderma.2024.117083_b0040) 2017; 111 Zhu (10.1016/j.geoderma.2024.117083_b0260) 2023; 146 Dai (10.1016/j.geoderma.2024.117083_b0015) 2023; 23 Pan (10.1016/j.geoderma.2024.117083_b0140) 2020; 186 Zhang (10.1016/j.geoderma.2024.117083_b0245) 2019; 37 Yu (10.1016/j.geoderma.2024.117083_b0230) 2022; 338 Ni (10.1016/j.geoderma.2024.117083_b0125) 2021; 30 Tkacz (10.1016/j.geoderma.2024.117083_b0185) 2018; 6 Zhalnina (10.1016/j.geoderma.2024.117083_b0235) 2015; 69 Fan (10.1016/j.geoderma.2024.117083_b0030) 2022; 28 Li (10.1016/j.geoderma.2024.117083_b0090) 2020; 26 Gu (10.1016/j.geoderma.2024.117083_b0045) 2018; 34 Sirisuntornlak (10.1016/j.geoderma.2024.117083_b0175) 2021; 13 Smets (10.1016/j.geoderma.2024.117083_b0180) 2016; 96 Villarreal (10.1016/j.geoderma.2024.117083_b0200) 2021; 213 Kang (10.1016/j.geoderma.2024.117083_b0065) 2021; 383 Lu (10.1016/j.geoderma.2024.117083_b0100) 1999 Dong (10.1016/j.geoderma.2024.117083_b0020) 2020; 6 Li (10.1016/j.geoderma.2024.117083_b0080) 2022; 28 Hou (10.1016/j.geoderma.2024.117083_b0060) 2020; 160 10.1016/j.geoderma.2024.117083_b0130 Douglas (10.1016/j.geoderma.2024.117083_b0025) 2020; 38 Quan (10.1016/j.geoderma.2024.117083_b0155) 2021; 9 Wang (10.1016/j.geoderma.2024.117083_b0215) 2021; 21 Zhang (10.1016/j.geoderma.2024.117083_b0240) 2015; 528 Vetterlein (10.1016/j.geoderma.2024.117083_b0195) 2022; 478 Kuypers (10.1016/j.geoderma.2024.117083_b0070) 2018; 16 10.1016/j.geoderma.2024.117083_b0170 |
References_xml | – volume: 111 start-page: 176 year: 2017 end-page: 192 ident: b0040 article-title: Microbial energy and matter transformation in agricultural soils publication-title: Soil Biol. Biochem. – volume: 478 start-page: 119 year: 2022 end-page: 141 ident: b0195 publication-title: Plant Soil – volume: 146 year: 2023 ident: b0260 article-title: Long-term impacts of mineral and organic fertilizer inputs on nitrogen use efficiency for different cropping systems and site conditions in Southern China publication-title: Eur. J. Agron. – volume: 4 start-page: 4 year: 2022 end-page: 18 ident: b0055 article-title: Soil structure and microbiome functions in agroecosystems publication-title: Nat. Rev. Earth Environ. – volume: 9 start-page: 807 year: 2018 ident: b0255 article-title: Aluminum–nitrogen interactions in the soil–plant system publication-title: Front. Plant Sci. – year: 1999 ident: b0100 article-title: Soil and Agricultural Chemical Analysis Methods – volume: 42 start-page: 328 year: 2024 end-page: 338 ident: b0105 article-title: Quantifying bias introduced by sample collection in relative and absolute microbiome measurements publication-title: Nat. Biotechnol. – volume: 96 start-page: 145 year: 2016 end-page: 151 ident: b0180 article-title: A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing publication-title: Soil Biol. Biochem. – volume: 149 year: 2020 ident: b0220 article-title: Soil microbial diversity and composition: links to soil texture and associated properties publication-title: Soil Biol. Biochem. – volume: 38 start-page: 685 year: 2020 end-page: 688 ident: b0025 article-title: PICRUSt2 for prediction of metagenome functions publication-title: Nat. Biotechnol. – volume: 15 start-page: 1668 year: 2024 ident: b0205 article-title: Dynamic root microbiome sustains soybean productivity under unbalanced fertilization publication-title: Nat. Commun. – volume: 57 start-page: 111 year: 1993 end-page: 115 ident: b0160 article-title: Fate of Nitrogen-15 enriched ammonium nitrate applied to corn publication-title: Soil Sci. Soc. Am. J. – volume: 197 year: 2020 ident: b0150 article-title: Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: field publication-title: Soil till. Res. – volume: 26 start-page: 4147 year: 2020 end-page: 4157 ident: b0090 article-title: Global patterns and controlling factors of soil nitrification rate publication-title: Glob. Change Biol. – volume: 22 start-page: 1 year: 2023 end-page: 14 ident: b0145 article-title: The interplay between microbial communities and soil properties publication-title: Nat. Rev. Microbiol. – volume: 16 start-page: 263 year: 2018 end-page: 276 ident: b0070 article-title: The microbial nitrogen-cycling network publication-title: Nat. Rev. Microbiol – volume: 6 start-page: 1078 year: 2020 end-page: 1079 ident: b0020 article-title: Higher yield with less nitrogen fertilizer publication-title: Nat. Plants – volume: 5 start-page: 15 year: 2019 end-page: 32 ident: b0135 article-title: Global meta-analysis of the relationship between soil organic matter and crop yields publication-title: Soil – volume: 209 year: 2021 ident: b0210 article-title: Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain publication-title: Soil till. Res. – volume: 113 start-page: 8033 year: 2016 end-page: 8040 ident: b0120 article-title: Global biogeography of microbial nitrogen-cycling traits in soil publication-title: Proc. Natl Acad. Sci. U.S.A. – reference: (accessed January 2024). – volume: 2 start-page: 426 year: 2021 end-page: 433 ident: b0095 article-title: Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints publication-title: Nat. Food. – reference: National Bureau of Statistics (NBS), 2021. China Municipal Statistical Yearbook – volume: 30 start-page: e17101 year: 2024 ident: b0075 article-title: Soil organic carbon loss decreases biodiversity but stimulates multitrophic interactions that promote belowground metabolism publication-title: Glob. Change Biol. – volume: 116 start-page: 137 year: 2003 end-page: 148 ident: b0005 article-title: Quantifying effects of soil conditions on plant growth and crop production publication-title: Geoderma – volume: 34 start-page: 132 year: 2018 end-page: 138 ident: b0045 article-title: Inhibitory effect of soil pH value and moisture on soil nitrification by nitrapyrin application publication-title: Trans. Chin. Soc. Agric. Eng. (in Chinese) – volume: 160 year: 2020 ident: b0060 article-title: How to increase maize production without extra nitrogen input publication-title: Resour. Conserv. Recycl. – volume: 13 year: 2022 ident: b0225 article-title: Distinct patterns of rhizosphere microbiota associated with rice genotypes differing in aluminum tolerance in an acid sulfate soil publication-title: Front. Microbiol. – volume: 28 start-page: 2133 year: 2022 end-page: 2145 ident: b0080 article-title: Variations and controlling factors of soil denitrification rate publication-title: Glob. Change Biol. – reference: (accessed 1 May 2023). – volume: 28 start-page: 5121 year: 2022 end-page: 5141 ident: b0030 article-title: Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: a meta-analysis publication-title: Glob. Change Biol. – volume: 30 start-page: 2164 year: 2021 end-page: 2177 ident: b0125 article-title: Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China publication-title: Glob. Ecol. Biogeogr. – volume: 15 start-page: 579 year: 2017 end-page: 590 ident: b0035 article-title: Embracing the unknown: disentangling the complexities of the soil microbiome publication-title: Nat. Rev. Microbiol. – volume: 383 year: 2021 ident: b0065 article-title: Soil microbial community composition and function are closely associated with soil organic matter chemistry along a latitudinal gradient publication-title: Geoderma – volume: 186 year: 2020 ident: b0140 article-title: Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil publication-title: Environ. Res. – volume: 338 year: 2022 ident: b0230 article-title: Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize publication-title: Agr. Ecosyst. Environ. – volume: 291 year: 2023 ident: b0085 article-title: Differential fertilizer nitrogen fates in maize cropping system among three soil textures based on publication-title: Field Crops Res. – volume: 23 start-page: 6059 year: 2023 end-page: 6070 ident: b0015 article-title: Comparison of nitrate and aammonium leaching of soils ccollected from ddifferent regions of China: a soil column experiment publication-title: J. Soil Sci. Plant Nut. – volume: 9 start-page: 765 year: 2020 ident: b0250 article-title: Improved root growth by liming aluminum-sensitive rice cultivar or cultivating an aluminum-tolerant one does not enhance fertilizer nitrogen recovery efficiency in an acid paddy soil publication-title: Plants – reference: Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2017. Vegan: Community ecology package. R package version 2.4-2. – volume: 213 year: 2021 ident: b0200 article-title: First-year cover crop effects on the physical and hydraulic properties of the surface layer in a loamy soil publication-title: Soil Till. Res. – volume: 13 start-page: 289 year: 2021 end-page: 299 ident: b0175 article-title: Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize publication-title: Silicon – volume: 37 start-page: 676 year: 2019 end-page: 684 ident: b0245 article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice publication-title: Nat. Biotechnol. – volume: 4 start-page: 1340 year: 2010 end-page: 1351 ident: b0165 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME J. – volume: 21 start-page: 3019 year: 2021 end-page: 3033 ident: b0215 article-title: The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity publication-title: J. Soils Sedim. – volume: 16 start-page: 2561 year: 2022 end-page: 2573 ident: b0110 article-title: Nitrogen cycling and microbial cooperation in the terrestrial subsurface publication-title: ISME J. – volume: 69 start-page: 395 year: 2015 end-page: 406 ident: b0235 article-title: Soil pH determines microbial diversity and composition in the park grass experiment publication-title: Microb. Ecol. – volume: 9 year: 2021 ident: b0155 article-title: Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field publication-title: Earth’s Future – volume: 6 start-page: 1 year: 2018 end-page: 13 ident: b0185 article-title: Absolute quantitation of microbiota abundance in environmental samples publication-title: Microbiome – volume: 790 year: 2021 ident: b0050 article-title: Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization publication-title: Sci. Total Environ. – reference: . – reference: Schjønning, P., Jensen, J.L., Bruun, S., Jensen, L.S., Christensen, B.T., Munkholm, L.J., Oelofse, M., Baby, S., Knudsen, L., 2018. Chapter two – the role of soil organic matter for maintaining crop yields: evidence for a renewed conceptual basis. In: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, 150. pp. 35–79. https://doi.org/10.1016/bs.agron.2018.03.001. – volume: 6 start-page: 1621 year: 2012 end-page: 1624 ident: b0010 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J. – reference: United States Department of Agriculture (USDA), 2023. World agricultural production. – volume: 528 start-page: 51 year: 2015 end-page: 59 ident: b0240 article-title: Managing nitrogen for sustainable development publication-title: Nature – ident: 10.1016/j.geoderma.2024.117083_b0170 doi: 10.1016/bs.agron.2018.03.001 – volume: 209 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0210 article-title: Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain publication-title: Soil till. Res. doi: 10.1016/j.still.2021.104970 – volume: 13 year: 2022 ident: 10.1016/j.geoderma.2024.117083_b0225 article-title: Distinct patterns of rhizosphere microbiota associated with rice genotypes differing in aluminum tolerance in an acid sulfate soil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.933722 – volume: 338 year: 2022 ident: 10.1016/j.geoderma.2024.117083_b0230 article-title: Global meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maize publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2022.108089 – volume: 291 year: 2023 ident: 10.1016/j.geoderma.2024.117083_b0085 article-title: Differential fertilizer nitrogen fates in maize cropping system among three soil textures based on 15N publication-title: Field Crops Res. doi: 10.1016/j.fcr.2022.108780 – volume: 16 start-page: 2561 year: 2022 ident: 10.1016/j.geoderma.2024.117083_b0110 article-title: Nitrogen cycling and microbial cooperation in the terrestrial subsurface publication-title: ISME J. doi: 10.1038/s41396-022-01300-0 – volume: 9 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0155 article-title: Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: a global analysis on field 15N tracer studies publication-title: Earth’s Future doi: 10.1029/2020EF001514 – volume: 22 start-page: 1 issue: 4 year: 2023 ident: 10.1016/j.geoderma.2024.117083_b0145 article-title: The interplay between microbial communities and soil properties publication-title: Nat. Rev. Microbiol. – volume: 37 start-page: 676 year: 2019 ident: 10.1016/j.geoderma.2024.117083_b0245 article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0104-4 – volume: 116 start-page: 137 year: 2003 ident: 10.1016/j.geoderma.2024.117083_b0005 article-title: Quantifying effects of soil conditions on plant growth and crop production publication-title: Geoderma doi: 10.1016/S0016-7061(03)00098-3 – volume: 42 start-page: 328 year: 2024 ident: 10.1016/j.geoderma.2024.117083_b0105 article-title: Quantifying bias introduced by sample collection in relative and absolute microbiome measurements publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01754-3 – volume: 2 start-page: 426 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0095 article-title: Optimization of China’s maize and soy production can ensure feed sufficiency at lower nitrogen and carbon footprints publication-title: Nat. Food. doi: 10.1038/s43016-021-00300-1 – ident: 10.1016/j.geoderma.2024.117083_b0130 – volume: 6 start-page: 1621 year: 2012 ident: 10.1016/j.geoderma.2024.117083_b0010 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J. doi: 10.1038/ismej.2012.8 – volume: 38 start-page: 685 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0025 article-title: PICRUSt2 for prediction of metagenome functions publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0548-6 – volume: 15 start-page: 1668 issue: 1 year: 2024 ident: 10.1016/j.geoderma.2024.117083_b0205 article-title: Dynamic root microbiome sustains soybean productivity under unbalanced fertilization publication-title: Nat. Commun. doi: 10.1038/s41467-024-45925-5 – volume: 4 start-page: 1340 year: 2010 ident: 10.1016/j.geoderma.2024.117083_b0165 article-title: Soil bacterial and fungal communities across a pH gradient in an arable soil publication-title: ISME J. doi: 10.1038/ismej.2010.58 – volume: 528 start-page: 51 year: 2015 ident: 10.1016/j.geoderma.2024.117083_b0240 article-title: Managing nitrogen for sustainable development publication-title: Nature doi: 10.1038/nature15743 – volume: 160 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0060 article-title: How to increase maize production without extra nitrogen input publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.104913 – volume: 26 start-page: 4147 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0090 article-title: Global patterns and controlling factors of soil nitrification rate publication-title: Glob. Change Biol. doi: 10.1111/gcb.15119 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.geoderma.2024.117083_b0185 article-title: Absolute quantitation of microbiota abundance in environmental samples publication-title: Microbiome doi: 10.1186/s40168-018-0491-7 – volume: 146 year: 2023 ident: 10.1016/j.geoderma.2024.117083_b0260 article-title: Long-term impacts of mineral and organic fertilizer inputs on nitrogen use efficiency for different cropping systems and site conditions in Southern China publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2023.126797 – volume: 6 start-page: 1078 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0020 article-title: Higher yield with less nitrogen fertilizer publication-title: Nat. Plants doi: 10.1038/s41477-020-00763-3 – volume: 57 start-page: 111 year: 1993 ident: 10.1016/j.geoderma.2024.117083_b0160 article-title: Fate of Nitrogen-15 enriched ammonium nitrate applied to corn publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700010021x – volume: 186 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0140 article-title: Dissimilatory nitrate/nitrite reduction to ammonium (DNRA) pathway dominates nitrate reduction processes in rhizosphere and non-rhizosphere of four fertilized farmland soil publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109612 – volume: 9 start-page: 807 year: 2018 ident: 10.1016/j.geoderma.2024.117083_b0255 article-title: Aluminum–nitrogen interactions in the soil–plant system publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00807 – volume: 30 start-page: e17101 year: 2024 ident: 10.1016/j.geoderma.2024.117083_b0075 article-title: Soil organic carbon loss decreases biodiversity but stimulates multitrophic interactions that promote belowground metabolism publication-title: Glob. Change Biol. doi: 10.1111/gcb.17101 – volume: 96 start-page: 145 year: 2016 ident: 10.1016/j.geoderma.2024.117083_b0180 article-title: A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.02.003 – volume: 197 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0150 article-title: Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: field 15N tracer studies publication-title: Soil till. Res. doi: 10.1016/j.still.2019.104498 – volume: 213 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0200 article-title: First-year cover crop effects on the physical and hydraulic properties of the surface layer in a loamy soil publication-title: Soil Till. Res. doi: 10.1016/j.still.2021.105141 – volume: 111 start-page: 176 year: 2017 ident: 10.1016/j.geoderma.2024.117083_b0040 article-title: Microbial energy and matter transformation in agricultural soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.04.010 – volume: 16 start-page: 263 year: 2018 ident: 10.1016/j.geoderma.2024.117083_b0070 article-title: The microbial nitrogen-cycling network publication-title: Nat. Rev. Microbiol doi: 10.1038/nrmicro.2018.9 – volume: 9 start-page: 765 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0250 article-title: Improved root growth by liming aluminum-sensitive rice cultivar or cultivating an aluminum-tolerant one does not enhance fertilizer nitrogen recovery efficiency in an acid paddy soil publication-title: Plants doi: 10.3390/plants9060765 – volume: 28 start-page: 5121 year: 2022 ident: 10.1016/j.geoderma.2024.117083_b0030 article-title: Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: a meta-analysis publication-title: Glob. Change Biol. doi: 10.1111/gcb.16294 – volume: 23 start-page: 6059 year: 2023 ident: 10.1016/j.geoderma.2024.117083_b0015 article-title: Comparison of nitrate and aammonium leaching of soils ccollected from ddifferent regions of China: a soil column experiment publication-title: J. Soil Sci. Plant Nut. doi: 10.1007/s42729-023-01464-4 – volume: 34 start-page: 132 issue: 8 year: 2018 ident: 10.1016/j.geoderma.2024.117083_b0045 article-title: Inhibitory effect of soil pH value and moisture on soil nitrification by nitrapyrin application publication-title: Trans. Chin. Soc. Agric. Eng. (in Chinese) – volume: 21 start-page: 3019 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0215 article-title: The preference of maize plants for nitrate improves fertilizer N recovery efficiency in an acid soil partially because of alleviated Al toxicity publication-title: J. Soils Sedim. doi: 10.1007/s11368-021-03007-9 – volume: 113 start-page: 8033 year: 2016 ident: 10.1016/j.geoderma.2024.117083_b0120 article-title: Global biogeography of microbial nitrogen-cycling traits in soil publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1601070113 – volume: 478 start-page: 119 year: 2022 ident: 10.1016/j.geoderma.2024.117083_b0195 publication-title: Plant Soil doi: 10.1007/s11104-022-05434-0 – volume: 30 start-page: 2164 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0125 article-title: Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.13373 – volume: 5 start-page: 15 year: 2019 ident: 10.1016/j.geoderma.2024.117083_b0135 article-title: Global meta-analysis of the relationship between soil organic matter and crop yields publication-title: Soil doi: 10.5194/soil-5-15-2019 – volume: 69 start-page: 395 year: 2015 ident: 10.1016/j.geoderma.2024.117083_b0235 article-title: Soil pH determines microbial diversity and composition in the park grass experiment publication-title: Microb. Ecol. doi: 10.1007/s00248-014-0530-2 – ident: 10.1016/j.geoderma.2024.117083_b0115 – volume: 28 start-page: 2133 year: 2022 ident: 10.1016/j.geoderma.2024.117083_b0080 article-title: Variations and controlling factors of soil denitrification rate publication-title: Glob. Change Biol. doi: 10.1111/gcb.16066 – year: 1999 ident: 10.1016/j.geoderma.2024.117083_b0100 – volume: 149 year: 2020 ident: 10.1016/j.geoderma.2024.117083_b0220 article-title: Soil microbial diversity and composition: links to soil texture and associated properties publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107953 – volume: 4 start-page: 4 year: 2022 ident: 10.1016/j.geoderma.2024.117083_b0055 article-title: Soil structure and microbiome functions in agroecosystems publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-022-00366-w – volume: 383 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0065 article-title: Soil microbial community composition and function are closely associated with soil organic matter chemistry along a latitudinal gradient publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114744 – volume: 13 start-page: 289 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0175 article-title: Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize publication-title: Silicon doi: 10.1007/s12633-020-00427-z – ident: 10.1016/j.geoderma.2024.117083_b0190 – volume: 790 year: 2021 ident: 10.1016/j.geoderma.2024.117083_b0050 article-title: Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148058 – volume: 15 start-page: 579 year: 2017 ident: 10.1016/j.geoderma.2024.117083_b0035 article-title: Embracing the unknown: disentangling the complexities of the soil microbiome publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.87 |
SSID | ssj0017020 |
Score | 2.45282 |
Snippet | •Fertilizer N recovery efficiency (FNRE) in maize varies among different soils.•Soil pH and organic matter drive variations in maize FNRE.•Optimal soil pH for... Maize (Zea mays L.) fertilizer nitrogen (N) recovery efficiency (FNRE) shows regional differences in China, and is more strongly affected by soil properties... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117083 |
SubjectTerms | Absolute quantification sequencing ammonium biomass China clay clay fraction climate corn denitrification nitrate reduction nitrification Nitrogen fate nitrogen fertilizers Nitrogen recovery efficiency sand sand fraction Soil organic matter Soil pH texture Zea mays |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnuCAeIqFggaJa9hk7Tx8LIWqQoJTkXqz_KxcdZMqu0WCQ38Av5oZx1mxXHrgGMu2LM945pvY8w1j74nkvOO6LqSTphBahEJrqQtbGtMGxNd1Shf7-q05-y6-XNQXB-xkzoWhZ5XZ9k82PVnr3LLMu7m8iZFyfKumJQ8tSDNXxAkqREta_uFu98yjastMzVg1BfX-K0v4CmVEBccS_9BK0P1l2fE9B5V4_Pf81D8WO7mh08fsUcaPcDwt8Qk78P1T9vD4cswcGv4Z-_1pjPSbAHItHRgC_MCQOMkAYg-B3lJfx19-BDzQ44A6BBQYo1b_BJ84JSghk7quNXYDKvNFeVUw8T5vQKe1Qyq-Dbp3ELcbWMdE6oSrW3vKJ46b9XN2fvr5_OSsyCUXCitquS24lsJx2-DJ9BiYILbRoXFShKYKZQjCu87y2kuM8jpnpat9x3lruUWg6YznL9hhP_T-JYNVHVqB8A_jT4RcwpqyMrbUognOtNKHBavnbVY205FTVYxrNb87u1KzeBSJR03iWbDlbtzNRMhx74iPJMVdbyLUTg3DeKmyRqk2oHGypbCh0wJ3QVbGa_TqVddpXxm9YHLWAbWnnzhVvHcB72alUXh46UZG93643SiOABZdDsLeV_8x_2v2gL6mDMkjdrgdb_0bhEpb8zadhT8gtRT4 priority: 102 providerName: Elsevier |
Title | Driving factors of variation in fertilizer nitrogen recovery efficiency in maize cropping systems across China and its microbial mechanism |
URI | https://dx.doi.org/10.1016/j.geoderma.2024.117083 https://www.proquest.com/docview/3154153085 https://doaj.org/article/7f510c04cf8a43a991bea123188ae1ba |
Volume | 451 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYKvcABtQXE0nY1lXoNJNh5-Lh9rLatygkkbpafKIjNouxSqRz4Af3VnXESxPayl14jOxl5ZjzfxJ5vGPtIJOcV13kinTSJ0CIkWkud2NSYMiC-zmO52M_zYnYpvl_lV89afdGdsI4euFu40zKg1dhU2FBpwTXCGeM1brdZVWmfmQiNMOYNyVR_flAiCnpWD3yD2qDWYpFp6EzQSWVa8bVQFBn71yLSP3tzDDjTV2yvR4ow6SR8zV745g3bnVy3PVuG32d_vrQ1_RCAvmsOLAL8wuQ3rjbUDQS6NX1bP_gW0HXbBVoLUAqM9vsbfGSPoNJLGjrXOAyooRdVUEHH8LwEHWWH2GYbdOOgXi1hXkf6JpRu7qlyuF7OD9jF9OvF51nSN1dIrMjlKsGlFI7bAn3QYwqCKEaHwkkRiiykIQjvKstzLzGfq5yVLvcV56XlFiGlM54fsu1m0fgjBmd5KAUCPcw0EVwJa9LM2FSLIjhTSh9GLB-WWdmeeJz6X9yq4YbZjRrUo0g9qlPPiJ0-zbvrqDc2zvhEWnwaTdTZ8QEalOoNSm0yqBGTgw2oHoV06AJfVW8U4MNgNArdlM5edOMX90vFEapicEGAe_w_hHzLduizXVHkO7a9au_9e0RHKzNmWyeP2Zi9nHz7MTsfR7f4C5B4FEg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdnkaCY9gkdh4-cCiUaksfp0XqzbIdu0rVTapk26oc-AH8HH4hM46zYrn0gHpNHMvyjGe-iWe-IeQ9kpyXTGWRqISOuOIuUkqoyMRaFw7wdebLxQ6P8tl3_u04O94gv8daGEyrDLZ_sOneWocn07Cb0_O6xhrfJC_QQ3PUzJSHzMp9e30FcVv_aW8HhPwhTXe_zr_MotBaIDI8E8uIKcErZnLQQAsAHHy4cnkluMsTFzvHbVUallkB0UxZGVFltmSsMMwAoKq0ZTDtHXKXg7XArgkff67SSpIiDlSQSR7h6v6qSj4FncAGZ57vKOV4XxqXbM0h-r4Ba37xHw_h3d7uI_Iw4FW6PWzJY7JhmyfkwfZJFzg77FPya6er8bcEDb17aOvoJYTgXua0bqjD3O2z-oftKBiQrgWdpRiIwym6ptZzWGABKA5dKBhGsa0Y1nHRgWe6p8qvnfpm31Q1Fa2XPV3UnkQKVrewWL9c94tnZH4bcnhONpu2sVuEppkrOMBNiHcB4nGj40SbWPHcVboQ1k1INm6zNIH-HLtwnMkxz-1UjuKRKB45iGdCpqvvzgcCkBu_-IxSXI1GAm__oO1OZNBgWTgwhibmxpWKwy6IRFsFKCIpS2UTrSZEjDog184DTFXfuIB3o9JIMBZ4A6Qa2170kgFgBhcHMPvFf8z_ltybzQ8P5MHe0f5Lch_fDNWZr8jmsruwrwGmLfUbfy4okbd8Dv8AruxRzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driving+factors+of+variation+in+fertilizer+nitrogen+recovery+efficiency+in+maize+cropping+systems+across+China+and+its+microbial+mechanism&rft.jtitle=Geoderma&rft.au=Xiao%2C+Xun&rft.au=Wang%2C+Yuekai&rft.au=Dai%2C+Wentai&rft.au=Liu%2C+Kailou&rft.date=2024-11-01&rft.issn=0016-7061&rft.volume=451&rft.spage=117083&rft_id=info:doi/10.1016%2Fj.geoderma.2024.117083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2024_117083 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |