Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives
Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to...
Saved in:
Published in | Frontiers in plant science Vol. 2; p. 84 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
01.01.2011
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1664-462X 1664-462X |
DOI | 10.3389/fpls.2011.00084 |
Cover
Abstract | Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species. |
---|---|
AbstractList | Eukaryotic messenger RNA contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species. Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species. Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis -elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species. Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species. |
Author | Zhao, Patrick Xuechun Ahmed, Firoz Benedito, Vagner A. |
AuthorAffiliation | 2 Genetics and Developmental Biology, Plant and Soil Sciences Division, West Virginia University Morgantown, WV, USA 1 Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble Foundation Ardmore, OK, USA |
AuthorAffiliation_xml | – name: 2 Genetics and Developmental Biology, Plant and Soil Sciences Division, West Virginia University Morgantown, WV, USA – name: 1 Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble Foundation Ardmore, OK, USA |
Author_xml | – sequence: 1 givenname: Firoz surname: Ahmed fullname: Ahmed, Firoz – sequence: 2 givenname: Vagner A. surname: Benedito fullname: Benedito, Vagner A. – sequence: 3 givenname: Patrick Xuechun surname: Zhao fullname: Zhao, Patrick Xuechun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22639614$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rVDEUxYNUbK1du5MsXXSmybv5eM-FUIZWC60VqeAuZJI705RMMiZvRvzvfa9TSyu4Ssg553cvOa_JXsoJCXnL2RSg7U4W61inDeN8yhhrxQtywJUSE6GaH3tP7vvkqNa7wcIkY12nX5H9plHQKS4OyM1VSCEt6fkmuT7kZCM9i7jC1FcaEr3CWjEtsdBvX07rB3q9xbIN-OuYzm5tjKNUj6lNnn7FUtc4MLZY35CXCxsrHj2ch-T7-dnN7PPk8vrTxez0cuKE7PoJNGqOyiveotBMaM8sX3jfKpQdaubmvLOKtdgA58x6DcAktxqtG0TwAIfkYsf12d6ZdQkrW36bbIO5f8hlaWzpg4tooG3ACyWt8lpw0c61cAI6wTVwiWAH1scda72Zr9C74QeKjc-gz5UUbs0ybw2AlFKPy7x_AJT8c4O1N6tQHcZoE-ZNNZxxrRWwVg3Wd09nPQ75W8tgONkZXMm1Flw8WjgzY_dm7N6M3Zv77oeE_CfhQm_HRodlQ_xv7g9iybKe |
CitedBy_id | crossref_primary_10_1080_15476286_2024_2351657 crossref_primary_10_1016_j_coi_2022_102249 crossref_primary_10_1080_15476286_2014_996474 crossref_primary_10_1371_journal_pone_0119871 crossref_primary_10_3389_fpls_2014_00201 crossref_primary_10_3389_fonc_2019_01011 crossref_primary_10_3389_fgene_2020_572702 crossref_primary_10_1371_journal_pone_0079288 crossref_primary_10_1038_s41598_020_69033_8 crossref_primary_10_1371_journal_pone_0097336 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Ahmed, Benedito and Zhao. 2011 |
Copyright_xml | – notice: Copyright © 2011 Ahmed, Benedito and Zhao. 2011 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2011.00084 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_3823d465a6d74148b74c439417315e3a PMC3355573 22639614 10_3389_fpls_2011_00084 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RNS RPM IAO IEA IGS ISR NPM 7X8 5PM |
ID | FETCH-LOGICAL-c459t-326be6d618e47047d0a1fdd86e59e70cb19a608e23110ad733051a7eac70c3d33 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:18:20 EDT 2025 Thu Aug 21 18:04:32 EDT 2025 Thu Sep 04 22:39:09 EDT 2025 Thu Jan 02 22:22:40 EST 2025 Tue Jul 01 02:44:26 EDT 2025 Thu Apr 24 23:03:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | cis-elements internal ribosome entry sites polyadenylation signals iron-responsive elements zipcodes bioinformatics AU-rich elements splicing regulatory elements |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-326be6d618e47047d0a1fdd86e59e70cb19a608e23110ad733051a7eac70c3d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Frontiers in Technical Advances in Plant Science, a specialty of Frontiers in Plant Science. Reviewed by: Dolf Weijers, Wageningen University, Netherlands; Ming Chen, Zhejiang University, China Edited by: Patrick J. Krysan, University of Wisconsin-Madison, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2011.00084 |
PMID | 22639614 |
PQID | 1017763086 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3823d465a6d74148b74c439417315e3a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3355573 proquest_miscellaneous_1017763086 pubmed_primary_22639614 crossref_primary_10_3389_fpls_2011_00084 crossref_citationtrail_10_3389_fpls_2011_00084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2011 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | 17452113 - Semin Cell Dev Biol. 2007 Apr;18(2):178-85 9398517 - J Mol Biol. 1997 Nov 21;274(1):72-83 18369186 - RNA. 2008 May;14(5):802-13 16807757 - Hum Genet. 2006 Oct;120(3):301-33 21853133 - PLoS One. 2011;6(8):e23443 11416182 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7025-8 15284102 - Bioinformatics. 2005 Mar 1;21(5):671-3 11909523 - Cell. 2002 Feb 22;108(4):523-31 19124605 - Mol Cell Biol. 2009 Mar;29(6):1565-74 19144907 - RNA. 2009 Feb;15(2):200-7 14698618 - Trends Genet. 2004 Jan;20(1):44-50 10916158 - Trends Biochem Sci. 2000 Aug;25(8):381-8 15564294 - Bioinformatics. 2005 Apr 15;21(8):1332-8 20037631 - PLoS One. 2009;4(12):e8419 20028973 - J Biol Chem. 2010 Feb 19;285(8):5713-25 12520039 - Nucleic Acids Res. 2003 Jan 1;31(1):421-3 21685335 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11093-8 16381826 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D111-4 19358699 - BMC Bioinformatics. 2009;10:105 18282305 - BMC Plant Biol. 2008;8:17 18489257 - Annu Rev Nutr. 2008;28:197-213 17202160 - Nucleic Acids Res. 2007 Jan;35(Database issue):D165-8 15247925 - Nat Biotechnol. 2004 Aug;22(8):1006-11 18637175 - BMC Genomics. 2008;9:339 21103393 - PLoS One. 2010;5(11):e15448 15371551 - Nucleic Acids Res. 2004;32(16):4884-92 10216946 - Int J Biochem Cell Biol. 1999 Jan;31(1):87-106 18820303 - Nucleic Acids Res. 2008 Oct;36(18):6013-20 19880380 - Nucleic Acids Res. 2010 Jan;38(Database issue):D75-80 2419912 - Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670-4 16542450 - BMC Genomics. 2006;7:55 18984623 - Nucleic Acids Res. 2009 Jan;37(Database issue):D72-6 10209102 - Curr Biol. 1999 Mar 25;9(6):333-6 16890164 - Dev Cell. 2006 Aug;11(2):251-62 18024429 - J Biol Chem. 2008 Jan 18;283(3):1217-21 17984078 - Nucleic Acids Res. 2008 Jan;36(Database issue):D137-40 10357856 - Microbiol Mol Biol Rev. 1999 Jun;63(2):405-45 1374896 - Proc Natl Acad Sci U S A. 1992 May 15;89(10):4324-8 11897027 - Genome Biol. 2002;3(3):REVIEWS0004 19402042 - Proteomics. 2009 May;9(9):2324-42 14523920 - Chembiochem. 2003 Oct 6;4(10):1024-32 11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46 21743474 - Nature. 2011 Jul 14;475(7355):189-95 10899149 - Genome Res. 2000 Jul;10(7):1001-10 12787499 - Cell. 2003 May 30;113(5):577-86 10764574 - J Mol Biol. 2000 Apr 14;297(5):1075-85 15659340 - Semin Cell Dev Biol. 2005 Feb;16(1):59-67 11222768 - Nucleic Acids Res. 2001 Mar 1;29(5):1185-90 18566288 - Science. 2008 Jun 20;320(5883):1643-7 12626338 - Annu Rev Biochem. 2003;72:291-336 18438400 - Nat Biotechnol. 2008 May;26(5):578-83 12504008 - Mol Cell. 2002 Dec;10(6):1319-30 20308585 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6204-9 20685165 - Curr Opin Pharmacol. 2010 Oct;10(5):551-6 20961447 - Biol Direct. 2010;5:60 16391004 - Nucleic Acids Res. 2005;33(22):7138-50 15684617 - J Interferon Cytokine Res. 2005 Jan;25(1):1-10 21343387 - RNA. 2011 Apr;17(4):761-72 21071424 - Nucleic Acids Res. 2011 Jan;39(Database issue):D66-9 19703394 - Cell. 2009 Aug 21;138(4):673-84 18703586 - Bioinformatics. 2008 Oct 1;24(19):2256-7 16772261 - Brief Bioinform. 2006 Jun;7(2):178-85 11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54 14972680 - Curr Biol. 2004 Feb 17;14(4):302-8 8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70 17464285 - EMBO J. 2007 Jun 6;26(11):2658-69 15735639 - Nature. 2005 Mar 17;434(7031):338-45 15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216 19038062 - BMC Bioinformatics. 2008;9:503 11175792 - Nat Genet. 2001 Feb;27(2):209-14 17513696 - RNA. 2007 Jul;13(7):952-66 21062808 - Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5 15215370 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W154-9 21109528 - Nucleic Acids Res. 2011 Apr;39(7):2799-808 11389486 - Am J Hum Genet. 2001 Jul;69(1):191-7 20421948 - PLoS Pathog. 2010 Apr;6(4):e1000865 16131587 - RNA. 2005 Oct;11(10):1485-93 10828006 - Blood. 2000 Jun 1;95(11):3280-8 21746925 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12533-8 20827587 - Methods Mol Biol. 2010;674:85-95 20432247 - J Cell Biochem. 2010 May 15;110(2):531-44 12239382 - Plant Cell. 1996 Feb;8(2):189-201 16030070 - Bioinformatics. 2005 Sep 15;21(18):3691-3 17631420 - Comput Biol Chem. 2007 Aug;31(4):298-302 8115547 - Plant Physiol. 1994 Jan;104(1):263-70 16424921 - PLoS Comput Biol. 2006 Jan;2(1):e4 21558794 - RNA Biol. 2011 May-Jun;8(3):450-7 19939970 - RNA. 2010 Jan;16(1):154-69 14557042 - Trends Plant Sci. 2003 Oct;8(10):468-71 15965016 - Plant Physiol. 2005 Jul;138(3):1457-68 19460868 - RNA. 2009 Jul;15(7):1426-30 15987813 - RNA. 2005 Jul;11(7):1017-29 7929587 - J Cell Biol. 1994 Oct;127(2):441-51 11597333 - Genome Biol. 2001;2(10):RESEARCH0041 11125107 - Nucleic Acids Res. 2001 Jan 1;29(1):264-7 18566765 - Methods Mol Biol. 2008;452:179-97 12464185 - Cell. 2002 Nov 27;111(5):747-56 17320967 - Pharmacol Ther. 2007 Apr;114(1):56-73 12824342 - Nucleic Acids Res. 2003 Jul 1;31(13):3441-5 19473520 - BMC Bioinformatics. 2009;10:160 20479262 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10062-7 17556522 - Plant Physiol. 2007 Jun;144(2):588-93 10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60 15542494 - Plant Physiol. 2004 Nov;136(3):3414-9 7492760 - Blood. 1995 Dec 1;86(11):4050-3 12519954 - Nucleic Acids Res. 2003 Jan 1;31(1):87-9 15647269 - J Biol Chem. 2005 Apr 15;280(15):14427-32 8987809 - J Neurosci. 1996 Dec 15;16(24):7812-20 19795571 - In Silico Biol. 2009;9(3):135-48 9404892 - RNA. 1997 Dec;3(12):1413-20 19109909 - Neuron. 2008 Dec 26;60(6):1022-38 19814811 - BMC Bioinformatics. 2009;10:325 21431757 - Methods Mol Biol. 2011;714:447-66 18411313 - J Cell Biol. 2008 Apr 21;181(2):189-94 16556303 - BMC Bioinformatics. 2006;7:169 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 20032171 - Genome Res. 2010 Mar;20(3):311-9 16870936 - Bioinformatics. 2006 Oct 1;22(19):2320-5 17986455 - Nucleic Acids Res. 2008 Jan;36(Database issue):D57-62 18566768 - Methods Mol Biol. 2008;452:231-51 12633995 - Trends Biochem Sci. 2003 Mar;28(3):152-8 20647376 - Plant Physiol. 2010 Sep;154(1):36-54 18411206 - Nucleic Acids Res. 2008 May;36(9):3150-61 19783826 - Nucleic Acids Res. 2010 Jan;38(Database issue):D69-74 12393019 - Curr Opin Plant Biol. 2002 Dec;5(6):553-9 17187943 - Gene. 2007 Mar 15;389(2):107-13 21593866 - Nature. 2011 May 19;473(7347):337-42 19059335 - Genomics. 2009 Mar;93(3):213-20 18474525 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W114-8 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 4018033 - EMBO J. 1985 Feb;4(2):453-6 12429065 - Genome Biol. 2002 Oct 23;3(11):reviews0008 20444605 - Trends Cell Biol. 2010 Jul;20(7):380-90 20858738 - Brief Bioinform. 2011 Mar;12(2):115-21 17923096 - Cell. 2007 Oct 5;131(1):174-87 21508681 - RNA Biol. 2011 May-Jun;8(3):365-71 17286857 - BMC Bioinformatics. 2007;8:43 17786152 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):761-73 10743555 - Bioinformatics. 1999 Nov;15(11):887-99 19917642 - Nucleic Acids Res. 2010 Jan;38(Database issue):D131-6 17517127 - BMC Bioinformatics. 2007;8:159 19239891 - Cell. 2009 Feb 20;136(4):719-30 17065982 - Nature. 2006 Nov 30;444(7119):580-6 21428956 - Biochem Soc Trans. 2011 Apr;39(2):652-7 14567917 - Cell. 2003 Oct 17;115(2):199-208 15901494 - Curr Opin Cell Biol. 2005 Jun;17(3):257-61 20460462 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W360-7 21813626 - Genome Res. 2011 Sep;21(9):1478-86 16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34 21622958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9 18953033 - Nucleic Acids Res. 2008 Dec;36(21):6835-47 16632598 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80 11283722 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):247-56 15647503 - Nucleic Acids Res. 2005;33(1):201-12 11705996 - J Biol Chem. 2002 Jan 18;277(3):2104-11 |
References_xml | – reference: 10743555 - Bioinformatics. 1999 Nov;15(11):887-99 – reference: 11897027 - Genome Biol. 2002;3(3):REVIEWS0004 – reference: 11705996 - J Biol Chem. 2002 Jan 18;277(3):2104-11 – reference: 21508681 - RNA Biol. 2011 May-Jun;8(3):365-71 – reference: 16424921 - PLoS Comput Biol. 2006 Jan;2(1):e4 – reference: 1374896 - Proc Natl Acad Sci U S A. 1992 May 15;89(10):4324-8 – reference: 11416182 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7025-8 – reference: 20685165 - Curr Opin Pharmacol. 2010 Oct;10(5):551-6 – reference: 20037631 - PLoS One. 2009;4(12):e8419 – reference: 15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216 – reference: 19939970 - RNA. 2010 Jan;16(1):154-69 – reference: 20028973 - J Biol Chem. 2010 Feb 19;285(8):5713-25 – reference: 18703586 - Bioinformatics. 2008 Oct 1;24(19):2256-7 – reference: 19038062 - BMC Bioinformatics. 2008;9:503 – reference: 17984078 - Nucleic Acids Res. 2008 Jan;36(Database issue):D137-40 – reference: 18820303 - Nucleic Acids Res. 2008 Oct;36(18):6013-20 – reference: 18411206 - Nucleic Acids Res. 2008 May;36(9):3150-61 – reference: 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 – reference: 12239382 - Plant Cell. 1996 Feb;8(2):189-201 – reference: 19124605 - Mol Cell Biol. 2009 Mar;29(6):1565-74 – reference: 18566768 - Methods Mol Biol. 2008;452:231-51 – reference: 19358699 - BMC Bioinformatics. 2009;10:105 – reference: 18411313 - J Cell Biol. 2008 Apr 21;181(2):189-94 – reference: 10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60 – reference: 21558794 - RNA Biol. 2011 May-Jun;8(3):450-7 – reference: 15215370 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W154-9 – reference: 21593866 - Nature. 2011 May 19;473(7347):337-42 – reference: 20827587 - Methods Mol Biol. 2010;674:85-95 – reference: 20479262 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10062-7 – reference: 9398517 - J Mol Biol. 1997 Nov 21;274(1):72-83 – reference: 12824342 - Nucleic Acids Res. 2003 Jul 1;31(13):3441-5 – reference: 19783826 - Nucleic Acids Res. 2010 Jan;38(Database issue):D69-74 – reference: 21685335 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11093-8 – reference: 14972680 - Curr Biol. 2004 Feb 17;14(4):302-8 – reference: 17786152 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):761-73 – reference: 15987813 - RNA. 2005 Jul;11(7):1017-29 – reference: 20308585 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6204-9 – reference: 12504008 - Mol Cell. 2002 Dec;10(6):1319-30 – reference: 11175792 - Nat Genet. 2001 Feb;27(2):209-14 – reference: 15684617 - J Interferon Cytokine Res. 2005 Jan;25(1):1-10 – reference: 17556522 - Plant Physiol. 2007 Jun;144(2):588-93 – reference: 19239891 - Cell. 2009 Feb 20;136(4):719-30 – reference: 16890164 - Dev Cell. 2006 Aug;11(2):251-62 – reference: 8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70 – reference: 10216946 - Int J Biochem Cell Biol. 1999 Jan;31(1):87-106 – reference: 16807757 - Hum Genet. 2006 Oct;120(3):301-33 – reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 – reference: 20460462 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W360-7 – reference: 7492760 - Blood. 1995 Dec 1;86(11):4050-3 – reference: 19473520 - BMC Bioinformatics. 2009;10:160 – reference: 7929587 - J Cell Biol. 1994 Oct;127(2):441-51 – reference: 17202160 - Nucleic Acids Res. 2007 Jan;35(Database issue):D165-8 – reference: 12393019 - Curr Opin Plant Biol. 2002 Dec;5(6):553-9 – reference: 2419912 - Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670-4 – reference: 16632598 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80 – reference: 20647376 - Plant Physiol. 2010 Sep;154(1):36-54 – reference: 18438400 - Nat Biotechnol. 2008 May;26(5):578-83 – reference: 20421948 - PLoS Pathog. 2010 Apr;6(4):e1000865 – reference: 14567917 - Cell. 2003 Oct 17;115(2):199-208 – reference: 21103393 - PLoS One. 2010;5(11):e15448 – reference: 20444605 - Trends Cell Biol. 2010 Jul;20(7):380-90 – reference: 19795571 - In Silico Biol. 2009;9(3):135-48 – reference: 15965016 - Plant Physiol. 2005 Jul;138(3):1457-68 – reference: 15647269 - J Biol Chem. 2005 Apr 15;280(15):14427-32 – reference: 8987809 - J Neurosci. 1996 Dec 15;16(24):7812-20 – reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45 – reference: 11125107 - Nucleic Acids Res. 2001 Jan 1;29(1):264-7 – reference: 18489257 - Annu Rev Nutr. 2008;28:197-213 – reference: 14523920 - Chembiochem. 2003 Oct 6;4(10):1024-32 – reference: 18566765 - Methods Mol Biol. 2008;452:179-97 – reference: 14698618 - Trends Genet. 2004 Jan;20(1):44-50 – reference: 11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54 – reference: 21431757 - Methods Mol Biol. 2011;714:447-66 – reference: 11389486 - Am J Hum Genet. 2001 Jul;69(1):191-7 – reference: 15371551 - Nucleic Acids Res. 2004;32(16):4884-92 – reference: 12520039 - Nucleic Acids Res. 2003 Jan 1;31(1):421-3 – reference: 20032171 - Genome Res. 2010 Mar;20(3):311-9 – reference: 18369186 - RNA. 2008 May;14(5):802-13 – reference: 15901494 - Curr Opin Cell Biol. 2005 Jun;17(3):257-61 – reference: 12633995 - Trends Biochem Sci. 2003 Mar;28(3):152-8 – reference: 16556303 - BMC Bioinformatics. 2006;7:169 – reference: 10916158 - Trends Biochem Sci. 2000 Aug;25(8):381-8 – reference: 21622958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9 – reference: 15659340 - Semin Cell Dev Biol. 2005 Feb;16(1):59-67 – reference: 18024429 - J Biol Chem. 2008 Jan 18;283(3):1217-21 – reference: 10764574 - J Mol Biol. 2000 Apr 14;297(5):1075-85 – reference: 21428956 - Biochem Soc Trans. 2011 Apr;39(2):652-7 – reference: 19880380 - Nucleic Acids Res. 2010 Jan;38(Database issue):D75-80 – reference: 16131587 - RNA. 2005 Oct;11(10):1485-93 – reference: 21062808 - Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5 – reference: 17187943 - Gene. 2007 Mar 15;389(2):107-13 – reference: 16030070 - Bioinformatics. 2005 Sep 15;21(18):3691-3 – reference: 19144907 - RNA. 2009 Feb;15(2):200-7 – reference: 15247925 - Nat Biotechnol. 2004 Aug;22(8):1006-11 – reference: 21343387 - RNA. 2011 Apr;17(4):761-72 – reference: 11283722 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):247-56 – reference: 9404892 - RNA. 1997 Dec;3(12):1413-20 – reference: 20432247 - J Cell Biochem. 2010 May 15;110(2):531-44 – reference: 19460868 - RNA. 2009 Jul;15(7):1426-30 – reference: 18953033 - Nucleic Acids Res. 2008 Dec;36(21):6835-47 – reference: 17320967 - Pharmacol Ther. 2007 Apr;114(1):56-73 – reference: 17065982 - Nature. 2006 Nov 30;444(7119):580-6 – reference: 21109528 - Nucleic Acids Res. 2011 Apr;39(7):2799-808 – reference: 8115547 - Plant Physiol. 1994 Jan;104(1):263-70 – reference: 19109909 - Neuron. 2008 Dec 26;60(6):1022-38 – reference: 20961447 - Biol Direct. 2010;5:60 – reference: 17513696 - RNA. 2007 Jul;13(7):952-66 – reference: 19917642 - Nucleic Acids Res. 2010 Jan;38(Database issue):D131-6 – reference: 16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34 – reference: 10357856 - Microbiol Mol Biol Rev. 1999 Jun;63(2):405-45 – reference: 17986455 - Nucleic Acids Res. 2008 Jan;36(Database issue):D57-62 – reference: 21853133 - PLoS One. 2011;6(8):e23443 – reference: 17517127 - BMC Bioinformatics. 2007;8:159 – reference: 21743474 - Nature. 2011 Jul 14;475(7355):189-95 – reference: 12626338 - Annu Rev Biochem. 2003;72:291-336 – reference: 14557042 - Trends Plant Sci. 2003 Oct;8(10):468-71 – reference: 18566288 - Science. 2008 Jun 20;320(5883):1643-7 – reference: 11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46 – reference: 17464285 - EMBO J. 2007 Jun 6;26(11):2658-69 – reference: 16870936 - Bioinformatics. 2006 Oct 1;22(19):2320-5 – reference: 21746925 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12533-8 – reference: 15542494 - Plant Physiol. 2004 Nov;136(3):3414-9 – reference: 18637175 - BMC Genomics. 2008;9:339 – reference: 4018033 - EMBO J. 1985 Feb;4(2):453-6 – reference: 19402042 - Proteomics. 2009 May;9(9):2324-42 – reference: 10828006 - Blood. 2000 Jun 1;95(11):3280-8 – reference: 11222768 - Nucleic Acids Res. 2001 Mar 1;29(5):1185-90 – reference: 17286857 - BMC Bioinformatics. 2007;8:43 – reference: 11597333 - Genome Biol. 2001;2(10):RESEARCH0041 – reference: 10899149 - Genome Res. 2000 Jul;10(7):1001-10 – reference: 18474525 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W114-8 – reference: 10209102 - Curr Biol. 1999 Mar 25;9(6):333-6 – reference: 21813626 - Genome Res. 2011 Sep;21(9):1478-86 – reference: 11909523 - Cell. 2002 Feb 22;108(4):523-31 – reference: 17923096 - Cell. 2007 Oct 5;131(1):174-87 – reference: 19059335 - Genomics. 2009 Mar;93(3):213-20 – reference: 16542450 - BMC Genomics. 2006;7:55 – reference: 19814811 - BMC Bioinformatics. 2009;10:325 – reference: 21071424 - Nucleic Acids Res. 2011 Jan;39(Database issue):D66-9 – reference: 20858738 - Brief Bioinform. 2011 Mar;12(2):115-21 – reference: 12464185 - Cell. 2002 Nov 27;111(5):747-56 – reference: 19703394 - Cell. 2009 Aug 21;138(4):673-84 – reference: 17452113 - Semin Cell Dev Biol. 2007 Apr;18(2):178-85 – reference: 12787499 - Cell. 2003 May 30;113(5):577-86 – reference: 12519954 - Nucleic Acids Res. 2003 Jan 1;31(1):87-9 – reference: 15284102 - Bioinformatics. 2005 Mar 1;21(5):671-3 – reference: 15647503 - Nucleic Acids Res. 2005;33(1):201-12 – reference: 16772261 - Brief Bioinform. 2006 Jun;7(2):178-85 – reference: 16391004 - Nucleic Acids Res. 2005;33(22):7138-50 – reference: 12429065 - Genome Biol. 2002 Oct 23;3(11):reviews0008 – reference: 18282305 - BMC Plant Biol. 2008;8:17 – reference: 17631420 - Comput Biol Chem. 2007 Aug;31(4):298-302 – reference: 16381826 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D111-4 – reference: 15564294 - Bioinformatics. 2005 Apr 15;21(8):1332-8 – reference: 18984623 - Nucleic Acids Res. 2009 Jan;37(Database issue):D72-6 |
SSID | ssj0000500997 |
Score | 1.9970762 |
SecondaryResourceType | review_article |
Snippet | Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number... Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis -elements that influence or coordinate a number... Eukaryotic messenger RNA contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 84 |
SubjectTerms | AU-rich element bioinformatics cis-element coding sequence microRNA Plant Science Riboswitches |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yePAivq0vInjwsNWkaZvG2yrKIuhBXPBWkibFBe0udj34751puuuuKF6Entq0DTNJ5pvJ5BtCTow0IiuFC0tWRmEMNi40kY5CjfG21PGMWXQU7-7T_iC-fUqe5kp9YU6Ypwf2gjvHfSoL39CpBeMXZ0bGBZ7m5FLwxIkGGjHF5pwpz-qN0Ed6Lh_wwtR5OX6pW8ZO1nCZzpmhhq3_J4j5PVNyzvTcrJHVFjPSnu_rOlly1QZZvhwBrvvYJI93TY0HihbKB_ao8znhNR1W9BXJwTF0Rx_ue_UFxZRN3A7o0mJaR6XuUl1ZOv46d1lvkcHN9eNVP2xrJYRFnKhJCCjMuNSmPHOxZLG0TPPSWhB3opxkheFKpyxzAOc401YKmOdcS1h24aGwQmyTTjWq3C6hqQIIlUgt0iyKnePGKnChI6FLAVhRyYCcTUWXFy2RONazeMnBoUBZ5yjrHGWdN7IOyOnshbHn0Pi96SXqYtYMya-bGzAk8nZI5H8NiYAcTzWZw2TBHRBdudF7jflsEhZUcOMCsuM1O_sV4FChAKwERC7ofKEvi0-q4XNDyC1AXokUe__R-X2y4sPWeB2QzuTt3R0C7pmYo2aIfwKNWP22 priority: 102 providerName: Directory of Open Access Journals |
Title | Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22639614 https://www.proquest.com/docview/1017763086 https://pubmed.ncbi.nlm.nih.gov/PMC3355573 https://doaj.org/article/3823d465a6d74148b74c439417315e3a |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED7x64GXacAYYQwZiYc9EIhjx06Q0ASIgpDKJkSlvkVO7QBSlbKmsPHfc5ekhaLuBSnKQxwr0d3Z993Z_g5gN9OZiHPh_DzIQ1-ij_Oz0IS-oXybcjwOLAWK7St10ZGX3aj7Wg6oEWA5M7SjelKdYX__35_nnzjgjyjiRH97kD_0y4aMk-jh52ER3ZKiSKzdYP2a6JvQkK7pfWb1I17gEB224nLKSVVc_rMA6Pt9lG8cU-szfGoQJTuuTWAF5lyxCksnA0R9z2tw064qQLAW-q867cfO6h3jJbsvWJuowymxx66vjstD9uuJ5g73d4-djquslHvMFJb9fj2VWX6BTuvs5vTCbyop-D0ZJSMfMVrmlFU8dlIHUtvA8NxaVEaUOB30Mp4YFcQOwR4PjNUCZwFuNE7K2CisEOuwUAwKtwFMJQiwIm2EikPpHM9sggF2KEwuEEkm2oP9sejSXkMzTtUu-imGGyT2lMSektjTSuwe_Jh0eKgZNv7_6gnpYvIaUWNXDwbD27QZaSktbFo0OqMsoiUZZ1r26Pgv14JHThgPdsaaTHEo0fqIKdzgsaTdbhqnWwzyPPhaa3byqbFleKCndD71L9Mtxf1dRdctUF6RFpsf7vkNlutMNl1bsDAaPrrvCIVG2XaVQsD7eZdvV-b-AusYCL8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+Functional+Elements+in+Messenger+RNAs%3A+Overview%2C+Challenges%2C+and+Perspectives&rft.jtitle=Frontiers+in+plant+science&rft.au=Ahmed%2C+Firoz&rft.au=Benedito%2C+Vagner+A.&rft.au=Zhao%2C+Patrick+Xuechun&rft.date=2011-01-01&rft.pub=Frontiers+Research+Foundation&rft.eissn=1664-462X&rft.volume=2&rft_id=info:doi/10.3389%2Ffpls.2011.00084&rft_id=info%3Apmid%2F22639614&rft.externalDocID=PMC3355573 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |