Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives

Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 2; p. 84
Main Authors Ahmed, Firoz, Benedito, Vagner A., Zhao, Patrick Xuechun
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 01.01.2011
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2011.00084

Cover

Abstract Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.
AbstractList Eukaryotic messenger RNA contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.
Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.
Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis -elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.
Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of regulatory aspects of gene expression, such as mRNA stability, splicing forms, and translation rates. Understanding the rules that apply to each of these element types (e.g., whether the element is defined by primary or higher-order structure) allows for the discovery of novel mechanisms of gene expression as well as the design of transcripts with controlled expression. Bioinformatics plays a major role in creating databases and finding non-evident patterns governing each type of eukaryotic functional element. Much of what we currently know about mRNA regulatory elements in eukaryotes is derived from microorganism and animal systems, with the particularities of plant systems lagging behind. In this review, we provide a general introduction to the most well-known eukaryotic mRNA regulatory motifs (splicing regulatory elements, internal ribosome entry sites, iron-responsive elements, AU-rich elements, zipcodes, and polyadenylation signals) and describe available bioinformatics resources (databases and analysis tools) to analyze eukaryotic transcripts in search of functional elements, focusing on recent trends in bioinformatics methods and tool development. We also discuss future directions in the development of better computational tools based upon current knowledge of these functional elements. Improved computational tools would advance our understanding of the processes underlying gene regulations. We encourage plant bioinformaticians to turn their attention to this subject to help identify novel mechanisms of gene expression regulation using RNA motifs that have potentially evolved or diverged in plant species.
Author Zhao, Patrick Xuechun
Ahmed, Firoz
Benedito, Vagner A.
AuthorAffiliation 2 Genetics and Developmental Biology, Plant and Soil Sciences Division, West Virginia University Morgantown, WV, USA
1 Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble Foundation Ardmore, OK, USA
AuthorAffiliation_xml – name: 2 Genetics and Developmental Biology, Plant and Soil Sciences Division, West Virginia University Morgantown, WV, USA
– name: 1 Bioinformatics Laboratory, Plant Biology Division, Samuel Roberts Noble Foundation Ardmore, OK, USA
Author_xml – sequence: 1
  givenname: Firoz
  surname: Ahmed
  fullname: Ahmed, Firoz
– sequence: 2
  givenname: Vagner A.
  surname: Benedito
  fullname: Benedito, Vagner A.
– sequence: 3
  givenname: Patrick Xuechun
  surname: Zhao
  fullname: Zhao, Patrick Xuechun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22639614$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rVDEUxYNUbK1du5MsXXSmybv5eM-FUIZWC60VqeAuZJI705RMMiZvRvzvfa9TSyu4Ssg553cvOa_JXsoJCXnL2RSg7U4W61inDeN8yhhrxQtywJUSE6GaH3tP7vvkqNa7wcIkY12nX5H9plHQKS4OyM1VSCEt6fkmuT7kZCM9i7jC1FcaEr3CWjEtsdBvX07rB3q9xbIN-OuYzm5tjKNUj6lNnn7FUtc4MLZY35CXCxsrHj2ch-T7-dnN7PPk8vrTxez0cuKE7PoJNGqOyiveotBMaM8sX3jfKpQdaubmvLOKtdgA58x6DcAktxqtG0TwAIfkYsf12d6ZdQkrW36bbIO5f8hlaWzpg4tooG3ACyWt8lpw0c61cAI6wTVwiWAH1scda72Zr9C74QeKjc-gz5UUbs0ybw2AlFKPy7x_AJT8c4O1N6tQHcZoE-ZNNZxxrRWwVg3Wd09nPQ75W8tgONkZXMm1Flw8WjgzY_dm7N6M3Zv77oeE_CfhQm_HRodlQ_xv7g9iybKe
CitedBy_id crossref_primary_10_1080_15476286_2024_2351657
crossref_primary_10_1016_j_coi_2022_102249
crossref_primary_10_1080_15476286_2014_996474
crossref_primary_10_1371_journal_pone_0119871
crossref_primary_10_3389_fpls_2014_00201
crossref_primary_10_3389_fonc_2019_01011
crossref_primary_10_3389_fgene_2020_572702
crossref_primary_10_1371_journal_pone_0079288
crossref_primary_10_1038_s41598_020_69033_8
crossref_primary_10_1371_journal_pone_0097336
ContentType Journal Article
Copyright Copyright © 2011 Ahmed, Benedito and Zhao. 2011
Copyright_xml – notice: Copyright © 2011 Ahmed, Benedito and Zhao. 2011
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2011.00084
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_3823d465a6d74148b74c439417315e3a
PMC3355573
22639614
10_3389_fpls_2011_00084
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
IAO
IEA
IGS
ISR
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-326be6d618e47047d0a1fdd86e59e70cb19a608e23110ad733051a7eac70c3d33
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:18:20 EDT 2025
Thu Aug 21 18:04:32 EDT 2025
Thu Sep 04 22:39:09 EDT 2025
Thu Jan 02 22:22:40 EST 2025
Tue Jul 01 02:44:26 EDT 2025
Thu Apr 24 23:03:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cis-elements
internal ribosome entry sites
polyadenylation signals
iron-responsive elements
zipcodes
bioinformatics
AU-rich elements
splicing regulatory elements
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits use, distribution, and reproduction in other forums, provided the original authors and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-326be6d618e47047d0a1fdd86e59e70cb19a608e23110ad733051a7eac70c3d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Frontiers in Technical Advances in Plant Science, a specialty of Frontiers in Plant Science.
Reviewed by: Dolf Weijers, Wageningen University, Netherlands; Ming Chen, Zhejiang University, China
Edited by: Patrick J. Krysan, University of Wisconsin-Madison, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2011.00084
PMID 22639614
PQID 1017763086
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3823d465a6d74148b74c439417315e3a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3355573
proquest_miscellaneous_1017763086
pubmed_primary_22639614
crossref_primary_10_3389_fpls_2011_00084
crossref_citationtrail_10_3389_fpls_2011_00084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2011
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 17452113 - Semin Cell Dev Biol. 2007 Apr;18(2):178-85
9398517 - J Mol Biol. 1997 Nov 21;274(1):72-83
18369186 - RNA. 2008 May;14(5):802-13
16807757 - Hum Genet. 2006 Oct;120(3):301-33
21853133 - PLoS One. 2011;6(8):e23443
11416182 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7025-8
15284102 - Bioinformatics. 2005 Mar 1;21(5):671-3
11909523 - Cell. 2002 Feb 22;108(4):523-31
19124605 - Mol Cell Biol. 2009 Mar;29(6):1565-74
19144907 - RNA. 2009 Feb;15(2):200-7
14698618 - Trends Genet. 2004 Jan;20(1):44-50
10916158 - Trends Biochem Sci. 2000 Aug;25(8):381-8
15564294 - Bioinformatics. 2005 Apr 15;21(8):1332-8
20037631 - PLoS One. 2009;4(12):e8419
20028973 - J Biol Chem. 2010 Feb 19;285(8):5713-25
12520039 - Nucleic Acids Res. 2003 Jan 1;31(1):421-3
21685335 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11093-8
16381826 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D111-4
19358699 - BMC Bioinformatics. 2009;10:105
18282305 - BMC Plant Biol. 2008;8:17
18489257 - Annu Rev Nutr. 2008;28:197-213
17202160 - Nucleic Acids Res. 2007 Jan;35(Database issue):D165-8
15247925 - Nat Biotechnol. 2004 Aug;22(8):1006-11
18637175 - BMC Genomics. 2008;9:339
21103393 - PLoS One. 2010;5(11):e15448
15371551 - Nucleic Acids Res. 2004;32(16):4884-92
10216946 - Int J Biochem Cell Biol. 1999 Jan;31(1):87-106
18820303 - Nucleic Acids Res. 2008 Oct;36(18):6013-20
19880380 - Nucleic Acids Res. 2010 Jan;38(Database issue):D75-80
2419912 - Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670-4
16542450 - BMC Genomics. 2006;7:55
18984623 - Nucleic Acids Res. 2009 Jan;37(Database issue):D72-6
10209102 - Curr Biol. 1999 Mar 25;9(6):333-6
16890164 - Dev Cell. 2006 Aug;11(2):251-62
18024429 - J Biol Chem. 2008 Jan 18;283(3):1217-21
17984078 - Nucleic Acids Res. 2008 Jan;36(Database issue):D137-40
10357856 - Microbiol Mol Biol Rev. 1999 Jun;63(2):405-45
1374896 - Proc Natl Acad Sci U S A. 1992 May 15;89(10):4324-8
11897027 - Genome Biol. 2002;3(3):REVIEWS0004
19402042 - Proteomics. 2009 May;9(9):2324-42
14523920 - Chembiochem. 2003 Oct 6;4(10):1024-32
11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46
21743474 - Nature. 2011 Jul 14;475(7355):189-95
10899149 - Genome Res. 2000 Jul;10(7):1001-10
12787499 - Cell. 2003 May 30;113(5):577-86
10764574 - J Mol Biol. 2000 Apr 14;297(5):1075-85
15659340 - Semin Cell Dev Biol. 2005 Feb;16(1):59-67
11222768 - Nucleic Acids Res. 2001 Mar 1;29(5):1185-90
18566288 - Science. 2008 Jun 20;320(5883):1643-7
12626338 - Annu Rev Biochem. 2003;72:291-336
18438400 - Nat Biotechnol. 2008 May;26(5):578-83
12504008 - Mol Cell. 2002 Dec;10(6):1319-30
20308585 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6204-9
20685165 - Curr Opin Pharmacol. 2010 Oct;10(5):551-6
20961447 - Biol Direct. 2010;5:60
16391004 - Nucleic Acids Res. 2005;33(22):7138-50
15684617 - J Interferon Cytokine Res. 2005 Jan;25(1):1-10
21343387 - RNA. 2011 Apr;17(4):761-72
21071424 - Nucleic Acids Res. 2011 Jan;39(Database issue):D66-9
19703394 - Cell. 2009 Aug 21;138(4):673-84
18703586 - Bioinformatics. 2008 Oct 1;24(19):2256-7
16772261 - Brief Bioinform. 2006 Jun;7(2):178-85
11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54
14972680 - Curr Biol. 2004 Feb 17;14(4):302-8
8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70
17464285 - EMBO J. 2007 Jun 6;26(11):2658-69
15735639 - Nature. 2005 Mar 17;434(7031):338-45
15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216
19038062 - BMC Bioinformatics. 2008;9:503
11175792 - Nat Genet. 2001 Feb;27(2):209-14
17513696 - RNA. 2007 Jul;13(7):952-66
21062808 - Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5
15215370 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W154-9
21109528 - Nucleic Acids Res. 2011 Apr;39(7):2799-808
11389486 - Am J Hum Genet. 2001 Jul;69(1):191-7
20421948 - PLoS Pathog. 2010 Apr;6(4):e1000865
16131587 - RNA. 2005 Oct;11(10):1485-93
10828006 - Blood. 2000 Jun 1;95(11):3280-8
21746925 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12533-8
20827587 - Methods Mol Biol. 2010;674:85-95
20432247 - J Cell Biochem. 2010 May 15;110(2):531-44
12239382 - Plant Cell. 1996 Feb;8(2):189-201
16030070 - Bioinformatics. 2005 Sep 15;21(18):3691-3
17631420 - Comput Biol Chem. 2007 Aug;31(4):298-302
8115547 - Plant Physiol. 1994 Jan;104(1):263-70
16424921 - PLoS Comput Biol. 2006 Jan;2(1):e4
21558794 - RNA Biol. 2011 May-Jun;8(3):450-7
19939970 - RNA. 2010 Jan;16(1):154-69
14557042 - Trends Plant Sci. 2003 Oct;8(10):468-71
15965016 - Plant Physiol. 2005 Jul;138(3):1457-68
19460868 - RNA. 2009 Jul;15(7):1426-30
15987813 - RNA. 2005 Jul;11(7):1017-29
7929587 - J Cell Biol. 1994 Oct;127(2):441-51
11597333 - Genome Biol. 2001;2(10):RESEARCH0041
11125107 - Nucleic Acids Res. 2001 Jan 1;29(1):264-7
18566765 - Methods Mol Biol. 2008;452:179-97
12464185 - Cell. 2002 Nov 27;111(5):747-56
17320967 - Pharmacol Ther. 2007 Apr;114(1):56-73
12824342 - Nucleic Acids Res. 2003 Jul 1;31(13):3441-5
19473520 - BMC Bioinformatics. 2009;10:160
20479262 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10062-7
17556522 - Plant Physiol. 2007 Jun;144(2):588-93
10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60
15542494 - Plant Physiol. 2004 Nov;136(3):3414-9
7492760 - Blood. 1995 Dec 1;86(11):4050-3
12519954 - Nucleic Acids Res. 2003 Jan 1;31(1):87-9
15647269 - J Biol Chem. 2005 Apr 15;280(15):14427-32
8987809 - J Neurosci. 1996 Dec 15;16(24):7812-20
19795571 - In Silico Biol. 2009;9(3):135-48
9404892 - RNA. 1997 Dec;3(12):1413-20
19109909 - Neuron. 2008 Dec 26;60(6):1022-38
19814811 - BMC Bioinformatics. 2009;10:325
21431757 - Methods Mol Biol. 2011;714:447-66
18411313 - J Cell Biol. 2008 Apr 21;181(2):189-94
16556303 - BMC Bioinformatics. 2006;7:169
12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13
20032171 - Genome Res. 2010 Mar;20(3):311-9
16870936 - Bioinformatics. 2006 Oct 1;22(19):2320-5
17986455 - Nucleic Acids Res. 2008 Jan;36(Database issue):D57-62
18566768 - Methods Mol Biol. 2008;452:231-51
12633995 - Trends Biochem Sci. 2003 Mar;28(3):152-8
20647376 - Plant Physiol. 2010 Sep;154(1):36-54
18411206 - Nucleic Acids Res. 2008 May;36(9):3150-61
19783826 - Nucleic Acids Res. 2010 Jan;38(Database issue):D69-74
12393019 - Curr Opin Plant Biol. 2002 Dec;5(6):553-9
17187943 - Gene. 2007 Mar 15;389(2):107-13
21593866 - Nature. 2011 May 19;473(7347):337-42
19059335 - Genomics. 2009 Mar;93(3):213-20
18474525 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W114-8
7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
4018033 - EMBO J. 1985 Feb;4(2):453-6
12429065 - Genome Biol. 2002 Oct 23;3(11):reviews0008
20444605 - Trends Cell Biol. 2010 Jul;20(7):380-90
20858738 - Brief Bioinform. 2011 Mar;12(2):115-21
17923096 - Cell. 2007 Oct 5;131(1):174-87
21508681 - RNA Biol. 2011 May-Jun;8(3):365-71
17286857 - BMC Bioinformatics. 2007;8:43
17786152 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):761-73
10743555 - Bioinformatics. 1999 Nov;15(11):887-99
19917642 - Nucleic Acids Res. 2010 Jan;38(Database issue):D131-6
17517127 - BMC Bioinformatics. 2007;8:159
19239891 - Cell. 2009 Feb 20;136(4):719-30
17065982 - Nature. 2006 Nov 30;444(7119):580-6
21428956 - Biochem Soc Trans. 2011 Apr;39(2):652-7
14567917 - Cell. 2003 Oct 17;115(2):199-208
15901494 - Curr Opin Cell Biol. 2005 Jun;17(3):257-61
20460462 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W360-7
21813626 - Genome Res. 2011 Sep;21(9):1478-86
16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34
21622958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9
18953033 - Nucleic Acids Res. 2008 Dec;36(21):6835-47
16632598 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80
11283722 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):247-56
15647503 - Nucleic Acids Res. 2005;33(1):201-12
11705996 - J Biol Chem. 2002 Jan 18;277(3):2104-11
References_xml – reference: 10743555 - Bioinformatics. 1999 Nov;15(11):887-99
– reference: 11897027 - Genome Biol. 2002;3(3):REVIEWS0004
– reference: 11705996 - J Biol Chem. 2002 Jan 18;277(3):2104-11
– reference: 21508681 - RNA Biol. 2011 May-Jun;8(3):365-71
– reference: 16424921 - PLoS Comput Biol. 2006 Jan;2(1):e4
– reference: 1374896 - Proc Natl Acad Sci U S A. 1992 May 15;89(10):4324-8
– reference: 11416182 - Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7025-8
– reference: 20685165 - Curr Opin Pharmacol. 2010 Oct;10(5):551-6
– reference: 20037631 - PLoS One. 2009;4(12):e8419
– reference: 15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216
– reference: 19939970 - RNA. 2010 Jan;16(1):154-69
– reference: 20028973 - J Biol Chem. 2010 Feb 19;285(8):5713-25
– reference: 18703586 - Bioinformatics. 2008 Oct 1;24(19):2256-7
– reference: 19038062 - BMC Bioinformatics. 2008;9:503
– reference: 17984078 - Nucleic Acids Res. 2008 Jan;36(Database issue):D137-40
– reference: 18820303 - Nucleic Acids Res. 2008 Oct;36(18):6013-20
– reference: 18411206 - Nucleic Acids Res. 2008 May;36(9):3150-61
– reference: 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13
– reference: 12239382 - Plant Cell. 1996 Feb;8(2):189-201
– reference: 19124605 - Mol Cell Biol. 2009 Mar;29(6):1565-74
– reference: 18566768 - Methods Mol Biol. 2008;452:231-51
– reference: 19358699 - BMC Bioinformatics. 2009;10:105
– reference: 18411313 - J Cell Biol. 2008 Apr 21;181(2):189-94
– reference: 10570197 - Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14055-60
– reference: 21558794 - RNA Biol. 2011 May-Jun;8(3):450-7
– reference: 15215370 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W154-9
– reference: 21593866 - Nature. 2011 May 19;473(7347):337-42
– reference: 20827587 - Methods Mol Biol. 2010;674:85-95
– reference: 20479262 - Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10062-7
– reference: 9398517 - J Mol Biol. 1997 Nov 21;274(1):72-83
– reference: 12824342 - Nucleic Acids Res. 2003 Jul 1;31(13):3441-5
– reference: 19783826 - Nucleic Acids Res. 2010 Jan;38(Database issue):D69-74
– reference: 21685335 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11093-8
– reference: 14972680 - Curr Biol. 2004 Feb 17;14(4):302-8
– reference: 17786152 - Nat Rev Mol Cell Biol. 2007 Oct;8(10):761-73
– reference: 15987813 - RNA. 2005 Jul;11(7):1017-29
– reference: 20308585 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6204-9
– reference: 12504008 - Mol Cell. 2002 Dec;10(6):1319-30
– reference: 11175792 - Nat Genet. 2001 Feb;27(2):209-14
– reference: 15684617 - J Interferon Cytokine Res. 2005 Jan;25(1):1-10
– reference: 17556522 - Plant Physiol. 2007 Jun;144(2):588-93
– reference: 19239891 - Cell. 2009 Feb 20;136(4):719-30
– reference: 16890164 - Dev Cell. 2006 Aug;11(2):251-62
– reference: 8578590 - Trends Biochem Sci. 1995 Nov;20(11):465-70
– reference: 10216946 - Int J Biochem Cell Biol. 1999 Jan;31(1):87-106
– reference: 16807757 - Hum Genet. 2006 Oct;120(3):301-33
– reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36
– reference: 20460462 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W360-7
– reference: 7492760 - Blood. 1995 Dec 1;86(11):4050-3
– reference: 19473520 - BMC Bioinformatics. 2009;10:160
– reference: 7929587 - J Cell Biol. 1994 Oct;127(2):441-51
– reference: 17202160 - Nucleic Acids Res. 2007 Jan;35(Database issue):D165-8
– reference: 12393019 - Curr Opin Plant Biol. 2002 Dec;5(6):553-9
– reference: 2419912 - Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670-4
– reference: 16632598 - Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80
– reference: 20647376 - Plant Physiol. 2010 Sep;154(1):36-54
– reference: 18438400 - Nat Biotechnol. 2008 May;26(5):578-83
– reference: 20421948 - PLoS Pathog. 2010 Apr;6(4):e1000865
– reference: 14567917 - Cell. 2003 Oct 17;115(2):199-208
– reference: 21103393 - PLoS One. 2010;5(11):e15448
– reference: 20444605 - Trends Cell Biol. 2010 Jul;20(7):380-90
– reference: 19795571 - In Silico Biol. 2009;9(3):135-48
– reference: 15965016 - Plant Physiol. 2005 Jul;138(3):1457-68
– reference: 15647269 - J Biol Chem. 2005 Apr 15;280(15):14427-32
– reference: 8987809 - J Neurosci. 1996 Dec 15;16(24):7812-20
– reference: 15735639 - Nature. 2005 Mar 17;434(7031):338-45
– reference: 11125107 - Nucleic Acids Res. 2001 Jan 1;29(1):264-7
– reference: 18489257 - Annu Rev Nutr. 2008;28:197-213
– reference: 14523920 - Chembiochem. 2003 Oct 6;4(10):1024-32
– reference: 18566765 - Methods Mol Biol. 2008;452:179-97
– reference: 14698618 - Trends Genet. 2004 Jan;20(1):44-50
– reference: 11125104 - Nucleic Acids Res. 2001 Jan 1;29(1):246-54
– reference: 21431757 - Methods Mol Biol. 2011;714:447-66
– reference: 11389486 - Am J Hum Genet. 2001 Jul;69(1):191-7
– reference: 15371551 - Nucleic Acids Res. 2004;32(16):4884-92
– reference: 12520039 - Nucleic Acids Res. 2003 Jan 1;31(1):421-3
– reference: 20032171 - Genome Res. 2010 Mar;20(3):311-9
– reference: 18369186 - RNA. 2008 May;14(5):802-13
– reference: 15901494 - Curr Opin Cell Biol. 2005 Jun;17(3):257-61
– reference: 12633995 - Trends Biochem Sci. 2003 Mar;28(3):152-8
– reference: 16556303 - BMC Bioinformatics. 2006;7:169
– reference: 10916158 - Trends Biochem Sci. 2000 Aug;25(8):381-8
– reference: 21622958 - Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9
– reference: 15659340 - Semin Cell Dev Biol. 2005 Feb;16(1):59-67
– reference: 18024429 - J Biol Chem. 2008 Jan 18;283(3):1217-21
– reference: 10764574 - J Mol Biol. 2000 Apr 14;297(5):1075-85
– reference: 21428956 - Biochem Soc Trans. 2011 Apr;39(2):652-7
– reference: 19880380 - Nucleic Acids Res. 2010 Jan;38(Database issue):D75-80
– reference: 16131587 - RNA. 2005 Oct;11(10):1485-93
– reference: 21062808 - Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5
– reference: 17187943 - Gene. 2007 Mar 15;389(2):107-13
– reference: 16030070 - Bioinformatics. 2005 Sep 15;21(18):3691-3
– reference: 19144907 - RNA. 2009 Feb;15(2):200-7
– reference: 15247925 - Nat Biotechnol. 2004 Aug;22(8):1006-11
– reference: 21343387 - RNA. 2011 Apr;17(4):761-72
– reference: 11283722 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):247-56
– reference: 9404892 - RNA. 1997 Dec;3(12):1413-20
– reference: 20432247 - J Cell Biochem. 2010 May 15;110(2):531-44
– reference: 19460868 - RNA. 2009 Jul;15(7):1426-30
– reference: 18953033 - Nucleic Acids Res. 2008 Dec;36(21):6835-47
– reference: 17320967 - Pharmacol Ther. 2007 Apr;114(1):56-73
– reference: 17065982 - Nature. 2006 Nov 30;444(7119):580-6
– reference: 21109528 - Nucleic Acids Res. 2011 Apr;39(7):2799-808
– reference: 8115547 - Plant Physiol. 1994 Jan;104(1):263-70
– reference: 19109909 - Neuron. 2008 Dec 26;60(6):1022-38
– reference: 20961447 - Biol Direct. 2010;5:60
– reference: 17513696 - RNA. 2007 Jul;13(7):952-66
– reference: 19917642 - Nucleic Acids Res. 2010 Jan;38(Database issue):D131-6
– reference: 16845041 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W429-34
– reference: 10357856 - Microbiol Mol Biol Rev. 1999 Jun;63(2):405-45
– reference: 17986455 - Nucleic Acids Res. 2008 Jan;36(Database issue):D57-62
– reference: 21853133 - PLoS One. 2011;6(8):e23443
– reference: 17517127 - BMC Bioinformatics. 2007;8:159
– reference: 21743474 - Nature. 2011 Jul 14;475(7355):189-95
– reference: 12626338 - Annu Rev Biochem. 2003;72:291-336
– reference: 14557042 - Trends Plant Sci. 2003 Oct;8(10):468-71
– reference: 18566288 - Science. 2008 Jun 20;320(5883):1643-7
– reference: 11283721 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):237-46
– reference: 17464285 - EMBO J. 2007 Jun 6;26(11):2658-69
– reference: 16870936 - Bioinformatics. 2006 Oct 1;22(19):2320-5
– reference: 21746925 - Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12533-8
– reference: 15542494 - Plant Physiol. 2004 Nov;136(3):3414-9
– reference: 18637175 - BMC Genomics. 2008;9:339
– reference: 4018033 - EMBO J. 1985 Feb;4(2):453-6
– reference: 19402042 - Proteomics. 2009 May;9(9):2324-42
– reference: 10828006 - Blood. 2000 Jun 1;95(11):3280-8
– reference: 11222768 - Nucleic Acids Res. 2001 Mar 1;29(5):1185-90
– reference: 17286857 - BMC Bioinformatics. 2007;8:43
– reference: 11597333 - Genome Biol. 2001;2(10):RESEARCH0041
– reference: 10899149 - Genome Res. 2000 Jul;10(7):1001-10
– reference: 18474525 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W114-8
– reference: 10209102 - Curr Biol. 1999 Mar 25;9(6):333-6
– reference: 21813626 - Genome Res. 2011 Sep;21(9):1478-86
– reference: 11909523 - Cell. 2002 Feb 22;108(4):523-31
– reference: 17923096 - Cell. 2007 Oct 5;131(1):174-87
– reference: 19059335 - Genomics. 2009 Mar;93(3):213-20
– reference: 16542450 - BMC Genomics. 2006;7:55
– reference: 19814811 - BMC Bioinformatics. 2009;10:325
– reference: 21071424 - Nucleic Acids Res. 2011 Jan;39(Database issue):D66-9
– reference: 20858738 - Brief Bioinform. 2011 Mar;12(2):115-21
– reference: 12464185 - Cell. 2002 Nov 27;111(5):747-56
– reference: 19703394 - Cell. 2009 Aug 21;138(4):673-84
– reference: 17452113 - Semin Cell Dev Biol. 2007 Apr;18(2):178-85
– reference: 12787499 - Cell. 2003 May 30;113(5):577-86
– reference: 12519954 - Nucleic Acids Res. 2003 Jan 1;31(1):87-9
– reference: 15284102 - Bioinformatics. 2005 Mar 1;21(5):671-3
– reference: 15647503 - Nucleic Acids Res. 2005;33(1):201-12
– reference: 16772261 - Brief Bioinform. 2006 Jun;7(2):178-85
– reference: 16391004 - Nucleic Acids Res. 2005;33(22):7138-50
– reference: 12429065 - Genome Biol. 2002 Oct 23;3(11):reviews0008
– reference: 18282305 - BMC Plant Biol. 2008;8:17
– reference: 17631420 - Comput Biol Chem. 2007 Aug;31(4):298-302
– reference: 16381826 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D111-4
– reference: 15564294 - Bioinformatics. 2005 Apr 15;21(8):1332-8
– reference: 18984623 - Nucleic Acids Res. 2009 Jan;37(Database issue):D72-6
SSID ssj0000500997
Score 1.9970762
SecondaryResourceType review_article
Snippet Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number...
Eukaryotic messenger RNA (mRNA) contains not only protein-coding regions but also a plethora of functional cis -elements that influence or coordinate a number...
Eukaryotic messenger RNA contains not only protein-coding regions but also a plethora of functional cis-elements that influence or coordinate a number of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 84
SubjectTerms AU-rich element
bioinformatics
cis-element
coding sequence
microRNA
Plant Science
Riboswitches
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yePAivq0vInjwsNWkaZvG2yrKIuhBXPBWkibFBe0udj34751puuuuKF6Entq0DTNJ5pvJ5BtCTow0IiuFC0tWRmEMNi40kY5CjfG21PGMWXQU7-7T_iC-fUqe5kp9YU6Ypwf2gjvHfSoL39CpBeMXZ0bGBZ7m5FLwxIkGGjHF5pwpz-qN0Ed6Lh_wwtR5OX6pW8ZO1nCZzpmhhq3_J4j5PVNyzvTcrJHVFjPSnu_rOlly1QZZvhwBrvvYJI93TY0HihbKB_ao8znhNR1W9BXJwTF0Rx_ue_UFxZRN3A7o0mJaR6XuUl1ZOv46d1lvkcHN9eNVP2xrJYRFnKhJCCjMuNSmPHOxZLG0TPPSWhB3opxkheFKpyxzAOc401YKmOdcS1h24aGwQmyTTjWq3C6hqQIIlUgt0iyKnePGKnChI6FLAVhRyYCcTUWXFy2RONazeMnBoUBZ5yjrHGWdN7IOyOnshbHn0Pi96SXqYtYMya-bGzAk8nZI5H8NiYAcTzWZw2TBHRBdudF7jflsEhZUcOMCsuM1O_sV4FChAKwERC7ofKEvi0-q4XNDyC1AXokUe__R-X2y4sPWeB2QzuTt3R0C7pmYo2aIfwKNWP22
  priority: 102
  providerName: Directory of Open Access Journals
Title Mining Functional Elements in Messenger RNAs: Overview, Challenges, and Perspectives
URI https://www.ncbi.nlm.nih.gov/pubmed/22639614
https://www.proquest.com/docview/1017763086
https://pubmed.ncbi.nlm.nih.gov/PMC3355573
https://doaj.org/article/3823d465a6d74148b74c439417315e3a
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED7x64GXacAYYQwZiYc9EIhjx06Q0ASIgpDKJkSlvkVO7QBSlbKmsPHfc5ekhaLuBSnKQxwr0d3Z993Z_g5gN9OZiHPh_DzIQ1-ij_Oz0IS-oXybcjwOLAWK7St10ZGX3aj7Wg6oEWA5M7SjelKdYX__35_nnzjgjyjiRH97kD_0y4aMk-jh52ER3ZKiSKzdYP2a6JvQkK7pfWb1I17gEB224nLKSVVc_rMA6Pt9lG8cU-szfGoQJTuuTWAF5lyxCksnA0R9z2tw064qQLAW-q867cfO6h3jJbsvWJuowymxx66vjstD9uuJ5g73d4-djquslHvMFJb9fj2VWX6BTuvs5vTCbyop-D0ZJSMfMVrmlFU8dlIHUtvA8NxaVEaUOB30Mp4YFcQOwR4PjNUCZwFuNE7K2CisEOuwUAwKtwFMJQiwIm2EikPpHM9sggF2KEwuEEkm2oP9sejSXkMzTtUu-imGGyT2lMSektjTSuwe_Jh0eKgZNv7_6gnpYvIaUWNXDwbD27QZaSktbFo0OqMsoiUZZ1r26Pgv14JHThgPdsaaTHEo0fqIKdzgsaTdbhqnWwzyPPhaa3byqbFleKCndD71L9Mtxf1dRdctUF6RFpsf7vkNlutMNl1bsDAaPrrvCIVG2XaVQsD7eZdvV-b-AusYCL8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mining+Functional+Elements+in+Messenger+RNAs%3A+Overview%2C+Challenges%2C+and+Perspectives&rft.jtitle=Frontiers+in+plant+science&rft.au=Ahmed%2C+Firoz&rft.au=Benedito%2C+Vagner+A.&rft.au=Zhao%2C+Patrick+Xuechun&rft.date=2011-01-01&rft.pub=Frontiers+Research+Foundation&rft.eissn=1664-462X&rft.volume=2&rft_id=info:doi/10.3389%2Ffpls.2011.00084&rft_id=info%3Apmid%2F22639614&rft.externalDocID=PMC3355573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon