Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies
Wheat ( L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. The...
Saved in:
Published in | Frontiers in plant science Vol. 11; p. 54 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
05.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wheat (
L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD
variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m
for the low YE to 191 pl m
for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP. |
---|---|
AbstractList | Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP. Wheat ( L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m for the low YE to 191 pl m for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP. Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP. Wheat ( Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m -2 for the low YE to 191 pl m -2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP. |
Author | Schwalbert, Rai Fritz, Allan K. Ciampitti, Ignacio A. Bradley, Pauley Vara Prasad, P.V. Zhang, Guorong Young, Steven Carciochi, Walter Bastos, Leonardo M. Jaenisch, Brent R. Rezende, Caio R. Wright, Yancy Lollato, Romulo P. Foster, Chris |
AuthorAffiliation | 1 Department of Agronomy, Kansas State University , Manhattan, KS , United States 2 John Deere , Johnston, IA , United States |
AuthorAffiliation_xml | – name: 2 John Deere , Johnston, IA , United States – name: 1 Department of Agronomy, Kansas State University , Manhattan, KS , United States |
Author_xml | – sequence: 1 givenname: Leonardo M. surname: Bastos fullname: Bastos, Leonardo M. – sequence: 2 givenname: Walter surname: Carciochi fullname: Carciochi, Walter – sequence: 3 givenname: Romulo P. surname: Lollato fullname: Lollato, Romulo P. – sequence: 4 givenname: Brent R. surname: Jaenisch fullname: Jaenisch, Brent R. – sequence: 5 givenname: Caio R. surname: Rezende fullname: Rezende, Caio R. – sequence: 6 givenname: Rai surname: Schwalbert fullname: Schwalbert, Rai – sequence: 7 givenname: P.V. surname: Vara Prasad fullname: Vara Prasad, P.V. – sequence: 8 givenname: Guorong surname: Zhang fullname: Zhang, Guorong – sequence: 9 givenname: Allan K. surname: Fritz fullname: Fritz, Allan K. – sequence: 10 givenname: Chris surname: Foster fullname: Foster, Chris – sequence: 11 givenname: Yancy surname: Wright fullname: Wright, Yancy – sequence: 12 givenname: Steven surname: Young fullname: Young, Steven – sequence: 13 givenname: Pauley surname: Bradley fullname: Bradley, Pauley – sequence: 14 givenname: Ignacio A. surname: Ciampitti fullname: Ciampitti, Ignacio A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32194579$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1vEzEQxVeoiJbSMzfkI5ekttf7YQ5IVWlKpUpUUFQ4WbP2bOrKsYPtBPXcf5zdJEUtEidb4_d-o_G818WeDx6L4i2j07Js5XG_dGnKKadTSmklXhQHrK7FRNT8x96T-35xlNIdHTWUStm8KvZLzqSoGnlQPNxYnzGSm1uETH5adIZ8xbQMPiHJgVw58Jl8Qp9svieQCJDZyutsgyeh3xnO_NrG4Bc4SMEbcm2dw2j9nFyFPBQtuA_kZOCuLf7eKGYb37e8MhbTm-JlDy7h0e48LL7Pzq5PP08uv5xfnJ5cTrSoZJ5wAx1lXDStlpWUpZBCg-ylFqYVRnegRS_auoVWU0ENYsNKLXhvBgGTjSgPi4st1wS4U8toFxDvVQCrNoUQ5wpittqh6ljPtKZgShCCd1QyBMGhbCphZNWPrI9b1nLVLdDoYcoI7hn0-Yu3t2oe1qqhdc2rEfB-B4jh1wpTVgubNLrhvzGskuJly2rOmqYZpO-e9vrb5HGLg6DaCnQMKUXslbYZxh0Nra1TjKoxMGoMjBoDozaBGXzH__ge0f9z_AGc9sT4 |
CitedBy_id | crossref_primary_10_1002_agj2_21044 crossref_primary_10_3390_agronomy14040819 crossref_primary_10_1016_j_eja_2023_126851 crossref_primary_10_1002_cft2_20240 crossref_primary_10_1002_agj2_21489 crossref_primary_10_1016_j_eja_2024_127106 crossref_primary_10_1094_PDIS_02_21_0335_RE crossref_primary_10_3390_ijms22042053 crossref_primary_10_1016_j_agwat_2024_108765 crossref_primary_10_1002_agj2_20637 crossref_primary_10_3389_fpls_2022_838536 crossref_primary_10_1007_s10340_021_01377_0 crossref_primary_10_1080_14620316_2024_2400127 crossref_primary_10_3390_su14095061 crossref_primary_10_3389_fsufs_2024_1440321 crossref_primary_10_3390_agronomy14122754 crossref_primary_10_1111_ppl_14321 crossref_primary_10_1016_j_fcr_2021_108310 crossref_primary_10_3390_agronomy13030870 crossref_primary_10_3389_fpls_2021_718081 crossref_primary_10_3389_fpls_2024_1314014 crossref_primary_10_3390_rs14235923 crossref_primary_10_1016_j_pmpp_2024_102447 crossref_primary_10_1002_agj2_21414 crossref_primary_10_3390_agronomy12122924 crossref_primary_10_1002_agj2_21256 crossref_primary_10_1002_agj2_20607 crossref_primary_10_3390_agronomy12123061 crossref_primary_10_3390_agronomy11030426 crossref_primary_10_3390_ijpb13040043 crossref_primary_10_3390_plants13172476 crossref_primary_10_1111_jac_12459 crossref_primary_10_3389_fpls_2025_1490483 crossref_primary_10_3390_agronomy11071378 crossref_primary_10_1016_j_plaphy_2023_107850 crossref_primary_10_3389_fpls_2023_1219983 crossref_primary_10_3390_agronomy11091726 crossref_primary_10_1007_s10668_023_03921_7 crossref_primary_10_3389_fpls_2023_1214931 crossref_primary_10_1016_j_compag_2024_109448 crossref_primary_10_1016_j_jia_2023_07_006 crossref_primary_10_1016_j_fcr_2022_108640 crossref_primary_10_3390_agronomy13061526 crossref_primary_10_3389_fpls_2022_934359 crossref_primary_10_1007_s42106_021_00155_3 crossref_primary_10_48077_scihor9_2024_54 crossref_primary_10_1016_j_geomat_2024_100018 crossref_primary_10_3390_agronomy13082142 crossref_primary_10_3389_fpls_2025_1526648 crossref_primary_10_3390_agronomy15030607 crossref_primary_10_1186_s13007_025_01355_y crossref_primary_10_1016_j_spc_2023_12_020 crossref_primary_10_3390_atmos15060738 crossref_primary_10_3390_app14093940 crossref_primary_10_1016_j_fcr_2022_108699 crossref_primary_10_1016_j_fcr_2023_108934 crossref_primary_10_1007_s11119_023_10047_3 crossref_primary_10_3390_ijms23052838 crossref_primary_10_1002_jsfa_11581 crossref_primary_10_3390_plants11111407 crossref_primary_10_1016_j_compag_2024_109757 crossref_primary_10_3390_agronomy11010022 crossref_primary_10_1016_j_agrformet_2021_108558 crossref_primary_10_1016_j_eja_2023_126885 crossref_primary_10_3390_agriculture14030442 crossref_primary_10_3389_fpls_2021_726568 crossref_primary_10_1007_s13593_021_00735_7 crossref_primary_10_7554_eLife_84988 crossref_primary_10_1016_j_eja_2024_127437 crossref_primary_10_1007_s10457_024_00997_6 crossref_primary_10_1007_s11104_023_06212_2 crossref_primary_10_1016_j_fcr_2021_108287 crossref_primary_10_1146_annurev_arplant_060223_041716 crossref_primary_10_1002_csc2_21296 crossref_primary_10_1016_j_agwat_2023_108357 crossref_primary_10_1016_j_ncrops_2025_100066 crossref_primary_10_1139_cjps_2021_0287 crossref_primary_10_1007_s42976_023_00437_8 crossref_primary_10_1016_j_agee_2021_107557 crossref_primary_10_1016_j_fcr_2024_109593 crossref_primary_10_3389_fpls_2022_772232 crossref_primary_10_1002_csc2_20442 |
Cites_doi | 10.1038/186022b0 10.4141/CJPS06013 10.1007/s00122-006-0431-y 10.1071/AR07185 10.4141/cjps88-133 10.1590/S0103-90162009000100004 10.1016/S0176-1617(11)80549-3 10.2135/cropsci2002.0827 10.18637/jss.v067.i01 10.2135/cropsci2018.04.0249 10.2134/jpa1993.0408 10.1590/S0103-90162013000300006 10.2134/agronj2018.03.0223 10.2134/agronj14.0011 10.4141/cjps82-045 10.1017/S0021859600012806 10.2135/cropsci2007.08.0473 10.1016/0378-4290(80)90036-2 10.2134/agronj1992.00021962008400010017x 10.1023/A:1016069809977 10.4141/cjps79-176 10.1016/j.jcs.2014.11.001 10.1094/CM-2010-1227-02-RS 10.2134/agronj2018.10.0635 10.2135/cropsci2016.02.0103 10.2134/agronj15.0150 10.2134/agronj1960.00021962005200060002x 10.1094/CM-2002-0510-01-RS 10.2134/agronj1985.00021962007700020009x 10.1016/j.fcr.2016.12.014 10.4141/cjps96-039 10.2134/agronj1984.00021962007600030007x 10.2135/cropsci2017.02.0079 10.4141/cjps70-088 10.1016/j.fcr.2018.12.011 10.1038/nature10452 10.1175/BAMS-D-15-00324.1 10.1614/0890-037X(2001)015[0019:WTARSS]2.0.CO;2 10.1016/j.agsy.2010.02.004 10.2134/jpa1992.0265 10.1016/j.eja.2006.06.009 10.2134/agronj2018.04.0239 10.1094/PD-89-1109 10.1111/j.1744-7348.2000.tb00048.x 10.2134/agronj2015.0497 10.2134/agronj2004.1258 10.1016/j.fcr.2013.12.004 10.1038/s41598-018-23362-x 10.2134/agronj2003.0253 10.1071/AR9910701 10.2135/cropsci2016.04.0215 10.1016/j.fcr.2018.08.023 10.2135/cropsci2015.04.0215 10.3844/ajabssp.2012.293.300 10.2135/cropsci2000.403834x |
ContentType | Journal Article |
Copyright | Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti. Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti |
Copyright_xml | – notice: Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti. – notice: Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2020.00054 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_b1f1cc0ad3a442b091ea42a3754d95f4 PMC7066254 32194579 10_3389_fpls_2020_00054 |
Genre | Journal Article |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c459t-2dab012478c95993494ca9f9c4d84dcbac4f4868a8c040dee713c42fdc4d19743 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 00:58:00 EDT 2025 Thu Aug 21 14:10:44 EDT 2025 Fri Jul 11 15:24:32 EDT 2025 Thu Jan 02 22:59:38 EST 2025 Thu Apr 24 23:00:48 EDT 2025 Tue Jul 01 02:06:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | synthesis-analysis wheat tillering potential yield environment yield components |
Language | English |
License | Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-2dab012478c95993494ca9f9c4d84dcbac4f4868a8c040dee713c42fdc4d19743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Crop and Product Physiology, a section of the journal Frontiers in Plant Science Reviewed by: Eric Ober, National Institute of Agricultural Botany, United Kingdom; Agnieszka Klimek-Kopyra, University of Agriculture in Krakow, Poland Edited by: Brian L. Beres, Agriculture and Agri-Food Canada, Canada |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2020.00054 |
PMID | 32194579 |
PQID | 2381621777 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b1f1cc0ad3a442b091ea42a3754d95f4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066254 proquest_miscellaneous_2381621777 pubmed_primary_32194579 crossref_citationtrail_10_3389_fpls_2020_00054 crossref_primary_10_3389_fpls_2020_00054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-05 |
PublicationDateYYYYMMDD | 2020-03-05 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | (B55) 2019 B64 Hanson (B23) 1992 Neumann (B47) 2010; 103 Koenker (B31) 2019 Lloveras (B36) 2004; 96 Gautam (B21) 2012; 7 Rai (B56) 1970; 50 Faris (B18) 1980; 3 Valério (B66) 2013; 70 Fischer (B19) 2019; 232 Patrignani (B50) 2015; 107 Lollato (B38) 2017; 203 Roberts (B57) 2001; 15 Childress (B14) 2010; 9 Staggenborg (B63) 2003; 95 Wiersma (B68) 2002; 18 Li (B35) 2002; 125 Whaley (B67) 2000; 137 Carciochi (B13) 2019; 111 Assefa (B3) 2016; 56 Joseph (B29) 1985; 77 Otteson (B49) 2008; 48 Valério (B65) 2009; 66 McLeod (B43) 1996; 76 Assefa (B5) 2018; 58 Maechler (B40) 2019 Curtis (B16) 2002 Rozbicki (B59) 2015; 61 Bhatta (B10) 2017; 57 Baker (B6) 1982; 62 McKenzie (B41) 2007; 87 Williams (B69) 2008; 59 Orloff (B48) 2014 Dahlke (B17) 1993; 6 Foley (B20) 2011; 478 Holliday (B25) 1960; 186 Arduini (B2) 2006; 25 Bates (B8) 2015; 67 Corassa (B15) 2018; 110 Anderson (B1) 1991; 42 Satorre (B60) 1988 Geleta (B22) 2002; 42 Pendleton (B52) 1960; 52 Laghari (B33) 2011; 27 Jaenisch (B28) 2019; 111 Slafer (B62) 2014; 157 Kirby (B30) 1967; 68 B53 Purcell (B54) 2000; 40 Hucl (B26) 1988; 68 Nathan (B46) 2012 Roth (B58) 1984; 76 Huntington (B27) 2017; 98 Lollato (B39) 2019; 59 Briggs (B12) 1979; 59 Bridger (B11) 1994; 144 Kuraparthy (B32) 2007; 114 Lollato (B37) 2015; 55 McLeod (B42) 1992; 84 Mian (B45) 1992; 5 Patrignani (B51) 2014; 106 Hochman (B24) 2018; 228 Schaafsma (B61) 2005; 89 Mehring (B44) 2016 Assefa (B4) 2018; 8 Beres (B9) 2016; 108 Leikam (B34) 2003 Balla (B7) 1971; 20 |
References_xml | – volume: 186 start-page: 22 year: 1960 ident: B25 article-title: Plant population and crop yield publication-title: Nature doi: 10.1038/186022b0 – volume: 87 start-page: 503 year: 2007 ident: B41 article-title: Efficacy of high seeding rates to increase grain yield of winter wheat and winter triticale in Southern Alberta publication-title: Can. J. Plant Sci. doi: 10.4141/CJPS06013 – volume-title: Soil test interpretations and fertilizer recommendations year: 2003 ident: B34 – volume: 114 start-page: 285 year: 2007 ident: B32 article-title: Identification and mapping of a tiller inhibition gene (tin3) in wheat publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-006-0431-y – volume-title: Bread wheat: improvement and production. year: 2002 ident: B16 – volume: 59 start-page: 95 year: 2008 ident: B69 article-title: The influences of genotype, environment, and genotype×environment interaction on wheat quality publication-title: Aust. J. Agric. Res. doi: 10.1071/AR07185 – volume: 68 start-page: 1119 year: 1988 ident: B26 article-title: An evaluation of common spring wheat germplasm for tillering publication-title: Can. J. Plant Sci. doi: 10.4141/cjps88-133 – volume: 66 start-page: 28 year: 2009 ident: B65 article-title: Seeding density in wheat genotypes as a function of tillering potential. Sci. agric publication-title: (Piracicaba Braz.) doi: 10.1590/S0103-90162009000100004 – volume: 144 start-page: 235 year: 1994 ident: B11 article-title: Cold acclimation increases tolerance of activated oxygen in winter cereals publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)80549-3 – ident: B64 – volume: 42 start-page: 827 year: 2002 ident: B22 article-title: Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat publication-title: Crop Sci. doi: 10.2135/cropsci2002.0827 – volume: 27 start-page: 177 year: 2011 ident: B33 article-title: Growth and yield attributes of wheat at different seed rates publication-title: Sarhad J. Agric. – volume: 67 start-page: 1 year: 2015 ident: B8 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Software doi: 10.18637/jss.v067.i01 – volume: 59 start-page: 333 year: 2019 ident: B39 article-title: Agronomic practices for reducing wheat yield gaps: a quantitative appraisal of progressive producers publication-title: Crop Sci. doi: 10.2135/cropsci2018.04.0249 – volume: 6 start-page: 408 year: 1993 ident: B17 article-title: Influence of planting date and seeding rate on winter wheat grain yield and yield components publication-title: jpa doi: 10.2134/jpa1993.0408 – volume: 70 start-page: 176 year: 2013 ident: B66 article-title: Seeding density in wheat: the more, the merrier publication-title: Sci. Agric. doi: 10.1590/S0103-90162013000300006 – volume: 111 start-page: 650 year: 2019 ident: B28 article-title: Plant population and fungicide economically reduced winter wheat yield gap in Kansas publication-title: Agron. J. doi: 10.2134/agronj2018.03.0223 – volume: 20 start-page: 411 year: 1971 ident: B7 article-title: Study of wheat varieties grown with different spacing publication-title: Acta Agronomica Academiae Scientiarum Hungaricae – volume: 106 start-page: 1329 year: 2014 ident: B51 article-title: Yield gap and production gap of rainfed winter wheat in the Southern Great Plains publication-title: Agron. J. doi: 10.2134/agronj14.0011 – volume-title: Barley response to planting rate in Northeastern North Dakota year: 1992 ident: B23 – volume: 62 start-page: 285 year: 1982 ident: B6 article-title: Effect of seeding rate on grain yield, straw yield and harvest index of eight spring wheat cultivars publication-title: Can. J. Plant Sci. doi: 10.4141/cjps82-045 – volume: 68 start-page: 317 year: 1967 ident: B30 article-title: The effect of plant density upon the growth and yield of barley publication-title: J. Agric. Sci. doi: 10.1017/S0021859600012806 – volume: 48 start-page: 749 year: 2008 ident: B49 article-title: Seeding rate and nitrogen management on milling and baking quality of hard red spring wheat genotypes publication-title: Crop Sci. doi: 10.2135/cropsci2007.08.0473 – volume: 3 start-page: 289 year: 1980 ident: B18 article-title: Effect of seeding rate on growth and yield of three spring wheat cultivars publication-title: Field Crops Res. doi: 10.1016/0378-4290(80)90036-2 – volume: 84 start-page: 86 year: 1992 ident: B42 article-title: Optimum seeding date for winter wheat in Southwestern Saskatchewan publication-title: Agron. J. doi: 10.2134/agronj1992.00021962008400010017x – year: 1988 ident: B60 article-title: The competitive ability of spring cereals. [dissertation thesis] – volume: 125 start-page: 357 year: 2002 ident: B35 article-title: Chromosomal locations and genetic relationships of tiller and spike characters in wheat publication-title: Euphytica doi: 10.1023/A:1016069809977 – volume: 59 start-page: 1139 year: 1979 ident: B12 article-title: The effects of seeding rate, seeding date and location on grain yield, maturity, protein percentage and protein yield of some spring wheats in Central Alberta publication-title: Can. J. Plant Sci. doi: 10.4141/cjps79-176 – volume: 61 start-page: 126 year: 2015 ident: B59 article-title: Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat publication-title: J. Cereal Sci. doi: 10.1016/j.jcs.2014.11.001 – volume-title: R: a language and environment for statistical computing year: 2019 ident: B55 – year: 2019 ident: B40 article-title: cluster: cluster analysis basics and extensions – volume: 9 start-page: 00 year: 2010 ident: B14 article-title: Seeding rate effects on yield and yield components of bread wheat cultivars in the Mid-Atlantic USA publication-title: cm doi: 10.1094/CM-2010-1227-02-RS – volume-title: Recommended chemical soil test procedures for the North Central Region. year: 2012 ident: B46 – volume: 111 start-page: 1923 year: 2019 ident: B13 article-title: Soybean seed yield response to plant density by yield environment in North America publication-title: Agron. J. doi: 10.2134/agronj2018.10.0635 – volume: 57 start-page: 951 year: 2017 ident: B10 article-title: Seeding rate, genotype, and topdressed nitrogen effects on yield and agronomic characteristics of winter wheat publication-title: Crop Sci. doi: 10.2135/cropsci2016.02.0103 – volume: 107 start-page: 2312 year: 2015 ident: B50 article-title: Canopeo: a powerful new tool for measuring fractional green canopy cover publication-title: Agron. J. doi: 10.2134/agronj15.0150 – volume: 52 start-page: 310 year: 1960 ident: B52 article-title: The effect of seeding rate and rate of nitrogen application on winter wheat varieties with different characteristics publication-title: Agron. J. doi: 10.2134/agronj1960.00021962005200060002x – volume: 18 start-page: 1 year: 2002 ident: B68 article-title: Determining an optimum seeding rate for spring wheat in Northwest Minnesota publication-title: Crop Management doi: 10.1094/CM-2002-0510-01-RS – volume: 77 start-page: 211 year: 1985 ident: B29 article-title: Row spacing and seeding rate effects on yield and yield components of soft red winter wheat publication-title: Agron. J. doi: 10.2134/agronj1985.00021962007700020009x – volume: 203 start-page: 212 year: 2017 ident: B38 article-title: Meteorological limits to winter wheat productivity in the U.S. Southern Great Plains publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.12.014 – volume: 76 start-page: 207 year: 1996 ident: B43 article-title: Seeding depth, rate and row spacing for winter wheat grown on stubble and chemical fallow in the semiarid prairies publication-title: Can. J. Plant Sci. doi: 10.4141/cjps96-039 – volume: 76 start-page: 379 year: 1984 ident: B58 article-title: Effect of Management Practices on Grain Yield, Test Weight, and Lodging of Soft Red Winter Wheat1 publication-title: Agron. J. doi: 10.2134/agronj1984.00021962007600030007x – volume: 58 start-page: 1 year: 2018 ident: B5 article-title: Major management factors determining spring and winter canola yield in North America publication-title: Crop Sci. doi: 10.2135/cropsci2017.02.0079 – volume: 50 start-page: 485 year: 1970 ident: B56 article-title: Studies with hybrid wheat in Ontario publication-title: Can. J. Plant Sci. doi: 10.4141/cjps70-088 – volume: 232 start-page: 95 year: 2019 ident: B19 article-title: Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: an update publication-title: Field Crops Res. doi: 10.1016/j.fcr.2018.12.011 – year: 2019 ident: B31 article-title: quantreg: quantile regression – volume: 478 start-page: 337 year: 2011 ident: B20 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 98 start-page: 2397 year: 2017 ident: B27 article-title: Climate Engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding publication-title: Bull. Amer. Meteor. Soc doi: 10.1175/BAMS-D-15-00324.1 – year: 2014 ident: B48 article-title: Seeding rate and planting date effects on spring wheat yield in Intermountain region – volume: 15 start-page: 19 year: 2001 ident: B57 article-title: Wheat (Triticum aestivum) row spacing, seeding rate, and cultivar affect interference from rye (Secale cereale) publication-title: Weed Technol. doi: 10.1614/0890-037X(2001)015[0019:WTARSS]2.0.CO;2 – volume: 103 start-page: 316 year: 2010 ident: B47 article-title: The yield gap of global grain production: a spatial analysis publication-title: Agric. Syst. doi: 10.1016/j.agsy.2010.02.004 – volume: 5 start-page: 265 year: 1992 ident: B45 article-title: Seed size effects on emergence, head number, and grain yield of winter wheat publication-title: jpa doi: 10.2134/jpa1992.0265 – volume: 25 start-page: 309 year: 2006 ident: B2 article-title: Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2006.06.009 – volume: 110 start-page: 2430 year: 2018 ident: B15 article-title: Optimum soybean seeding rates by yield environment in Southern Brazil publication-title: Agron. J. doi: 10.2134/agronj2018.04.0239 – volume: 89 start-page: 1109 year: 2005 ident: B61 article-title: Effect of seeding rate and seed treatment fungicides on agronomic performance, fusarium head blight symptoms, and don accumulation in two winter wheats publication-title: Plant Dis. doi: 10.1094/PD-89-1109 – volume: 137 start-page: 165 year: 2000 ident: B67 article-title: The physiological response of winter wheat to reductions in plant density publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2000.tb00048.x – volume: 108 start-page: 1101 year: 2016 ident: B9 article-title: Winter wheat cropping system response to seed treatments, seed size, and sowing density publication-title: Agron. J. doi: 10.2134/agronj2015.0497 – volume: 96 start-page: 1258 year: 2004 ident: B36 article-title: Seeding rate influence on yield and yield components of irrigated winter wheat in a mediterranean climate publication-title: Agron. J. doi: 10.2134/agronj2004.1258 – volume: 157 start-page: 71 year: 2014 ident: B62 article-title: Coarse and fine regulation of wheat yield components in response to genotype and environment publication-title: Field Crops Res. doi: 10.1016/j.fcr.2013.12.004 – volume: 8 start-page: 4937 year: 2018 ident: B4 article-title: Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain publication-title: Sci. Rep. doi: 10.1038/s41598-018-23362-x – volume: 95 start-page: 253 year: 2003 ident: B63 article-title: Seeding and nitrogen rates required to optimize winter wheat yields following grain sorghum and soybean publication-title: Agron. J. doi: 10.2134/agronj2003.0253 – volume: 42 start-page: 701 year: 1991 ident: B1 article-title: Evidence for differences between three wheat cultivars in yield response to plant population publication-title: Aust. J. Agric. Res. doi: 10.1071/AR9910701 – volume: 56 start-page: 2802 year: 2016 ident: B3 article-title: Yield responses to planting density for us modern corn hybrids: a synthesis-analysis publication-title: Crop Sci. doi: 10.2135/cropsci2016.04.0215 – volume: 228 start-page: 20 year: 2018 ident: B24 article-title: Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia publication-title: Field Crops Res. doi: 10.1016/j.fcr.2018.08.023 – volume: 55 start-page: 2863 year: 2015 ident: B37 article-title: Maximum attainable wheat yield and resource-use efficiency in the Southern Great Plains publication-title: Crop Sci. doi: 10.2135/cropsci2015.04.0215 – volume: 7 start-page: 293 year: 2012 ident: B21 article-title: Contribution of primary spikes vs tillers to total deoxynivalenol in harvested grain of wheat and barley publication-title: Am. J. Agric. Biol. Sci. doi: 10.3844/ajabssp.2012.293.300 – volume-title: Determining optimum seeding rates for diverse hard red spring wheat (Triticum aestivum L.) cultivars. [dissertation thesis] year: 2016 ident: B44 – ident: B53 – volume: 40 start-page: 834 year: 2000 ident: B54 article-title: Soybean canopy coverage and light interception measurements using digital imagery publication-title: Crop Sci. doi: 10.2135/cropsci2000.403834x |
SSID | ssj0000500997 |
Score | 2.544459 |
Snippet | Wheat (
L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors... Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better... Wheat ( Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 54 |
SubjectTerms | Plant Science synthesis-analysis tillering potential wheat yield components yield environment |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXRMsrPKpB4sAldJOM1zG3tnRVIYEQakU5RX4KpFVSlfTQc_84M3a67CIQF66JLVv-xp4Z-fM3QryaV62uXbRltBFLjL4qdRN0ScF6a3UIuklkzA8f5ydn-P5cnq-V-mJOWJYHzgu3b6tYOTczvjGItSX3FgzWhiu3ei1jUgKlj2vJVFb15tBHZS0fysL0frxYsjp3zUyumcQNN5TU-v8UYv7OlFxzPYv74t4UM8JBnuuOuBP6XbF9OFBcd_1A3HxhyYdLSMcqfGVGGnzOzNcA4wBclmiEd0xUH6_B_AADC3JmDAgMcepw_Ou9G5jew2l6IkhuDT4NIxOKzPItHEC-SUgtFqnfREN8KM4Wx6dHJ-VUWqF0KPVY1t5Yck2oWqclhSio0RkdtUPfonfWOIzYzlvTOtrlPgTKZR3W0VODilKQ5pHY6oc-PBGAYaZcmLtYW4szQwgrHXSsI0WaQXpTiDe3K925SXecy18sO8o_GJqOoekYmi5BU4jXqw4XWXLj700PGbpVM9bKTh_IgrrJgrp_WVAhXt4C39He4gsT04fhigbiW1XK2ZQqxONsCKuhGjrqUSpdCLVhIhtz2fzTf_-W9LsVq-5LfPo_Jv9M3OXlSKw4-VxsjZdX4QWFSaPdSzviJy9lEwE priority: 102 providerName: Directory of Open Access Journals |
Title | Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32194579 https://www.proquest.com/docview/2381621777 https://pubmed.ncbi.nlm.nih.gov/PMC7066254 https://doaj.org/article/b1f1cc0ad3a442b091ea42a3754d95f4 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVK4cAFlc8uhcpIHLikbJxJHCMh1NIuFVIRQl2xnCJ_tkirpGxTiT33j3fGSbdstUi95JDYsZOxM2_i5zeMvS3SUgkbTBJMgASCSxOVeZUgWC-N8l5lkYx59K04HMPXST65SQfUv8DzlaEd5ZMaz6Y7f__MP-GE_0gRJ_rb9-FsSsLbgkhaiEDusfvoliSlMzjqsX4n9E1oKCZbKQrsViEmndTPqnsseako5r8Kgd4mUv7jmUYb7FEPKfluNwYeszVfP2EP9hqEffOn7PInKULMePzq8l9EWOM_OmKs523DKWtRy_eJx97OuT7nmo_Q15G9eBP6Cgc32-G4rh0_jjsI0evx701LfCM9_cB3ebfQEEuMYr2epfiMjUcHx58Pkz7zQmIhV20inDbouUCWVuWIYECB1SooC64EZ422EKAsSl1a_Ag47zHUtSCCwwIpRijZc7ZeN7XfZBz8UFpf2CCMgaHGASCVV0EEBKI-d3rAdq7fdGV7WXLKjjGtMDwh01RkmopMU0XTDNi7RYWzTpHj_0X3yHSLYiSlHU80s5Oqn5mVSUNq7VC7TAMIg_jJaxCaUgM7lQe8yZtrw1c49Wg9Rde-ucCGaNEVQzopB-xFNxAWTWXoCSCXasDk0hBZ6svylfr3aZT3liTKn8PLO7S7xR7S00ZOXP6KrbezC_8aQVJrtuPPBTx-maTbcSJcAWYaE2E |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+Wheat+Yield+Response+to+Plant+Density+as+a+Function+of+Yield+Environment+and+Tillering+Potential%3A+A+Review+and+Field+Studies&rft.jtitle=Frontiers+in+plant+science&rft.au=Bastos%2C+Leonardo+M&rft.au=Carciochi%2C+Walter&rft.au=Lollato%2C+Romulo+P&rft.au=Jaenisch%2C+Brent+R&rft.date=2020-03-05&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft.spage=54&rft_id=info:doi/10.3389%2Ffpls.2020.00054&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |