Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies

Wheat ( L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. The...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 11; p. 54
Main Authors Bastos, Leonardo M., Carciochi, Walter, Lollato, Romulo P., Jaenisch, Brent R., Rezende, Caio R., Schwalbert, Rai, Vara Prasad, P.V., Zhang, Guorong, Fritz, Allan K., Foster, Chris, Wright, Yancy, Young, Steven, Bradley, Pauley, Ciampitti, Ignacio A.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 05.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wheat ( L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m for the low YE to 191 pl m for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.
AbstractList Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.
Wheat ( L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m for the low YE to 191 pl m for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.
Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.
Wheat ( Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m -2 for the low YE to 191 pl m -2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.
Author Schwalbert, Rai
Fritz, Allan K.
Ciampitti, Ignacio A.
Bradley, Pauley
Vara Prasad, P.V.
Zhang, Guorong
Young, Steven
Carciochi, Walter
Bastos, Leonardo M.
Jaenisch, Brent R.
Rezende, Caio R.
Wright, Yancy
Lollato, Romulo P.
Foster, Chris
AuthorAffiliation 1 Department of Agronomy, Kansas State University , Manhattan, KS , United States
2 John Deere , Johnston, IA , United States
AuthorAffiliation_xml – name: 2 John Deere , Johnston, IA , United States
– name: 1 Department of Agronomy, Kansas State University , Manhattan, KS , United States
Author_xml – sequence: 1
  givenname: Leonardo M.
  surname: Bastos
  fullname: Bastos, Leonardo M.
– sequence: 2
  givenname: Walter
  surname: Carciochi
  fullname: Carciochi, Walter
– sequence: 3
  givenname: Romulo P.
  surname: Lollato
  fullname: Lollato, Romulo P.
– sequence: 4
  givenname: Brent R.
  surname: Jaenisch
  fullname: Jaenisch, Brent R.
– sequence: 5
  givenname: Caio R.
  surname: Rezende
  fullname: Rezende, Caio R.
– sequence: 6
  givenname: Rai
  surname: Schwalbert
  fullname: Schwalbert, Rai
– sequence: 7
  givenname: P.V.
  surname: Vara Prasad
  fullname: Vara Prasad, P.V.
– sequence: 8
  givenname: Guorong
  surname: Zhang
  fullname: Zhang, Guorong
– sequence: 9
  givenname: Allan K.
  surname: Fritz
  fullname: Fritz, Allan K.
– sequence: 10
  givenname: Chris
  surname: Foster
  fullname: Foster, Chris
– sequence: 11
  givenname: Yancy
  surname: Wright
  fullname: Wright, Yancy
– sequence: 12
  givenname: Steven
  surname: Young
  fullname: Young, Steven
– sequence: 13
  givenname: Pauley
  surname: Bradley
  fullname: Bradley, Pauley
– sequence: 14
  givenname: Ignacio A.
  surname: Ciampitti
  fullname: Ciampitti, Ignacio A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32194579$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1vEzEQxVeoiJbSMzfkI5ekttf7YQ5IVWlKpUpUUFQ4WbP2bOrKsYPtBPXcf5zdJEUtEidb4_d-o_G818WeDx6L4i2j07Js5XG_dGnKKadTSmklXhQHrK7FRNT8x96T-35xlNIdHTWUStm8KvZLzqSoGnlQPNxYnzGSm1uETH5adIZ8xbQMPiHJgVw58Jl8Qp9svieQCJDZyutsgyeh3xnO_NrG4Bc4SMEbcm2dw2j9nFyFPBQtuA_kZOCuLf7eKGYb37e8MhbTm-JlDy7h0e48LL7Pzq5PP08uv5xfnJ5cTrSoZJ5wAx1lXDStlpWUpZBCg-ylFqYVRnegRS_auoVWU0ENYsNKLXhvBgGTjSgPi4st1wS4U8toFxDvVQCrNoUQ5wpittqh6ljPtKZgShCCd1QyBMGhbCphZNWPrI9b1nLVLdDoYcoI7hn0-Yu3t2oe1qqhdc2rEfB-B4jh1wpTVgubNLrhvzGskuJly2rOmqYZpO-e9vrb5HGLg6DaCnQMKUXslbYZxh0Nra1TjKoxMGoMjBoDozaBGXzH__ge0f9z_AGc9sT4
CitedBy_id crossref_primary_10_1002_agj2_21044
crossref_primary_10_3390_agronomy14040819
crossref_primary_10_1016_j_eja_2023_126851
crossref_primary_10_1002_cft2_20240
crossref_primary_10_1002_agj2_21489
crossref_primary_10_1016_j_eja_2024_127106
crossref_primary_10_1094_PDIS_02_21_0335_RE
crossref_primary_10_3390_ijms22042053
crossref_primary_10_1016_j_agwat_2024_108765
crossref_primary_10_1002_agj2_20637
crossref_primary_10_3389_fpls_2022_838536
crossref_primary_10_1007_s10340_021_01377_0
crossref_primary_10_1080_14620316_2024_2400127
crossref_primary_10_3390_su14095061
crossref_primary_10_3389_fsufs_2024_1440321
crossref_primary_10_3390_agronomy14122754
crossref_primary_10_1111_ppl_14321
crossref_primary_10_1016_j_fcr_2021_108310
crossref_primary_10_3390_agronomy13030870
crossref_primary_10_3389_fpls_2021_718081
crossref_primary_10_3389_fpls_2024_1314014
crossref_primary_10_3390_rs14235923
crossref_primary_10_1016_j_pmpp_2024_102447
crossref_primary_10_1002_agj2_21414
crossref_primary_10_3390_agronomy12122924
crossref_primary_10_1002_agj2_21256
crossref_primary_10_1002_agj2_20607
crossref_primary_10_3390_agronomy12123061
crossref_primary_10_3390_agronomy11030426
crossref_primary_10_3390_ijpb13040043
crossref_primary_10_3390_plants13172476
crossref_primary_10_1111_jac_12459
crossref_primary_10_3389_fpls_2025_1490483
crossref_primary_10_3390_agronomy11071378
crossref_primary_10_1016_j_plaphy_2023_107850
crossref_primary_10_3389_fpls_2023_1219983
crossref_primary_10_3390_agronomy11091726
crossref_primary_10_1007_s10668_023_03921_7
crossref_primary_10_3389_fpls_2023_1214931
crossref_primary_10_1016_j_compag_2024_109448
crossref_primary_10_1016_j_jia_2023_07_006
crossref_primary_10_1016_j_fcr_2022_108640
crossref_primary_10_3390_agronomy13061526
crossref_primary_10_3389_fpls_2022_934359
crossref_primary_10_1007_s42106_021_00155_3
crossref_primary_10_48077_scihor9_2024_54
crossref_primary_10_1016_j_geomat_2024_100018
crossref_primary_10_3390_agronomy13082142
crossref_primary_10_3389_fpls_2025_1526648
crossref_primary_10_3390_agronomy15030607
crossref_primary_10_1186_s13007_025_01355_y
crossref_primary_10_1016_j_spc_2023_12_020
crossref_primary_10_3390_atmos15060738
crossref_primary_10_3390_app14093940
crossref_primary_10_1016_j_fcr_2022_108699
crossref_primary_10_1016_j_fcr_2023_108934
crossref_primary_10_1007_s11119_023_10047_3
crossref_primary_10_3390_ijms23052838
crossref_primary_10_1002_jsfa_11581
crossref_primary_10_3390_plants11111407
crossref_primary_10_1016_j_compag_2024_109757
crossref_primary_10_3390_agronomy11010022
crossref_primary_10_1016_j_agrformet_2021_108558
crossref_primary_10_1016_j_eja_2023_126885
crossref_primary_10_3390_agriculture14030442
crossref_primary_10_3389_fpls_2021_726568
crossref_primary_10_1007_s13593_021_00735_7
crossref_primary_10_7554_eLife_84988
crossref_primary_10_1016_j_eja_2024_127437
crossref_primary_10_1007_s10457_024_00997_6
crossref_primary_10_1007_s11104_023_06212_2
crossref_primary_10_1016_j_fcr_2021_108287
crossref_primary_10_1146_annurev_arplant_060223_041716
crossref_primary_10_1002_csc2_21296
crossref_primary_10_1016_j_agwat_2023_108357
crossref_primary_10_1016_j_ncrops_2025_100066
crossref_primary_10_1139_cjps_2021_0287
crossref_primary_10_1007_s42976_023_00437_8
crossref_primary_10_1016_j_agee_2021_107557
crossref_primary_10_1016_j_fcr_2024_109593
crossref_primary_10_3389_fpls_2022_772232
crossref_primary_10_1002_csc2_20442
Cites_doi 10.1038/186022b0
10.4141/CJPS06013
10.1007/s00122-006-0431-y
10.1071/AR07185
10.4141/cjps88-133
10.1590/S0103-90162009000100004
10.1016/S0176-1617(11)80549-3
10.2135/cropsci2002.0827
10.18637/jss.v067.i01
10.2135/cropsci2018.04.0249
10.2134/jpa1993.0408
10.1590/S0103-90162013000300006
10.2134/agronj2018.03.0223
10.2134/agronj14.0011
10.4141/cjps82-045
10.1017/S0021859600012806
10.2135/cropsci2007.08.0473
10.1016/0378-4290(80)90036-2
10.2134/agronj1992.00021962008400010017x
10.1023/A:1016069809977
10.4141/cjps79-176
10.1016/j.jcs.2014.11.001
10.1094/CM-2010-1227-02-RS
10.2134/agronj2018.10.0635
10.2135/cropsci2016.02.0103
10.2134/agronj15.0150
10.2134/agronj1960.00021962005200060002x
10.1094/CM-2002-0510-01-RS
10.2134/agronj1985.00021962007700020009x
10.1016/j.fcr.2016.12.014
10.4141/cjps96-039
10.2134/agronj1984.00021962007600030007x
10.2135/cropsci2017.02.0079
10.4141/cjps70-088
10.1016/j.fcr.2018.12.011
10.1038/nature10452
10.1175/BAMS-D-15-00324.1
10.1614/0890-037X(2001)015[0019:WTARSS]2.0.CO;2
10.1016/j.agsy.2010.02.004
10.2134/jpa1992.0265
10.1016/j.eja.2006.06.009
10.2134/agronj2018.04.0239
10.1094/PD-89-1109
10.1111/j.1744-7348.2000.tb00048.x
10.2134/agronj2015.0497
10.2134/agronj2004.1258
10.1016/j.fcr.2013.12.004
10.1038/s41598-018-23362-x
10.2134/agronj2003.0253
10.1071/AR9910701
10.2135/cropsci2016.04.0215
10.1016/j.fcr.2018.08.023
10.2135/cropsci2015.04.0215
10.3844/ajabssp.2012.293.300
10.2135/cropsci2000.403834x
ContentType Journal Article
Copyright Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti.
Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti
Copyright_xml – notice: Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti.
– notice: Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2020.00054
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_b1f1cc0ad3a442b091ea42a3754d95f4
PMC7066254
32194579
10_3389_fpls_2020_00054
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c459t-2dab012478c95993494ca9f9c4d84dcbac4f4868a8c040dee713c42fdc4d19743
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 00:58:00 EDT 2025
Thu Aug 21 14:10:44 EDT 2025
Fri Jul 11 15:24:32 EDT 2025
Thu Jan 02 22:59:38 EST 2025
Thu Apr 24 23:00:48 EDT 2025
Tue Jul 01 02:06:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords synthesis-analysis
wheat
tillering potential
yield environment
yield components
Language English
License Copyright © 2020 Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright, Young, Bradley and Ciampitti.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-2dab012478c95993494ca9f9c4d84dcbac4f4868a8c040dee713c42fdc4d19743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Crop and Product Physiology, a section of the journal Frontiers in Plant Science
Reviewed by: Eric Ober, National Institute of Agricultural Botany, United Kingdom; Agnieszka Klimek-Kopyra, University of Agriculture in Krakow, Poland
Edited by: Brian L. Beres, Agriculture and Agri-Food Canada, Canada
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2020.00054
PMID 32194579
PQID 2381621777
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b1f1cc0ad3a442b091ea42a3754d95f4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7066254
proquest_miscellaneous_2381621777
pubmed_primary_32194579
crossref_citationtrail_10_3389_fpls_2020_00054
crossref_primary_10_3389_fpls_2020_00054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-05
PublicationDateYYYYMMDD 2020-03-05
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References (B55) 2019
B64
Hanson (B23) 1992
Neumann (B47) 2010; 103
Koenker (B31) 2019
Lloveras (B36) 2004; 96
Gautam (B21) 2012; 7
Rai (B56) 1970; 50
Faris (B18) 1980; 3
Valério (B66) 2013; 70
Fischer (B19) 2019; 232
Patrignani (B50) 2015; 107
Lollato (B38) 2017; 203
Roberts (B57) 2001; 15
Childress (B14) 2010; 9
Staggenborg (B63) 2003; 95
Wiersma (B68) 2002; 18
Li (B35) 2002; 125
Whaley (B67) 2000; 137
Carciochi (B13) 2019; 111
Assefa (B3) 2016; 56
Joseph (B29) 1985; 77
Otteson (B49) 2008; 48
Valério (B65) 2009; 66
McLeod (B43) 1996; 76
Assefa (B5) 2018; 58
Maechler (B40) 2019
Curtis (B16) 2002
Rozbicki (B59) 2015; 61
Bhatta (B10) 2017; 57
Baker (B6) 1982; 62
McKenzie (B41) 2007; 87
Williams (B69) 2008; 59
Orloff (B48) 2014
Dahlke (B17) 1993; 6
Foley (B20) 2011; 478
Holliday (B25) 1960; 186
Arduini (B2) 2006; 25
Bates (B8) 2015; 67
Corassa (B15) 2018; 110
Anderson (B1) 1991; 42
Satorre (B60) 1988
Geleta (B22) 2002; 42
Pendleton (B52) 1960; 52
Laghari (B33) 2011; 27
Jaenisch (B28) 2019; 111
Slafer (B62) 2014; 157
Kirby (B30) 1967; 68
B53
Purcell (B54) 2000; 40
Hucl (B26) 1988; 68
Nathan (B46) 2012
Roth (B58) 1984; 76
Huntington (B27) 2017; 98
Lollato (B39) 2019; 59
Briggs (B12) 1979; 59
Bridger (B11) 1994; 144
Kuraparthy (B32) 2007; 114
Lollato (B37) 2015; 55
McLeod (B42) 1992; 84
Mian (B45) 1992; 5
Patrignani (B51) 2014; 106
Hochman (B24) 2018; 228
Schaafsma (B61) 2005; 89
Mehring (B44) 2016
Assefa (B4) 2018; 8
Beres (B9) 2016; 108
Leikam (B34) 2003
Balla (B7) 1971; 20
References_xml – volume: 186
  start-page: 22
  year: 1960
  ident: B25
  article-title: Plant population and crop yield
  publication-title: Nature
  doi: 10.1038/186022b0
– volume: 87
  start-page: 503
  year: 2007
  ident: B41
  article-title: Efficacy of high seeding rates to increase grain yield of winter wheat and winter triticale in Southern Alberta
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/CJPS06013
– volume-title: Soil test interpretations and fertilizer recommendations
  year: 2003
  ident: B34
– volume: 114
  start-page: 285
  year: 2007
  ident: B32
  article-title: Identification and mapping of a tiller inhibition gene (tin3) in wheat
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-006-0431-y
– volume-title: Bread wheat: improvement and production.
  year: 2002
  ident: B16
– volume: 59
  start-page: 95
  year: 2008
  ident: B69
  article-title: The influences of genotype, environment, and genotype×environment interaction on wheat quality
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR07185
– volume: 68
  start-page: 1119
  year: 1988
  ident: B26
  article-title: An evaluation of common spring wheat germplasm for tillering
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps88-133
– volume: 66
  start-page: 28
  year: 2009
  ident: B65
  article-title: Seeding density in wheat genotypes as a function of tillering potential. Sci. agric
  publication-title: (Piracicaba Braz.)
  doi: 10.1590/S0103-90162009000100004
– volume: 144
  start-page: 235
  year: 1994
  ident: B11
  article-title: Cold acclimation increases tolerance of activated oxygen in winter cereals
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(11)80549-3
– ident: B64
– volume: 42
  start-page: 827
  year: 2002
  ident: B22
  article-title: Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2002.0827
– volume: 27
  start-page: 177
  year: 2011
  ident: B33
  article-title: Growth and yield attributes of wheat at different seed rates
  publication-title: Sarhad J. Agric.
– volume: 67
  start-page: 1
  year: 2015
  ident: B8
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Software
  doi: 10.18637/jss.v067.i01
– volume: 59
  start-page: 333
  year: 2019
  ident: B39
  article-title: Agronomic practices for reducing wheat yield gaps: a quantitative appraisal of progressive producers
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2018.04.0249
– volume: 6
  start-page: 408
  year: 1993
  ident: B17
  article-title: Influence of planting date and seeding rate on winter wheat grain yield and yield components
  publication-title: jpa
  doi: 10.2134/jpa1993.0408
– volume: 70
  start-page: 176
  year: 2013
  ident: B66
  article-title: Seeding density in wheat: the more, the merrier
  publication-title: Sci. Agric.
  doi: 10.1590/S0103-90162013000300006
– volume: 111
  start-page: 650
  year: 2019
  ident: B28
  article-title: Plant population and fungicide economically reduced winter wheat yield gap in Kansas
  publication-title: Agron. J.
  doi: 10.2134/agronj2018.03.0223
– volume: 20
  start-page: 411
  year: 1971
  ident: B7
  article-title: Study of wheat varieties grown with different spacing
  publication-title: Acta Agronomica Academiae Scientiarum Hungaricae
– volume: 106
  start-page: 1329
  year: 2014
  ident: B51
  article-title: Yield gap and production gap of rainfed winter wheat in the Southern Great Plains
  publication-title: Agron. J.
  doi: 10.2134/agronj14.0011
– volume-title: Barley response to planting rate in Northeastern North Dakota
  year: 1992
  ident: B23
– volume: 62
  start-page: 285
  year: 1982
  ident: B6
  article-title: Effect of seeding rate on grain yield, straw yield and harvest index of eight spring wheat cultivars
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps82-045
– volume: 68
  start-page: 317
  year: 1967
  ident: B30
  article-title: The effect of plant density upon the growth and yield of barley
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600012806
– volume: 48
  start-page: 749
  year: 2008
  ident: B49
  article-title: Seeding rate and nitrogen management on milling and baking quality of hard red spring wheat genotypes
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2007.08.0473
– volume: 3
  start-page: 289
  year: 1980
  ident: B18
  article-title: Effect of seeding rate on growth and yield of three spring wheat cultivars
  publication-title: Field Crops Res.
  doi: 10.1016/0378-4290(80)90036-2
– volume: 84
  start-page: 86
  year: 1992
  ident: B42
  article-title: Optimum seeding date for winter wheat in Southwestern Saskatchewan
  publication-title: Agron. J.
  doi: 10.2134/agronj1992.00021962008400010017x
– year: 1988
  ident: B60
  article-title: The competitive ability of spring cereals. [dissertation thesis]
– volume: 125
  start-page: 357
  year: 2002
  ident: B35
  article-title: Chromosomal locations and genetic relationships of tiller and spike characters in wheat
  publication-title: Euphytica
  doi: 10.1023/A:1016069809977
– volume: 59
  start-page: 1139
  year: 1979
  ident: B12
  article-title: The effects of seeding rate, seeding date and location on grain yield, maturity, protein percentage and protein yield of some spring wheats in Central Alberta
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps79-176
– volume: 61
  start-page: 126
  year: 2015
  ident: B59
  article-title: Influence of the cultivar, environment and management on the grain yield and bread-making quality in winter wheat
  publication-title: J. Cereal Sci.
  doi: 10.1016/j.jcs.2014.11.001
– volume-title: R: a language and environment for statistical computing
  year: 2019
  ident: B55
– year: 2019
  ident: B40
  article-title: cluster: cluster analysis basics and extensions
– volume: 9
  start-page: 00
  year: 2010
  ident: B14
  article-title: Seeding rate effects on yield and yield components of bread wheat cultivars in the Mid-Atlantic USA
  publication-title: cm
  doi: 10.1094/CM-2010-1227-02-RS
– volume-title: Recommended chemical soil test procedures for the North Central Region.
  year: 2012
  ident: B46
– volume: 111
  start-page: 1923
  year: 2019
  ident: B13
  article-title: Soybean seed yield response to plant density by yield environment in North America
  publication-title: Agron. J.
  doi: 10.2134/agronj2018.10.0635
– volume: 57
  start-page: 951
  year: 2017
  ident: B10
  article-title: Seeding rate, genotype, and topdressed nitrogen effects on yield and agronomic characteristics of winter wheat
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2016.02.0103
– volume: 107
  start-page: 2312
  year: 2015
  ident: B50
  article-title: Canopeo: a powerful new tool for measuring fractional green canopy cover
  publication-title: Agron. J.
  doi: 10.2134/agronj15.0150
– volume: 52
  start-page: 310
  year: 1960
  ident: B52
  article-title: The effect of seeding rate and rate of nitrogen application on winter wheat varieties with different characteristics
  publication-title: Agron. J.
  doi: 10.2134/agronj1960.00021962005200060002x
– volume: 18
  start-page: 1
  year: 2002
  ident: B68
  article-title: Determining an optimum seeding rate for spring wheat in Northwest Minnesota
  publication-title: Crop Management
  doi: 10.1094/CM-2002-0510-01-RS
– volume: 77
  start-page: 211
  year: 1985
  ident: B29
  article-title: Row spacing and seeding rate effects on yield and yield components of soft red winter wheat
  publication-title: Agron. J.
  doi: 10.2134/agronj1985.00021962007700020009x
– volume: 203
  start-page: 212
  year: 2017
  ident: B38
  article-title: Meteorological limits to winter wheat productivity in the U.S. Southern Great Plains
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.12.014
– volume: 76
  start-page: 207
  year: 1996
  ident: B43
  article-title: Seeding depth, rate and row spacing for winter wheat grown on stubble and chemical fallow in the semiarid prairies
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps96-039
– volume: 76
  start-page: 379
  year: 1984
  ident: B58
  article-title: Effect of Management Practices on Grain Yield, Test Weight, and Lodging of Soft Red Winter Wheat1
  publication-title: Agron. J.
  doi: 10.2134/agronj1984.00021962007600030007x
– volume: 58
  start-page: 1
  year: 2018
  ident: B5
  article-title: Major management factors determining spring and winter canola yield in North America
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2017.02.0079
– volume: 50
  start-page: 485
  year: 1970
  ident: B56
  article-title: Studies with hybrid wheat in Ontario
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps70-088
– volume: 232
  start-page: 95
  year: 2019
  ident: B19
  article-title: Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: an update
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2018.12.011
– year: 2019
  ident: B31
  article-title: quantreg: quantile regression
– volume: 478
  start-page: 337
  year: 2011
  ident: B20
  article-title: Solutions for a cultivated planet
  publication-title: Nature
  doi: 10.1038/nature10452
– volume: 98
  start-page: 2397
  year: 2017
  ident: B27
  article-title: Climate Engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding
  publication-title: Bull. Amer. Meteor. Soc
  doi: 10.1175/BAMS-D-15-00324.1
– year: 2014
  ident: B48
  article-title: Seeding rate and planting date effects on spring wheat yield in Intermountain region
– volume: 15
  start-page: 19
  year: 2001
  ident: B57
  article-title: Wheat (Triticum aestivum) row spacing, seeding rate, and cultivar affect interference from rye (Secale cereale)
  publication-title: Weed Technol.
  doi: 10.1614/0890-037X(2001)015[0019:WTARSS]2.0.CO;2
– volume: 103
  start-page: 316
  year: 2010
  ident: B47
  article-title: The yield gap of global grain production: a spatial analysis
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2010.02.004
– volume: 5
  start-page: 265
  year: 1992
  ident: B45
  article-title: Seed size effects on emergence, head number, and grain yield of winter wheat
  publication-title: jpa
  doi: 10.2134/jpa1992.0265
– volume: 25
  start-page: 309
  year: 2006
  ident: B2
  article-title: Grain yield, and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2006.06.009
– volume: 110
  start-page: 2430
  year: 2018
  ident: B15
  article-title: Optimum soybean seeding rates by yield environment in Southern Brazil
  publication-title: Agron. J.
  doi: 10.2134/agronj2018.04.0239
– volume: 89
  start-page: 1109
  year: 2005
  ident: B61
  article-title: Effect of seeding rate and seed treatment fungicides on agronomic performance, fusarium head blight symptoms, and don accumulation in two winter wheats
  publication-title: Plant Dis.
  doi: 10.1094/PD-89-1109
– volume: 137
  start-page: 165
  year: 2000
  ident: B67
  article-title: The physiological response of winter wheat to reductions in plant density
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2000.tb00048.x
– volume: 108
  start-page: 1101
  year: 2016
  ident: B9
  article-title: Winter wheat cropping system response to seed treatments, seed size, and sowing density
  publication-title: Agron. J.
  doi: 10.2134/agronj2015.0497
– volume: 96
  start-page: 1258
  year: 2004
  ident: B36
  article-title: Seeding rate influence on yield and yield components of irrigated winter wheat in a mediterranean climate
  publication-title: Agron. J.
  doi: 10.2134/agronj2004.1258
– volume: 157
  start-page: 71
  year: 2014
  ident: B62
  article-title: Coarse and fine regulation of wheat yield components in response to genotype and environment
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2013.12.004
– volume: 8
  start-page: 4937
  year: 2018
  ident: B4
  article-title: Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23362-x
– volume: 95
  start-page: 253
  year: 2003
  ident: B63
  article-title: Seeding and nitrogen rates required to optimize winter wheat yields following grain sorghum and soybean
  publication-title: Agron. J.
  doi: 10.2134/agronj2003.0253
– volume: 42
  start-page: 701
  year: 1991
  ident: B1
  article-title: Evidence for differences between three wheat cultivars in yield response to plant population
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR9910701
– volume: 56
  start-page: 2802
  year: 2016
  ident: B3
  article-title: Yield responses to planting density for us modern corn hybrids: a synthesis-analysis
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2016.04.0215
– volume: 228
  start-page: 20
  year: 2018
  ident: B24
  article-title: Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2018.08.023
– volume: 55
  start-page: 2863
  year: 2015
  ident: B37
  article-title: Maximum attainable wheat yield and resource-use efficiency in the Southern Great Plains
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2015.04.0215
– volume: 7
  start-page: 293
  year: 2012
  ident: B21
  article-title: Contribution of primary spikes vs tillers to total deoxynivalenol in harvested grain of wheat and barley
  publication-title: Am. J. Agric. Biol. Sci.
  doi: 10.3844/ajabssp.2012.293.300
– volume-title: Determining optimum seeding rates for diverse hard red spring wheat (Triticum aestivum L.) cultivars. [dissertation thesis]
  year: 2016
  ident: B44
– ident: B53
– volume: 40
  start-page: 834
  year: 2000
  ident: B54
  article-title: Soybean canopy coverage and light interception measurements using digital imagery
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2000.403834x
SSID ssj0000500997
Score 2.544459
Snippet Wheat ( L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors...
Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better...
Wheat ( Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 54
SubjectTerms Plant Science
synthesis-analysis
tillering potential
wheat
yield components
yield environment
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMXRMsrPKpB4sAldJOM1zG3tnRVIYEQakU5RX4KpFVSlfTQc_84M3a67CIQF66JLVv-xp4Z-fM3QryaV62uXbRltBFLjL4qdRN0ScF6a3UIuklkzA8f5ydn-P5cnq-V-mJOWJYHzgu3b6tYOTczvjGItSX3FgzWhiu3ei1jUgKlj2vJVFb15tBHZS0fysL0frxYsjp3zUyumcQNN5TU-v8UYv7OlFxzPYv74t4UM8JBnuuOuBP6XbF9OFBcd_1A3HxhyYdLSMcqfGVGGnzOzNcA4wBclmiEd0xUH6_B_AADC3JmDAgMcepw_Ou9G5jew2l6IkhuDT4NIxOKzPItHEC-SUgtFqnfREN8KM4Wx6dHJ-VUWqF0KPVY1t5Yck2oWqclhSio0RkdtUPfonfWOIzYzlvTOtrlPgTKZR3W0VODilKQ5pHY6oc-PBGAYaZcmLtYW4szQwgrHXSsI0WaQXpTiDe3K925SXecy18sO8o_GJqOoekYmi5BU4jXqw4XWXLj700PGbpVM9bKTh_IgrrJgrp_WVAhXt4C39He4gsT04fhigbiW1XK2ZQqxONsCKuhGjrqUSpdCLVhIhtz2fzTf_-W9LsVq-5LfPo_Jv9M3OXlSKw4-VxsjZdX4QWFSaPdSzviJy9lEwE
  priority: 102
  providerName: Directory of Open Access Journals
Title Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/32194579
https://www.proquest.com/docview/2381621777
https://pubmed.ncbi.nlm.nih.gov/PMC7066254
https://doaj.org/article/b1f1cc0ad3a442b091ea42a3754d95f4
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVK4cAFlc8uhcpIHLikbJxJHCMh1NIuFVIRQl2xnCJ_tkirpGxTiT33j3fGSbdstUi95JDYsZOxM2_i5zeMvS3SUgkbTBJMgASCSxOVeZUgWC-N8l5lkYx59K04HMPXST65SQfUv8DzlaEd5ZMaz6Y7f__MP-GE_0gRJ_rb9-FsSsLbgkhaiEDusfvoliSlMzjqsX4n9E1oKCZbKQrsViEmndTPqnsseako5r8Kgd4mUv7jmUYb7FEPKfluNwYeszVfP2EP9hqEffOn7PInKULMePzq8l9EWOM_OmKs523DKWtRy_eJx97OuT7nmo_Q15G9eBP6Cgc32-G4rh0_jjsI0evx701LfCM9_cB3ebfQEEuMYr2epfiMjUcHx58Pkz7zQmIhV20inDbouUCWVuWIYECB1SooC64EZ422EKAsSl1a_Ag47zHUtSCCwwIpRijZc7ZeN7XfZBz8UFpf2CCMgaHGASCVV0EEBKI-d3rAdq7fdGV7WXLKjjGtMDwh01RkmopMU0XTDNi7RYWzTpHj_0X3yHSLYiSlHU80s5Oqn5mVSUNq7VC7TAMIg_jJaxCaUgM7lQe8yZtrw1c49Wg9Rde-ucCGaNEVQzopB-xFNxAWTWXoCSCXasDk0hBZ6svylfr3aZT3liTKn8PLO7S7xR7S00ZOXP6KrbezC_8aQVJrtuPPBTx-maTbcSJcAWYaE2E
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+Wheat+Yield+Response+to+Plant+Density+as+a+Function+of+Yield+Environment+and+Tillering+Potential%3A+A+Review+and+Field+Studies&rft.jtitle=Frontiers+in+plant+science&rft.au=Bastos%2C+Leonardo+M&rft.au=Carciochi%2C+Walter&rft.au=Lollato%2C+Romulo+P&rft.au=Jaenisch%2C+Brent+R&rft.date=2020-03-05&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=11&rft.spage=54&rft_id=info:doi/10.3389%2Ffpls.2020.00054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon