The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker

Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (...

Full description

Saved in:
Bibliographic Details
Published inCancer cell Vol. 39; no. 2; pp. 154 - 173
Main Authors Jardim, Denis L., Goodman, Aaron, de Melo Gagliato, Debora, Kurzrock, Razelle
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed. Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed.
AbstractList Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed.Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed.
Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T-cells. To evade immune eradication, cancers exploit checkpoints that dampen T-cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T-cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T-cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T-cell receptor repertoire, is needed.
Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed. Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed.
Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed.
Author Goodman, Aaron
de Melo Gagliato, Debora
Jardim, Denis L.
Kurzrock, Razelle
AuthorAffiliation 2 Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
1 Centro de Oncologia Hospital Sírio Libanês – São Paulo, Brazil
3 Hospital; Beneficiência Portuguesa, Department of Medical Oncology, São Paulo, Brazil
AuthorAffiliation_xml – name: 1 Centro de Oncologia Hospital Sírio Libanês – São Paulo, Brazil
– name: 3 Hospital; Beneficiência Portuguesa, Department of Medical Oncology, São Paulo, Brazil
– name: 2 Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
Author_xml – sequence: 1
  givenname: Denis L.
  surname: Jardim
  fullname: Jardim, Denis L.
  organization: Centro de Oncologia Hospital Sírio Libanês–São Paulo, São Paulo, Brazil
– sequence: 2
  givenname: Aaron
  surname: Goodman
  fullname: Goodman, Aaron
  organization: Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
– sequence: 3
  givenname: Debora
  surname: de Melo Gagliato
  fullname: de Melo Gagliato, Debora
  organization: Hospital Beneficência Portuguesa, Department of Medical Oncology, São Paulo, Brazil
– sequence: 4
  givenname: Razelle
  surname: Kurzrock
  fullname: Kurzrock, Razelle
  email: rkurzrock@ucsd.edu
  organization: Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33125859$$D View this record in MEDLINE/PubMed
BookMark eNp9UctOxCAUJUbj-wtMDEs3HYEW2i40cSa-Eo2bcU0ovXUYWxihNfHvpY4adeEKcu953Jyzhzats4DQESUTSqg4XU60hradMMLGyYQQuoF2aZEXSSoKsRn_POWJoKTYQXshLCNA0LzcRjtpShkveLmLrucLwLOFaluwTxCwa_B86JzH90OveuOsavF08DVYrAJWFt923WBdvwCvVm94alyn_DP4A7TVqDbA4ee7jx6vLuezm-Tu4fp2dnGX6IyXfcIUzQjTOW8aVvEqnt7kPCuymvOMZKqGpi45zTmtgIuyznXBoKJKFVVeMkqqdB-dr3VXQ9VBrcH2XrVy5U284006ZeTvjTUL-eReZR5zYSWLAiefAt69DBB62Zkw5qgsuCFIlnGRUSIEidDjn17fJl_pRUC5BmjvQvDQSG3WqUVr00pK5NiUXMqPpuTY1DiMRURu-of7Jf8_62zNgpjxqwEvgzZgNdTGg-5l7cy__Hdo9a4D
CitedBy_id crossref_primary_10_1016_j_phrs_2023_106674
crossref_primary_10_3389_fimmu_2022_1088683
crossref_primary_10_1016_j_critrevonc_2025_104683
crossref_primary_10_2147_OTT_S278089
crossref_primary_10_1128_spectrum_05038_22
crossref_primary_10_3389_fimmu_2024_1466806
crossref_primary_10_1016_j_annonc_2024_06_014
crossref_primary_10_3389_fphar_2023_1185418
crossref_primary_10_1038_s41423_023_01072_3
crossref_primary_10_1007_s00262_023_03414_6
crossref_primary_10_1016_j_jtcvs_2024_03_034
crossref_primary_10_1007_s13205_024_04133_0
crossref_primary_10_1007_s00262_024_03839_7
crossref_primary_10_1016_j_prp_2025_155864
crossref_primary_10_3390_biomedicines12040764
crossref_primary_10_3390_cells12050755
crossref_primary_10_1007_s12038_023_00386_8
crossref_primary_10_1177_15330338241231610
crossref_primary_10_18632_aging_203895
crossref_primary_10_1126_sciadv_ado2830
crossref_primary_10_3389_fanes_2024_1464004
crossref_primary_10_1515_biol_2022_1001
crossref_primary_10_3390_diagnostics12010124
crossref_primary_10_1007_s12094_024_03457_w
crossref_primary_10_1007_s11255_024_04086_6
crossref_primary_10_1016_j_envres_2023_116507
crossref_primary_10_20517_2394_4722_2023_85
crossref_primary_10_1200_PO_21_00168
crossref_primary_10_1038_s41585_024_00901_y
crossref_primary_10_5306_wjco_v15_i2_329
crossref_primary_10_3389_fonc_2023_1177133
crossref_primary_10_3389_fcell_2024_1459183
crossref_primary_10_1038_s41392_024_02060_3
crossref_primary_10_1016_j_heliyon_2024_e27801
crossref_primary_10_1007_s12094_024_03641_y
crossref_primary_10_1097_SLA_0000000000006386
crossref_primary_10_1016_j_intimp_2024_111771
crossref_primary_10_1186_s12920_024_01991_8
crossref_primary_10_1093_bib_bbac360
crossref_primary_10_1038_s41392_023_01406_7
crossref_primary_10_3389_fonc_2024_1380821
crossref_primary_10_3389_fimmu_2023_1058627
crossref_primary_10_1002_cam4_5391
crossref_primary_10_1016_j_trsl_2023_11_003
crossref_primary_10_5306_wjco_v15_i3_367
crossref_primary_10_1016_j_critrevonc_2025_104669
crossref_primary_10_1155_2022_4909544
crossref_primary_10_3389_fcell_2021_738373
crossref_primary_10_1016_j_xcrm_2024_101438
crossref_primary_10_1021_acsomega_3c04856
crossref_primary_10_4132_jptm_2023_11_01
crossref_primary_10_3389_fimmu_2023_1148483
crossref_primary_10_1007_s40291_023_00679_6
crossref_primary_10_3389_fimmu_2021_723172
crossref_primary_10_3389_fimmu_2022_1024925
crossref_primary_10_3390_ijms25063173
crossref_primary_10_1093_bib_bbae410
crossref_primary_10_36401_JIPO_22_25
crossref_primary_10_1080_20450907_2024_2415878
crossref_primary_10_1186_s12885_022_09927_0
crossref_primary_10_3390_bios14100501
crossref_primary_10_3390_cancers14071669
crossref_primary_10_1186_s12885_025_13731_x
crossref_primary_10_2147_JIR_S480744
crossref_primary_10_1186_s12943_024_02134_4
crossref_primary_10_3389_fimmu_2024_1344272
crossref_primary_10_1038_s41598_024_70430_6
crossref_primary_10_3389_fonc_2021_706910
crossref_primary_10_1186_s40001_023_01132_4
crossref_primary_10_18632_aging_204964
crossref_primary_10_1186_s12957_022_02767_z
crossref_primary_10_3390_cancers16081551
crossref_primary_10_1016_j_neo_2024_101049
crossref_primary_10_1016_j_xcrm_2024_101549
crossref_primary_10_5858_arpa_2023_0056_RA
crossref_primary_10_3390_cancers13051162
crossref_primary_10_1002_cam4_4190
crossref_primary_10_1016_j_ccell_2021_06_007
crossref_primary_10_1093_bib_bbae648
crossref_primary_10_1016_j_cellsig_2024_111533
crossref_primary_10_1038_s43018_024_00802_4
crossref_primary_10_1016_j_intimp_2024_112569
crossref_primary_10_3389_fimmu_2023_1196970
crossref_primary_10_1016_j_pharmthera_2022_108253
crossref_primary_10_3389_fonc_2021_737497
crossref_primary_10_3389_fphar_2022_972934
crossref_primary_10_3390_cancers15225321
crossref_primary_10_3390_genes13060993
crossref_primary_10_18632_aging_205905
crossref_primary_10_1038_s41568_024_00761_z
crossref_primary_10_2217_epi_2023_0388
crossref_primary_10_1016_j_heliyon_2024_e26974
crossref_primary_10_1007_s10555_024_10184_9
crossref_primary_10_1016_j_humpath_2021_05_009
crossref_primary_10_3389_fimmu_2023_1178193
crossref_primary_10_1007_s00428_022_03444_y
crossref_primary_10_3389_fimmu_2022_1043738
crossref_primary_10_1038_s41568_022_00529_3
crossref_primary_10_1038_s41598_024_57299_1
crossref_primary_10_3389_fgene_2023_1106724
crossref_primary_10_1016_j_ejca_2023_05_015
crossref_primary_10_3389_fonc_2023_1190251
crossref_primary_10_3390_vaccines13040344
crossref_primary_10_1155_2022_6734105
crossref_primary_10_1002_jgm_3729
crossref_primary_10_2147_IJGM_S496006
crossref_primary_10_1016_j_heliyon_2023_e15693
crossref_primary_10_1038_s41598_024_54273_9
crossref_primary_10_1038_s41698_024_00759_8
crossref_primary_10_3389_fonc_2022_911961
crossref_primary_10_1002_adma_202308977
crossref_primary_10_3389_fimmu_2022_858246
crossref_primary_10_3389_fgene_2022_828543
crossref_primary_10_62347_MVDH5025
crossref_primary_10_7717_peerj_18530
crossref_primary_10_1016_j_cpt_2023_12_002
crossref_primary_10_1016_j_acpath_2023_100090
crossref_primary_10_1016_j_clcc_2023_03_001
crossref_primary_10_1038_s41598_023_33213_z
crossref_primary_10_1016_j_csbj_2023_09_021
crossref_primary_10_1186_s40364_022_00446_5
crossref_primary_10_1080_2162402X_2023_2233399
crossref_primary_10_1016_j_cell_2023_03_013
crossref_primary_10_1016_j_cca_2022_07_001
crossref_primary_10_1186_s12967_024_05103_z
crossref_primary_10_1111_jcmm_18092
crossref_primary_10_3389_fimmu_2023_955949
crossref_primary_10_3389_fimmu_2023_1061761
crossref_primary_10_1016_j_canlet_2024_217114
crossref_primary_10_3389_fimmu_2022_944898
crossref_primary_10_1007_s43152_023_00047_w
crossref_primary_10_1038_s41392_022_01200_x
crossref_primary_10_1007_s12325_024_02883_0
crossref_primary_10_1038_s41591_022_01754_x
crossref_primary_10_1016_j_cej_2024_157037
crossref_primary_10_1038_s41525_025_00465_9
crossref_primary_10_3389_fonc_2022_1086664
crossref_primary_10_3389_fonc_2022_975437
crossref_primary_10_18632_aging_204911
crossref_primary_10_2147_IJGM_S461144
crossref_primary_10_3389_fimmu_2022_974265
crossref_primary_10_18632_aging_206096
crossref_primary_10_3389_fmolb_2022_872932
crossref_primary_10_1136_jitc_2024_008817
crossref_primary_10_3390_biom13060883
crossref_primary_10_3390_ph17080991
crossref_primary_10_1007_s11864_024_01197_1
crossref_primary_10_1080_08923973_2023_2261146
crossref_primary_10_1155_2022_2524649
crossref_primary_10_3390_cancers15072099
crossref_primary_10_1080_15384047_2022_2128608
crossref_primary_10_3390_genes13071282
crossref_primary_10_3390_cancers16030480
crossref_primary_10_1007_s00432_024_05640_6
crossref_primary_10_1016_j_heliyon_2023_e16644
crossref_primary_10_1155_2024_2097920
crossref_primary_10_3389_fimmu_2022_1056932
crossref_primary_10_1080_21645515_2024_2303799
crossref_primary_10_1158_1078_0432_CCR_23_3249
crossref_primary_10_1177_17588359241273053
crossref_primary_10_3389_fimmu_2022_992630
crossref_primary_10_3390_ijms23147839
crossref_primary_10_1007_s40257_025_00920_4
crossref_primary_10_1136_jitc_2021_004440
crossref_primary_10_4143_crt_2023_1043
crossref_primary_10_1016_j_biopha_2024_116203
crossref_primary_10_1093_ajcp_aqae094
crossref_primary_10_5230_jgc_2023_23_e29
crossref_primary_10_1111_cas_15727
crossref_primary_10_1186_s40478_023_01569_y
crossref_primary_10_3390_cancers15041156
crossref_primary_10_1016_j_ccell_2023_12_005
crossref_primary_10_1002_cnr2_1914
crossref_primary_10_3389_fonc_2023_1088129
crossref_primary_10_62347_OWVW7440
crossref_primary_10_1016_j_trecan_2023_07_007
crossref_primary_10_1007_s00262_023_03626_w
crossref_primary_10_1016_j_intimp_2024_113329
crossref_primary_10_1136_jitc_2022_004831
crossref_primary_10_1186_s13046_021_02133_z
crossref_primary_10_3389_fonc_2021_634841
crossref_primary_10_2147_JHC_S291553
crossref_primary_10_3390_ijms242316591
crossref_primary_10_1097_JS9_0000000000001479
crossref_primary_10_1080_07357907_2024_2340577
crossref_primary_10_2147_CMAR_S500215
crossref_primary_10_1038_s41598_024_52596_1
crossref_primary_10_1038_s41467_022_32838_4
crossref_primary_10_1016_j_yexmp_2022_104832
crossref_primary_10_1038_s41598_023_36125_0
crossref_primary_10_1038_s41571_024_00868_0
crossref_primary_10_1155_2022_5722599
crossref_primary_10_1016_j_biopha_2022_113618
crossref_primary_10_1016_j_ebiom_2024_105035
crossref_primary_10_1038_s41598_024_59154_9
crossref_primary_10_3389_fgene_2022_1022131
crossref_primary_10_3389_fgene_2022_1104338
crossref_primary_10_1177_17588359241249041
crossref_primary_10_1016_j_intimp_2024_112224
crossref_primary_10_1097_FTD_0000000000001228
crossref_primary_10_1186_s12935_025_03696_z
crossref_primary_10_1038_s41416_024_02890_6
crossref_primary_10_2147_PGPM_S452625
crossref_primary_10_1016_j_arabjc_2024_105990
crossref_primary_10_1016_j_lungcan_2025_108101
crossref_primary_10_3892_mmr_2024_13406
crossref_primary_10_1002_cam4_6761
crossref_primary_10_1016_j_canlet_2024_216991
crossref_primary_10_1038_s41598_023_43065_2
crossref_primary_10_3389_fimmu_2024_1327565
crossref_primary_10_1007_s10637_023_01406_y
crossref_primary_10_1186_s12885_022_09983_6
crossref_primary_10_1016_j_ccell_2021_08_003
crossref_primary_10_1016_j_heliyon_2023_e12873
crossref_primary_10_1016_j_bbcan_2024_189126
crossref_primary_10_1111_cpr_13283
crossref_primary_10_3389_fendo_2022_1010279
crossref_primary_10_3892_etm_2023_12060
crossref_primary_10_1016_j_omtn_2023_09_003
crossref_primary_10_3389_fonc_2023_1149370
crossref_primary_10_1038_s41598_024_52153_w
crossref_primary_10_32604_or_2024_055866
crossref_primary_10_1016_j_cancergen_2024_12_002
crossref_primary_10_3389_fgene_2022_1011390
crossref_primary_10_3390_ijms25168830
crossref_primary_10_3748_wjg_v28_i27_3297
crossref_primary_10_1097_MD_0000000000038750
crossref_primary_10_3389_fimmu_2023_1164669
crossref_primary_10_3233_CBM_230036
crossref_primary_10_3390_biomedicines10051181
crossref_primary_10_1016_j_drudis_2023_103666
crossref_primary_10_1007_s00262_024_03657_x
crossref_primary_10_1016_j_omton_2024_200835
crossref_primary_10_3389_fimmu_2021_784861
crossref_primary_10_3389_fimmu_2023_1131768
crossref_primary_10_1111_1759_7714_14696
crossref_primary_10_3892_ol_2023_13975
crossref_primary_10_1159_000533972
crossref_primary_10_1038_s41698_023_00471_z
crossref_primary_10_3389_fimmu_2024_1423796
crossref_primary_10_3389_fphar_2022_857774
crossref_primary_10_1016_j_isci_2023_108014
crossref_primary_10_3390_ijms222010931
crossref_primary_10_3390_ijms241512383
crossref_primary_10_3390_ph16040614
crossref_primary_10_1136_jitc_2024_010928
crossref_primary_10_3389_fgene_2022_947216
crossref_primary_10_1002_cam4_4525
crossref_primary_10_1016_j_eururo_2024_10_024
crossref_primary_10_3389_fgene_2022_1032382
crossref_primary_10_1016_j_ejca_2025_115320
crossref_primary_10_3389_fimmu_2022_943389
crossref_primary_10_3389_fgene_2022_1084937
crossref_primary_10_7759_cureus_69136
crossref_primary_10_2139_ssrn_3975590
crossref_primary_10_3389_fimmu_2022_1032314
crossref_primary_10_18632_aging_204534
crossref_primary_10_1007_s12672_024_01315_3
crossref_primary_10_1186_s12885_023_10847_w
crossref_primary_10_1210_endrev_bnae005
crossref_primary_10_3390_biom14111437
crossref_primary_10_1080_14737140_2023_2208351
crossref_primary_10_1002_hed_28006
crossref_primary_10_1038_s41698_022_00309_0
crossref_primary_10_3390_molecules29081896
crossref_primary_10_1016_j_heliyon_2024_e36822
crossref_primary_10_1136_gutjnl_2021_326264
crossref_primary_10_1186_s12885_023_10616_9
crossref_primary_10_1158_1078_0432_CCR_24_0626
crossref_primary_10_1186_s12943_024_02179_5
crossref_primary_10_1021_acs_jmedchem_4c00568
crossref_primary_10_15406_ipmrj_2023_08_00347
crossref_primary_10_3389_fimmu_2023_1303491
crossref_primary_10_3389_fgene_2022_1024989
crossref_primary_10_1038_s41598_023_32276_2
crossref_primary_10_1186_s12876_025_03735_z
crossref_primary_10_3389_fimmu_2022_909189
crossref_primary_10_3389_fnmol_2022_972308
crossref_primary_10_3389_fimmu_2024_1469827
crossref_primary_10_18632_aging_203574
crossref_primary_10_3390_cancers15153997
crossref_primary_10_3390_cancers14184438
crossref_primary_10_1136_jitc_2024_009762
crossref_primary_10_2174_0122103155295035240330065048
crossref_primary_10_1021_acs_jproteome_4c00036
crossref_primary_10_3389_fmed_2023_1174764
crossref_primary_10_1158_1535_7163_MCT_21_0433
crossref_primary_10_1007_s00262_024_03630_8
crossref_primary_10_3389_fphar_2024_1351929
crossref_primary_10_1016_j_biopha_2024_117430
crossref_primary_10_1080_15384047_2025_2472432
crossref_primary_10_3322_caac_21880
crossref_primary_10_1007_s12672_024_01515_x
crossref_primary_10_1080_01635581_2022_2123533
crossref_primary_10_1007_s00432_024_05791_6
crossref_primary_10_1002_cam4_6844
crossref_primary_10_1038_s41698_024_00534_9
crossref_primary_10_1111_crj_70023
crossref_primary_10_1016_j_gene_2021_145966
crossref_primary_10_1007_s10549_025_07620_x
crossref_primary_10_1038_s41525_024_00392_1
crossref_primary_10_2147_IJGM_S395553
crossref_primary_10_3389_fimmu_2022_1052182
crossref_primary_10_1002_cai2_70
crossref_primary_10_3389_fimmu_2023_1197630
crossref_primary_10_1007_s43657_024_00182_w
crossref_primary_10_1186_s12920_023_01561_4
crossref_primary_10_1007_s10238_024_01460_7
crossref_primary_10_1111_jcmm_17847
crossref_primary_10_1158_2326_6066_CIR_21_1039
crossref_primary_10_3389_fimmu_2024_1331841
crossref_primary_10_3390_curroncol29060334
crossref_primary_10_1016_j_euo_2023_04_002
crossref_primary_10_1038_s41591_022_01999_6
crossref_primary_10_1038_s41698_023_00428_2
crossref_primary_10_32604_biocell_2024_054879
crossref_primary_10_1097_PAP_0000000000000366
crossref_primary_10_1007_s10238_024_01408_x
crossref_primary_10_1016_j_critrevonc_2024_104342
crossref_primary_10_1038_s41588_023_01313_1
crossref_primary_10_1002_cam4_70262
crossref_primary_10_3389_fimmu_2024_1435502
crossref_primary_10_1111_jcmm_70218
crossref_primary_10_1007_s00262_021_03069_1
crossref_primary_10_3389_fonc_2024_1410322
crossref_primary_10_1055_a_2334_8311
crossref_primary_10_3389_fimmu_2023_1137025
crossref_primary_10_1016_j_celrep_2023_113641
crossref_primary_10_1007_s00262_024_03631_7
crossref_primary_10_3389_fimmu_2023_1182030
crossref_primary_10_1158_1078_0432_CCR_23_3403
crossref_primary_10_3390_cancers16132420
crossref_primary_10_32948_ajo_2024_09_08
crossref_primary_10_3389_fgene_2023_1170640
crossref_primary_10_1016_j_celrep_2024_113877
crossref_primary_10_1016_j_intimp_2023_110986
crossref_primary_10_15430_JCP_2023_28_4_175
crossref_primary_10_1158_1078_0432_CCR_23_1469
crossref_primary_10_1002_cac2_12429
crossref_primary_10_3389_fimmu_2023_1198391
crossref_primary_10_1186_s12957_022_02727_7
crossref_primary_10_3390_ijms24043441
crossref_primary_10_3390_cells12202457
crossref_primary_10_1007_s10528_025_11074_7
crossref_primary_10_1016_j_neurol_2024_08_002
crossref_primary_10_1016_j_heliyon_2024_e26013
crossref_primary_10_3390_ijms24043317
crossref_primary_10_1093_oncolo_oyae152
crossref_primary_10_3389_fonc_2022_1054564
crossref_primary_10_1093_oncolo_oyac096
crossref_primary_10_1038_s41598_024_57402_6
crossref_primary_10_1016_j_celrep_2023_113352
crossref_primary_10_1080_2162402X_2022_2158610
crossref_primary_10_1186_s12967_024_04954_w
crossref_primary_10_18632_aging_205280
crossref_primary_10_3390_jcm11092629
crossref_primary_10_3390_biomedicines12081753
crossref_primary_10_1002_cam4_70290
crossref_primary_10_1016_j_mrrev_2023_108471
crossref_primary_10_3389_fimmu_2022_1014638
crossref_primary_10_3390_ijms24043324
crossref_primary_10_1146_annurev_immunol_070621_030155
crossref_primary_10_3322_caac_21844
crossref_primary_10_3389_fimmu_2021_592031
crossref_primary_10_1016_j_heliyon_2023_e19217
crossref_primary_10_1155_2022_8570882
crossref_primary_10_1186_s12885_023_11589_5
crossref_primary_10_3390_ijms242015465
crossref_primary_10_1016_j_intimp_2023_110642
crossref_primary_10_1073_pnas_2314416120
crossref_primary_10_1038_s41571_024_00984_x
crossref_primary_10_3389_fimmu_2024_1420463
crossref_primary_10_1016_j_ebiom_2023_104515
crossref_primary_10_3390_cancers16173071
crossref_primary_10_1186_s13046_025_03342_6
crossref_primary_10_1097_JP9_0000000000000093
crossref_primary_10_1097_HEP_0000000000000591
crossref_primary_10_1016_j_intimp_2024_113153
crossref_primary_10_3389_fonc_2024_1463892
crossref_primary_10_5230_jgc_2024_24_e6
crossref_primary_10_1021_acs_analchem_2c04673
crossref_primary_10_3390_jcm14031034
crossref_primary_10_52396_JUSTC_2022_0185
crossref_primary_10_1038_s41598_024_76945_2
crossref_primary_10_18632_aging_205009
crossref_primary_10_3389_fimmu_2023_1054700
crossref_primary_10_1097_MD_0000000000036049
crossref_primary_10_18632_aging_205481
crossref_primary_10_1007_s12274_023_5786_8
crossref_primary_10_1007_s13167_022_00305_1
crossref_primary_10_1038_s41698_024_00765_w
crossref_primary_10_4155_fdd_2021_0006
crossref_primary_10_1007_s13205_024_04053_z
crossref_primary_10_1016_j_medj_2024_11_003
crossref_primary_10_1136_jitc_2021_004036
crossref_primary_10_1038_s41421_022_00445_8
crossref_primary_10_1111_1759_7714_15032
crossref_primary_10_1155_2024_2825971
crossref_primary_10_3389_fcell_2022_876180
crossref_primary_10_1038_s41598_024_70208_w
crossref_primary_10_1007_s00432_023_05013_5
crossref_primary_10_3389_fgene_2022_989081
crossref_primary_10_1158_0008_5472_CAN_21_2542
crossref_primary_10_1186_s12903_022_02193_3
crossref_primary_10_2147_DDDT_S429180
crossref_primary_10_1186_s10020_024_01036_x
crossref_primary_10_3389_fimmu_2024_1444007
crossref_primary_10_1186_s12931_024_02885_0
crossref_primary_10_1007_s40291_024_00766_2
crossref_primary_10_3389_fonc_2022_983892
crossref_primary_10_3389_fonc_2024_1489977
crossref_primary_10_1177_17588359241293401
crossref_primary_10_1016_j_mcpro_2024_100834
crossref_primary_10_3389_fgene_2021_723802
crossref_primary_10_1002_mco2_437
crossref_primary_10_3389_fonc_2022_1077477
crossref_primary_10_3389_fonc_2023_1198746
crossref_primary_10_1111_imr_13242
crossref_primary_10_3390_genes15040468
crossref_primary_10_3389_fgene_2023_1105900
crossref_primary_10_3390_biomedicines13040773
crossref_primary_10_1155_2022_8704127
crossref_primary_10_1186_s13073_021_00923_w
crossref_primary_10_1002_mc_23883
crossref_primary_10_62347_EYML2689
crossref_primary_10_1038_s41392_022_01307_1
crossref_primary_10_3389_fonc_2022_867655
crossref_primary_10_3390_biology11101458
crossref_primary_10_1016_j_tranon_2024_101938
crossref_primary_10_3389_fimmu_2024_1457691
crossref_primary_10_1016_j_ctrv_2023_102606
crossref_primary_10_1089_gtmb_2023_0024
crossref_primary_10_1007_s12672_023_00830_z
crossref_primary_10_1007_s13555_022_00801_2
crossref_primary_10_3390_cancers16061172
crossref_primary_10_1016_j_cej_2022_138139
crossref_primary_10_3389_fonc_2021_695006
crossref_primary_10_1016_j_cllc_2022_11_009
crossref_primary_10_1021_acs_analchem_2c05461
crossref_primary_10_1002_mco2_387
crossref_primary_10_1159_000541990
crossref_primary_10_3390_vaccines11030636
crossref_primary_10_1007_s00761_022_01219_3
crossref_primary_10_1111_1759_7714_15012
crossref_primary_10_1016_j_jncc_2021_11_006
crossref_primary_10_1111_jcmm_70280
crossref_primary_10_1038_s41598_024_63468_z
crossref_primary_10_1016_j_urolonc_2023_07_006
crossref_primary_10_3892_ol_2024_14509
crossref_primary_10_1186_s12903_022_02534_2
crossref_primary_10_1038_s41416_021_01413_x
crossref_primary_10_1007_s11523_022_00937_3
crossref_primary_10_1155_2022_9493115
crossref_primary_10_2147_LCTT_S492825
crossref_primary_10_3389_fonc_2021_677826
crossref_primary_10_2147_OTT_S447319
crossref_primary_10_1042_EBC20230001
crossref_primary_10_2139_ssrn_4141239
crossref_primary_10_3389_fonc_2022_843528
crossref_primary_10_3389_fonc_2025_1464578
crossref_primary_10_1093_oncolo_oyac040
crossref_primary_10_3390_cancers15010321
crossref_primary_10_1186_s13046_024_03195_5
crossref_primary_10_1111_cbdd_70006
crossref_primary_10_1016_j_esmoop_2021_100336
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_1155_2023_8446765
crossref_primary_10_1186_s40246_023_00558_5
crossref_primary_10_2147_OTT_S481443
crossref_primary_10_1038_s43018_024_00752_x
crossref_primary_10_1080_2162402X_2022_2052410
crossref_primary_10_3390_cancers16173037
crossref_primary_10_1136_jitc_2022_004669
crossref_primary_10_3390_cells12121586
crossref_primary_10_18632_aging_204599
crossref_primary_10_1038_s41598_024_85035_2
crossref_primary_10_1016_j_cellsig_2023_110699
crossref_primary_10_1080_14740338_2022_2020243
crossref_primary_10_1038_s41392_023_01522_4
crossref_primary_10_1155_2022_2010341
crossref_primary_10_3389_fgene_2022_1082691
crossref_primary_10_1038_s41598_023_43982_2
crossref_primary_10_3389_fimmu_2022_862084
crossref_primary_10_3390_ijms22136741
crossref_primary_10_1016_j_imbio_2024_152855
crossref_primary_10_3389_fimmu_2024_1456030
crossref_primary_10_1186_s12885_023_10515_z
crossref_primary_10_1016_j_ccell_2024_08_013
crossref_primary_10_1016_j_jncc_2024_06_004
crossref_primary_10_1186_s12885_024_12843_0
crossref_primary_10_1136_jitc_2024_009587
crossref_primary_10_1038_s41379_022_01109_4
crossref_primary_10_1097_MD_0000000000035167
crossref_primary_10_1186_s13000_023_01415_8
crossref_primary_10_3389_fcell_2022_1017767
crossref_primary_10_1016_j_esmoop_2024_103494
crossref_primary_10_1038_s41467_025_56653_9
crossref_primary_10_3390_ijms242015321
crossref_primary_10_1007_s00262_025_03951_2
crossref_primary_10_1016_j_heliyon_2024_e39731
crossref_primary_10_1042_EBC20220241
crossref_primary_10_1002_prm2_12087
crossref_primary_10_1007_s00262_024_03825_z
crossref_primary_10_1111_jcmm_18470
crossref_primary_10_3389_fimmu_2023_1101649
crossref_primary_10_1016_j_isci_2024_111340
crossref_primary_10_3389_fonc_2025_1509771
crossref_primary_10_1016_j_critrevonc_2022_103582
crossref_primary_10_1016_j_lfs_2024_122527
crossref_primary_10_3892_ol_2023_14061
crossref_primary_10_1016_j_labinv_2024_102126
crossref_primary_10_3389_fcell_2022_896080
crossref_primary_10_1002_path_5681
crossref_primary_10_1016_j_ccell_2021_04_005
crossref_primary_10_1016_j_canlet_2024_217062
crossref_primary_10_3389_fonc_2023_1145128
crossref_primary_10_1136_jitc_2024_010173
crossref_primary_10_3389_fimmu_2024_1324959
crossref_primary_10_3389_fimmu_2022_883639
crossref_primary_10_1038_s41598_023_41343_7
crossref_primary_10_1155_2022_5160705
crossref_primary_10_3390_jcm11164825
crossref_primary_10_1007_s12672_024_01299_0
crossref_primary_10_3389_fimmu_2024_1369972
crossref_primary_10_2174_0115748928267447231107101539
crossref_primary_10_3389_fimmu_2022_991091
crossref_primary_10_1155_2022_5385456
crossref_primary_10_3389_fimmu_2022_1057088
crossref_primary_10_3389_fimmu_2024_1260191
crossref_primary_10_1038_s41585_022_00617_x
crossref_primary_10_3390_cancers16172958
crossref_primary_10_1016_j_rmcr_2023_101920
crossref_primary_10_1186_s12885_023_10992_2
crossref_primary_10_1007_s12672_024_01340_2
crossref_primary_10_1016_j_neo_2023_100957
crossref_primary_10_1016_j_xgen_2023_100444
crossref_primary_10_1097_CAD_0000000000001546
crossref_primary_10_32604_or_2024_045050
crossref_primary_10_1016_S1470_2045_22_00783_5
crossref_primary_10_32604_biocell_2024_050803
crossref_primary_10_1007_s12672_022_00528_8
crossref_primary_10_1177_20587392211016117
crossref_primary_10_1007_s10120_021_01233_1
crossref_primary_10_3389_fcell_2024_1514399
crossref_primary_10_1186_s12967_023_04060_3
crossref_primary_10_1093_neuonc_noac117
crossref_primary_10_62347_ECED5481
crossref_primary_10_1038_s41401_022_00953_z
crossref_primary_10_3389_fimmu_2024_1430301
crossref_primary_10_3389_fimmu_2024_1452946
crossref_primary_10_3390_ijms25126792
crossref_primary_10_1007_s12033_024_01207_5
crossref_primary_10_1016_j_isci_2024_109277
crossref_primary_10_3389_fonc_2023_1176574
crossref_primary_10_1186_s41065_023_00293_w
crossref_primary_10_3390_cancers15030970
crossref_primary_10_1007_s00261_023_04028_3
crossref_primary_10_3892_ol_2023_14175
crossref_primary_10_2217_imt_2022_0080
crossref_primary_10_1097_MD_0000000000033858
crossref_primary_10_1016_j_ccell_2021_04_018
crossref_primary_10_1177_10732748241235468
crossref_primary_10_1186_s12885_023_10763_z
crossref_primary_10_1186_s41065_024_00311_5
crossref_primary_10_3390_cancers13236092
crossref_primary_10_37349_emed_2023_00197
crossref_primary_10_1038_s41598_024_52632_0
crossref_primary_10_3389_fonc_2024_1360726
crossref_primary_10_3390_cancers14215433
crossref_primary_10_1186_s13062_024_00564_0
crossref_primary_10_3389_fonc_2021_729340
crossref_primary_10_62347_NXMR6806
crossref_primary_10_1016_j_ejca_2022_05_022
crossref_primary_10_20517_2394_4722_2023_139
crossref_primary_10_36401_JIPO_22_9
crossref_primary_10_1038_s41598_023_48574_8
crossref_primary_10_1038_s41598_023_32733_y
crossref_primary_10_1186_s12859_022_04862_0
crossref_primary_10_1016_j_clgc_2024_102198
crossref_primary_10_1097_AS9_0000000000000385
crossref_primary_10_3389_fphar_2023_1119789
crossref_primary_10_18027_2224_5057_2021_11_3_23_35
crossref_primary_10_2147_IJGM_S343259
crossref_primary_10_2147_JHC_S450711
crossref_primary_10_3389_fimmu_2024_1413067
crossref_primary_10_3892_ol_2024_14476
crossref_primary_10_1038_s41598_023_44899_6
crossref_primary_10_2147_IJGM_S357659
crossref_primary_10_1016_j_mcp_2024_101983
crossref_primary_10_1097_MD_0000000000030446
crossref_primary_10_1016_j_coisb_2024_100534
crossref_primary_10_1016_j_isci_2024_110285
crossref_primary_10_3389_fonc_2021_701968
crossref_primary_10_1080_14656566_2024_2337244
crossref_primary_10_3390_cancers14225488
crossref_primary_10_1080_15384047_2024_2308097
crossref_primary_10_1186_s12920_023_01730_5
crossref_primary_10_1186_s12967_024_05035_8
crossref_primary_10_1016_j_bbrep_2024_101891
crossref_primary_10_1186_s12967_024_05570_4
crossref_primary_10_1007_s10637_023_01413_z
crossref_primary_10_1016_j_ccr_2023_215350
crossref_primary_10_62347_JRJP7877
crossref_primary_10_1038_s41525_023_00359_8
crossref_primary_10_1136_jitc_2023_007800
crossref_primary_10_3389_fimmu_2024_1427348
crossref_primary_10_3390_gidisord6030039
crossref_primary_10_1007_s00109_023_02398_1
crossref_primary_10_1007_s00761_021_01070_y
crossref_primary_10_3389_fgene_2022_906113
crossref_primary_10_1186_s13040_024_00420_x
crossref_primary_10_1042_BSR20230733
crossref_primary_10_3389_fgene_2023_1120089
crossref_primary_10_1007_s12672_025_02109_x
crossref_primary_10_3390_ijms25179235
crossref_primary_10_1016_j_tranon_2024_102089
crossref_primary_10_1186_s12967_024_05858_5
crossref_primary_10_3389_fimmu_2021_670040
crossref_primary_10_1080_08916934_2023_2250097
crossref_primary_10_3390_ijms252011091
crossref_primary_10_1016_j_xjon_2021_11_003
crossref_primary_10_1007_s12672_024_01475_2
crossref_primary_10_1111_jcmm_18135
crossref_primary_10_3389_fonc_2024_1483454
crossref_primary_10_1186_s12885_023_11157_x
crossref_primary_10_18632_aging_205048
crossref_primary_10_3389_fcell_2023_1052942
crossref_primary_10_1080_17476348_2024_2302356
crossref_primary_10_1200_PO_22_00003
crossref_primary_10_3390_cells11213436
crossref_primary_10_1155_2023_2211942
crossref_primary_10_3389_fonc_2021_650673
crossref_primary_10_3389_fsurg_2025_1531852
crossref_primary_10_1186_s40644_024_00768_7
crossref_primary_10_3389_fonc_2022_941868
crossref_primary_10_3390_biom13020282
crossref_primary_10_1158_1535_7163_MCT_23_0270
crossref_primary_10_3390_cells13232031
crossref_primary_10_1186_s12885_021_08083_1
crossref_primary_10_1007_s10142_023_01032_0
crossref_primary_10_1136_jitc_2022_006311
crossref_primary_10_1177_10732748241307363
crossref_primary_10_7717_peerj_16618
crossref_primary_10_1080_0284186X_2023_2228991
crossref_primary_10_1097_JP9_0000000000000180
crossref_primary_10_1007_s00432_023_05285_x
crossref_primary_10_3389_fmolb_2021_792779
crossref_primary_10_3389_fcell_2022_1003656
crossref_primary_10_3389_fmolb_2022_988777
crossref_primary_10_1126_scitranslmed_abo3958
crossref_primary_10_3390_pharmaceutics14091762
crossref_primary_10_1007_s00428_023_03707_2
crossref_primary_10_1038_s41598_023_35092_w
crossref_primary_10_1080_14737159_2023_2252739
crossref_primary_10_2174_0115665240266906231024111920
crossref_primary_10_3390_diagnostics13050870
crossref_primary_10_4251_wjgo_v16_i1_144
crossref_primary_10_1158_2326_6066_CIR_23_0932
crossref_primary_10_1155_2022_2528164
crossref_primary_10_1186_s12957_023_03090_x
crossref_primary_10_3390_cancers15215220
crossref_primary_10_3390_biomedicines12092146
crossref_primary_10_1371_journal_pone_0303909
crossref_primary_10_3389_fonc_2022_995434
Cites_doi 10.1200/JCO.2015.63.3651
10.21037/jgo.2018.01.09
10.3324/haematol.2016.150656
10.1016/j.cell.2019.03.001
10.1158/1078-0432.CCR-17-1970
10.1200/JCO.2018.78.2276
10.1158/2326-6066.CIR-18-0121
10.1038/s41598-019-57218-9
10.1056/NEJMoa1504627
10.1093/annonc/mdx376.006
10.1016/j.jmoldx.2014.12.006
10.1126/science.aan6733
10.1056/NEJMoa1603702
10.1093/annonc/mdz394.078
10.1093/annonc/mdy424.067
10.1158/1078-0432.CCR-18-4070
10.1158/1535-7163.MCT-14-0983
10.1182/blood-2016-12-758383
10.4049/jimmunol.1200831
10.1186/s13073-020-00729-2
10.1056/NEJMra1703481
10.1172/jci.insight.126908
10.1038/nm.4333
10.1158/2326-6066.CIR-16-0143
10.1056/NEJMoa1412082
10.1038/nrc.2016.36
10.1200/JCO.2019.37.8_suppl.43
10.1200/JCO.2016.66.4482
10.1056/NEJMoa1613683
10.1126/scitranslmed.aar3342
10.1016/S1470-2045(17)30516-8
10.1158/1078-0432.CCR-16-3133
10.1016/j.cell.2014.12.033
10.1001/jamaoncol.2018.7098
10.1126/science.aaa1348
10.1200/JCO.2020.38.4_suppl.133
10.1038/ng.3677
10.1186/s13073-017-0424-2
10.1038/s41591-018-0134-3
10.1186/s40425-019-0647-4
10.1016/S0140-6736(16)32455-2
10.1158/2326-6066.CIR-18-0136
10.1126/science.aaf2834
10.1200/JCO.2017.35.7_suppl.1
10.1158/1078-0432.CCR-16-1741
10.1158/0008-5472.CAN-18-1127
10.1093/annonc/mdz394.081
10.1038/nature15520
10.1038/s41598-019-39594-4
10.1038/s41590-020-0769-3
10.1200/JCO.2019.37.7_suppl.641
10.1038/nature12477
10.1038/npjgenmed.2016.37
10.1056/NEJMoa1613493
10.1038/s41588-018-0312-8
10.1093/annonc/mdz253.018
10.1016/j.cell.2017.09.028
10.1016/j.jtho.2017.07.014
10.1056/NEJMc1713444
10.1126/science.aaa4971
10.1056/NEJMoa1604958
10.1080/2162402X.2017.1284719
10.1158/1078-0432.CCR-19-1040
10.1080/2162402X.2018.1526613
10.1158/1078-0432.CCR-16-0903
10.1146/annurev-immunol-042617-053402
10.1158/2326-6066.CIR-18-0716
10.1200/JCO.18.01042
10.1158/2159-8290.CD-18-0099
10.1126/science.aao4572
10.1016/j.ccell.2018.04.001
10.1158/1538-7445.AM2019-CT074
10.1186/s13073-019-0684-0
10.1200/JCO.2018.36.6_suppl.409
10.1038/s41467-017-01460-0
10.1016/j.canlet.2019.10.027
10.1158/1078-0432.CCR-19-3663
10.1016/S0140-6736(18)31257-1
10.1056/NEJMoa1411087
10.1136/jitc-2019-000438
10.1016/S1470-2045(16)30066-3
10.1080/2162402X.2018.1550341
10.1002/1878-0261.12748
10.1016/j.ccell.2018.03.018
10.1371/journal.pmed.1002309
10.1016/j.jtho.2016.11.343
10.1200/JCO.2014.59.0703
10.1200/JCO.2017.75.3384
10.1056/NEJMoa1003466
10.1126/science.aar3593
10.1038/s41568-019-0116-x
10.1126/science.aag0299
10.1056/NEJMoa1801946
10.1038/s41598-018-19548-y
10.3390/cancers11010011
10.18632/oncotarget.5950
10.1016/j.cell.2017.09.050
10.1038/nature24473
10.1200/JCO.2019.37.7_suppl.142
10.21037/atm.2019.11.52
10.1158/1078-0432.CCR-17-1439
10.1016/j.cell.2018.04.034
10.1038/nbt.2696
10.1126/science.aan5951
10.1158/1535-7163.MCT-17-0386
10.1093/annonc/mdx376.005
10.1093/annonc/mdx371.003
10.1186/s13073-020-00743-4
10.1038/s41568-019-0179-8
10.1056/NEJMoa1406498
10.1158/2326-6066.CIR-19-0149
10.1002/path.5406
10.1186/s12916-016-0705-4
10.1200/JCO.2018.36.15_suppl.1010
10.1158/1078-0432.CCR-19-3797
10.1158/1538-7445.AM2018-LB-339
10.1158/2159-8290.CD-16-1223
10.1001/jamaoncol.2019.1549
10.1016/j.cell.2016.02.065
10.1001/jamaoncol.2020.0237
10.1093/annonc/mdy495
10.1016/j.cell.2018.08.048
10.1136/esmoopen-2018-000442
10.1002/cncr.31999
10.1200/JCO.2017.35.15_suppl.e23028
10.1200/JCO.2017.35.15_suppl.e14579
10.1001/jamaoncol.2018.1701
10.1038/nature10755
10.1200/JCO.2017.75.7740
10.1056/NEJMoa1507643
10.1158/1535-7163.MCT-20-0161
10.1080/2162402X.2019.1708065
10.1172/jci.insight.122092
10.1111/imr.12140
10.1038/ng.2701
10.1200/JCO.2019.37.15_suppl.8532
10.1093/annonc/mdw378.01
10.1158/2326-6066.CIR-18-0226
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ccell.2020.10.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-3686
EndPage 173
ExternalDocumentID PMC7878292
33125859
10_1016_j_ccell_2020_10_001
S1535610820304955
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA023100
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDT
AAEDW
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IH2
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
ROL
RPZ
SES
SSZ
TR2
UDS
5VS
AAFWJ
AAIKJ
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
UHS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c459t-2a1402c75ff2b5b202f75484d55404adefd951751be569d7c82eb1aa8b79210b3
IEDL.DBID IXB
ISSN 1535-6108
1878-3686
IngestDate Thu Aug 21 17:57:26 EDT 2025
Fri Jul 11 07:31:52 EDT 2025
Mon Apr 28 11:35:38 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Tue Jul 01 01:26:24 EDT 2025
Sun Apr 06 06:53:06 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cancer therapy
mutattional load
genetics
biomarker
immunotherapy
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-2a1402c75ff2b5b202f75484d55404adefd951751be569d7c82eb1aa8b79210b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://www.cell.com/article/S1535610820304955/pdf
PMID 33125859
PQID 2456410660
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7878292
proquest_miscellaneous_2456410660
pubmed_primary_33125859
crossref_citationtrail_10_1016_j_ccell_2020_10_001
crossref_primary_10_1016_j_ccell_2020_10_001
elsevier_sciencedirect_doi_10_1016_j_ccell_2020_10_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-08
PublicationDateYYYYMMDD 2021-02-08
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer cell
PublicationTitleAlternate Cancer Cell
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Aggarwal, Thompson, Chien, Quinn, Hwang, Black, Yee, Christensen, LaRiviere, Silva (bib1) 2020; 26
Bonneville, Krook, Kautto, Miya, Wing, Chen, Reeser, Yu, Roychowdhury (bib12) 2017; 2017
Riaz, Havel, Makarov, Desrichard, Urba, Sims, Hodi, Martin-Algarra, Mandal, Sharfman (bib102) 2017; 171
Chen, Su, Ren, Zhou, Jiang (bib26) 2020; 8
Wang, Gong, Tu, Lee, Fakih (bib134) 2018; 9
Hwang, Kwon, Jeong, Kim, Kang, Park, Kim, Han, Lim, An (bib57) 2020; 10
Hosoi, Takeda, Nagaoka, Iino, Matsushita, Ueha, Aoki, Matsushima, Kubo, Morikawa (bib54) 2018; 8
Luksza, Riaz, Makarov, Balachandran, Hellmann, Solovyov, Rizvi, Merghoub, Levine, Chan (bib76) 2017; 551
Pham, Boichard, Goodman, Riviere, Yeerna, Tamayo, Kurzrock (bib96) 2020; 14
Vokes, Liu, Ricciuti, Jimenez-Aguilar, Rizvi, Dietlein, He, Margolis, Elmarakeby, Girshman (bib133) 2019; 3
Gandara, Paul, Kowanetz, Schleifman, Zou, Li, Rittmeyer, Fehrenbacher, Otto, Malboeuf (bib40) 2018; 24
Hellmann, Ciuleanu, Pluzanski, Lee, Otterson, Audigier-Valette, Minenza, Linardou, Burgers, Salman (bib49) 2018; 378
Teo, Seier, Ostrovnaya, Regazzi, Kania, Moran, Cipolla, Bluth, Chaim, Al-Ahmadie (bib129) 2018; 36
Kumagai, Togashi, Kamada, Sugiyama, Nishinakamura, Takeuchi, Vitaly, Itahashi, Maeda, Matsui (bib68) 2020
Hellmann, Nathanson, Rizvi, Creelan, Sanchez-Vega, Ahuja, Ni, Novik, Mangarin, Abu-Akeel (bib50) 2018; 33
Lauss, Donia, Harbst, Andersen, Mitra, Rosengren, Salim, Vallon-Christersson, Torngren, Kvist (bib69) 2017; 8
FDA (bib34) 2020
Borghaei, Paz-Ares, Horn, Spigel, Steins, Ready, Chow, Vokes, Felip, Holgado (bib14) 2015; 373
Cristescu, Mogg, Ayers, Albright, Murphy, Yearley, Sher, Liu, Nebozhyn, Lunceford (bib29) 2017; 35
Campesato, Barroso-Sousa, Jimenez, Correa, Sabbaga, Hoff, Reis, Galante, Camargo (bib19) 2015; 6
Roszik, Haydu, Hess, Oba, Joon, Siroy, Karpinets, Stingo, Baladandayuthapani, Tetzlaff (bib112) 2016; 14
Fakih, Sandhu, Ouyang, Sokol, Ross, Miller, Lim, Chao, Catenacci, Cho (bib32) 2019; 37
Khagi, Goodman, Daniels, Patel, Sacco, Randall, Bazhenova, Kurzrock (bib64) 2017; 23
Siefker-Radtke, Apolo, Bivalacqua, Spiess, Black (bib121) 2018; 199
Bonta, Isac, Meiri, Bonta, Rich (bib13) 2017; 35
Rizvi, Cho, Reinmuth, Lee, Luft, Ahn, van den Heuvel, Cobo, Vicente, Smolin (bib106) 2020; 6
Lee, Natale, Chowell, Makarov, Redzematovic, Murray, Carlo, Voss, Feldman, Motzer (bib71) 2019; 37
Marcus, Lemery, Keegan, Pazdur (bib79) 2019; 25
Paz-Ares, Langer, Novello, Halmos, Cheng, Gadgeel, Hui, Sugawara, Borghaei, Cristescu (bib93) 2019; 30
Seiwert, Burtness, Mehra, Weiss, Berger, Eder, Heath, McClanahan, Lunceford, Gause (bib116) 2016; 17
Galsky, Saci, Szabo, Azrilevich, Horak, Lambert, Siefker-Radtke, Necchi, Sharma (bib39) 2017; 28
Robert, Long, Brady, Dutriaux, Maio, Mortier, Hassel, Rutkowski, McNeil, Kalinka-Warzocha (bib107) 2015; 372
Anagnostou, Forde, White, Niknafs, Hruban, Naidoo, Marrone, Sivakumar, Bruhm, Rosner (bib4) 2019; 79
Meiri, Garrett-Mayer, Halabi, Mangat, Shrestha, Ahn, Osayameh, Perla, Schilsky (bib85) 2020; 38
Kowanetz, Zou, Shames, Cummings, Rizvi, Spira, Frampton, Leveque, Flynn, Mocci (bib66) 2017; 12
Marabelle, Fakih, Lopez, Shah, shapira-frommer, Nakagawa, Chung, Kindler, Lopez-Martin, Miller (bib78) 2019; 30
Peng, Kryczek, Nagarsheth, Zhao, Wei, Wang, Sun, Zhao, Vatan, Szeliga (bib94) 2015; 527
Davis, Chae, Agte, Pan, Simon, Taxter, Behdad, Carneiro, Cristofanilli, Giles (bib31) 2017; 35
Riviere, Goodman, Okamura, Barkauskas, Whitchurch, Lee, Khalid, Collier, Mareboina, Frampton (bib103) 2020; 19
Kato, Goodman, Walavalkar, Barkauskas, Sharabi, Kurzrock (bib62) 2017; 3
Postow, Hellmann (bib97) 2018; 378
Yarchoan, Hopkins, Jaffee (bib139) 2017; 377
Motzer, Rini, McDermott, Redman, Kuzel, Harrison, Vaishampayan, Drabkin, George, Logan (bib87) 2015; 33
Seiwert, Haddad, Bauml, Weiss, Pfister, Gupta, Mehra, Gluck, Kang, Worden (bib117) 2018; 78
Buttner, Longshore, Lopez-Rios, Merkelbach-Bruse, Normanno, Rouleau, Penault-Llorca (bib18) 2019; 4
Cheng, Mitchell, Zehir, Shah, Benayed, Syed, Chandramohan, Liu, Won, Scott (bib27) 2015; 17
Rodig, Gusenleitner, Jackson, Gjini, Giobbie-Hurder, Jin, Chang, Lovitch, Horak, Weber (bib108) 2018; 10
Frampton, Fichtenholtz, Otto, Wang, Downing, He, Schnall-Levin, White, Sanford, An (bib35) 2013; 31
Ott, Bang, Piha-Paul, Razak, Bennouna, Soria, Rugo, Cohen, O'Neil, Mehnert (bib91) 2019; 37
Goodman, Sokol, Frampton, Lippman, Kurzrock (bib45) 2019; 7
Wood, Weeder, David, Nellore, Thompson (bib137) 2020; 12
Matsushita, Vesely, Koboldt, Rickert, Uppaluri, Magrini, Arthur, White, Chen, Shea (bib84) 2012; 482
Patel, Kurzrock (bib92) 2015; 14
Snyder, Makarov, Merghoub, Yuan, Zaretsky, Desrichard, Walsh, Postow, Wong, Ho (bib126) 2014; 371
Zaretsky, Garcia-Diaz, Shin, Escuin-Ordinas, Hugo, Hu-Lieskovan, Torrejon, Abril-Rodriguez, Sandoval, Barthly (bib142) 2016; 375
Samstein, Lee, Shoushtari, Hellmann, Shen, Janjigian, Barron, Zehir, Jordan, Omuro (bib113) 2019; 51
Weber, Horak, Sanders, Woods, Yusko, Hodi, Chang, Robins, Weber (bib136) 2016; 27
Hugo, Zaretsky, Sun, Song, Moreno, Hu-Lieskovan, Berent-Maoz, Pang, Chmielowski, Cherry (bib56) 2016; 165
Reuben, Zhang, Lin, Little, Gumbs, Tran, Wang, Haymaker, Mehran, Rice (bib100) 2019; 37
Gonzalez-Ericsson, Stovgaard, Sua, Reisenbichler, Kos, Carter, Michiels, Le Quesne, Nielsen, Laenkholm (bib41) 2020; 250
Marty Pyke, Thompson, Salem, Font-Burgada, Zanetti, Carter (bib83) 2018; 175
Ikeda, Goodman, Cohen, Jensen, Ellison, Frampton, Miller, Patel, Kurzrock (bib58) 2016; 1
Singavi, Menon, Kilari, Alqwasmi, Ritch, Thomas, Martin, Oxencis, Ali, George (bib123) 2017; 28
Galsky, Saci, Horak, Szabo, Azrilevich, Lambert, Siefker-Radtke, Necchi, Sharma (bib38) 2017; 28
Mardis (bib80) 2019; 11
Goodman, Castro, Pyke, Okamura, Kato, Riviere, Frampton, Sokol, Zhang, Ball (bib46) 2020; 12
Skoulidis, Goldberg, Greenawalt, Hellmann, Awad, Gainor, Schrock, Hartmaier, Trabucco, Gay (bib125) 2018; 8
Liu, Zugazagoitia, Ahmed, Henick, Gettinger, Herbst, Schalper, Rimm (bib74) 2020; 26
Le, Durham, Smith, Wang, Bartlett, Aulakh, Lu, Kemberling, Wilt, Luber (bib70) 2017; 357
Marty, Kaabinejadian, Rossell, Slifker, van de Haar, Engin, de Prisco, Ideker, Hildebrand, Font-Burgada (bib81) 2017; 171
Hodi, O'Day, McDermott, Weber, Sosman, Haanen, Gonzalez, Robert, Schadendorf, Hassel (bib51) 2010; 363
Budczies, Seidel, Christopoulos, Endris, Kloor, Gyorffy, Seliger, Schirmacher, Stenzinger, Denkert (bib16) 2018; 7
Jardim, de Melo Gagliato, Giles, Kurzrock (bib59) 2018; 24
Kato, Okamura, Kumaki, Ikeda, Nikanjam, Eskander, Goodman, Lee, Glenn, Dressman (bib63) 2020; 9
Brahmer, Reckamp, Baas, Crino, Eberhardt, Poddubskaya, Antonia, Pluzanski, Vokes, Holgado (bib15) 2015; 373
Okamura, Kato, Lee, Jimenez, Sicklick, Kurzrock (bib90) 2020; 8
Riaz, Havel, Kendall, Makarov, Walsh, Desrichard, Weinhold, Chan (bib101) 2016; 48
Singal, Miller, Agarwala, Li, Gossai, Albacker, Goldberg, He, Frank, Bourque (bib122) 2017; 28
Wu, Cieslik, Lonigro, Vats, Reimers, Cao, Ning, Wang, Kunju, de Sarkar (bib138) 2018; 173
Champiat, Dercle, Ammari, Massard, Hollebecque, Postel-Vinay, Chaput, Eggermont, Marabelle, Soria (bib24) 2017; 23
Kanjanapan, Day, Wang, Al-Sawaihey, Abbas, Namini, Siu, Hansen, Razak, Spreafico (bib61) 2019; 125
Havel, Chowell, Chan (bib47) 2019; 19
Hogan, Courtier, Cheng, Jaberg-Bentele, Goldinger, Manuel, Perez, Plantier, Mouret, Nguyen-Kim (bib52) 2019; 7
Bellmunt, de Wit, Vaughn, Fradet, Lee, Fong, Vogelzang, Climent, Petrylak, Choueiri (bib8) 2017; 376
Cristescu, Mogg, Ayers, Albright, Murphy, Yearley, Sher, Liu, Lu, Nebozhyn (bib30) 2018; 362
Rizvi, Hellmann, Snyder, Kvistborg, Makarov, Havel, Lee, Yuan, Wong, Ho (bib104) 2015; 348
Romualdo Barroso-Sousa, E.J., Dewey, K., Ann, H.P., Ofir Cohen, Nikhil Wagle (2018). Determinants of high tumor mutational burden (TMB) and mutational signatures in breast cancer. In ASCO Annual Meeting (Chicago, EUA).
Nghiem, Bhatia, Lipson, Kudchadkar, Miller, Annamalai, Berry, Chartash, Daud, Fling (bib89) 2016; 374
Rooney, Shukla, Wu, Getz, Hacohen (bib111) 2015; 160
Hellmann, Callahan, Awad, Calvo, Ascierto, Atmaca, Rizvi, Hirsch, Selvaggi, Szustakowski (bib48) 2018; 33
Powles, Loriot, Ravaud, Vogelzang, Duran, Retz, Giorgi, Oudard, Bamias, Koeppen (bib98) 2018; 36
Yarchoan, Albacker, Hopkins, Montesion, Murugesan, Vithayathil, Zaidi, Azad, Laheru, Frampton (bib140) 2019; 4
Lu, Stein, Rimm, Wang, Bell, Johnson, Sosman, Schalper, Anders, Wang (bib75) 2019; 5
Tischkowitz, Huang, Banerjee, Hague, Hendricks, Huntsman, Lang, Orlando, Oza, Pautier (bib130) 2020; 26
Alexandrov, Nik-Zainal, Wedge, Aparicio, Behjati, Biankin, Bignell, Bolli, Borg, Borresen-Dale (bib2) 2013; 500
Goodman, Piccioni, Kato, Boichard, Wang, Frampton, Lippman, Connelly, Fabrizio, Miller (bib43) 2018; 4
Goodman, Kato, Chattopadhyay, Okamura, Saunders, Montesion, Frampton, Miller, Daniels, Kurzrock (bib44) 2019; 7
Alexandrov, Ju, Haase, Van Loo, Martincorena, Nik-Zainal, Totoki, Fujimoto, Nakagawa, Shibata (bib3) 2016; 354
Ballman (bib7) 2015; 33
Chowell, Morris, Grigg, Weber, Samstein, Makarov, Kuo, Kendall, Requena, Riaz (bib28) 2018; 359
Muller, Falk, Talwar, Neemann, Mariotti, Bertrand, Zacherle, Lakis, Menon, Gloeckner (bib88) 2017; 12
Snyder, Nathanson, Funt, Ahuja, Buros Novik, Hellmann, Chang, Aksoy, Al-Ahmadie, Yusko (bib127) 2017; 14
Ansell, Lesokhin, Borrello, Halwani, Scott, Gutierrez, Schuster, Millenson, Cattry, Freeman (bib5) 2015; 372
Chabanon, Pedrero, Lefebvre, Marabelle, Soria, Postel-Vinay (bib21) 2016; 22
Rizvi, Sanchez-Vega, La, Chatila, Jonsson, Halpenny, Plodkowski, Long, Sauter, Rekhtman (bib105) 2018; 36
Schumacher, Schreiber (bib114) 2015; 348
Shin, Zaretsky, Escuin-Ordinas, Garcia-Diaz, Hu-Lieskovan, Kalbasi, Grasso, Hugo, Sandoval, Torrejon (bib119) 2017; 7
Mage, Dolan, Wang, Boyd, Revilleza, Robinson, Natarajan, Myers, Hansen, Margulies (bib77) 2012; 189
Wang, Duan, Cai, Han, Dong, Zhao, Zhu, Wang, Zhuo, Sun (bib135) 2019; 5
Boichard, Tsigelny, Kurzrock (bib10) 2017; 6
Chan, Yarchoan, Jaffee, Swanton, Quezada, Stenzinger, Peters (bib25) 2019; 30
Ready, Hellmann, Awad, Otterson, Gutie
10.1016/j.ccell.2020.10.001_bib110
Linnemann (10.1016/j.ccell.2020.10.001_bib72) 2014; 257
Goodman (10.1016/j.ccell.2020.10.001_bib43) 2018; 4
Hosoi (10.1016/j.ccell.2020.10.001_bib54) 2018; 8
Yusko (10.1016/j.ccell.2020.10.001_bib141) 2019; 7
Matsushita (10.1016/j.ccell.2020.10.001_bib84) 2012; 482
Anagnostou (10.1016/j.ccell.2020.10.001_bib4) 2019; 79
Riaz (10.1016/j.ccell.2020.10.001_bib101) 2016; 48
Liu (10.1016/j.ccell.2020.10.001_bib73) 2020; 470
Hodi (10.1016/j.ccell.2020.10.001_bib51) 2010; 363
Snyder (10.1016/j.ccell.2020.10.001_bib127) 2017; 14
Frampton (10.1016/j.ccell.2020.10.001_bib35) 2013; 31
Goodman (10.1016/j.ccell.2020.10.001_bib45) 2019; 7
Luksza (10.1016/j.ccell.2020.10.001_bib76) 2017; 551
Marcus (10.1016/j.ccell.2020.10.001_bib79) 2019; 25
Wood (10.1016/j.ccell.2020.10.001_bib137) 2020; 12
Hellmann (10.1016/j.ccell.2020.10.001_bib50) 2018; 33
Lee (10.1016/j.ccell.2020.10.001_bib71) 2019; 37
Schumacher (10.1016/j.ccell.2020.10.001_bib115) 2019; 37
Singal (10.1016/j.ccell.2020.10.001_bib122) 2017; 28
Chae (10.1016/j.ccell.2020.10.001_bib22) 2019; 9
Alexandrov (10.1016/j.ccell.2020.10.001_bib2) 2013; 500
Skoulidis (10.1016/j.ccell.2020.10.001_bib125) 2018; 8
Cristescu (10.1016/j.ccell.2020.10.001_bib29) 2017; 35
Weber (10.1016/j.ccell.2020.10.001_bib136) 2016; 27
Wu (10.1016/j.ccell.2020.10.001_bib138) 2018; 173
Sharma (10.1016/j.ccell.2020.10.001_bib118) 2019; 37
Vokes (10.1016/j.ccell.2020.10.001_bib133) 2019; 3
Liu (10.1016/j.ccell.2020.10.001_bib74) 2020; 26
Marty Pyke (10.1016/j.ccell.2020.10.001_bib83) 2018; 175
Okamura (10.1016/j.ccell.2020.10.001_bib90) 2020; 8
Zehir (10.1016/j.ccell.2020.10.001_bib143) 2017; 23
Siefker-Radtke (10.1016/j.ccell.2020.10.001_bib121) 2018; 199
Rizvi (10.1016/j.ccell.2020.10.001_bib106) 2020; 6
Marty (10.1016/j.ccell.2020.10.001_bib81) 2017; 171
Chalmers (10.1016/j.ccell.2020.10.001_bib23) 2017; 9
Goodman (10.1016/j.ccell.2020.10.001_bib44) 2019; 7
Powles (10.1016/j.ccell.2020.10.001_bib98) 2018; 36
Jardim (10.1016/j.ccell.2020.10.001_bib59) 2018; 24
Galsky (10.1016/j.ccell.2020.10.001_bib38) 2017; 28
Gonzalez-Ericsson (10.1016/j.ccell.2020.10.001_bib41) 2020; 250
Wang (10.1016/j.ccell.2020.10.001_bib134) 2018; 9
Hellmann (10.1016/j.ccell.2020.10.001_bib48) 2018; 33
Kim (10.1016/j.ccell.2020.10.001_bib65) 2018; 29
Socinski (10.1016/j.ccell.2020.10.001_bib128) 2019; 30
Patel (10.1016/j.ccell.2020.10.001_bib92) 2015; 14
Ballman (10.1016/j.ccell.2020.10.001_bib7) 2015; 33
Boichard (10.1016/j.ccell.2020.10.001_bib11) 2019; 8
Champiat (10.1016/j.ccell.2020.10.001_bib24) 2017; 23
Schumacher (10.1016/j.ccell.2020.10.001_bib114) 2015; 348
Chowell (10.1016/j.ccell.2020.10.001_bib28) 2018; 359
Robert (10.1016/j.ccell.2020.10.001_bib107) 2015; 372
Ansell (10.1016/j.ccell.2020.10.001_bib5) 2015; 372
Bonta (10.1016/j.ccell.2020.10.001_bib13) 2017; 35
Teo (10.1016/j.ccell.2020.10.001_bib129) 2018; 36
Postow (10.1016/j.ccell.2020.10.001_bib97) 2018; 378
Muller (10.1016/j.ccell.2020.10.001_bib88) 2017; 12
Boichard (10.1016/j.ccell.2020.10.001_bib10) 2017; 6
Carbone (10.1016/j.ccell.2020.10.001_bib20) 2017; 376
Hugo (10.1016/j.ccell.2020.10.001_bib56) 2016; 165
Tischkowitz (10.1016/j.ccell.2020.10.001_bib130) 2020; 26
Bellmunt (10.1016/j.ccell.2020.10.001_bib8) 2017; 376
Snyder (10.1016/j.ccell.2020.10.001_bib126) 2014; 371
Ikeda (10.1016/j.ccell.2020.10.001_bib58) 2016; 1
Seiwert (10.1016/j.ccell.2020.10.001_bib117) 2018; 78
Skoulidis (10.1016/j.ccell.2020.10.001_bib124) 2019; 19
Topalian (10.1016/j.ccell.2020.10.001_bib131) 2016; 16
Buttner (10.1016/j.ccell.2020.10.001_bib18) 2019; 4
Miao (10.1016/j.ccell.2020.10.001_bib86) 2018; 359
Yarchoan (10.1016/j.ccell.2020.10.001_bib139) 2017; 377
Shitara (10.1016/j.ccell.2020.10.001_bib120) 2018; 392
Mage (10.1016/j.ccell.2020.10.001_bib77) 2012; 189
Johnson (10.1016/j.ccell.2020.10.001_bib60) 2016; 4
Havel (10.1016/j.ccell.2020.10.001_bib47) 2019; 19
Riaz (10.1016/j.ccell.2020.10.001_bib102) 2017; 171
Mardis (10.1016/j.ccell.2020.10.001_bib80) 2019; 11
Samstein (10.1016/j.ccell.2020.10.001_bib113) 2019; 51
Kato (10.1016/j.ccell.2020.10.001_bib62) 2017; 3
Chabanon (10.1016/j.ccell.2020.10.001_bib21) 2016; 22
Reuben (10.1016/j.ccell.2020.10.001_bib100) 2019; 37
Zinzani (10.1016/j.ccell.2020.10.001_bib144) 2017; 130
Rodig (10.1016/j.ccell.2020.10.001_bib108) 2018; 10
Roszik (10.1016/j.ccell.2020.10.001_bib112) 2016; 14
Goodman (10.1016/j.ccell.2020.10.001_bib42) 2017; 16
Galanina (10.1016/j.ccell.2020.10.001_bib37) 2018; 6
Alexandrov (10.1016/j.ccell.2020.10.001_bib3) 2016; 354
Fakih (10.1016/j.ccell.2020.10.001_bib32) 2019; 37
Chan (10.1016/j.ccell.2020.10.001_bib25) 2019; 30
Galanina (10.1016/j.ccell.2020.10.001_bib36) 2018; 11
Kanjanapan (10.1016/j.ccell.2020.10.001_bib61) 2019; 125
Hogan (10.1016/j.ccell.2020.10.001_bib52) 2019; 7
Ott (10.1016/j.ccell.2020.10.001_bib91) 2019; 37
Lauss (10.1016/j.ccell.2020.10.001_bib69) 2017; 8
Fancello (10.1016/j.ccell.2020.10.001_bib33) 2019; 7
Hude (10.1016/j.ccell.2020.10.001_bib55) 2017; 102
Nghiem (10.1016/j.ccell.2020.10.001_bib89) 2016; 374
Aggarwal (10.1016/j.ccell.2020.10.001_bib1) 2020; 26
Khagi (10.1016/j.ccell.2020.10.001_bib64) 2017; 23
Brahmer (10.1016/j.ccell.2020.10.001_bib15) 2015; 373
Budczies (10.1016/j.ccell.2020.10.001_bib16) 2018; 7
Motzer (10.1016/j.ccell.2020.10.001_bib87) 2015; 33
Riviere (10.1016/j.ccell.2020.10.001_bib103) 2020; 19
Rizvi (10.1016/j.ccell.2020.10.001_bib104) 2015; 348
Hwang (10.1016/j.ccell.2020.10.001_bib57) 2020; 10
Rooney (10.1016/j.ccell.2020.10.001_bib111) 2015; 160
Davis (10.1016/j.ccell.2020.10.001_bib31) 2017; 35
Bonneville (10.1016/j.ccell.2020.10.001_bib12) 2017; 2017
Lu (10.1016/j.ccell.2020.10.001_bib75) 2019; 5
Blank (10.1016/j.ccell.2020.10.001_bib9) 2016; 352
Gandara (10.1016/j.ccell.2020.10.001_bib40) 2018; 24
Cristescu (10.1016/j.ccell.2020.10.001_bib30) 2018; 362
Goodman (10.1016/j.ccell.2020.10.001_bib46) 2020; 12
Le (10.1016/j.ccell.2020.10.001_bib70) 2017; 357
Yarchoan (10.1016/j.ccell.2020.10.001_bib140) 2019; 4
FDA (10.1016/j.ccell.2020.10.001_bib34) 2020
Meiri (10.1016/j.ccell.2020.10.001_bib85) 2020; 38
Pham (10.1016/j.ccell.2020.10.001_bib96) 2020; 14
Hellmann (10.1016/j.ccell.2020.10.001_bib49) 2018; 378
Shin (10.1016/j.ccell.2020.10.001_bib119) 2017; 7
Turajlic (10.1016/j.ccell.2020.10.001_bib132) 2017; 18
Wang (10.1016/j.ccell.2020.10.001_bib135) 2019; 5
Campesato (10.1016/j.ccell.2020.10.001_bib19) 2015; 6
Rizvi (10.1016/j.ccell.2020.10.001_bib105) 2018; 36
Burns (10.1016/j.ccell.2020.10.001_bib17) 2013; 45
10.1016/j.ccell.2020.10.001_bib95
Hopkins (10.1016/j.ccell.2020.10.001_bib53) 2018; 3
Peng (10.1016/j.ccell.2020.10.001_bib94) 2015; 527
Kato (10.1016/j.ccell.2020.10.001_bib63) 2020; 9
Kowanetz (10.1016/j.ccell.2020.10.001_bib66) 2017; 12
Borghaei (10.1016/j.ccell.2020.10.001_bib14) 2015; 373
Galsky (10.1016/j.ccell.2020.10.001_bib39) 2017; 28
Marabelle (10.1016/j.ccell.2020.10.001_bib78) 2019; 30
Paz-Ares (10.1016/j.ccell.2020.10.001_bib93) 2019; 30
Kucab (10.1016/j.ccell.2020.10.001_bib67) 2019; 177
Roemer (10.1016/j.ccell.2020.10.001_bib109) 2016; 34
Singavi (10.1016/j.ccell.2020.10.001_bib123) 2017; 28
Kumagai (10.1016/j.ccell.2020.10.001_bib68) 2020
Chen (10.1016/j.ccell.2020.10.001_bib26) 2020; 8
Balar (10.1016/j.ccell.2020.10.001_bib6) 2017; 389
Ready (10.1016/j.ccell.2020.10.001_bib99) 2019; 37
Seiwert (10.1016/j.ccell.2020.10.001_bib116) 2016; 17
Cheng (10.1016/j.ccell.2020.10.001_bib27) 2015; 17
Zaretsky (10.1016/j.ccell.2020.10.001_bib142) 2016; 375
References_xml – volume: 171
  start-page: 1272
  year: 2017
  end-page: 1283.e15
  ident: bib81
  article-title: MHC-I genotype restricts the oncogenic mutational landscape
  publication-title: Cell
– volume: 250
  start-page: 667
  year: 2020
  end-page: 684
  ident: bib41
  article-title: The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice
  publication-title: J. Pathol.
– volume: 7
  start-page: 183
  year: 2019
  ident: bib33
  article-title: Tumor mutational burden quantification from targeted gene panels: major advancements and challenges
  publication-title: J. Immunother. Cancer
– volume: 37
  start-page: 641
  year: 2019
  ident: bib71
  article-title: Genomic biomarkers of response to nivolumab/ipilimumab (nivo/ipi) and nivolumab (nivo) monotherapy in 108 patients with advanced renal cell carcinoma
  publication-title: J. Clin. Oncol.
– volume: 45
  start-page: 977
  year: 2013
  end-page: 983
  ident: bib17
  article-title: Evidence for APOBEC3B mutagenesis in multiple human cancers
  publication-title: Nat. Genet.
– volume: 4
  start-page: 959
  year: 2016
  end-page: 967
  ident: bib60
  article-title: Targeted next generation sequencing identifies markers of response to PD-1 blockade
  publication-title: Cancer Immunol. Res.
– volume: 7
  start-page: 866
  year: 2019
  end-page: 873
  ident: bib44
  article-title: Phenotypic and genomic determinants of immunotherapy response associated with squamousness
  publication-title: Cancer Immunol. Res.
– volume: 12
  start-page: 1503
  year: 2017
  end-page: 1511
  ident: bib88
  article-title: Concordance between comprehensive cancer genome profiling in plasma and tumor specimens
  publication-title: J. Thorac. Oncol.
– volume: 7
  start-page: 458
  year: 2019
  end-page: 465
  ident: bib141
  article-title: Association of tumor microenvironment T-cell repertoire and mutational load with clinical outcome after sequential checkpoint blockade in melanoma
  publication-title: Cancer Immunol. Res.
– volume: 23
  start-page: 703
  year: 2017
  end-page: 713
  ident: bib143
  article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
  publication-title: Nat. Med.
– volume: 8
  start-page: 822
  year: 2018
  end-page: 835
  ident: bib125
  article-title: STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma
  publication-title: Cancer Discov.
– volume: 31
  start-page: 1023
  year: 2013
  end-page: 1031
  ident: bib35
  article-title: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing
  publication-title: Nat. Biotechnol.
– volume: 165
  start-page: 35
  year: 2016
  end-page: 44
  ident: bib56
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
– volume: 160
  start-page: 48
  year: 2015
  end-page: 61
  ident: bib111
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
– volume: 17
  start-page: 956
  year: 2016
  end-page: 965
  ident: bib116
  article-title: Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial
  publication-title: Lancet Oncol.
– volume: 3
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib133
  article-title: Harmonization of tumor mutational burden quantification and association with response to immune checkpoint blockade in non–small-cell lung cancer
  publication-title: JCO Precision Oncol.
– volume: 5
  start-page: 1195
  year: 2019
  end-page: 1204
  ident: bib75
  article-title: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis
  publication-title: JAMA Oncol.
– volume: 37
  start-page: 318
  year: 2019
  end-page: 327
  ident: bib91
  article-title: T-Cell-Inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028
  publication-title: J. Clin. Oncol.
– volume: 33
  start-page: 853
  year: 2018
  end-page: 861 e854
  ident: bib48
  article-title: Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer
  publication-title: Cancer Cell
– volume: 373
  start-page: 123
  year: 2015
  end-page: 135
  ident: bib15
  article-title: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
– volume: 35
  start-page: 1
  year: 2017
  ident: bib29
  article-title: Mutational load (ML) and T-cell-inflamed microenvironment as predictors of response to pembrolizumab
  publication-title: J. Clin. Oncol.
– volume: 48
  start-page: 1327
  year: 2016
  end-page: 1329
  ident: bib101
  article-title: Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy
  publication-title: Nat. Genet.
– volume: 26
  start-page: 2354
  year: 2020
  end-page: 2361
  ident: bib1
  article-title: Baseline plasma tumor mutation burden predicts response to pembrolizumab-based therapy in patients with metastatic non-small cell lung cancer
  publication-title: Clin. Cancer Res.
– volume: 7
  start-page: e1526613
  year: 2018
  ident: bib16
  article-title: Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden
  publication-title: Oncoimmunology
– volume: 257
  start-page: 72
  year: 2014
  end-page: 82
  ident: bib72
  article-title: TCR repertoires of intratumoral T-cell subsets
  publication-title: Immunol. Rev.
– volume: 24
  start-page: 1785
  year: 2018
  end-page: 1794
  ident: bib59
  article-title: Analysis of Drug development paradigms for immune checkpoint inhibitors
  publication-title: Clin. Cancer Res.
– volume: 125
  start-page: 1341
  year: 2019
  end-page: 1349
  ident: bib61
  article-title: Hyperprogressive disease in early-phase immunotherapy trials: clinical predictors and association with immune-related toxicities
  publication-title: Cancer
– volume: 357
  start-page: 409
  year: 2017
  end-page: 413
  ident: bib70
  article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade
  publication-title: Science
– volume: 173
  start-page: 1770
  year: 2018
  end-page: 1782 e14
  ident: bib138
  article-title: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer
  publication-title: Cell
– volume: 12
  start-page: S321
  year: 2017
  end-page: S322
  ident: bib66
  article-title: Tumor mutation burden (TMB) is associated with improved efficacy of atezolizumab in 1L and 2L+ NSCLC patients
  publication-title: J. Thorac. Oncol.
– volume: 7
  start-page: 1570
  year: 2019
  end-page: 1573
  ident: bib45
  article-title: Microsatellite-stable tumors with high mutational burden benefit from immunotherapy
  publication-title: Cancer Immunol. Res.
– volume: 16
  start-page: 275
  year: 2016
  end-page: 287
  ident: bib131
  article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
  publication-title: Nat. Rev. Cancer
– volume: 3
  start-page: 4242
  year: 2017
  end-page: 4250
  ident: bib62
  article-title: Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate
  publication-title: Clin. Cancer Res.
– volume: 130
  start-page: 267
  year: 2017
  end-page: 270
  ident: bib144
  article-title: Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma
  publication-title: Blood
– volume: 30
  start-page: 0923
  year: 2019
  end-page: 7534
  ident: bib93
  article-title: Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) for metastatic NSCLC: tissue TMB (tTMB) and outcomes in KEYNOTE-021, 189, and 407
  publication-title: Ann. Oncol.
– volume: 19
  start-page: 495
  year: 2019
  end-page: 509
  ident: bib124
  article-title: Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy
  publication-title: Nat. Rev. Cancer
– volume: 8
  start-page: 1550341
  year: 2019
  ident: bib11
  article-title: APOBEC-related mutagenesis and neo-peptide hydrophobicity: implications for response to immunotherapy
  publication-title: Oncoimmunology
– volume: 102
  start-page: 30
  year: 2017
  end-page: 42
  ident: bib55
  article-title: The emerging role of immune checkpoint inhibition in malignant lymphoma
  publication-title: Haematologica
– volume: 352
  start-page: 658
  year: 2016
  end-page: 660
  ident: bib9
  article-title: CANCER IMMUNOLOGY. The "cancer immunogram
  publication-title: Science
– volume: 11
  start-page: 11
  year: 2018
  ident: bib36
  article-title: Comprehensive genomic profiling reveals diverse but actionable molecular portfolios across hematologic malignancies: implications for next generation clinical trials
  publication-title: Cancers
– volume: 10
  start-page: 643
  year: 2020
  ident: bib57
  article-title: Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer
  publication-title: Sci. Rep.
– volume: 37
  start-page: 173
  year: 2019
  end-page: 200
  ident: bib115
  article-title: Cancer neoantigens
  publication-title: Annu. Rev. Immunol.
– volume: 17
  start-page: 251
  year: 2015
  end-page: 264
  ident: bib27
  article-title: Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology
  publication-title: J. Mol. Diagn.
– year: 2020
  ident: bib34
  article-title: FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors
– volume: 189
  start-page: 1391
  year: 2012
  end-page: 1399
  ident: bib77
  article-title: The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics
  publication-title: J. Immunol.
– volume: 372
  start-page: 311
  year: 2015
  end-page: 319
  ident: bib5
  article-title: PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 1129
  year: 2018
  end-page: 1135
  ident: bib37
  article-title: Successful treatment of HIV-associated Kaposi sarcoma with immune checkpoint blockade
  publication-title: Cancer Immunol. Res.
– volume: 371
  start-page: 2189
  year: 2014
  end-page: 2199
  ident: bib126
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N. Engl. J. Med.
– volume: 373
  start-page: 1627
  year: 2015
  end-page: 1639
  ident: bib14
  article-title: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
– volume: 78
  start-page: LB-339
  year: 2018
  ident: bib117
  article-title: Biomarkers predictive of response to pembrolizumab in head and neck cancer (HNSCC)
  publication-title: Cancer Res.
– volume: 9
  start-page: 34
  year: 2017
  ident: bib23
  article-title: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden
  publication-title: Genome Med.
– volume: 8
  start-page: e000438
  year: 2020
  ident: bib90
  article-title: ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy
  publication-title: J. Immunother. Cancer
– volume: 348
  start-page: 69
  year: 2015
  end-page: 74
  ident: bib114
  article-title: Neoantigens in cancer immunotherapy
  publication-title: Science
– volume: 527
  start-page: 249
  year: 2015
  end-page: 253
  ident: bib94
  article-title: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy
  publication-title: Nature
– volume: 199
  start-page: 1129
  year: 2018
  end-page: 1142
  ident: bib121
  article-title: Immunotherapy with checkpoint blockade in the treatment of urothelial carcinoma
  publication-title: J. Urol.
– volume: 51
  start-page: 202
  year: 2019
  end-page: 206
  ident: bib113
  article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types
  publication-title: Nat. Genet.
– volume: 8
  start-page: 1058
  year: 2018
  ident: bib54
  article-title: Increased diversity with reduced "diversity evenness" of tumor infiltrating T-cells for the successful cancer immunotherapy
  publication-title: Sci. Rep.
– volume: 9
  start-page: 404
  year: 2018
  end-page: 415
  ident: bib134
  article-title: Immune profiling of microsatellite instability-high and polymerase epsilon (POLE)-mutated metastatic colorectal tumors identifies predictors of response to anti-PD-1 therapy
  publication-title: J. Gastrointest. Oncol.
– volume: 16
  start-page: 2598
  year: 2017
  end-page: 2608
  ident: bib42
  article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers
  publication-title: Mol. Cancer Ther.
– volume: 12
  start-page: 33
  year: 2020
  ident: bib137
  article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival
  publication-title: Genome Med.
– volume: 22
  start-page: 4309
  year: 2016
  end-page: 4321
  ident: bib21
  article-title: Mutational landscape and sensitivity to immune checkpoint blockers
  publication-title: Clin. Cancer Res.
– volume: 389
  start-page: 67
  year: 2017
  end-page: 76
  ident: bib6
  article-title: Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial
  publication-title: Lancet
– volume: 4
  start-page: e000442
  year: 2019
  ident: bib18
  article-title: Implementing TMB measurement in clinical practice: considerations on assay requirements
  publication-title: ESMO Open
– volume: 9
  start-page: 3235
  year: 2019
  ident: bib22
  article-title: Mutations in DNA repair genes are associated with increased neoantigen burden and a distinct immunophenotype in lung squamous cell carcinoma
  publication-title: Sci. Rep.
– volume: 376
  start-page: 1015
  year: 2017
  end-page: 1026
  ident: bib8
  article-title: Pembrolizumab as second-line therapy for advanced urothelial carcinoma
  publication-title: N. Engl. J. Med.
– volume: 9
  start-page: 1708065
  year: 2020
  ident: bib63
  article-title: Expression of TIM3/VISTA checkpoints and the CD68 macrophage-associated marker correlates with anti-PD1/PDL1 resistance: implications of immunogram heterogeneity
  publication-title: Oncoimmunology
– volume: 37
  start-page: abstr 43
  year: 2019
  ident: bib32
  article-title: Tumor mutational burden (TMB) may be a promising predictive biomarker of response to PD-1/PD-L1 targeting in MSI-H colorectal cancer
  publication-title: J. Clin. Oncol.
– volume: 4
  start-page: 1237
  year: 2018
  end-page: 1244
  ident: bib43
  article-title: Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors
  publication-title: JAMA Oncol.
– volume: 79
  start-page: 1214
  year: 2019
  end-page: 1225
  ident: bib4
  article-title: Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer
  publication-title: Cancer Res.
– volume: 171
  start-page: 934
  year: 2017
  end-page: 949 e916
  ident: bib102
  article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab
  publication-title: Cell
– volume: 2017
  year: 2017
  ident: bib12
  article-title: Landscape of microsatellite instability across 39 cancer types
  publication-title: JCO Precis Oncol.
– volume: 35
  start-page: e23028
  year: 2017
  ident: bib31
  article-title: Comparison of tumor mutational burden (TMB) across tumor tissue and circulating tumor DNA (ctDNA)
  publication-title: J. Clin. Oncol.
– reference: Romualdo Barroso-Sousa, E.J., Dewey, K., Ann, H.P., Ofir Cohen, Nikhil Wagle (2018). Determinants of high tumor mutational burden (TMB) and mutational signatures in breast cancer. In ASCO Annual Meeting (Chicago, EUA).
– volume: 37
  start-page: 8532
  year: 2019
  ident: bib100
  article-title: T cell repertoire analysis of non-small cell lung cancer patients treated with neoadjuvant nivolumab alone or in combination with ipilimumab (NEOSTAR trial)
  publication-title: J. Clin. Oncol.
– volume: 33
  start-page: 1430
  year: 2015
  end-page: 1437
  ident: bib87
  article-title: Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial
  publication-title: J. Clin. Oncol.
– volume: 362
  start-page: eaar3593
  year: 2018
  ident: bib30
  article-title: Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy
  publication-title: Science
– volume: 19
  start-page: 133
  year: 2019
  end-page: 150
  ident: bib47
  article-title: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy
  publication-title: Nat. Rev. Cancer
– volume: 470
  start-page: 95
  year: 2020
  end-page: 105
  ident: bib73
  article-title: The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity
  publication-title: Cancer Lett.
– volume: 378
  start-page: 1165
  year: 2018
  ident: bib97
  article-title: Adverse events associated with immune checkpoint blockade
  publication-title: N. Engl. J. Med.
– volume: 1
  start-page: 16037
  year: 2016
  ident: bib58
  article-title: Metastatic basal cell carcinoma with amplification of PD-L1: exceptional response to anti-PD1 therapy
  publication-title: NPJ Genomic Med.
– volume: 359
  start-page: 801
  year: 2018
  end-page: 806
  ident: bib86
  article-title: Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma
  publication-title: Science
– volume: 34
  start-page: 2690
  year: 2016
  end-page: 2697
  ident: bib109
  article-title: PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome
  publication-title: J. Clin. Oncol.
– volume: 30
  start-page: 44
  year: 2019
  end-page: 56
  ident: bib25
  article-title: Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic
  publication-title: Ann. Oncol.
– volume: 28
  start-page: 0923
  year: 2017
  end-page: 7534
  ident: bib123
  article-title: Predictive biomarkers for hyper-progression (HP) in response to immune checkpoint inhibitors (ICI) – analysis of somatic alterations (SAs)
  publication-title: Ann. Oncol.
– volume: 6
  start-page: 34221
  year: 2015
  end-page: 34227
  ident: bib19
  article-title: Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice
  publication-title: Oncotarget
– volume: 359
  start-page: 582
  year: 2018
  end-page: 587
  ident: bib28
  article-title: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy
  publication-title: Science
– volume: 8
  start-page: 1738
  year: 2017
  ident: bib69
  article-title: Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma
  publication-title: Nat. Commun.
– volume: 37
  start-page: 142
  year: 2019
  ident: bib118
  article-title: Initial results from a phase II study of nivolumab (NIVO) plus ipilimumab (IPI) for the treatment of metastatic castration-resistant prostate cancer (mCRPC; CheckMate 650)
  publication-title: J. Clin. Oncol.
– volume: 30
  start-page: V919
  year: 2019
  end-page: V920
  ident: bib128
  article-title: Final efficacy results from B-F1RST, a prospective phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC)
  publication-title: Ann. Oncol.
– volume: 33
  start-page: 843
  year: 2018
  end-page: 852.e4
  ident: bib50
  article-title: Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer
  publication-title: Cancer Cell
– volume: 377
  start-page: 2500
  year: 2017
  end-page: 2501
  ident: bib139
  article-title: Tumor mutational burden and response rate to PD-1 inhibition
  publication-title: N. Engl. J. Med.
– volume: 14
  start-page: 1680
  year: 2020
  end-page: 1694
  ident: bib96
  article-title: Role of ultraviolet mutational signature versus tumor mutation burden in predicting response to immunotherapy
  publication-title: Mol. Oncol.
– volume: 29
  start-page: 0923
  year: 2018
  end-page: 7534
  ident: bib65
  article-title: Primary efficacy results from B-F1RST, a prospective Phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC)
  publication-title: Ann. Oncol.
– volume: 8
  start-page: 141
  year: 2020
  ident: bib26
  article-title: Pan-cancer analysis of KEAP1 mutations as biomarkers for immunotherapy outcomes
  publication-title: Ann. Translational Med.
– volume: 177
  start-page: 821
  year: 2019
  end-page: 836.e16
  ident: bib67
  article-title: A compendium of mutational signatures of environmental agents
  publication-title: Cell
– volume: 6
  start-page: 661
  year: 2020
  end-page: 674
  ident: bib106
  article-title: Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial
  publication-title: JAMA Oncol.
– volume: 36
  start-page: 409
  year: 2018
  ident: bib98
  article-title: Atezolizumab (atezo) vs. chemotherapy (chemo) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC): immune biomarkers, tumor mutational burden (TMB), and clinical outcomes from the phase III IMvigor211 study
  publication-title: J. Clin. Oncol.
– volume: 500
  start-page: 415
  year: 2013
  end-page: 421
  ident: bib2
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
– volume: 24
  start-page: 1441
  year: 2018
  end-page: 1448
  ident: bib40
  article-title: Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab
  publication-title: Nat. Med.
– volume: 25
  start-page: 3753
  year: 2019
  end-page: 3758
  ident: bib79
  article-title: FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors
  publication-title: Clin. Cancer Res.
– volume: 11
  start-page: 71
  year: 2019
  ident: bib80
  article-title: Neoantigens and genome instability: impact on immunogenomic phenotypes and immunotherapy response
  publication-title: Genome Med.
– volume: 12
  start-page: 45
  year: 2020
  ident: bib46
  article-title: MHC-I genotype and tumor mutational burden predict response to immunotherapy
  publication-title: Genome Med.
– volume: 35
  start-page: e14579
  year: 2017
  ident: bib13
  article-title: Correlation between tumor mutation burden and response to immunotherapy
  publication-title: J. Clin. Oncol.
– volume: 36
  start-page: 633
  year: 2018
  end-page: 641
  ident: bib105
  article-title: Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing
  publication-title: J. Clin. Oncol.
– volume: 348
  start-page: 124
  year: 2015
  end-page: 128
  ident: bib104
  article-title: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
  publication-title: Science
– volume: 392
  start-page: 123
  year: 2018
  end-page: 133
  ident: bib120
  article-title: Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial
  publication-title: Lancet
– volume: 28
  start-page: 0923
  year: 2017
  end-page: 7534
  ident: bib122
  article-title: Analyzing biomarkers of cancer immunotherapy (CIT) response using a real-world clinico-genomic database
  publication-title: Ann. Oncol.
– volume: 175
  start-page: 416
  year: 2018
  end-page: 428 e413
  ident: bib83
  article-title: Evolutionary pressure against MHC class II binding cancer mutations
  publication-title: Cell
– volume: 26
  start-page: 970
  year: 2020
  end-page: 977
  ident: bib74
  article-title: Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy
  publication-title: Clin. Cancer Res.
– volume: 14
  start-page: e1002309
  year: 2017
  ident: bib127
  article-title: Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis
  publication-title: PLoS Med.
– volume: 372
  start-page: 320
  year: 2015
  end-page: 330
  ident: bib107
  article-title: Nivolumab in previously untreated melanoma without BRAF mutation
  publication-title: N. Engl. J. Med.
– volume: 10
  start-page: eaar3342
  year: 2018
  ident: bib108
  article-title: MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma
  publication-title: Sci. Transl. Med.
– reference: Peters, S., Cho, B., et, a., and Rizvi, N. (2019). Tumor mutational burden (TMB) as a biomarker of survival in metastatic non-small cell lung cancer (mNSCLC): Blood and tissue TMB analysis from MYSTIC, a Phase III study of first-line durvalumab ± tremelimumab vs chemotherapy. Paper presented at: AACR Annual Meeting.
– volume: 23
  start-page: 1920
  year: 2017
  end-page: 1928
  ident: bib24
  article-title: Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1
  publication-title: Clin. Cancer Res.
– volume: 36
  start-page: 1685
  year: 2018
  end-page: 1694
  ident: bib129
  article-title: Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers
  publication-title: J. Clin. Oncol.
– year: 2020
  ident: bib68
  article-title: The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies
  publication-title: Nat. Immunol.
– volume: 37
  start-page: 992
  year: 2019
  end-page: 1000
  ident: bib99
  article-title: First-Line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers
  publication-title: J. Clin. Oncol.
– volume: 376
  start-page: 2415
  year: 2017
  end-page: 2426
  ident: bib20
  article-title: First-Line nivolumab in stage IV or recurrent non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
– volume: 363
  start-page: 711
  year: 2010
  end-page: 723
  ident: bib51
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N. Engl. J. Med.
– volume: 482
  start-page: 400
  year: 2012
  end-page: 404
  ident: bib84
  article-title: Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting
  publication-title: Nature
– volume: 14
  start-page: 168
  year: 2016
  ident: bib112
  article-title: Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set
  publication-title: BMC Med.
– volume: 4
  start-page: e126908
  year: 2019
  ident: bib140
  article-title: PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers
  publication-title: JCI Insight
– volume: 378
  start-page: 2093
  year: 2018
  end-page: 2104
  ident: bib49
  article-title: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden
  publication-title: N. Engl. J. Med.
– volume: 551
  start-page: 517
  year: 2017
  end-page: 520
  ident: bib76
  article-title: A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy
  publication-title: Nature
– volume: 7
  start-page: 188
  year: 2017
  end-page: 201
  ident: bib119
  article-title: Primary resistance to PD-1 blockade mediated by JAK1/2 mutations
  publication-title: Cancer Discov.
– volume: 27
  start-page: 0923
  year: 2016
  end-page: 7534
  ident: bib136
  article-title: Baseline tumor T cell receptor (TcR) sequencing analysis and neo antigen load is associated with benefit in melanoma patients receiving sequential nivolumab and ipilimumab
  publication-title: Ann. Oncol.
– volume: 375
  start-page: 819
  year: 2016
  end-page: 829
  ident: bib142
  article-title: Mutations associated with acquired resistance to PD-1 blockade in melanoma
  publication-title: N. Engl. J. Med.
– volume: 7
  start-page: 77
  year: 2019
  end-page: 85
  ident: bib52
  article-title: Peripheral blood TCR repertoire profiling may facilitate patient stratification for immunotherapy against melanoma
  publication-title: Cancer Immunol. Res.
– volume: 3
  start-page: e122092
  year: 2018
  ident: bib53
  article-title: T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma
  publication-title: JCI Insight
– volume: 23
  start-page: 5729
  year: 2017
  end-page: 5736
  ident: bib64
  article-title: Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy
  publication-title: Clin. Cancer Res.
– volume: 374
  start-page: 2542
  year: 2016
  end-page: 2552
  ident: bib89
  article-title: PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma
  publication-title: N. Engl. J. Med.
– volume: 33
  start-page: 3968
  year: 2015
  end-page: 3971
  ident: bib7
  article-title: Biomarker: predictive or prognostic?
  publication-title: J. Clin. Oncol.
– volume: 38
  start-page: 133
  year: 2020
  ident: bib85
  article-title: Pembrolizumab (P) in patients (pts) with colorectal cancer (CRC) with high tumor mutational burden (HTMB): results from the targeted agent and profiling utilization registry (TAPUR) study
  publication-title: J. Clin. Oncol.
– volume: 354
  start-page: 618
  year: 2016
  end-page: 622
  ident: bib3
  article-title: Mutational signatures associated with tobacco smoking in human cancer
  publication-title: Science
– volume: 6
  start-page: e1284719
  year: 2017
  ident: bib10
  article-title: High expression of PD-1 ligands is associated with kataegis mutational signature and APOBEC3 alterations
  publication-title: Oncoimmunology
– volume: 5
  start-page: 696
  year: 2019
  end-page: 702
  ident: bib135
  article-title: Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel
  publication-title: JAMA Oncol.
– volume: 26
  start-page: 3908
  year: 2020
  end-page: 3917
  ident: bib130
  article-title: Small-cell carcinoma of the ovary, hypercalcemic type-genetics, new treatment targets, and current management guidelines
  publication-title: Clin. Cancer Res.
– volume: 28
  start-page: v295
  year: 2017
  end-page: v329
  ident: bib39
  article-title: Impact of tumormutation burden on nivolumab efficacy in secondline urothelial carcinoma patients: exploratory analysis of the phase II checkmate 275 study
  publication-title: Ann. Oncol.
– volume: 14
  start-page: 847
  year: 2015
  end-page: 856
  ident: bib92
  article-title: PD-L1 expression as a predictive biomarker in cancer immunotherapy
  publication-title: Mol. Cancer Ther.
– volume: 30
  start-page: v477
  year: 2019
  end-page: v478
  ident: bib78
  article-title: Association of tumour mutational burden with outcomes in patients with select advanced solid tumours treated with pembrolizumab in KEYNOTE-158
  publication-title: Ann. Oncol.
– volume: 28
  start-page: 0923
  year: 2017
  end-page: 7534
  ident: bib38
  article-title: Impact of zumor mutation burden on nivolumab efficacy in second-line urothelial carcinoma patients: exploratory analysis of the phase ii checkmate 275 study
  publication-title: Ann. Oncol.
– volume: 18
  start-page: 1009
  year: 2017
  end-page: 1021
  ident: bib132
  article-title: Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis
  publication-title: Lancet Oncol.
– volume: 19
  start-page: 2139
  year: 2020
  end-page: 2145
  ident: bib103
  article-title: High tumor mutational burden correlates with longer survival in immunotherapy-naïve patients with diverse cancers
  publication-title: Mol. Cancer Ther.
– volume: 33
  start-page: 3968
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib7
  article-title: Biomarker: predictive or prognostic?
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2015.63.3651
– volume: 9
  start-page: 404
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib134
  article-title: Immune profiling of microsatellite instability-high and polymerase epsilon (POLE)-mutated metastatic colorectal tumors identifies predictors of response to anti-PD-1 therapy
  publication-title: J. Gastrointest. Oncol.
  doi: 10.21037/jgo.2018.01.09
– volume: 102
  start-page: 30
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib55
  article-title: The emerging role of immune checkpoint inhibition in malignant lymphoma
  publication-title: Haematologica
  doi: 10.3324/haematol.2016.150656
– volume: 177
  start-page: 821
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib67
  article-title: A compendium of mutational signatures of environmental agents
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.001
– volume: 24
  start-page: 1785
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib59
  article-title: Analysis of Drug development paradigms for immune checkpoint inhibitors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-1970
– volume: 37
  start-page: 318
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib91
  article-title: T-Cell-Inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2018.78.2276
– volume: 6
  start-page: 1129
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib37
  article-title: Successful treatment of HIV-associated Kaposi sarcoma with immune checkpoint blockade
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0121
– volume: 10
  start-page: 643
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib57
  article-title: Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-57218-9
– volume: 373
  start-page: 123
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib15
  article-title: Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504627
– volume: 28
  start-page: 0923
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib123
  article-title: Predictive biomarkers for hyper-progression (HP) in response to immune checkpoint inhibitors (ICI) – analysis of somatic alterations (SAs)
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdx376.006
– volume: 17
  start-page: 251
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib27
  article-title: Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology
  publication-title: J. Mol. Diagn.
  doi: 10.1016/j.jmoldx.2014.12.006
– volume: 357
  start-page: 409
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib70
  article-title: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade
  publication-title: Science
  doi: 10.1126/science.aan6733
– volume: 374
  start-page: 2542
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib89
  article-title: PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1603702
– volume: 30
  start-page: 0923
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib93
  article-title: Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) for metastatic NSCLC: tissue TMB (tTMB) and outcomes in KEYNOTE-021, 189, and 407
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdz394.078
– volume: 29
  start-page: 0923
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib65
  article-title: Primary efficacy results from B-F1RST, a prospective Phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC)
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdy424.067
– volume: 25
  start-page: 3753
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib79
  article-title: FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-4070
– volume: 14
  start-page: 847
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib92
  article-title: PD-L1 expression as a predictive biomarker in cancer immunotherapy
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-14-0983
– volume: 130
  start-page: 267
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib144
  article-title: Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma
  publication-title: Blood
  doi: 10.1182/blood-2016-12-758383
– volume: 189
  start-page: 1391
  year: 2012
  ident: 10.1016/j.ccell.2020.10.001_bib77
  article-title: The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1200831
– volume: 12
  start-page: 33
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib137
  article-title: Burden of tumor mutations, neoepitopes, and other variants are weak predictors of cancer immunotherapy response and overall survival
  publication-title: Genome Med.
  doi: 10.1186/s13073-020-00729-2
– volume: 378
  start-page: 1165
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib97
  article-title: Adverse events associated with immune checkpoint blockade
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1703481
– volume: 4
  start-page: e126908
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib140
  article-title: PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.126908
– volume: 23
  start-page: 703
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib143
  article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
  publication-title: Nat. Med.
  doi: 10.1038/nm.4333
– volume: 4
  start-page: 959
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib60
  article-title: Targeted next generation sequencing identifies markers of response to PD-1 blockade
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-16-0143
– volume: 372
  start-page: 320
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib107
  article-title: Nivolumab in previously untreated melanoma without BRAF mutation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1412082
– volume: 16
  start-page: 275
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib131
  article-title: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.36
– volume: 37
  start-page: abstr 43
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib32
  article-title: Tumor mutational burden (TMB) may be a promising predictive biomarker of response to PD-1/PD-L1 targeting in MSI-H colorectal cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.8_suppl.43
– volume: 34
  start-page: 2690
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib109
  article-title: PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2016.66.4482
– volume: 376
  start-page: 1015
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib8
  article-title: Pembrolizumab as second-line therapy for advanced urothelial carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1613683
– volume: 10
  start-page: eaar3342
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib108
  article-title: MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aar3342
– volume: 18
  start-page: 1009
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib132
  article-title: Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(17)30516-8
– volume: 3
  start-page: 4242
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib62
  article-title: Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-3133
– volume: 160
  start-page: 48
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib111
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.033
– volume: 3
  start-page: 1
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib133
  article-title: Harmonization of tumor mutational burden quantification and association with response to immune checkpoint blockade in non–small-cell lung cancer
  publication-title: JCO Precision Oncol.
– volume: 5
  start-page: 696
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib135
  article-title: Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2018.7098
– volume: 348
  start-page: 124
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib104
  article-title: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
  publication-title: Science
  doi: 10.1126/science.aaa1348
– volume: 38
  start-page: 133
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib85
  article-title: Pembrolizumab (P) in patients (pts) with colorectal cancer (CRC) with high tumor mutational burden (HTMB): results from the targeted agent and profiling utilization registry (TAPUR) study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2020.38.4_suppl.133
– volume: 48
  start-page: 1327
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib101
  article-title: Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3677
– volume: 9
  start-page: 34
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib23
  article-title: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden
  publication-title: Genome Med.
  doi: 10.1186/s13073-017-0424-2
– volume: 24
  start-page: 1441
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib40
  article-title: Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0134-3
– volume: 7
  start-page: 183
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib33
  article-title: Tumor mutational burden quantification from targeted gene panels: major advancements and challenges
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0647-4
– volume: 389
  start-page: 67
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib6
  article-title: Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)32455-2
– volume: 7
  start-page: 77
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib52
  article-title: Peripheral blood TCR repertoire profiling may facilitate patient stratification for immunotherapy against melanoma
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0136
– volume: 352
  start-page: 658
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib9
  article-title: CANCER IMMUNOLOGY. The "cancer immunogram
  publication-title: Science
  doi: 10.1126/science.aaf2834
– volume: 35
  start-page: 1
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib29
  article-title: Mutational load (ML) and T-cell-inflamed microenvironment as predictors of response to pembrolizumab
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.35.7_suppl.1
– volume: 23
  start-page: 1920
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib24
  article-title: Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-1741
– volume: 79
  start-page: 1214
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib4
  article-title: Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-1127
– volume: 30
  start-page: V919
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib128
  article-title: Final efficacy results from B-F1RST, a prospective phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC)
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdz394.081
– volume: 527
  start-page: 249
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib94
  article-title: Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy
  publication-title: Nature
  doi: 10.1038/nature15520
– volume: 9
  start-page: 3235
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib22
  article-title: Mutations in DNA repair genes are associated with increased neoantigen burden and a distinct immunophenotype in lung squamous cell carcinoma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39594-4
– year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib68
  article-title: The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0769-3
– volume: 37
  start-page: 641
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib71
  article-title: Genomic biomarkers of response to nivolumab/ipilimumab (nivo/ipi) and nivolumab (nivo) monotherapy in 108 patients with advanced renal cell carcinoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.7_suppl.641
– volume: 500
  start-page: 415
  year: 2013
  ident: 10.1016/j.ccell.2020.10.001_bib2
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 1
  start-page: 16037
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib58
  article-title: Metastatic basal cell carcinoma with amplification of PD-L1: exceptional response to anti-PD1 therapy
  publication-title: NPJ Genomic Med.
  doi: 10.1038/npjgenmed.2016.37
– volume: 376
  start-page: 2415
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib20
  article-title: First-Line nivolumab in stage IV or recurrent non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1613493
– volume: 51
  start-page: 202
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib113
  article-title: Tumor mutational load predicts survival after immunotherapy across multiple cancer types
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0312-8
– volume: 30
  start-page: v477
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib78
  article-title: Association of tumour mutational burden with outcomes in patients with select advanced solid tumours treated with pembrolizumab in KEYNOTE-158
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdz253.018
– volume: 171
  start-page: 934
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib102
  article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.028
– volume: 12
  start-page: 1503
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib88
  article-title: Concordance between comprehensive cancer genome profiling in plasma and tumor specimens
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2017.07.014
– volume: 377
  start-page: 2500
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib139
  article-title: Tumor mutational burden and response rate to PD-1 inhibition
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1713444
– volume: 348
  start-page: 69
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib114
  article-title: Neoantigens in cancer immunotherapy
  publication-title: Science
  doi: 10.1126/science.aaa4971
– volume: 375
  start-page: 819
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib142
  article-title: Mutations associated with acquired resistance to PD-1 blockade in melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1604958
– volume: 6
  start-page: e1284719
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib10
  article-title: High expression of PD-1 ligands is associated with kataegis mutational signature and APOBEC3 alterations
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1284719
– volume: 26
  start-page: 970
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib74
  article-title: Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-1040
– volume: 7
  start-page: e1526613
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib16
  article-title: Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1526613
– volume: 22
  start-page: 4309
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib21
  article-title: Mutational landscape and sensitivity to immune checkpoint blockers
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-0903
– volume: 37
  start-page: 173
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib115
  article-title: Cancer neoantigens
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-042617-053402
– volume: 199
  start-page: 1129
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib121
  article-title: Immunotherapy with checkpoint blockade in the treatment of urothelial carcinoma
  publication-title: J. Urol.
– volume: 7
  start-page: 866
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib44
  article-title: Phenotypic and genomic determinants of immunotherapy response associated with squamousness
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0716
– volume: 37
  start-page: 992
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib99
  article-title: First-Line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.18.01042
– volume: 8
  start-page: 822
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib125
  article-title: STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-18-0099
– volume: 359
  start-page: 582
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib28
  article-title: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy
  publication-title: Science
  doi: 10.1126/science.aao4572
– volume: 33
  start-page: 853
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib48
  article-title: Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.04.001
– ident: 10.1016/j.ccell.2020.10.001_bib95
  doi: 10.1158/1538-7445.AM2019-CT074
– volume: 11
  start-page: 71
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib80
  article-title: Neoantigens and genome instability: impact on immunogenomic phenotypes and immunotherapy response
  publication-title: Genome Med.
  doi: 10.1186/s13073-019-0684-0
– volume: 36
  start-page: 409
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib98
  article-title: Atezolizumab (atezo) vs. chemotherapy (chemo) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC): immune biomarkers, tumor mutational burden (TMB), and clinical outcomes from the phase III IMvigor211 study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2018.36.6_suppl.409
– volume: 8
  start-page: 1738
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib69
  article-title: Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01460-0
– volume: 470
  start-page: 95
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib73
  article-title: The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2019.10.027
– volume: 26
  start-page: 2354
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib1
  article-title: Baseline plasma tumor mutation burden predicts response to pembrolizumab-based therapy in patients with metastatic non-small cell lung cancer
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-3663
– volume: 392
  start-page: 123
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib120
  article-title: Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31257-1
– volume: 372
  start-page: 311
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib5
  article-title: PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1411087
– volume: 8
  start-page: e000438
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib90
  article-title: ARID1A alterations function as a biomarker for longer progression-free survival after anti-PD-1/PD-L1 immunotherapy
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2019-000438
– volume: 17
  start-page: 956
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib116
  article-title: Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)30066-3
– volume: 8
  start-page: 1550341
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib11
  article-title: APOBEC-related mutagenesis and neo-peptide hydrophobicity: implications for response to immunotherapy
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1550341
– volume: 14
  start-page: 1680
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib96
  article-title: Role of ultraviolet mutational signature versus tumor mutation burden in predicting response to immunotherapy
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12748
– volume: 33
  start-page: 843
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib50
  article-title: Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.018
– volume: 14
  start-page: e1002309
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib127
  article-title: Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002309
– volume: 12
  start-page: S321
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib66
  article-title: Tumor mutation burden (TMB) is associated with improved efficacy of atezolizumab in 1L and 2L+ NSCLC patients
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2016.11.343
– volume: 33
  start-page: 1430
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib87
  article-title: Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2014.59.0703
– volume: 36
  start-page: 633
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib105
  article-title: Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.75.3384
– volume: 363
  start-page: 711
  year: 2010
  ident: 10.1016/j.ccell.2020.10.001_bib51
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1003466
– volume: 362
  start-page: eaar3593
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib30
  article-title: Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy
  publication-title: Science
  doi: 10.1126/science.aar3593
– volume: 19
  start-page: 133
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib47
  article-title: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0116-x
– volume: 354
  start-page: 618
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib3
  article-title: Mutational signatures associated with tobacco smoking in human cancer
  publication-title: Science
  doi: 10.1126/science.aag0299
– volume: 378
  start-page: 2093
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib49
  article-title: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1801946
– volume: 8
  start-page: 1058
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib54
  article-title: Increased diversity with reduced "diversity evenness" of tumor infiltrating T-cells for the successful cancer immunotherapy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19548-y
– volume: 11
  start-page: 11
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib36
  article-title: Comprehensive genomic profiling reveals diverse but actionable molecular portfolios across hematologic malignancies: implications for next generation clinical trials
  publication-title: Cancers
  doi: 10.3390/cancers11010011
– volume: 6
  start-page: 34221
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib19
  article-title: Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5950
– volume: 171
  start-page: 1272
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib81
  article-title: MHC-I genotype restricts the oncogenic mutational landscape
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.050
– volume: 551
  start-page: 517
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib76
  article-title: A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy
  publication-title: Nature
  doi: 10.1038/nature24473
– volume: 37
  start-page: 142
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib118
  article-title: Initial results from a phase II study of nivolumab (NIVO) plus ipilimumab (IPI) for the treatment of metastatic castration-resistant prostate cancer (mCRPC; CheckMate 650)
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.7_suppl.142
– volume: 8
  start-page: 141
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib26
  article-title: Pan-cancer analysis of KEAP1 mutations as biomarkers for immunotherapy outcomes
  publication-title: Ann. Translational Med.
  doi: 10.21037/atm.2019.11.52
– volume: 23
  start-page: 5729
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib64
  article-title: Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-1439
– volume: 173
  start-page: 1770
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib138
  article-title: Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2018.04.034
– volume: 31
  start-page: 1023
  year: 2013
  ident: 10.1016/j.ccell.2020.10.001_bib35
  article-title: Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2696
– volume: 359
  start-page: 801
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib86
  article-title: Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma
  publication-title: Science
  doi: 10.1126/science.aan5951
– volume: 16
  start-page: 2598
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib42
  article-title: Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-17-0386
– volume: 28
  start-page: 0923
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib122
  article-title: Analyzing biomarkers of cancer immunotherapy (CIT) response using a real-world clinico-genomic database
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdx376.005
– volume: 28
  start-page: v295
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib39
  article-title: Impact of tumormutation burden on nivolumab efficacy in secondline urothelial carcinoma patients: exploratory analysis of the phase II checkmate 275 study
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdx371.003
– volume: 12
  start-page: 45
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib46
  article-title: MHC-I genotype and tumor mutational burden predict response to immunotherapy
  publication-title: Genome Med.
  doi: 10.1186/s13073-020-00743-4
– volume: 19
  start-page: 495
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib124
  article-title: Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-019-0179-8
– volume: 371
  start-page: 2189
  year: 2014
  ident: 10.1016/j.ccell.2020.10.001_bib126
  article-title: Genetic basis for clinical response to CTLA-4 blockade in melanoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1406498
– volume: 7
  start-page: 1570
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib45
  article-title: Microsatellite-stable tumors with high mutational burden benefit from immunotherapy
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-19-0149
– volume: 250
  start-page: 667
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib41
  article-title: The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice
  publication-title: J. Pathol.
  doi: 10.1002/path.5406
– volume: 14
  start-page: 168
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib112
  article-title: Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set
  publication-title: BMC Med.
  doi: 10.1186/s12916-016-0705-4
– ident: 10.1016/j.ccell.2020.10.001_bib110
  doi: 10.1200/JCO.2018.36.15_suppl.1010
– volume: 26
  start-page: 3908
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib130
  article-title: Small-cell carcinoma of the ovary, hypercalcemic type-genetics, new treatment targets, and current management guidelines
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-3797
– volume: 78
  start-page: LB-339
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib117
  article-title: Biomarkers predictive of response to pembrolizumab in head and neck cancer (HNSCC)
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2018-LB-339
– volume: 7
  start-page: 188
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib119
  article-title: Primary resistance to PD-1 blockade mediated by JAK1/2 mutations
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-16-1223
– volume: 5
  start-page: 1195
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib75
  article-title: Comparison of biomarker modalities for predicting response to PD-1/PD-L1 checkpoint blockade: a systematic review and meta-analysis
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2019.1549
– volume: 165
  start-page: 35
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib56
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.065
– volume: 6
  start-page: 661
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib106
  article-title: Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.0237
– volume: 28
  start-page: 0923
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib38
  article-title: Impact of zumor mutation burden on nivolumab efficacy in second-line urothelial carcinoma patients: exploratory analysis of the phase ii checkmate 275 study
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdx371.003
– volume: 30
  start-page: 44
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib25
  article-title: Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdy495
– volume: 175
  start-page: 416
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib83
  article-title: Evolutionary pressure against MHC class II binding cancer mutations
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.048
– volume: 4
  start-page: e000442
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib18
  article-title: Implementing TMB measurement in clinical practice: considerations on assay requirements
  publication-title: ESMO Open
  doi: 10.1136/esmoopen-2018-000442
– volume: 125
  start-page: 1341
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib61
  article-title: Hyperprogressive disease in early-phase immunotherapy trials: clinical predictors and association with immune-related toxicities
  publication-title: Cancer
  doi: 10.1002/cncr.31999
– volume: 35
  start-page: e23028
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib31
  article-title: Comparison of tumor mutational burden (TMB) across tumor tissue and circulating tumor DNA (ctDNA)
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.35.15_suppl.e23028
– volume: 35
  start-page: e14579
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib13
  article-title: Correlation between tumor mutation burden and response to immunotherapy
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.35.15_suppl.e14579
– volume: 4
  start-page: 1237
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib43
  article-title: Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2018.1701
– year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib34
– volume: 482
  start-page: 400
  year: 2012
  ident: 10.1016/j.ccell.2020.10.001_bib84
  article-title: Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting
  publication-title: Nature
  doi: 10.1038/nature10755
– volume: 36
  start-page: 1685
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib129
  article-title: Alterations in DNA damage response and repair genes as potential marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.75.7740
– volume: 373
  start-page: 1627
  year: 2015
  ident: 10.1016/j.ccell.2020.10.001_bib14
  article-title: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1507643
– volume: 19
  start-page: 2139
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib103
  article-title: High tumor mutational burden correlates with longer survival in immunotherapy-naïve patients with diverse cancers
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-20-0161
– volume: 9
  start-page: 1708065
  year: 2020
  ident: 10.1016/j.ccell.2020.10.001_bib63
  article-title: Expression of TIM3/VISTA checkpoints and the CD68 macrophage-associated marker correlates with anti-PD1/PDL1 resistance: implications of immunogram heterogeneity
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2019.1708065
– volume: 2017
  year: 2017
  ident: 10.1016/j.ccell.2020.10.001_bib12
  article-title: Landscape of microsatellite instability across 39 cancer types
  publication-title: JCO Precis Oncol.
– volume: 3
  start-page: e122092
  year: 2018
  ident: 10.1016/j.ccell.2020.10.001_bib53
  article-title: T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.122092
– volume: 257
  start-page: 72
  year: 2014
  ident: 10.1016/j.ccell.2020.10.001_bib72
  article-title: TCR repertoires of intratumoral T-cell subsets
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12140
– volume: 45
  start-page: 977
  year: 2013
  ident: 10.1016/j.ccell.2020.10.001_bib17
  article-title: Evidence for APOBEC3B mutagenesis in multiple human cancers
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2701
– volume: 37
  start-page: 8532
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib100
  article-title: T cell repertoire analysis of non-small cell lung cancer patients treated with neoadjuvant nivolumab alone or in combination with ipilimumab (NEOSTAR trial)
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2019.37.15_suppl.8532
– volume: 27
  start-page: 0923
  year: 2016
  ident: 10.1016/j.ccell.2020.10.001_bib136
  article-title: Baseline tumor T cell receptor (TcR) sequencing analysis and neo antigen load is associated with benefit in melanoma patients receiving sequential nivolumab and ipilimumab
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdw378.01
– volume: 7
  start-page: 458
  year: 2019
  ident: 10.1016/j.ccell.2020.10.001_bib141
  article-title: Association of tumor microenvironment T-cell repertoire and mutational load with clinical outcome after sequential checkpoint blockade in melanoma
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0226
SSID ssj0016179
Score 2.7295086
SecondaryResourceType review_article
Snippet Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 154
SubjectTerms biomarker
Biomarkers, Tumor - genetics
Biomarkers, Tumor - immunology
cancer therapy
genetics
Humans
Immune Checkpoint Inhibitors - pharmacology
immunotherapy
Immunotherapy - methods
Major Histocompatibility Complex - genetics
Major Histocompatibility Complex - immunology
Mutation - genetics
Mutation - immunology
mutattional load
Neoplasms - genetics
Neoplasms - immunology
Neoplasms - therapy
T-Lymphocytes - immunology
Title The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker
URI https://dx.doi.org/10.1016/j.ccell.2020.10.001
https://www.ncbi.nlm.nih.gov/pubmed/33125859
https://www.proquest.com/docview/2456410660
https://pubmed.ncbi.nlm.nih.gov/PMC7878292
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TsMw0Ko6IBbEm_KSkRiJ2jp24oy0ohSkstBK3SI7DxFEk6pNBv6eu8SJKIgOrGc7cu7se_hehNz2WaztnseswHOFxfHJSkonskDYgDqhRRCUPZYmL854xp_nYt4iwzoXBsMqDe-veHrJrQ2ka7DZXSZJ9xXuKgp_-Cq6igQmmttclkl880HjSQAJ7VU1U4WFs-vKQ2WMV4Cv42AkMoSgU-Iv6fRb-_wZRPlNKo32yZ5RJ-l9teMD0orSQ7IzMQ7zI_IIx4AO64Ypa5rFdFosshWdFLl5BqRVJgNVa6pS-oT5IiYr65MOkmyB8TurYzIbPUyHY8v0TrACLrzcYgosJxa4Io6ZFhp-MXbBOOEhqA89rsIoDkG3ckVfR8LxQjeQDLi2UlK7HliB2j4h7TRLozNC3VAJLZiypY654LbmGgCOrSSs6Du6Q1iNMz8whcWxv8WHX0eQvfslon1ENAIB0R1y1yxaVnU1tk93amL4G8fDB86_feFNTTofLg4OqzTKirWPHl8OBrHT65DTipTNTmwb9D4pvA5xN4jcTMCi3JsjafJWFucGBiiZx87_u-ELssswbAYDw-UlaeerIroCvSfX1-XB_gJOrv-v
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThsxcARUgl4QpS2kQHGlHlkl8dpr7xEiaAKES4OUm2XvQwSRXZTHoX_fmV1vRFrBgevYXnln7Hl4XgA_uzx3YSfmQRIrGQh6stI6ygIUNqhOOJkkVY-l4V3UvxfXYznegF6TC0NhlZ731zy94tYe0vbYbD9PJu3feFdJ-ONXyVUk5SZ8QG1AUf-Gwfhi5UpAER3XRVNlQNOb0kNVkFdCz-NoJXKCkFfiNfH0v_r5bxTlC7F0tQe7Xp9k5_WWP8FGVuzD9tB7zD_DLzwHrNd0TJmzMmej5bScseFy4d8BWZ3KwOyc2YINKGHEp2X9YReTckoBPLMvcH91Oer1A988IUiEjBcBt2g68UTJPOdOOvzFXKF1IlLUHzrCplmeonKlZNdlMopTlWiObNta7VSMZqALv8JWURbZITCVWukkt6F2uZAidMIhIAqtxhXdyLWANzgzia8sTg0unkwTQvZoKkQbQjQBEdEtOFsteq4La7w9PWqIYdbOh0HW__bCHw3pDN4cGrZFVi7nhly-Ai3iqNOCg5qUq52EISp-WsYtUGtEXk2gqtzrI8XkoarOjRxQ85h_e--GT2GnPxremtvB3c0RfOQUQ0NR4voYthazZXaCStDCfa8O-V8qLgLd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Challenges+of+Tumor+Mutational+Burden+as+an+Immunotherapy+Biomarker&rft.jtitle=Cancer+cell&rft.au=Jardim%2C+Denis+L.&rft.au=Goodman%2C+Aaron&rft.au=Gagliato%2C+Debora+de+Melo&rft.au=Kurzrock%2C+Razelle&rft.date=2021-02-08&rft.issn=1535-6108&rft.eissn=1878-3686&rft.volume=39&rft.issue=2&rft.spage=154&rft.epage=173&rft_id=info:doi/10.1016%2Fj.ccell.2020.10.001&rft_id=info%3Apmid%2F33125859&rft.externalDocID=PMC7878292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon