Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering

Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 5; p. 96
Main Authors Suguiyama, Vanessa F., Silva, Emerson A., Meirelles, Sergio T., Centeno, Danilo C., Braga, Marcia R.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 14.03.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.
AbstractList Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.
Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.
Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are associated to periods of up to 30 days without precipitation. Using a metabolomic approach, we analyzed, under winter and summer conditions, changes in the leaf metabolite profile (MP) of potted plants of B. purpurea submitted to daily watered and water deficit for at least 20 days and subsequent slow rehydration for 5 days. Leaves were collected at different time points and had their MP analyzed by GC/MS, HPAEC, and UHPLC techniques, allowing the identification of more than 60 different compounds, including organic and amino acids, sugars, and polyols, among others. In the winter experiment, results suggest the presence of two time-dependent responses in B. purpurea under water stress. The first one starts with the increase in the content of caffeoyl-quinic acids, substances with strong antioxidant activity, until the 16th day of water suppression. When RWC reached less than 80 and 70%, in winter and summer respectively, it was observed an increase in polyols and monosaccharides, followed by an increment in the content of RFO, suggesting osmotic adjustment. Amino acids, such as GABA and asparagine, also increased due to 16 days of water suppression. During rehydration, the levels of the mentioned compounds became similar to those found at the beginning of the experiment and when compared to daily watered plants. We conclude that the tolerance of B. purpurea to dehydration involves the perception of water deficit intensity, which seems to result in different strategies to overcome the gradient of water availability imposed along a certain period of stress mainly during winter. Data from summer experiment indicate that the metabolism of B. pupurea was already primed for drought stress. The accumulation of phenolics in summer seemed to be more temperature and irradiance-dependent than on the RWC.
Author Suguiyama, Vanessa F.
Meirelles, Sergio T.
Silva, Emerson A.
Centeno, Danilo C.
Braga, Marcia R.
AuthorAffiliation 1 Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica São Paulo, Brazil
2 Departamento de Ecologia, Universidade de São Paulo São Paulo, Brazil
3 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC São Bernardo do Campo, Brazil
AuthorAffiliation_xml – name: 3 Centro de Ciências Naturais e Humanas, Universidade Federal do ABC São Bernardo do Campo, Brazil
– name: 1 Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica São Paulo, Brazil
– name: 2 Departamento de Ecologia, Universidade de São Paulo São Paulo, Brazil
Author_xml – sequence: 1
  givenname: Vanessa F.
  surname: Suguiyama
  fullname: Suguiyama, Vanessa F.
– sequence: 2
  givenname: Emerson A.
  surname: Silva
  fullname: Silva, Emerson A.
– sequence: 3
  givenname: Sergio T.
  surname: Meirelles
  fullname: Meirelles, Sergio T.
– sequence: 4
  givenname: Danilo C.
  surname: Centeno
  fullname: Centeno, Danilo C.
– sequence: 5
  givenname: Marcia R.
  surname: Braga
  fullname: Braga, Marcia R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24672534$$D View this record in MEDLINE/PubMed
BookMark eNp1kl9rFDEUxQep2Fr77JvksT7MdjLJZCYvgi1qCwu-qPgW8ufObmo2GZNMi_1Gfkuzu620ghBIyD33d8LNeVkd-OChql7jZkHIwM_GyaVF22C6aJqGs2fVEWaM1pS13w8enQ-rk5Sui6Tpioz3L6rDlrK-7Qg9qn4vQY5oA1mq4GwGNMUwWgcojCivAZ1HeWedlR5FSHOMoLMNHk1O-ozOZVRSg7cSTXMsCyS6DOHHAp1-A-fCnS1VCW9RWofbhPJtQNluoDYwgTdQCAU6BZ8gITNH61fIQLJay52J9KYIdLiBbelV9XyULsHJ_X5cff344cvFZb38_Onq4v2y1rTjuW77DvdmMMoYPrTAFWjeUUOooqNqqaRtJxuFsVGtGgZmBtAEesOacdSGYkaOq6s91wR5LaZoNzL-EkFasbsIcSVkzFY7ED032GDcDd3AKFGGK8VwMw6GMMOw0YX1bs-aZrUBU0aVo3RPoE8r3q7FKtwIwjvC2PYxp_eAGH7OkLLY2KTLbKWHMCeBO4wJ74eWFumbx15_TR7-ugi6vUDHkFKEUWibd5Mu1tYJ3IhtrMQ2VmIbK7GLVek7-6fvAf2_jj_HSdW2
CitedBy_id crossref_primary_10_1007_s13580_019_00214_9
crossref_primary_10_1146_annurev_arplant_071219_105542
crossref_primary_10_3389_fpls_2019_01396
crossref_primary_10_1016_j_flora_2021_151953
crossref_primary_10_3390_molecules25204664
crossref_primary_10_1007_s00018_021_03913_8
crossref_primary_10_3390_ijms22179108
crossref_primary_10_1093_biosci_biv178
crossref_primary_10_3389_fpls_2021_676632
crossref_primary_10_3389_fpls_2024_1344820
crossref_primary_10_1007_s11103_022_01273_w
crossref_primary_10_1038_s41598_017_08448_2
crossref_primary_10_1186_s41065_017_0031_7
crossref_primary_10_1080_15592324_2021_2004025
crossref_primary_10_1016_j_envexpbot_2022_105169
crossref_primary_10_1111_nph_19356
crossref_primary_10_1016_j_ygeno_2023_110592
crossref_primary_10_3390_agriculture13061271
crossref_primary_10_1016_j_sajb_2016_03_021
crossref_primary_10_1016_j_phytochem_2018_12_016
crossref_primary_10_2139_ssrn_4170499
crossref_primary_10_1002_ajb2_1588
crossref_primary_10_1016_j_agwat_2016_04_016
crossref_primary_10_1016_j_apsoil_2024_105618
crossref_primary_10_1016_j_plaphy_2020_02_011
crossref_primary_10_1071_FP17066
crossref_primary_10_3390_ijms21218258
crossref_primary_10_3390_horticulturae7060125
crossref_primary_10_1016_j_envexpbot_2017_09_003
crossref_primary_10_1016_j_envexpbot_2018_09_027
crossref_primary_10_1111_pce_13195
crossref_primary_10_1016_j_envexpbot_2024_106007
crossref_primary_10_1016_j_flora_2020_151604
crossref_primary_10_3389_fphys_2015_00206
crossref_primary_10_1016_j_flora_2017_01_001
crossref_primary_10_1111_pbi_13362
crossref_primary_10_3389_fpls_2015_01123
crossref_primary_10_1016_j_scitotenv_2021_145080
crossref_primary_10_1111_1462_2920_13249
crossref_primary_10_1080_23328940_2015_1095270
crossref_primary_10_1002_pca_3351
crossref_primary_10_1093_botlinnean_boab102
crossref_primary_10_1002_ece3_11555
crossref_primary_10_1093_jxb_erab022
crossref_primary_10_1007_s00425_019_03211_5
crossref_primary_10_1142_S0218339021400052
crossref_primary_10_1093_jxb_ery145
crossref_primary_10_1093_jxb_eraa017
crossref_primary_10_4236_ajps_2017_812205
crossref_primary_10_3390_metabo14020113
crossref_primary_10_3389_fpls_2022_853220
crossref_primary_10_3390_metabo13040511
crossref_primary_10_3390_ijms25031492
crossref_primary_10_1016_j_sajb_2020_09_003
crossref_primary_10_1155_2020_4827045
crossref_primary_10_1016_j_indcrop_2024_118129
crossref_primary_10_3389_fpls_2015_00564
crossref_primary_10_1016_j_pbi_2023_102410
crossref_primary_10_1016_j_envexpbot_2021_104397
crossref_primary_10_3389_fpls_2015_00768
crossref_primary_10_1007_s40415_018_0442_3
crossref_primary_10_1007_s11105_020_01238_7
crossref_primary_10_1640_0002_8444_115_1_61
crossref_primary_10_1016_j_plantsci_2021_110994
crossref_primary_10_1016_j_phytochem_2020_112323
crossref_primary_10_3389_fmicb_2018_00010
crossref_primary_10_1111_ppl_12890
crossref_primary_10_1007_s00122_023_04461_4
crossref_primary_10_3390_agronomy11010131
crossref_primary_10_1093_pcp_pcw021
crossref_primary_10_1111_ppl_14035
crossref_primary_10_1111_ppl_13783
Cites_doi 10.1093/jxb/erm056
10.1021/ac60111a017
10.1016/S1360-1385(99)01486-7
10.1016/j.jplph.2011.11.006
10.1023/A:1026534305831
10.1105/tpc.110.082800
10.1016/j.plaphy.2013.07.005
10.1046/j.1365-313x.1991.t01-11-00999.x
10.1079/9781845939953.0238
10.1016/0098-8472(95)00046-1
10.1007/s10886-005-8396-x
10.1111/j.1365-313X.2008.03673.x
10.1023/A:1026565817218
10.1016/j.plantsci.2008.10002
10.1007/s10725-010-9491-8
10.1007/978-94-011-1494-3
10.1093/icb.45.5.696
10.1186/1471-2229-10-20
10.1590/S2236-89062007000400001
10.1007/s00018-012-1155-6
10.1093/jxb/ern297
10.1590/S0100-40422004000400013
10.1007/s11099-013-0063-9
10.1016/B978-0-12-387692-8.00009-6
10.1590/S0100-84042007000400002
10.1093/jxb/erg255
10.1007/s00425-006-0449-z
10.1016/S0031-9422(99)00031-X
10.1017/S0376892999000041
10.1104/pp.112.201400
10.1016/S0021-9258(18)43097-9
10.1016/S0300-9629(96)00272-1
10.1146/annurev.arplant.49.1.281
10.1093/pcp/pcr041
10.1104/pp.112.211391
10.1079/SSR200175
10.1007/s11240-008-9426-5
10.1016/j.jplph.2007.03.004
10.1038/35002501
10.1093/icb/45.5.771
10.1111/j.1744-7348.2006.00104.x
10.1023/A:1005863015130
10.1007/s00018-012-1088-0
10.1111/j.1365-313X.2007.03115.x
10.1016/j.phytochem.2011.02.027
10.1007/s11240-011-9966-y
10.1105/tpc.13.1.11
10.1023/A:1005801610891
10.1071/FP06315
10.1111/j.1469-8137.1950.tb05146.x
10.1111/j.1399-3054.2008.01156.x
10.1016/j.plantsci.2011.01.018
10.1111/j.1365-313X.2010.04312.x
ContentType Journal Article
Copyright Copyright © 2014 Suguiyama, Silva, Meirelles, Centeno and Braga. 2014
Copyright_xml – notice: Copyright © 2014 Suguiyama, Silva, Meirelles, Centeno and Braga. 2014
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2014.00096
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_79d1d115858643bd9bb610f8d36d61dc
PMC3953666
24672534
10_3389_fpls_2014_00096
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c459t-27517d8dbdd982e9bec954d34b4fb24a425a0b11db2b886d8ec3e7d60ffcd4163
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:32:04 EDT 2025
Thu Aug 21 18:06:42 EDT 2025
Fri Jul 11 02:54:16 EDT 2025
Thu Apr 03 07:05:26 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Tue Jul 01 02:44:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords caffeoyl-quinic acids
dehydration tolerance
raffinose-family oligosaccharides
drought
metabolomics
rock outcrops
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-27517d8dbdd982e9bec954d34b4fb24a425a0b11db2b886d8ec3e7d60ffcd4163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.
Reviewed by: Miyako Kusano, RIKEN Plant Science Center, Japan; Paul Hills, Stellenbosch University, South Africa
Edited by: John Moore, Stellenbosch University, South Africa
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2014.00096
PMID 24672534
PQID 1511397824
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_79d1d115858643bd9bb610f8d36d61dc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3953666
proquest_miscellaneous_1511397824
pubmed_primary_24672534
crossref_citationtrail_10_3389_fpls_2014_00096
crossref_primary_10_3389_fpls_2014_00096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-03-14
PublicationDateYYYYMMDD 2014-03-14
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-14
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2014
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Ayres (B5) 2003
Meirelles (B34) 1997; 6
Bianchi (B7) 1991; 1
Mollo (B36) 2011; 107
Myers (B39) 2000; 403
De Maria (B10) 2004; 27
Nunes-Nesi (B41) 2007; 50
Sherwin (B52) 1998; 24
Velitchkova (B58) 2013; 51
Gómez (B20) 2010; 64
Oliver (B43) 1998; 24
Carvalho (B8) 2013; 71
Farrant (B15) 2012
Roessner (B49) 2001; 13
Garcia (B17) 1997
Morse (B38) 2011
Meirelles (B35) 1999; 26
Gechev (B19) 2012; 69
Jiang (B27) 2007; 225
Gzik (B21) 1996; 36
Albini (B3) 1999; 51
Lea (B29) 2006; 150
Porembski (B46) 2000; 151
Gechev (B18) 2013; 70
Moore (B37) 2005; 31
Cassab (B9) 1998; 49
Hoagland (B23) 1950; 347
Peterbauer (B44) 2001; 11
Akçay (B2) 2012; 169
Klerk (B28) 2008; 95
Toldi (B54) 2009; 176
Renault (B48) 2010; 10
Amaral (B4) 2007; 34
Aidar (B1) 2010; 62
Norwood (B40) 2003; 54
Farrant (B14) 2007; 1
Hoekstra (B24) 1997; 117A
Van den Ende (B55) 2009; 60
Somogyi (B53) 1945; 160
Meguro (B33) 1977; 5
Lüttge (B32) 2008; 165
Farrant (B13) 2000; 151
Vertucci (B59) 1995
Renault (B47) 2011; 52
Illing (B25) 2005; 45
Weatherley (B60) 1950; 49
Vandesteene (B56) 2012; 160
Dubois (B12) 1956; 28
Jaiswal (B26) 2011; 72
Lunn (B31) 2007; 34
Dinakar (B11) 2012; 182
Scarano (B50) 2007; 4
Shelp (B51) 1999; 4
Oliver (B42) 2011; 23
Lee (B30) 2008; 143
Farrant (B16) 2009; 57
Peters (B45) 2007; 58
Bartels (B6) 2005; 45
Hendry (B22) 1993
Van Hutte (B57) 2013; 161
References_xml – volume: 58
  start-page: 1947
  year: 2007
  ident: B45
  article-title: Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erm056
– volume: 28
  start-page: 350
  year: 1956
  ident: B12
  article-title: Colorimetric method for determination of sugars and related substances
  publication-title: Anal. Chem
  doi: 10.1021/ac60111a017
– volume: 4
  start-page: 1360
  year: 1999
  ident: B51
  article-title: Metabolism and functions of gamma-aminobutyric acid
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(99)01486-7
– volume: 169
  start-page: 452
  year: 2012
  ident: B2
  article-title: Contribution of gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2011.11.006
– volume: 151
  start-page: 29
  year: 2000
  ident: B13
  article-title: A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species
  publication-title: Plant Ecol
  doi: 10.1023/A:1026534305831
– volume: 23
  start-page: 1231
  year: 2011
  ident: B42
  article-title: A sister group contrast using untargeted global metabolic analysis delineates the biochemical regulation underlying desiccation tolerance in Sporobolus stapfianus [C][W][OA]
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.082800
– volume: 71
  start-page: 144
  year: 2013
  ident: B8
  article-title: Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad Nidularium minutum to low temperatures
  publication-title: Plant Physiol. Biochem
  doi: 10.1016/j.plaphy.2013.07.005
– volume: 1
  start-page: 355
  year: 1991
  ident: B7
  article-title: Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1991.t01-11-00999.x
– start-page: 238
  volume-title: Plant Stress Physiology
  year: 2012
  ident: B15
  article-title: Desiccation tolerance
  doi: 10.1079/9781845939953.0238
– volume: 36
  start-page: 29
  year: 1996
  ident: B21
  article-title: Accumulation of proline and pattern of α-amino acids in sugar beet plant in response to osmotic, water and salt stress
  publication-title: Environ. Exp. Bot
  doi: 10.1016/0098-8472(95)00046-1
– start-page: 237
  volume-title: Seed Development and Germination
  year: 1995
  ident: B59
  article-title: Acquisition and loss of desiccation tolerance
– volume: 1
  start-page: 72
  year: 2007
  ident: B14
  article-title: An overview of mechanism of desiccation tolerance in selected angiosperm ressurrection plants
  publication-title: Plant Stress
– volume: 31
  start-page: 2823
  year: 2005
  ident: B37
  article-title: The South African and Namibian populations of the resurrection plant Myrothamnus flabellifolius are genetically distinct and display variation in their galloylquinic acid composition
  publication-title: J. Chem. Ecol
  doi: 10.1007/s10886-005-8396-x
– volume-title: Aspectos fisiológicos de três espécies de Velloziaceae, durante os processos de dessecação de reidratação
  year: 1997
  ident: B17
– volume: 57
  start-page: 65
  year: 2009
  ident: B16
  article-title: Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03673.x
– volume: 151
  start-page: 19
  year: 2000
  ident: B46
  article-title: Granitic and gneissic outcrops (inselbergs) as center os diversity for desiccation-tolerant vascular plants
  publication-title: Plant Ecol
  doi: 10.1023/A:1026565817218
– volume: 176
  start-page: 187
  year: 2009
  ident: B54
  article-title: Vegetative desiccation tolerance: is a goldmine for bioengineering crops?
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2008.10002
– volume: 62
  start-page: 193
  year: 2010
  ident: B1
  article-title: Desiccation tolerance in Pleurostima purpurea (Velloziaceae)
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-010-9491-8
– start-page: 148
  volume-title: Methods in Comparative Plant Ecology
  year: 1993
  ident: B22
  article-title: Stress indicators: chlorophylls and carotenoids
  doi: 10.1007/978-94-011-1494-3
– volume: 45
  start-page: 696
  year: 2005
  ident: B6
  article-title: Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum
  publication-title: Integr. Comp. Biol
  doi: 10.1093/icb.45.5.696
– volume: 10
  start-page: 20
  year: 2010
  ident: B48
  article-title: The Arabidopsis pop2-1 mutant revels the involvement of GABA transaminase in salt stress tolerance
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-10-20
– volume: 34
  start-page: 425
  year: 2007
  ident: B4
  article-title: Novo método enzimático rápido e sensível de extração e dosagem de amido em materiais vegetais
  publication-title: Hoehnea
  doi: 10.1590/S2236-89062007000400001
– volume: 6
  start-page: 17
  year: 1997
  ident: B34
  article-title: Potential desiccation tolerant vascular plants from southeastern Brazil
  publication-title: Pol. J. Environ. Stud
– volume: 70
  start-page: 689
  year: 2013
  ident: B18
  article-title: Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis
  publication-title: Cell. Mol. Life Sci
  doi: 10.1007/s00018-012-1155-6
– volume: 60
  start-page: 9
  year: 2009
  ident: B55
  article-title: Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging?
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/ern297
– volume: 27
  start-page: 586
  year: 2004
  ident: B10
  article-title: Métodos para análise de ácido clorogênico
  publication-title: Quím. Nova
  doi: 10.1590/S0100-40422004000400013
– volume: 51
  start-page: 630
  year: 2013
  ident: B58
  article-title: Effect of high temperature on dehydration-induced alterations in photosynthetic characteristics of the resurrection plant Haberlea rhodopensis
  publication-title: Photosynthetica
  doi: 10.1007/s11099-013-0063-9
– start-page: 319
  volume-title: Advances in Botanical Research. Plant Responses to Drought and Salinity Stress: Developments in a Post-genomic Era
  year: 2011
  ident: B38
  article-title: An overview of the current understanding of desiccation tolerance in the vegetative tissues of higher plants
  doi: 10.1016/B978-0-12-387692-8.00009-6
– volume: 4
  start-page: 561
  year: 2007
  ident: B50
  article-title: Rock outcrop vegetation in Brazil: a brief overview
  publication-title: Rev. Brasil. Bot
  doi: 10.1590/S0100-84042007000400002
– volume: 54
  start-page: 2313
  year: 2003
  ident: B40
  article-title: Investigation into the ability of roots of the poikilohydric plant Craterostigma plantagineum to survive dehydration stress
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erg255
– volume: 225
  start-page: 1405
  year: 2007
  ident: B27
  article-title: Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration
  publication-title: Planta
  doi: 10.1007/s00425-006-0449-z
– volume: 51
  start-page: 499
  year: 1999
  ident: B3
  article-title: Galactinol in the leaves of resurrection plant Boea hygroscopica
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(99)00031-X
– volume: 26
  start-page: 10
  year: 1999
  ident: B35
  article-title: The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection
  publication-title: Environ. Conser
  doi: 10.1017/S0376892999000041
– volume: 160
  start-page: 884
  year: 2012
  ident: B56
  article-title: Expansive evolution of the TREHALOSE-6-PHOSPHATE PHOSPHATASE gene family in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.201400
– volume: 160
  start-page: 61
  year: 1945
  ident: B53
  article-title: A new reagent for the determination of sugars
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(18)43097-9
– volume: 117A
  start-page: 335
  year: 1997
  ident: B24
  article-title: Membrane stabilization in the dry state
  publication-title: Comp. Biochem. Phys
  doi: 10.1016/S0300-9629(96)00272-1
– volume: 49
  start-page: 281
  year: 1998
  ident: B9
  article-title: Plant cell wall proteins
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol
  doi: 10.1146/annurev.arplant.49.1.281
– volume: 52
  start-page: 894
  year: 2011
  ident: B47
  article-title: GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcr041
– volume: 161
  start-page: 1158
  year: 2013
  ident: B57
  article-title: Over-expression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in ABA-induced stomatal closure
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.211391
– volume: 11
  start-page: 185
  year: 2001
  ident: B44
  article-title: Biochemistry and physiology of raffinose family oligosaccharides and galactosil cyclitois in seeds
  publication-title: Seed Sci. Res
  doi: 10.1079/SSR200175
– volume: 95
  start-page: 149
  year: 2008
  ident: B28
  article-title: Protection of in vitro grown Arabidopsis seedlings against abiotic stresses
  publication-title: Plant Cell Tiss. Org. Cult
  doi: 10.1007/s11240-008-9426-5
– volume: 165
  start-page: 172
  year: 2008
  ident: B32
  article-title: Strong quenching of chlorophyll fluorescence in the desiccated state in three poikilohydric and homoiochlorophyllous moss species indicates photo-oxidative protection on highly light-exposed rocks of a tropical inselberg
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2007.03.004
– volume: 403
  start-page: 853
  year: 2000
  ident: B39
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
  doi: 10.1038/35002501
– volume: 45
  start-page: 771
  year: 2005
  ident: B25
  article-title: The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues
  publication-title: Integr. Comp. Biol
  doi: 10.1093/icb/45.5.771
– volume: 150
  start-page: 1
  year: 2006
  ident: B29
  article-title: Asparagine in plants
  publication-title: Ann. Appl. Biol
  doi: 10.1111/j.1744-7348.2006.00104.x
– volume: 24
  start-page: 193
  year: 1998
  ident: B43
  article-title: “To dryness and beyong”—preparation for the dried state and rehydration in vegetative desiccation-tolerant plants
  publication-title: Plant Growth Regul
  doi: 10.1023/A:1005863015130
– volume: 69
  start-page: 3175
  year: 2012
  ident: B19
  article-title: Molecular mechanisms of desiccation tolerance in resurrection plants
  publication-title: Cell. Mol. Life Sci
  doi: 10.1007/s00018-012-1088-0
– volume: 347
  start-page: 1
  year: 1950
  ident: B23
  article-title: The water culture method for growing plants without soil
  publication-title: Calif. Agr. Expt. Sta. Circ
– volume: 50
  start-page: 1093
  year: 2007
  ident: B41
  article-title: Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03115.x
– volume: 72
  start-page: 781
  year: 2011
  ident: B26
  article-title: Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2011.02.027
– volume: 107
  start-page: 141
  year: 2011
  ident: B36
  article-title: Effects of low temperature on growth and non-structural carbohydrates of the imperial bromeliad Alcantarea imperialis cultured in vitro
  publication-title: Plant Cell Tiss. Org. Cult
  doi: 10.1007/s11240-011-9966-y
– volume: 13
  start-page: 131
  year: 2001
  ident: B49
  article-title: Metabolic profiling allows comprehensive phenotyping of genetically and environmentally modified systems
  publication-title: Plant Cell
  doi: 10.1105/tpc.13.1.11
– volume: 24
  start-page: 203
  year: 1998
  ident: B52
  article-title: Protection mechanisms against excess light in the ressurrection plants Craterostigma wilsii and Xerophyta viscosa
  publication-title: Plant Growth Regul
  doi: 10.1023/A:1005801610891
– volume: 34
  start-page: 550
  year: 2007
  ident: B31
  article-title: Gene families and evolution of trehalose metabolism in plants
  publication-title: Funct. Plant Biol
  doi: 10.1071/FP06315
– volume: 49
  start-page: 81
  year: 1950
  ident: B60
  article-title: Studies in the water relations of cotton plant. I. The field measurement of water deficits in leaves
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1950.tb05146.x
– volume: 5
  start-page: 27
  year: 1977
  ident: B33
  article-title: Stress hídrico e alguns aspectos do comportamento fisiológico de Xerophyta plicata Spreng—Velloziaceae
  publication-title: Bol. Bot. Univ. São Paulo
– volume: 143
  start-page: 403
  year: 2008
  ident: B30
  article-title: Water deficit accumulates sugar by starch degradation not by de novo synthesis in white clover leaves (Trifolium repens)
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.2008.01156.x
– start-page: 291
  volume-title: BioEstat 3.0: aplicações estatísticas nas áreas de ciências biológicas e médicas
  year: 2003
  ident: B5
– volume: 182
  start-page: 29
  year: 2012
  ident: B11
  article-title: Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2011.01.018
– volume: 64
  start-page: 1
  year: 2010
  ident: B20
  article-title: AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2010.04312.x
SSID ssj0000500997
Score 2.3313963
SecondaryResourceType review_article
Snippet Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are...
Barbacenia purpurea is a resurrection species endemic to rock outcrops, in Rio de Janeiro, Brazil. It tolerates great temperature variations, which are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 96
SubjectTerms caffeoyl-quinic acids
dehydration tolerance
drought
Metabolomics
Plant Science
raffinose-family oligosaccharides
Rock outcrops
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4s3y0iBxKIe069hx7COLqFYIcaKoN8uObXWlJVl1U6r2H_VfMhNnV7sIxIVrnIfjb5z5Jh5_w9g7kUydnFE4xU0qiEEXWlCtF96IxkQZRc7y_armp_LzWXW2U-qLcsKyPHAeuOPaBB6QtuhKo_P0wXiPHj_pIFRQPDT09UWftxNMZVVvoj511vLBKMwcp9WS1Lk5iWVPSaJ_xw0Nav1_opi_Z0ruuJ6TB-z-yBnhQ-7rQ3Ynto_Y3VmHvO76Mbv9El2CH7FHOGlDMYxluKFLgOwOZhfuZkE_MwAja1JjGnYywGqJYwrDckNDCXewwiGnFHWYI-8-gsPvtCxzs8BWF9_D-ry7WkN_1QFVoy82tXN7uikl2cY15B2PECICn38EgmsDUMj9cxA8fMJOTz59-zgvxgIMRSMr0xdlXfE66OBDMLqMBvE2lQxCepl8KR3Odzf1nAdfeq1V0LERsQ5qmlITiOk9ZQdt18bnDDzp3ODxmJAjKm_w3ZSIpfOm5lFUfMKONnjYZlQnpyIZS4tRCgFoCUBLANoBwAk73F6wysIcfz91RgBvTyNF7eEA2pkd7cz-y84m7O3GPCzOQFpWcW3sLtcWORPRaF3KCXuWzWX7qBL9UFkJbKn3DGmvL_st7eJ8UPkWtLCu1Iv_0fmX7B4NB-XOcfmKHfQXl_E1kqnevxnmzS_PcyIq
  priority: 102
  providerName: Directory of Open Access Journals
Title Leaf metabolite profile of the Brazilian resurrection plant Barbacenia purpurea Hook. (Velloziaceae) shows two time-dependent responses during desiccation and recovering
URI https://www.ncbi.nlm.nih.gov/pubmed/24672534
https://www.proquest.com/docview/1511397824
https://pubmed.ncbi.nlm.nih.gov/PMC3953666
https://doaj.org/article/79d1d115858643bd9bb610f8d36d61dc
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcOBS8WYLVIPEoRyy1LHj2IcKsYiyQsCJRXuL4timK22T7SaltP-o_5KZJLuwaLlxySHOw_HMZL6xx98w9lIEk4bcKDRxEyJC0JEWVOuFF6IwXnrRZfl-UeOJ_DhNpr_LAfUDWG8N7aie1GQ5H_48u3yDBn9EESf629dhMSfibU482IjIb7Jb6JZSKmfwucf6HdE3oaG0o_fZdt-GZ2oJ_Lehzr-TJ__wRsd32W4PI-FtJ_d77IYv77Pbowqh3uUDdv3J5wFOfYMSpj3G0FfmhioAAj4YLfOrGc1vAAbbRNDUbm6AxRyHGdoViIJy8GCBUqCsdRgjFB_CwTdaqbmaYWvuX0F9Ul3U0FxUQAXqo1U53YYeSnm3voZuEyQ4j7rQzQ1CXjqgKPxHy4H4kE2O3399N476mgxRIRPTRHGa8NRpZ50zOvYGVcAk0glpZbCxzPEXkB9azp2NrdbKaV8Inzp1GELhCPw9YjtlVfonDCxR3-B5HxA2Kmvw25TwcW5Nyr1I-IANV_LIip6wnOpmzDMMXEiAGQkwIwFmrQAH7GB9w6Lj6vj3pSMS8PoyItluT1TL71lvs1lqHHeImHWiEbdZZ6xFsBm0E8op7ooBe7FSjwyNklZa8tJX53WGMIqQtY7lgD3u1GX9qhhdU5wIbEk3FGmjL5st5eykJf4WtNau1N7_6PxTdoeGg9LpuHzGdprluX-O-Kqx--28BB4_TPl-a0O_AO_0K-4
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+metabolite+profile+of+the+Brazilian+resurrection+plant+Barbacenia+purpurea+Hook.+%28Velloziaceae%29+shows+two+time-dependent+responses+during+desiccation+and+recovering&rft.jtitle=Frontiers+in+plant+science&rft.au=Vanessa+Fuentes+Suguiyama&rft.au=Emerson+Alves+da+Silva&rft.au=S%C3%A9rgio+Tadeu+Meirelles&rft.au=Danilo+da+Cruz+Centeno&rft.date=2014-03-14&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=5&rft_id=info:doi/10.3389%2Ffpls.2014.00096&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79d1d115858643bd9bb610f8d36d61dc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon