Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks

This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language n...

Full description

Saved in:
Bibliographic Details
Published inJournal of Neurophysiology Vol. 124; no. 5; pp. 1415 - 1448
Main Authors Braga, Rodrigo M., DiNicola, Lauren M., Becker, Hannah C., Buckner, Randy L.
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Physiological Society 01.11.2020
SeriesHigher Neural Functions and Behavior
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex. Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex. NEW & NOTEWORTHY This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex.
AbstractList Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex. NEW & NOTEWORTHY This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex.
This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex. Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex. NEW & NOTEWORTHY This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex.
Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex.NEW & NOTEWORTHY This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex.Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated within the broader context of adjacent networks. The candidate network was first identified using functional connectivity and replicated across individuals, acquisition tasks, and analytical methods. In addition to classical language regions near the perisylvian cortex and temporal pole, regions were also observed in dorsal posterior cingulate, midcingulate, and anterior superior frontal and inferior temporal cortex. The candidate network was selectively activated when processing meaningful (as contrasted with nonword) sentences, whereas spatially adjacent networks showed minimal or even decreased activity. Results were replicated and triplicated across two prospectively acquired cohorts. Examined in relation to adjacent networks, the topography of the language network was found to parallel the motif of other association networks, including the transmodal association networks linked to theory of mind and episodic remembering (often collectively called the default network). The several networks contained juxtaposed regions in multiple association zones. Outside of these juxtaposed higher-order networks, we further noted a distinct frontotemporal network situated between language regions and a frontal orofacial motor region and a temporal auditory region. A possibility is that these functionally related sensorimotor regions might anchor specialization of neighboring association regions that develop into a language network. What is most striking is that the canonical language network appears to be just one of multiple similarly organized, differentially specialized distributed networks that populate the evolutionarily expanded zones of human association cortex.NEW & NOTEWORTHY This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language network shares a common spatial motif with other association networks, including default and frontoparietal control networks. The language network is activated by language task demands, whereas closely juxtaposed networks are not, suggesting that similarly organized but differentially specialized distributed networks populate association cortex.
Author Hannah C. Becker
Rodrigo M. Braga
Randy L. Buckner
Lauren M. DiNicola
Author_xml – sequence: 1
  givenname: Rodrigo M.
  surname: Braga
  fullname: Braga, Rodrigo M.
  organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, The Computational, Cognitive, and Clinical Neuroimaging Laboratory, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
– sequence: 2
  givenname: Lauren M.
  orcidid: 0000-0001-7562-0755
  surname: DiNicola
  fullname: DiNicola, Lauren M.
  organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
– sequence: 3
  givenname: Hannah C.
  surname: Becker
  fullname: Becker, Hannah C.
  organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
– sequence: 4
  givenname: Randy L.
  surname: Buckner
  fullname: Buckner, Randy L.
  organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, Department of Radiology, Harvard Medical School, Boston, Massachusetts, Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
BackLink https://cir.nii.ac.jp/crid/1871146593013100160$$DView record in CiNii
BookMark eNp1kTtvFDEUhS2UiCxLSvopKGhm8fvRIKEoPKRIFIHa8szcmTjM2ovtASU1PxzvAySQaGzr-Nzv2vc8Q2chBkDoBcEbQgR9fR82GCvBNhQT8wStqkZbIow-QyuM65lhpS7QZc6-w0Jzw6gST9EFo0YKItgK_bz1ZXHFh6kpd9DMMJZ2dgWSm_0jDM3swrS4CZoA5UdMXxsfDsYuRTdAamKaXPCPlRBDE8dmu8zF72Zo8g56_weSJmhz76o--FyS75ZS9RMzP0fno5szXJ72Nfry7vrz1Yf25tP7j1dvb9qeC1NaQgepOqY401xJLaVgEljn2IjFqPWgOkrZyHtNTCcNBywBeiPACc5ZZwa2Rm-O3N3SbWHoIZT6T7tLfuvSg43O279vgr-zU_xuNRNSaVYBr06AFL8tkIvd-tzDXKcEccmWci54nW31rhE7WvsUc04w2t6Xw5gq2c-WYLuP0N4He4jQ7iOsVe0_Vb8f9z__y6M_eF8b7FeiFSFcCsMwYQRjIjH7BRu7q-s
CitedBy_id crossref_primary_10_1093_cercor_bhae077
crossref_primary_10_1126_sciadv_adp0453
crossref_primary_10_1162_netn_a_00323
crossref_primary_10_1007_s00429_023_02655_6
crossref_primary_10_1162_nol_a_00071
crossref_primary_10_1073_pnas_2313473122
crossref_primary_10_1038_s41537_022_00308_x
crossref_primary_10_1073_pnas_2203039119
crossref_primary_10_1016_j_neuroimage_2021_117743
crossref_primary_10_1016_j_psychres_2023_115319
crossref_primary_10_1038_s41583_024_00904_z
crossref_primary_10_1093_schbul_sbac120
crossref_primary_10_1016_j_cortex_2023_10_011
crossref_primary_10_1038_s41467_024_48952_4
crossref_primary_10_7554_eLife_58906
crossref_primary_10_1016_j_heliyon_2024_e39735
crossref_primary_10_1016_j_neubiorev_2023_105259
crossref_primary_10_1016_j_cobeha_2021_05_003
crossref_primary_10_1016_j_bandl_2024_105405
crossref_primary_10_1016_j_neuroimage_2022_119476
crossref_primary_10_1016_j_neuropsychologia_2022_108184
crossref_primary_10_1038_s41467_023_39131_y
crossref_primary_10_1038_s41586_024_07522_w
crossref_primary_10_1162_nol_a_00081
crossref_primary_10_1162_nol_a_00123
crossref_primary_10_1016_j_dcn_2024_101355
crossref_primary_10_1016_j_tics_2022_06_010
crossref_primary_10_1093_cercor_bhac505
crossref_primary_10_1093_cercor_bhac344
crossref_primary_10_1093_cercor_bhab531
crossref_primary_10_1093_cercor_bhac350
crossref_primary_10_1016_j_semcdb_2021_08_015
crossref_primary_10_1097_NMD_0000000000001321
crossref_primary_10_1016_j_cortex_2024_06_011
crossref_primary_10_1016_j_neuropsychologia_2025_109125
crossref_primary_10_1007_s00429_022_02544_4
crossref_primary_10_1016_j_cobeha_2021_02_023
crossref_primary_10_1016_j_tics_2021_09_005
crossref_primary_10_1162_netn_a_00385
crossref_primary_10_1126_sciadv_adq4037
crossref_primary_10_1016_j_neurobiolaging_2024_11_010
crossref_primary_10_1038_s41583_024_00895_x
crossref_primary_10_1016_j_neubiorev_2021_12_012
crossref_primary_10_1038_s41562_024_01944_2
crossref_primary_10_1093_cercor_bhab387
crossref_primary_10_1093_cercor_bhad289
crossref_primary_10_1162_jocn_a_01945
crossref_primary_10_1016_j_neuron_2023_04_023
crossref_primary_10_1080_17458927_2023_2200065
crossref_primary_10_1016_j_bpsgos_2024_100370
crossref_primary_10_1038_s41583_021_00474_4
crossref_primary_10_1371_journal_pcbi_1009837
crossref_primary_10_1152_jn_00108_2023
crossref_primary_10_1038_s41597_022_01645_3
crossref_primary_10_1038_s41467_024_49173_5
crossref_primary_10_1038_s41583_024_00802_4
crossref_primary_10_1016_j_neubiorev_2022_104772
crossref_primary_10_1038_s41597_021_01033_3
crossref_primary_10_1016_j_cortex_2023_01_013
crossref_primary_10_1038_s41586_024_07643_2
crossref_primary_10_1038_s41593_024_01618_2
crossref_primary_10_1136_bmjopen_2023_081847
crossref_primary_10_1080_20008066_2024_2403250
crossref_primary_10_1152_jn_00387_2023
crossref_primary_10_1523_JNEUROSCI_0599_23_2023
crossref_primary_10_1038_s41583_024_00853_7
crossref_primary_10_1016_j_arr_2021_101482
crossref_primary_10_3389_fnhum_2021_728151
crossref_primary_10_1016_j_bandl_2025_105549
crossref_primary_10_1038_s41562_023_01626_5
crossref_primary_10_1016_j_cobeha_2021_02_014
crossref_primary_10_1038_s42003_023_04733_1
crossref_primary_10_1038_s41539_024_00232_y
crossref_primary_10_1093_schbul_sbac159
crossref_primary_10_1152_jn_00427_2023
crossref_primary_10_1038_s41467_024_52371_w
crossref_primary_10_1038_s42003_024_07061_0
crossref_primary_10_1016_j_neuroimage_2021_118487
crossref_primary_10_1016_j_cobeha_2020_12_004
crossref_primary_10_1038_s41593_022_01114_5
crossref_primary_10_1093_cercor_bhae049
crossref_primary_10_1016_j_msard_2023_104510
crossref_primary_10_1152_jn_00277_2023
crossref_primary_10_1038_s41562_023_01783_7
crossref_primary_10_1093_cercor_bhad087
crossref_primary_10_1093_cercor_bhab065
crossref_primary_10_1016_j_neuroimage_2022_119589
crossref_primary_10_1007_s00429_021_02312_w
crossref_primary_10_1038_s42003_023_04446_5
crossref_primary_10_1016_j_brs_2023_08_023
crossref_primary_10_1162_nol_a_00135
crossref_primary_10_1016_j_media_2024_103120
crossref_primary_10_1016_j_dcn_2024_101405
crossref_primary_10_1016_j_neubiorev_2025_106024
crossref_primary_10_1146_annurev_neuro_120623_101142
crossref_primary_10_1073_pnas_2100522118
crossref_primary_10_1152_jn_00211_2022
crossref_primary_10_1016_j_celrep_2024_115207
crossref_primary_10_1038_s41467_022_29766_8
crossref_primary_10_1152_jn_00561_2020
crossref_primary_10_1162_imag_a_00437
crossref_primary_10_1162_jocn_a_02164
crossref_primary_10_1073_pnas_2422083122
crossref_primary_10_1093_scan_nsac006
crossref_primary_10_1016_j_neuroimage_2021_118739
crossref_primary_10_1152_jn_00308_2023
crossref_primary_10_1016_j_cobeha_2021_03_029
Cites_doi 10.1093/cercor/bhv239
10.1146/annurev.ne.11.030188.001033
10.1152/jn.00895.2010
10.1093/cercor/bhy123
10.3389/fninf.2011.00004
10.1152/jn.00808.2018
10.1002/hbm.20422
10.1016/j.neuroimage.2013.05.108
10.1002/hbm.10022
10.1152/jn.00529.2019
10.1073/pnas.1112937108
10.1016/j.neuroimage.2018.10.006
10.1162/jocn.2007.19.9.1520
10.1073/pnas.1608282113
10.1093/cercor/bhp055
10.1023/B:BRAT.0000019184.63249.e8
10.1038/nature18933
10.1016/j.neuron.2011.09.006
10.1016/j.neuroimage.2006.07.029
10.1006/nimg.2001.0931
10.1002/ana.410280502
10.1073/pnas.89.12.5675
10.1016/j.neuroimage.2016.05.073
10.1093/brain/awf191
10.1371/journal.pone.0040370
10.1152/jn.00338.2011
10.1152/jn.00339.2011
10.1523/JNEUROSCI.3267-16.2017
10.1152/jn.00032.2010
10.1038/nrn2113
10.1006/cbmr.1996.0014
10.1093/brain/aws336
10.1038/nrn755
10.1016/j.tics.2010.01.004
10.1126/science.aad8127
10.1126/science.170.3961.940
10.1001/archneur.1995.00540300067015
10.1093/cercor/bhm131
10.1073/pnas.89.13.5951
10.1016/j.neuroimage.2014.04.030
10.1016/j.neuroimage.2011.08.056
10.1073/pnas.0905267106
10.1016/j.neuroimage.2007.12.025
10.1016/j.neuroimage.2005.03.035
10.1016/j.neuron.2017.07.011
10.1038/331585a0
10.1016/j.neuron.2007.10.002
10.1002/ana.410100402
10.1002/mrm.23097
10.1038/s41583-019-0212-7
10.1038/s41467-019-09812-8
10.1016/j.neuron.2012.12.028
10.1016/j.cortex.2009.11.005
10.1038/ncomms7762
10.1016/j.neuron.2017.06.038
10.1196/annals.1440.011
10.1073/pnas.94.26.14792
10.1016/j.cub.2012.09.011
10.1016/j.bandl.2013.05.005
10.1016/j.neuron.2015.06.037
10.1093/cercor/bhw393
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuropsychologia.2018.09.011
10.1177/1745691612469021
10.1016/S0896-6273(02)00800-0
10.1038/nature03628
10.1038/nn1050
10.1006/nimg.1999.0441
10.1523/JNEUROSCI.5587-06.2007
10.1152/jn.00884.2013
10.1073/pnas.0704320104
10.1152/jn.90355.2008
10.1016/j.neuroimage.2016.09.069
10.1093/cercor/bhw198
10.1080/17588928.2016.1201466
10.1093/brain/114.4.1803
10.1006/nimg.1998.0396
10.1162/jocn.2008.20148
10.1073/pnas.0905314106
10.1016/j.neuroimage.2004.07.051
10.1038/ncomms9885
ContentType Journal Article
Copyright Copyright © 2020 the American Physiological Society 2020 American Physiological Society
Copyright_xml – notice: Copyright © 2020 the American Physiological Society 2020 American Physiological Society
DBID RYH
AAYXX
CITATION
7X8
5PM
DOI 10.1152/jn.00753.2019
DatabaseName CiNii Complete
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate DISTRIBUTED LANGUAGE NETWORK
EISSN 1522-1598
EndPage 1448
ExternalDocumentID PMC8356783
10_1152_jn_00753_2019
GrantInformation_xml – fundername: ; ;
  grantid: 103980/Z/14/Z
– fundername: ; ;
  grantid: P50MH106435
– fundername: ; ;
  grantid: S10OD020039
– fundername: ; ;
  grantid: K99MH117226
– fundername: ; ;
  grantid: DGE-1745303
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CS3
DIK
DU5
E3Z
EBS
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
RYH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c459t-12d67b37438476866536e3ba3f05f88d7b223f4c819b694e06eec95ea5443b9d3
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 13:53:39 EDT 2025
Fri Jul 11 06:32:26 EDT 2025
Tue Jul 01 00:33:55 EDT 2025
Thu Apr 24 23:01:06 EDT 2025
Thu Jun 26 22:21:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Licensed under Creative Commons Attribution CC-BY 4.0: © the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-12d67b37438476866536e3ba3f05f88d7b223f4c819b694e06eec95ea5443b9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6422-8037
0000-0001-6944-1208
0000-0003-2671-7096
0000-0001-7562-0755
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8356783
PMID 32965153
PQID 2445429678
PQPubID 23479
PageCount 34
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8356783
proquest_miscellaneous_2445429678
crossref_citationtrail_10_1152_jn_00753_2019
crossref_primary_10_1152_jn_00753_2019
nii_cinii_1871146593013100160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
PublicationSeriesTitle Higher Neural Functions and Behavior
PublicationTitle Journal of Neurophysiology
PublicationYear 2020
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B27
B28
B29
B70
B71
B72
B73
B30
B74
B31
B75
B32
B76
B33
B77
B34
B78
B35
B79
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B9
B80
B30a
B82
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
Xu J (B81) 2012; 20
B50
B51
B52
B53
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
B60
B61
B62
B63
References_xml – ident: B36
  doi: 10.1093/cercor/bhv239
– ident: B35
  doi: 10.1146/annurev.ne.11.030188.001033
– ident: B24
  doi: 10.1152/jn.00895.2010
– ident: B45
  doi: 10.1093/cercor/bhy123
– ident: B51
  doi: 10.3389/fninf.2011.00004
– ident: B9
  doi: 10.1152/jn.00808.2018
– ident: B29
  doi: 10.1002/hbm.20422
– ident: B38
  doi: 10.1016/j.neuroimage.2013.05.108
– ident: B39
  doi: 10.1002/hbm.10022
– ident: B22
  doi: 10.1152/jn.00529.2019
– ident: B26
  doi: 10.1073/pnas.1112937108
– volume: 20
  start-page: 2306
  year: 2012
  ident: B81
  publication-title: Proc Int Soc Magn Reson Med
– ident: B44
  doi: 10.1016/j.neuroimage.2018.10.006
– ident: B16
  doi: 10.1162/jocn.2007.19.9.1520
– ident: B52
  doi: 10.1073/pnas.1608282113
– ident: B2
  doi: 10.1093/cercor/bhp055
– ident: B41
  doi: 10.1023/B:BRAT.0000019184.63249.e8
– ident: B33
  doi: 10.1038/nature18933
– ident: B66
  doi: 10.1016/j.neuron.2011.09.006
– ident: B78
  doi: 10.1016/j.neuroimage.2006.07.029
– ident: B80
  doi: 10.1006/nimg.2001.0931
– ident: B56
  doi: 10.1002/ana.410280502
– ident: B47
  doi: 10.1073/pnas.89.12.5675
– ident: B50
  doi: 10.1016/j.neuroimage.2016.05.073
– ident: B5
  doi: 10.1093/brain/awf191
– ident: B49
  doi: 10.1371/journal.pone.0040370
– ident: B82
  doi: 10.1152/jn.00338.2011
– ident: B14
  doi: 10.1152/jn.00339.2011
– ident: B21
  doi: 10.1523/JNEUROSCI.3267-16.2017
– ident: B28
  doi: 10.1152/jn.00032.2010
– ident: B42
  doi: 10.1038/nrn2113
– ident: B19
  doi: 10.1006/cbmr.1996.0014
– ident: B57
  doi: 10.1093/brain/aws336
– ident: B18
  doi: 10.1038/nrn755
– ident: B25
  doi: 10.1016/j.tics.2010.01.004
– ident: B72
  doi: 10.1126/science.aad8127
– ident: B31
  doi: 10.1126/science.170.3961.940
– ident: B3
  doi: 10.1001/archneur.1995.00540300067015
– ident: B11
  doi: 10.1093/cercor/bhm131
– ident: B61
  doi: 10.1073/pnas.89.13.5951
– ident: B54
  doi: 10.1016/j.neuroimage.2014.04.030
– ident: B20
  doi: 10.1016/j.neuroimage.2011.08.056
– ident: B70
  doi: 10.1073/pnas.0905267106
– ident: B75
  doi: 10.1016/j.neuroimage.2007.12.025
– ident: B74
  doi: 10.1016/j.neuroimage.2005.03.035
– ident: B37
  doi: 10.1016/j.neuron.2017.07.011
– ident: B62
  doi: 10.1038/331585a0
– ident: B46
  doi: 10.1016/j.neuron.2007.10.002
– ident: B55
  doi: 10.1002/ana.410100402
– ident: B69
  doi: 10.1002/mrm.23097
– ident: B13
  doi: 10.1038/s41583-019-0212-7
– ident: B15
  doi: 10.1038/s41467-019-09812-8
– ident: B60
  doi: 10.1016/j.neuron.2012.12.028
– ident: B10
  doi: 10.1016/j.cortex.2009.11.005
– ident: B59
  doi: 10.1038/ncomms7762
– ident: B7
  doi: 10.1016/j.neuron.2017.06.038
– ident: B12
  doi: 10.1196/annals.1440.011
– ident: B73
  doi: 10.1073/pnas.94.26.14792
– ident: B27
  doi: 10.1016/j.cub.2012.09.011
– ident: B30a
  doi: 10.1016/j.bandl.2013.05.005
– ident: B48
  doi: 10.1016/j.neuron.2015.06.037
– ident: B17
  doi: 10.1093/cercor/bhw393
– ident: B76
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: B58
  doi: 10.1016/j.neuropsychologia.2018.09.011
– ident: B6
  doi: 10.1177/1745691612469021
– ident: B34
  doi: 10.1016/S0896-6273(02)00800-0
– ident: B63
  doi: 10.1038/nature03628
– ident: B1
  doi: 10.1038/nn1050
– ident: B65
  doi: 10.1006/nimg.1999.0441
– ident: B68
  doi: 10.1523/JNEUROSCI.5587-06.2007
– ident: B4
  doi: 10.1152/jn.00884.2013
– ident: B23
  doi: 10.1073/pnas.0704320104
– ident: B77
  doi: 10.1152/jn.90355.2008
– ident: B43
  doi: 10.1016/j.neuroimage.2016.09.069
– ident: B32
  doi: 10.1093/cercor/bhw198
– ident: B67
  doi: 10.1080/17588928.2016.1201466
– ident: B79
  doi: 10.1093/brain/114.4.1803
– ident: B30
  doi: 10.1006/nimg.1998.0396
– ident: B40
  doi: 10.1162/jocn.2008.20148
– ident: B53
  doi: 10.1073/pnas.0905314106
– ident: B71
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: B64
  doi: 10.1038/ncomms9885
SSID ssib058493275
ssib006542378
ssib006542379
ssib026260706
ssib002836591
ssib045030539
ssj0007502
ssib004374328
Score 2.6296396
Snippet This research shows that a language network can be identified within individuals using functional connectivity. Organizational details reveal that the language...
Using procedures optimized to explore network organization within the individual, the topography of a candidate language network was characterized and situated...
SourceID pubmedcentral
proquest
crossref
nii
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1415
SubjectTerms Adult
Brain Mapping
Cerebral Cortex
Female
Functional Laterality
Humans
Language
Magnetic Resonance Imaging
Male
Neural Pathways
Young Adult
Title Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks
URI https://cir.nii.ac.jp/crid/1871146593013100160
https://www.proquest.com/docview/2445429678
https://pubmed.ncbi.nlm.nih.gov/PMC8356783
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6ceGCgIHoYMhIaBcIND-cH8cNNlUwBoxW6i2yY2fLVBzUpIf1zJm_mWfHzg_YpMElrdL0ter31fn8_N5nhF4qfw_uMu6EcZ47QR5lDpvw0AmTPGE0gnuc7vD-dBpO58GHBVmMRr96VUvrmr3JNtf2lfwPqnAOcFVdsv-AbBsUTsBzwBeOgDAcb4Xxt6JWTt2m4Wkp8tpZUtVSvCw2ICRtLvKVbGq9bU0jW5Wqftns6LRpRWNbXFg1m9KbIKtz4VQApVCrOc0GWapmoIlZ3aButU-mTpsM8vaHK9pkcs9KvirOyy4Z-77QpKS2WVvI7rVDYYs_plRKetGldtXStGnZOaOSX5kmCpPGgDmr26YxzMgLs2LQVs1gLK45Z4frpufa8JL0Bl83aDpD_74rEOUyeymVTzrxVT1f0t3-7JL_6ef0eH5yks6OFrMtdMeDaYcaNz9-7dznQV3p1XP7taxnK_HeDoIPNM6WLIrB9GVYfNtTM7P76J4BCh80nHqARkI-RDsHktbl9yu8j7-0yO2gny3NMLAH_0kzbGmGDSVwIfWFhma4TzNc5tjSDPdohns0wz2a2ZjVIzQ_Ppq9mzpm8w4nC0hSO67Hw4j5IFBB_4TKVdEPhc-on09IHsc8YiBM8yADRcrCJBCTUIgsIYIqQ0aWcP8x2palFE8Q5mwSZxyklgDsqTehru9xFgYZoTE8kDF6bX_uNDPO9mqDlWWqZ7jESy9lqtFJFTpjtN9e_qOxdLnpwj3ADkKqoxtHqoGfJL5yqNLbs4_RC4tqCoOyWmmjUpTrKgXNrPaBAyE4RtEA7vYTla378BVZXGh7d5gTwRv93VtEf4rudv-lZ2i7Xq3FHojkmj3XzP0NKCvDxg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Situating+the+left-lateralized+language+network+in+the+broader+organization+of+multiple+specialized+large-scale+distributed+networks&rft.jtitle=Journal+of+neurophysiology&rft.au=Braga%2C+Rodrigo+M&rft.au=DiNicola%2C+Lauren+M&rft.au=Becker%2C+Hannah+C&rft.au=Buckner%2C+Randy+L&rft.date=2020-11-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=124&rft.issue=5&rft.spage=1415&rft_id=info:doi/10.1152%2Fjn.00753.2019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon