An update on Vitiligo pathogenesis
Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years,...
Saved in:
Published in | Pigment cell and melanoma research Vol. 34; no. 2; pp. 236 - 243 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1755-1471 1755-148X 1755-148X |
DOI | 10.1111/pcmr.12949 |
Cover
Loading…
Abstract | Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non‐immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T‐resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development. |
---|---|
AbstractList | Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non‐immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T‐resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development. Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non-immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T-resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development.Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non-immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T-resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development. |
Author | Seneschal, Julien Picardo, Mauro Boniface, Katia D’Arino, Andrea |
Author_xml | – sequence: 1 givenname: Julien surname: Seneschal fullname: Seneschal, Julien email: julien.seneschal@chu-bordeaux.fr organization: Hôpital Saint‐André – sequence: 2 givenname: Katia surname: Boniface fullname: Boniface, Katia organization: FHU ACRONIM – sequence: 3 givenname: Andrea orcidid: 0000-0002-0669-1442 surname: D’Arino fullname: D’Arino, Andrea organization: IRCCS – sequence: 4 givenname: Mauro orcidid: 0000-0003-4899-6639 surname: Picardo fullname: Picardo, Mauro email: Mauro.picardo@ifo.gov.it organization: IRCCS |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33278065$$D View this record in MEDLINE/PubMed |
BookMark | eNp90E9LwzAYBvAgE-emFz-AFL2I0Jk0TZMcx_AfTBRR8RayNJkZXVOTFtm3t7ObhyHmkhx-z0veZwB6pSs1ACcIjlB7riq19COU8JTvgUNECYlRyt57v2-K-mAQwgLCDBKOD0Af44QymJFDcDYuo6bKZa0jV0ZvtraFnbuokvWHm-tSBxuOwL6RRdDHm3sIXm-uXyZ38fTx9n4ynsYqJZzHlCVcSpZTI2dUJRjlKTWaGkyk4cxglnJNMmQ411xjnmaKkkwxTCDLE2MUHoKLbm7l3WejQy2WNihdFLLUrgkiSTOaIZyksKXnO3ThGl-2v2sVpxwmhK3V6UY1s6XOReXtUvqV2G7fAtgB5V0IXhuhbC1r68raS1sIBMW6YLEuWPwU3EYudyLbqX9i1OEvW-jVP1I8TR6eu8w32cKI3Q |
CitedBy_id | crossref_primary_10_1111_jdv_19754 crossref_primary_10_3390_ijms24076324 crossref_primary_10_3390_pharmaceutics14122738 crossref_primary_10_3389_fphar_2021_685116 crossref_primary_10_3389_fimmu_2023_1259515 crossref_primary_10_3390_pharmaceutics16111384 crossref_primary_10_1016_j_jaad_2022_11_005 crossref_primary_10_3390_molecules29040865 crossref_primary_10_3389_fmed_2024_1408409 crossref_primary_10_1093_bjd_ljaf041 crossref_primary_10_1002_biof_1912 crossref_primary_10_3390_cells11192999 crossref_primary_10_3390_ijms222111429 crossref_primary_10_2217_nnm_2021_0335 crossref_primary_10_1111_pcmr_12994 crossref_primary_10_1016_j_molimm_2023_06_009 crossref_primary_10_1186_s12864_024_10147_y crossref_primary_10_3390_jcm14020432 crossref_primary_10_3390_ijms24054689 crossref_primary_10_1001_jamadermatol_2024_5737 crossref_primary_10_5021_ad_23_076 crossref_primary_10_1177_03000605221119646 crossref_primary_10_1007_s10103_025_04293_2 crossref_primary_10_4103_JCAS_JCAS_12_23 crossref_primary_10_1016_j_jdermsci_2023_12_006 crossref_primary_10_3390_ijms232315361 crossref_primary_10_4062_biomolther_2023_112 crossref_primary_10_1111_ijd_16487 crossref_primary_10_1007_s00403_022_02358_8 crossref_primary_10_3390_jcm10173958 crossref_primary_10_3390_ijms22168820 crossref_primary_10_1016_j_trim_2022_101766 crossref_primary_10_1016_j_humgen_2024_201264 crossref_primary_10_1016_j_jid_2024_12_006 crossref_primary_10_1016_j_piel_2021_05_008 crossref_primary_10_3389_fimmu_2021_711080 crossref_primary_10_3390_biomedicines10112744 crossref_primary_10_1093_bjd_ljad200 crossref_primary_10_21518_ms2024_317 crossref_primary_10_1111_exd_14856 crossref_primary_10_1002_der2_168 crossref_primary_10_1007_s11306_021_01843_x crossref_primary_10_1016_j_rechem_2024_101779 crossref_primary_10_1007_s13671_023_00384_x crossref_primary_10_1016_j_jaci_2024_01_025 crossref_primary_10_3390_biomedicines10071639 crossref_primary_10_29058_mjwbs_1223300 crossref_primary_10_3390_vaccines10101647 crossref_primary_10_1177_15593258221105370 crossref_primary_10_1111_pcmr_13101 crossref_primary_10_3390_ijms22116078 crossref_primary_10_37349_ei_2021_00018 crossref_primary_10_1016_j_jid_2023_08_012 crossref_primary_10_1111_exd_14532 crossref_primary_10_1111_jocd_15396 crossref_primary_10_3390_cells12060936 crossref_primary_10_1038_s41598_024_67494_9 crossref_primary_10_1155_omcl_3193670 crossref_primary_10_1126_sciadv_abn9299 crossref_primary_10_1111_jocd_15158 crossref_primary_10_1038_s41598_022_17770_3 crossref_primary_10_1186_s12866_023_03020_7 crossref_primary_10_4103_ds_DS_D_23_00089 crossref_primary_10_12938_bmfh_2024_051 crossref_primary_10_1111_jocd_14582 crossref_primary_10_1007_s00403_024_03265_w crossref_primary_10_3390_cells11223583 crossref_primary_10_1155_2022_1821780 crossref_primary_10_3390_ijms25084409 |
Cites_doi | 10.1038/ni.2744 10.1038/cdd.2015.117 10.1034/j.1600-0749.2002.1o049.x 10.1126/sciimmunol.aam6346 10.1016/j.jid.2016.09.016 10.1126/science.1151869 10.1038/s41467-019-09963-8 10.1111/bjd.15550 10.1016/j.jid.2017.06.033 10.1016/j.freeradbiomed.2019.05.011 10.1016/j.jid.2019.03.1148 10.1126/scitranslmed.3005127 10.1096/fj.09-132621 10.1111/pcmr.12789 10.1111/1523-1747.ep12329664 10.1016/S0140-6736(20)30747-9 10.1038/s41467-019-09397-2 10.1016/S0140-6736(20)30609-7 10.1083/jcb.200311122 10.1016/j.cell.2018.03.006 10.1111/1523-1747.ep12460991 10.1016/j.jdermsci.2009.02.004 10.1016/j.jdermsci.2017.06.018 10.1126/scitranslmed.aam7710 10.1111/j.1600-0560.1983.tb00328.x 10.1111/pcmr.12208 10.1111/1523-1747.ep12500086 10.2174/138920210793175895 10.1016/j.jid.2016.10.048 10.1002/jcp.22027 10.1016/j.jid.2019.12.035 10.1111/j.1600-0749.2007.00385.x 10.1038/jid.2015.335 10.1038/sj.jid.5700700 10.1038/jid.2011.463 10.1111/imr.12369 10.1016/j.jdermsci.2016.04.005 10.1111/exd.13858 10.1034/j.1600-0749.2001.140303.x 10.1016/j.jid.2017.04.025 10.1111/1523-1747.ep12492612 10.1111/pcmr.12667 10.1111/j.0022-202X.2005.23653.x 10.1016/j.jid.2019.11.013 10.1038/nature21379 10.1016/j.jaci.2019.10.036 10.1034/j.1600-0749.2003.00070.x 10.1016/j.immuni.2015.11.008 10.4049/jimmunol.168.1.108 10.1111/exd.13868 10.1007/BF00387600 10.1242/dev.121.3.731 10.3390/genes9020074 10.1038/nrg2843 10.1016/j.freeradbiomed.2018.08.022 10.4049/jimmunol.171.2.1078 10.1126/scitranslmed.3010641 10.1016/j.jaad.2006.09.004 10.1111/j.1600-0749.2006.00326.x 10.1038/nm962 10.1016/j.yexcr.2019.111615 10.1172/jci.insight.133772 10.1371/journal.pone.0059782 10.1016/j.gene.2013.11.024 10.1016/j.immuni.2017.01.009 10.12659/MSM.914898 10.1111/bjd.13109 10.1038/srep18761 10.1155/2012/238980 10.1016/j.jid.2017.08.038 10.1007/s13555-020-00447-y 10.1038/s41577-019-0162-3 10.1016/j.arr.2019.100981 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons A/S |
Copyright_xml | – notice: 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons A/S |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TO 8FD FR3 H94 K9. P64 7X8 |
DOI | 10.1111/pcmr.12949 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1755-148X |
EndPage | 243 |
ExternalDocumentID | 33278065 10_1111_pcmr_12949 PCMR12949 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HGLYW HVGLF HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ XG1 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7QO 7TO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H94 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4599-7829aa8d7fab7c231d47fe7f35af98f3849e561f99e9e3946c756c83508d2ffc3 |
IEDL.DBID | DR2 |
ISSN | 1755-1471 1755-148X |
IngestDate | Fri Jul 11 03:29:07 EDT 2025 Wed Aug 13 09:21:33 EDT 2025 Wed Feb 19 02:28:26 EST 2025 Tue Jul 01 02:08:44 EDT 2025 Thu Apr 24 23:01:15 EDT 2025 Wed Jan 22 16:30:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | cell-cell cross talk fibroblasts immunopathogenesis keratinocytes IFN-gamma memory T cells |
Language | English |
License | 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4599-7829aa8d7fab7c231d47fe7f35af98f3849e561f99e9e3946c756c83508d2ffc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0669-1442 0000-0003-4899-6639 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pcmr.12949 |
PMID | 33278065 |
PQID | 2497902580 |
PQPubID | 1036336 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2467613240 proquest_journals_2497902580 pubmed_primary_33278065 crossref_citationtrail_10_1111_pcmr_12949 crossref_primary_10_1111_pcmr_12949 wiley_primary_10_1111_pcmr_12949_PCMR12949 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: La Jolla |
PublicationTitle | Pigment cell and melanoma research |
PublicationTitleAlternate | Pigment Cell Melanoma Res |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2004; 165 2014; 535 2002; 15 2017; 2 2012; 2012 2019; 10 1991; 96 2017; 88 1991; 97 2017; 46 2018; 126 2010; 223 2014; 27 1983; 10 2019; 19 2003; 16 2020; 57 2016; 269 2014; 171 2020; 10 2013; 8 2013; 5 1996; 107 2017a; 177 2018; 9 2012; 132 2013; 14 2018; 173 2009; 54 2018; 138 2015; 135 2015; 43 2003; 9 2008; 319 2019; 25 2019; 28 2016; 83 2007; 20 1995; 121 2018; 31 2001; 14 2009; 23 1982; 79 2009; 24 2007; 127 2020; 140 2019; 32 2003; 171 2006; 19 2020; 145 2015; 7 2007; 56 2017; 137 2019; 384 2016; 6 1994; 286 2020; 396 2020 2005; 124 2002; 168 2019; 139 2018; 10 2017; 543 2016; 23 e_1_2_4_40_1 e_1_2_4_63_1 Moretti S. (e_1_2_4_48_1) 2009; 24 e_1_2_4_61_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_67_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_65_1 e_1_2_4_25_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_69_1 e_1_2_4_29_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_73_1 e_1_2_4_50_1 e_1_2_4_71_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_75_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_58_1 e_1_2_4_18_1 e_1_2_4_39_1 Wehrle‐Haller B. (e_1_2_4_74_1) 1995; 121 e_1_2_4_41_1 e_1_2_4_62_1 e_1_2_4_60_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_66_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_64_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_68_1 e_1_2_4_28_1 Azzolino V. (e_1_2_4_4_1) 2020 e_1_2_4_2_1 e_1_2_4_70_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_72_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_76_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_59_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 43 start-page: 1101 year: 2015 end-page: 1111 article-title: T‐box transcription factors combine with the cytokines TGF‐β and IL‐15 to control tissue‐resident memory T cell fate publication-title: Immunity – volume: 19 start-page: 490 year: 2019 end-page: 502 article-title: T cells and the skin: From protective immunity to inflammatory skin disorders publication-title: Nature Reviews Immunology – volume: 9 start-page: 74 year: 2018 article-title: Covalent strategies for targeting messenger and non‐coding RNAs: An updated review on siRNA, miRNA and antimiR conjugates publication-title: Genes (Basel) – volume: 28 start-page: 667 year: 2019 end-page: 673 article-title: Involvement of non‐melanocytic skin cells in vitiligo publication-title: Experimental Dermatology – year: 2020 article-title: Type‐1 cytokines regulate matrix metalloprotease‐9 production and E‐cadherin disruption to promote melanocyte loss in vitiligo publication-title: JCI Insight – volume: 6 year: 2016 article-title: Microbial community profiling shows dysbiosis in the lesional skin of Vitiligo subjects publication-title: Scientific Reports – volume: 286 start-page: 273 year: 1994 end-page: 277 article-title: Expression of c‐kit ligand in human keratinocytes publication-title: Archives of Dermatological Research – volume: 2 year: 2017 article-title: Resident memory T cells in the skin mediate durable immunity to melanoma publication-title: Science Immunology – volume: 10 start-page: 1689 year: 2019 article-title: Gasdermin pores permeabilize mitochondria to augment caspase‐3 activation during apoptosis and inflammasome activation publication-title: Nature Communications – volume: 54 start-page: 157 year: 2009 end-page: 167 article-title: Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin publication-title: Journal of Dermatological Science – volume: 168 start-page: 108 year: 2002 end-page: 117 article-title: Noncovalent association with stress protein facilitates cross‐priming of CD8+ T cells to tumor cell antigens by dendritic cells publication-title: The Journal of Immunology – volume: 140 start-page: 1794 year: 2020 end-page: 1804 article-title: ATP‐P2X7‐induced inflammasome activation contributes to melanocyte death and CD8(+) T cell trafficking to the skin in vitiligo publication-title: The Journal of Investigative Dermatology – volume: 8 year: 2013 article-title: Vitiligo: A possible model of degenerative diseases publication-title: PLoS One – volume: 535 start-page: 12 year: 2014 end-page: 16 article-title: Association of glutathione S‐transferase M1/T1 polymorphisms with susceptibility to vitiligo publication-title: Gene – volume: 138 start-page: 355 year: 2018 end-page: 364 article-title: Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3 publication-title: The Journal of Investigative Dermatology – volume: 10 start-page: 207 year: 1983 end-page: 212 article-title: Keratinocyte damage in vitiligo publication-title: Journal of Cutaneous Pathology – volume: 384 year: 2019 article-title: miR‐9 regulates melanocytes adhesion and migration during vitiligo repigmentation induced by UVB treatment publication-title: Experimental Cell Research – volume: 7 start-page: 269rv1 year: 2015 article-title: Resident memory T cells in human health and disease publication-title: Science Translational Medicine – volume: 19 start-page: 434 year: 2006 end-page: 442 article-title: In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation publication-title: Pigment Cell Research – volume: 9 start-page: 1469 year: 2003 end-page: 1476 article-title: Hsp70 promotes antigen‐presenting cell function and converts T cell tolerance to autoimmunity in vivo publication-title: Nature Medicine – volume: 14 start-page: 148 year: 2001 end-page: 154 article-title: Redox regulation in human melanocytes and melanoma publication-title: Pigment Cell Research – volume: 32 start-page: 842 year: 2019 end-page: 847 article-title: IL‐17A is not a treatment target in progressive vitiligo publication-title: Pigment Cell & Melanoma Research – volume: 140 start-page: 1143 year: 2020 end-page: 1153 article-title: NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo publication-title: The Journal of Investigative Dermatology – volume: 269 start-page: 11 year: 2016 end-page: 25 article-title: Cellular stress and innate inflammation in organ‐specific autoimmunity: Lessons learned from vitiligo publication-title: Immunological Reviews – volume: 11 start-page: 597 year: 2010 end-page: 610 article-title: The widespread regulation of microRNA biogenesis, function and decay publication-title: Nature Reviews Genetics – volume: 107 start-page: 219 year: 1996 end-page: 224 article-title: Release of stem cell factor from a human keratinocyte line, HaCaT, is increased in differentiating versus proliferating cells publication-title: The Journal of Investigative Dermatology – volume: 126 start-page: 259 year: 2018 end-page: 268 article-title: TRPM2 mediates mitochondria‐dependent apoptosis of melanocytes under oxidative stress publication-title: Free Radical Biology and Medicine – volume: 97 start-page: 1081 year: 1991 end-page: 1085 article-title: Low catalase levels in the epidermis of patients with vitiligo publication-title: The Journal of Investigative Dermatology – volume: 165 start-page: 275 year: 2004 end-page: 285 article-title: Mesenchymal‐epithelial interactions in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation publication-title: Journal of Cell Biology – volume: 2012 year: 2012 article-title: The role of endoplasmic reticulum stress in autoimmune‐mediated beta‐cell destruction in type 1 diabetes publication-title: Experimental Diabetes Research – volume: 83 start-page: 45 year: 2016 end-page: 51 article-title: Wnt/β‐catenin signaling pathway activates melanocyte stem cells in vitro and in vivo publication-title: Journal of Dermatological Science – volume: 5 start-page: 174ra28 year: 2013 article-title: Mutant HSP70 reverses autoimmune depigmentation in vitiligo publication-title: Science Translational Medicine – volume: 96 start-page: 180 year: 1991 end-page: 185 article-title: Interleukins 1 alpha and 6 and tumor necrosis factor‐alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis publication-title: The Journal of Investigative Dermatology – volume: 171 start-page: 1263 year: 2014 end-page: 1267 article-title: MicroRNA profiling reveals differentially expressed microRNA signatures from the skin of patients with nonsegmental vitiligo publication-title: British Journal of Dermatology – volume: 14 start-page: 1294 year: 2013 end-page: 1301 article-title: The developmental pathway for CD103(+)CD8+ tissue‐resident memory T cells of skin publication-title: Nature Immunology – volume: 137 start-page: 1965 year: 2017 end-page: 1974 article-title: MicroRNA‐211 regulates oxidative phosphorylation and energy metabolism in human vitiligo publication-title: The Journal of Investigative Dermatology – volume: 137 start-page: 350 year: 2017 end-page: 358 article-title: Keratinocyte‐derived chemokines orchestrate T cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease publication-title: The Journal of Investigative Dermatology – volume: 10 year: 2018 article-title: Antibody blockade of IL‐15 signaling has the potential to durably reverse vitiligo publication-title: Science Translational Medicine – volume: 319 start-page: 198 year: 2008 end-page: 202 article-title: Dendritic cell‐induced memory T cell activation in nonlymphoid tissues publication-title: Science – volume: 396 start-page: 74 year: 2020 end-page: 75 article-title: First step in a new era for treatment of patients with vitiligo publication-title: Lancet – volume: 137 start-page: 982 year: 2017 end-page: 985 article-title: CXCR3 depleting antibodies prevent and reverse vitiligo in mice publication-title: The Journal of Investigative Dermatology – volume: 173 start-page: 20 year: 2018 end-page: 51 article-title: Metazoan microRNAs publication-title: Cell – volume: 20 start-page: 288 year: 2007 end-page: 300 article-title: Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour publication-title: Pigment Cell Research – volume: 56 start-page: 274 year: 2007 end-page: 278 article-title: Efficacy, predictors of response, and long‐term follow‐up in patients with vitiligo treated with narrowband UVB phototherapy publication-title: Journal of the American Academy of Dermatology – volume: 135 start-page: 3105 year: 2015 end-page: 3114 article-title: Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: A promising target for repigmenting vitiligo patients publication-title: The Journal of Investigative Dermatology – volume: 31 start-page: 330 year: 2018 end-page: 336 article-title: CXCL‐10 and Interleukin‐6 are reliable serum markers for vitiligo activity: A multicenter cross‐sectional study publication-title: Pigment Cell. Melanoma Res. – volume: 16 start-page: 322 year: 2003 end-page: 332 article-title: A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? publication-title: Pigment Cell Research – volume: 23 start-page: 496 year: 2016 end-page: 508 article-title: Oxidative stress‐induced overexpression of miR‐25: The mechanism underlying the degeneration of melanocytes in vitiligo publication-title: Cell Death and Differentiation – volume: 10 start-page: 2178 year: 2019 article-title: Innate lymphocyte‐induced CXCR3B‐mediated melanocyte apoptosis is a potential initiator of T cell autoreactivity in vitiligo publication-title: Nature Communications – volume: 171 start-page: 1078 year: 2003 end-page: 1084 article-title: A second step of chemotaxis after transendothelial migration: Keratinocytes undergoing apoptosis release IFN‐gamma‐inducible protein 10, monokine induced by IFN‐gamma, and IFN‐gamma‐inducible alpha‐chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis publication-title: The Journal of Immunology – volume: 132 start-page: 1869 year: 2012 end-page: 1876 article-title: A mouse model of vitiligo with focused epidermal depigmentation requires IFN‐γ for autoreactive CD8⁺ T cell accumulation in the skin publication-title: The Journal of Investigative Dermatology – volume: 145 start-page: 632 year: 2020 end-page: 645 article-title: Activated NLR family pyrin domain containing 3 (NLRP3) inflammasome in keratinocytes promotes cutaneous T cell response in patients with vitiligo publication-title: The Journal of Allergy and Clinical Immunology – volume: 15 start-page: 87 year: 2002 end-page: 92 article-title: New insights into the pathogenesis of vitiligo: Imbalance of epidermal cytokines at sites of lesions publication-title: Pigment Cell Research – volume: 46 start-page: 287 year: 2017 end-page: 300 article-title: CD49a expression defines tissue‐resident CD8(+) T cells poised for cytotoxic function in human skin publication-title: Immunity – volume: 138 start-page: 394 year: 2018 end-page: 404 article-title: Vitiligo skin: Exploring the dermal compartment publication-title: The Journal of Investigative Dermatology – volume: 25 start-page: 1017 year: 2019 end-page: 1023 article-title: Perspectives of new advances in the pathogenesis of vitiligo: From oxidative stress to autoimmunity publication-title: Medical Science Monitor – volume: 124 start-page: 798 year: 2005 end-page: 806 article-title: 4‐Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell‐mediated killing: Relevance to vitiligo publication-title: The Journal of Investigative Dermatology – volume: 24 start-page: 849 year: 2009 end-page: 857 article-title: Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis publication-title: Histology and Histopathology – volume: 10 start-page: 1185 year: 2020 end-page: 1198 article-title: Vitiligo, from physiopathology to emerging treatments: A review publication-title: Dermatology and Therapy – volume: 396 start-page: 110 year: 2020 end-page: 120 article-title: Ruxolitinib cream for treatment of vitiligo: A randomised, controlled, phase 2 trial publication-title: Lancet – volume: 79 start-page: 321 year: 1982 end-page: 330 article-title: Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo publication-title: The Journal of Investigative Dermatology – volume: 27 start-page: 209 year: 2014 end-page: 220 article-title: Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress publication-title: Pigment Cell & Melanoma Research – volume: 139 start-page: 2174 year: 2019 end-page: 2184 article-title: Oxidative stress‐induced HMGB1 release from melanocytes: A paracrine mechanism underlying the cutaneous inflammation in vitiligo publication-title: The Journal of Investigative Dermatology – volume: 177 start-page: 1367 year: 2017a end-page: 1375 article-title: Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: Relevance for cutaneous lupus and vitiligo pathogenesis publication-title: British Journal of Dermatology – volume: 11 start-page: 537 year: 2010 end-page: 561 article-title: MicroRNA: Biogenesis, function and role in cancer publication-title: Current Genomics – volume: 543 start-page: 252 year: 2017 end-page: 256 article-title: Survival of tissue‐resident memory T cells requires exogenous lipid uptake and metabolism publication-title: Nature – year: 2020 article-title: Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells publication-title: Journal of Investigative Dermatology – volume: 28 start-page: 662 year: 2019 end-page: 666 article-title: Molecular and cellular basis of depigmentation in vitiligo patients publication-title: Experimental Dermatology – volume: 139 start-page: 80 year: 2019 end-page: 91 article-title: Oxidative stress‐induced IL‐15 trans‐presentation in keratinocytes contributes to CD8(+) T cells activation via JAK‐STAT pathway in vitiligo publication-title: Free Radical Biology and Medicine – volume: 23 start-page: 3790 year: 2009 end-page: 3807 article-title: Enhanced DNA binding capacity on up‐regulated epidermal wild‐type p53 in vitiligo by H2O2‐mediated oxidation: A possible repair mechanism for DNA damage publication-title: The FASEB Journal – volume: 127 start-page: 1226 year: 2007 end-page: 1233 article-title: Membrane lipid alterations as a possible basis for melanocyte degeneration in vitiligo publication-title: The Journal of Investigative Dermatology – volume: 223 start-page: 187 year: 2010 end-page: 193 article-title: Membrane lipid defects are responsible for the generation of reactive oxygen species in peripheral blood mononuclear cells from vitiligo patients publication-title: Journal of Cellular Physiology – volume: 88 start-page: 159 year: 2017 end-page: 166 article-title: Precise role of dermal fibroblasts on melanocyte pigmentation publication-title: Journal of Dermatological Science – volume: 57 year: 2020 article-title: Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders publication-title: Ageing Research Reviews – volume: 121 start-page: 731 year: 1995 end-page: 742 article-title: Soluble and cell‐bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway publication-title: Development – ident: e_1_2_4_40_1 doi: 10.1038/ni.2744 – ident: e_1_2_4_66_1 doi: 10.1038/cdd.2015.117 – ident: e_1_2_4_49_1 doi: 10.1034/j.1600-0749.2002.1o049.x – ident: e_1_2_4_42_1 doi: 10.1126/sciimmunol.aam6346 – year: 2020 ident: e_1_2_4_4_1 article-title: Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells publication-title: Journal of Investigative Dermatology – ident: e_1_2_4_58_1 doi: 10.1016/j.jid.2016.09.016 – ident: e_1_2_4_71_1 doi: 10.1126/science.1151869 – ident: e_1_2_4_70_1 doi: 10.1038/s41467-019-09963-8 – ident: e_1_2_4_30_1 doi: 10.1111/bjd.15550 – ident: e_1_2_4_34_1 doi: 10.1016/j.jid.2017.06.033 – ident: e_1_2_4_14_1 doi: 10.1016/j.freeradbiomed.2019.05.011 – ident: e_1_2_4_17_1 doi: 10.1016/j.jid.2019.03.1148 – ident: e_1_2_4_52_1 doi: 10.1126/scitranslmed.3005127 – ident: e_1_2_4_64_1 doi: 10.1096/fj.09-132621 – ident: e_1_2_4_67_1 doi: 10.1111/pcmr.12789 – ident: e_1_2_4_23_1 doi: 10.1111/1523-1747.ep12329664 – ident: e_1_2_4_55_1 doi: 10.1016/S0140-6736(20)30747-9 – ident: e_1_2_4_61_1 doi: 10.1038/s41467-019-09397-2 – ident: e_1_2_4_62_1 doi: 10.1016/S0140-6736(20)30609-7 – ident: e_1_2_4_75_1 doi: 10.1083/jcb.200311122 – ident: e_1_2_4_5_1 doi: 10.1016/j.cell.2018.03.006 – ident: e_1_2_4_69_1 doi: 10.1111/1523-1747.ep12460991 – ident: e_1_2_4_56_1 doi: 10.1016/j.jdermsci.2009.02.004 – ident: e_1_2_4_73_1 doi: 10.1016/j.jdermsci.2017.06.018 – ident: e_1_2_4_60_1 doi: 10.1126/scitranslmed.aam7710 – ident: e_1_2_4_9_1 doi: 10.1111/j.1600-0560.1983.tb00328.x – ident: e_1_2_4_51_1 doi: 10.1111/pcmr.12208 – ident: e_1_2_4_47_1 doi: 10.1111/1523-1747.ep12500086 – ident: e_1_2_4_39_1 doi: 10.2174/138920210793175895 – ident: e_1_2_4_59_1 doi: 10.1016/j.jid.2016.10.048 – ident: e_1_2_4_19_1 doi: 10.1002/jcp.22027 – ident: e_1_2_4_3_1 doi: 10.1016/j.jid.2019.12.035 – ident: e_1_2_4_10_1 doi: 10.1111/j.1600-0749.2007.00385.x – ident: e_1_2_4_57_1 doi: 10.1038/jid.2015.335 – ident: e_1_2_4_18_1 doi: 10.1038/sj.jid.5700700 – ident: e_1_2_4_27_1 doi: 10.1038/jid.2011.463 – ident: e_1_2_4_26_1 doi: 10.1111/imr.12369 – ident: e_1_2_4_25_1 doi: 10.1016/j.jdermsci.2016.04.005 – ident: e_1_2_4_20_1 doi: 10.1111/exd.13858 – ident: e_1_2_4_44_1 doi: 10.1034/j.1600-0749.2001.140303.x – ident: e_1_2_4_63_1 doi: 10.1016/j.jid.2017.04.025 – ident: e_1_2_4_65_1 doi: 10.1111/1523-1747.ep12492612 – ident: e_1_2_4_2_1 doi: 10.1111/pcmr.12667 – volume: 24 start-page: 849 year: 2009 ident: e_1_2_4_48_1 article-title: Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis publication-title: Histology and Histopathology – ident: e_1_2_4_36_1 doi: 10.1111/j.0022-202X.2005.23653.x – ident: e_1_2_4_29_1 doi: 10.1016/j.jid.2019.11.013 – ident: e_1_2_4_54_1 doi: 10.1038/nature21379 – ident: e_1_2_4_37_1 doi: 10.1016/j.jaci.2019.10.036 – ident: e_1_2_4_22_1 doi: 10.1034/j.1600-0749.2003.00070.x – ident: e_1_2_4_41_1 doi: 10.1016/j.immuni.2015.11.008 – ident: e_1_2_4_31_1 doi: 10.4049/jimmunol.168.1.108 – ident: e_1_2_4_6_1 doi: 10.1111/exd.13868 – ident: e_1_2_4_50_1 doi: 10.1007/BF00387600 – volume: 121 start-page: 731 year: 1995 ident: e_1_2_4_74_1 article-title: Soluble and cell‐bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway publication-title: Development doi: 10.1242/dev.121.3.731 – ident: e_1_2_4_24_1 doi: 10.3390/genes9020074 – ident: e_1_2_4_35_1 doi: 10.1038/nrg2843 – ident: e_1_2_4_32_1 doi: 10.1016/j.freeradbiomed.2018.08.022 – ident: e_1_2_4_33_1 doi: 10.4049/jimmunol.171.2.1078 – ident: e_1_2_4_16_1 doi: 10.1126/scitranslmed.3010641 – ident: e_1_2_4_53_1 doi: 10.1016/j.jaad.2006.09.004 – ident: e_1_2_4_13_1 doi: 10.1111/j.1600-0749.2006.00326.x – ident: e_1_2_4_46_1 doi: 10.1038/nm962 – ident: e_1_2_4_68_1 doi: 10.1016/j.yexcr.2019.111615 – ident: e_1_2_4_12_1 doi: 10.1172/jci.insight.133772 – ident: e_1_2_4_8_1 doi: 10.1371/journal.pone.0059782 – ident: e_1_2_4_38_1 doi: 10.1016/j.gene.2013.11.024 – ident: e_1_2_4_15_1 doi: 10.1016/j.immuni.2017.01.009 – ident: e_1_2_4_72_1 doi: 10.12659/MSM.914898 – ident: e_1_2_4_43_1 doi: 10.1111/bjd.13109 – ident: e_1_2_4_21_1 doi: 10.1038/srep18761 – ident: e_1_2_4_76_1 doi: 10.1155/2012/238980 – ident: e_1_2_4_11_1 doi: 10.1016/j.jid.2017.08.038 – ident: e_1_2_4_45_1 doi: 10.1007/s13555-020-00447-y – ident: e_1_2_4_28_1 doi: 10.1038/s41577-019-0162-3 – ident: e_1_2_4_7_1 doi: 10.1016/j.arr.2019.100981 |
SSID | ssj0060593 |
Score | 2.5579996 |
SecondaryResourceType | review_article |
Snippet | Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 236 |
SubjectTerms | Animals Autoimmunity cell–cell cross talk Fibroblasts Humans IFN‐gamma Immunity, Innate Immunological memory Immunology immunopathogenesis Keratinocytes Lymphocytes Lymphocytes T Lymphoid cells Melanocytes Memory cells memory T cells Natural killer cells Pathogenesis Pathophysiology Skin diseases T-Lymphocytes - immunology Vitiligo Vitiligo - immunology Vitiligo - pathology |
Title | An update on Vitiligo pathogenesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12949 https://www.ncbi.nlm.nih.gov/pubmed/33278065 https://www.proquest.com/docview/2497902580 https://www.proquest.com/docview/2467613240 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5EEXzxPqK1xONFIaXNbo4FX2q1FKEiRUUECZtNtgRrUtr0xV_vTi5PBH0LyYTNZmZ2vt2d-Rbg2JU0YAG1DWkRaWDNssGkaStbFpK0fJNaAguc-9d2745ePVgPc3BW1sLk_BDVght6RjZeo4Nzf_rBycfiZdJQ0Ypi9R4mayEiGlTcUXYzZ9xV4dEyWmoILrhJMY3n_dXP0egbxPyMWLOQ012Bp_Jj80yT58Ys9Rvi9QuP4397swrLBRbV27nxrMFcGK_D4mOSrbRvwGE71mdjXBHQk1i_j9JoFA0THc8wToY4REbTTbjrXt52ekZxpIIhqMWYofAA49wNHMl9RyhsF1BHho4kFpfMlcSlLFSISjIWspAwagvHsoVCaU03MKUUZAvm4yQOd0CXJt5HOjPLppwzlyjwpgBLIPxmS3BXg5Py13qi4BvHYy9GXjnvwD57WZ81OKpkxznLxo9StVJDXuFpU09NHx3cKnWbGhxUj5WP4MYHj8NkhjK2o2CLAi8abOearZohxHRwc1mD00w_v7Tv3XT6g-xq9y_Ce7BkYiJMlrhWg_l0Mgv3FZJJ_TostM8vzrv1zHLfAHGp7ZE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60IvrifUSrxuNFISXNbo59LFWp2hYprYgvIdlkpahJ6fHir3dnk8YTQd9CMmHZY3a-nZn9BuDEEzRiEXUMYRNh4J1lgwnLkWuZC1INLWpzvODcajuNHr2-t-_z3By8C5PxQxQON9QMtV-jgqND-oOWD_jLsCLNFWWzMIclvbGAwXmnYI9yzIxzVxpI26jKTThnJ8VEnvd_P9ujbyDzM2ZVRudyOausOlJchZhr8lSZjMMKf_3C5Pjv_qzAUg5H9Vq2flZhJk7WYP4hVc72dTiqJfpkgE4BPU30u_64_9x_THUsY5w-4i7ZH21A7_KiW28YeVUFg1ObMUNCAhYEXuSKIHS5hHcRdUXsCmIHgnmCeJTFElQJxmIWE0Yd7toOl0DN9CJLCE42oZSkSbwNurDwPTKa2Q4NAuYRid8kZol4aFZ54GlwOh1bn-eU41j54tmfHj2wz77qswbHhewgI9r4Uao8nSI_V7aRL0-QLkZLPVODw-KzVBOMfQRJnE5QxnElcpH4RYOtbGqLZgixXIwva3CmJuiX9v3bequjnnb-InwAC41uq-k3r9o3u7BoYV6MymMrQ2k8nMR7EtiMw321fN8A0L_wOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60ovjifcQzHi8KKWl2s8mCL6IWb0qxUgQJySZbijUptX3x17uTyxNB30IyYbPZOb7dnfkWYN-VNOQhZYa0iTSwZtng0mJKl4UktcCitsAC55tbdt6il227PQZHRS1Mxg9RLrihZaT-Gg28H8oPRt4Xz4OqilaUj8MEZcpaEBI1S_IoZmaUuyo-2kZN-eCcnBTzeN7f_RyOvmHMz5A1jTn1WXgsvjZLNXmqjoZBVbx-IXL8b3fmYCYHo_pxpj3zMBbFCzD5kKRL7Yuwexzroz4uCehJrN93h91et5PoeIhx0kEf2X1Zglb97O7k3MjPVDAEtTk3FCDgvu-GjvQDRyhwF1JHRo4kti-5K4lLeaQgleQ84hHhlAnHZkLBNNMNLSkFWYZKnMTRKujSwvvIZ2Yz6vvcJQq9KcQSisCsCd_V4KD4tZ7ICcfx3IueV0w8sM9e2mcN9krZfkaz8aPURjFCXm5qL56aPzq4V-qaGuyUj5WR4M6HH0fJCGWYo3CLQi8arGQjWzZDiOXg7rIGh-n4_NK-1zi5aaZXa38R3oapxmndu764vVqHaQuTYtIktg2oDAejaFOhmmGwlSrvGyTj7vE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+update+on+Vitiligo+pathogenesis&rft.jtitle=Pigment+cell+and+melanoma+research&rft.au=Seneschal%2C+Julien&rft.au=Boniface%2C+Katia&rft.au=D%E2%80%99Arino%2C+Andrea&rft.au=Picardo%2C+Mauro&rft.date=2021-03-01&rft.issn=1755-1471&rft.eissn=1755-148X&rft.volume=34&rft.issue=2&rft.spage=236&rft.epage=243&rft_id=info:doi/10.1111%2Fpcmr.12949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pcmr_12949 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1471&client=summon |