An update on Vitiligo pathogenesis

Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years,...

Full description

Saved in:
Bibliographic Details
Published inPigment cell and melanoma research Vol. 34; no. 2; pp. 236 - 243
Main Authors Seneschal, Julien, Boniface, Katia, D’Arino, Andrea, Picardo, Mauro
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text
ISSN1755-1471
1755-148X
1755-148X
DOI10.1111/pcmr.12949

Cover

Loading…
Abstract Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non‐immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T‐resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development.
AbstractList Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non‐immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T‐resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development.
Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non-immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T-resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development.Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non-immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T-resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development.
Author Seneschal, Julien
Picardo, Mauro
Boniface, Katia
D’Arino, Andrea
Author_xml – sequence: 1
  givenname: Julien
  surname: Seneschal
  fullname: Seneschal, Julien
  email: julien.seneschal@chu-bordeaux.fr
  organization: Hôpital Saint‐André
– sequence: 2
  givenname: Katia
  surname: Boniface
  fullname: Boniface, Katia
  organization: FHU ACRONIM
– sequence: 3
  givenname: Andrea
  orcidid: 0000-0002-0669-1442
  surname: D’Arino
  fullname: D’Arino, Andrea
  organization: IRCCS
– sequence: 4
  givenname: Mauro
  orcidid: 0000-0003-4899-6639
  surname: Picardo
  fullname: Picardo, Mauro
  email: Mauro.picardo@ifo.gov.it
  organization: IRCCS
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33278065$$D View this record in MEDLINE/PubMed
BookMark eNp90E9LwzAYBvAgE-emFz-AFL2I0Jk0TZMcx_AfTBRR8RayNJkZXVOTFtm3t7ObhyHmkhx-z0veZwB6pSs1ACcIjlB7riq19COU8JTvgUNECYlRyt57v2-K-mAQwgLCDBKOD0Af44QymJFDcDYuo6bKZa0jV0ZvtraFnbuokvWHm-tSBxuOwL6RRdDHm3sIXm-uXyZ38fTx9n4ynsYqJZzHlCVcSpZTI2dUJRjlKTWaGkyk4cxglnJNMmQ411xjnmaKkkwxTCDLE2MUHoKLbm7l3WejQy2WNihdFLLUrgkiSTOaIZyksKXnO3ThGl-2v2sVpxwmhK3V6UY1s6XOReXtUvqV2G7fAtgB5V0IXhuhbC1r68raS1sIBMW6YLEuWPwU3EYudyLbqX9i1OEvW-jVP1I8TR6eu8w32cKI3Q
CitedBy_id crossref_primary_10_1111_jdv_19754
crossref_primary_10_3390_ijms24076324
crossref_primary_10_3390_pharmaceutics14122738
crossref_primary_10_3389_fphar_2021_685116
crossref_primary_10_3389_fimmu_2023_1259515
crossref_primary_10_3390_pharmaceutics16111384
crossref_primary_10_1016_j_jaad_2022_11_005
crossref_primary_10_3390_molecules29040865
crossref_primary_10_3389_fmed_2024_1408409
crossref_primary_10_1093_bjd_ljaf041
crossref_primary_10_1002_biof_1912
crossref_primary_10_3390_cells11192999
crossref_primary_10_3390_ijms222111429
crossref_primary_10_2217_nnm_2021_0335
crossref_primary_10_1111_pcmr_12994
crossref_primary_10_1016_j_molimm_2023_06_009
crossref_primary_10_1186_s12864_024_10147_y
crossref_primary_10_3390_jcm14020432
crossref_primary_10_3390_ijms24054689
crossref_primary_10_1001_jamadermatol_2024_5737
crossref_primary_10_5021_ad_23_076
crossref_primary_10_1177_03000605221119646
crossref_primary_10_1007_s10103_025_04293_2
crossref_primary_10_4103_JCAS_JCAS_12_23
crossref_primary_10_1016_j_jdermsci_2023_12_006
crossref_primary_10_3390_ijms232315361
crossref_primary_10_4062_biomolther_2023_112
crossref_primary_10_1111_ijd_16487
crossref_primary_10_1007_s00403_022_02358_8
crossref_primary_10_3390_jcm10173958
crossref_primary_10_3390_ijms22168820
crossref_primary_10_1016_j_trim_2022_101766
crossref_primary_10_1016_j_humgen_2024_201264
crossref_primary_10_1016_j_jid_2024_12_006
crossref_primary_10_1016_j_piel_2021_05_008
crossref_primary_10_3389_fimmu_2021_711080
crossref_primary_10_3390_biomedicines10112744
crossref_primary_10_1093_bjd_ljad200
crossref_primary_10_21518_ms2024_317
crossref_primary_10_1111_exd_14856
crossref_primary_10_1002_der2_168
crossref_primary_10_1007_s11306_021_01843_x
crossref_primary_10_1016_j_rechem_2024_101779
crossref_primary_10_1007_s13671_023_00384_x
crossref_primary_10_1016_j_jaci_2024_01_025
crossref_primary_10_3390_biomedicines10071639
crossref_primary_10_29058_mjwbs_1223300
crossref_primary_10_3390_vaccines10101647
crossref_primary_10_1177_15593258221105370
crossref_primary_10_1111_pcmr_13101
crossref_primary_10_3390_ijms22116078
crossref_primary_10_37349_ei_2021_00018
crossref_primary_10_1016_j_jid_2023_08_012
crossref_primary_10_1111_exd_14532
crossref_primary_10_1111_jocd_15396
crossref_primary_10_3390_cells12060936
crossref_primary_10_1038_s41598_024_67494_9
crossref_primary_10_1155_omcl_3193670
crossref_primary_10_1126_sciadv_abn9299
crossref_primary_10_1111_jocd_15158
crossref_primary_10_1038_s41598_022_17770_3
crossref_primary_10_1186_s12866_023_03020_7
crossref_primary_10_4103_ds_DS_D_23_00089
crossref_primary_10_12938_bmfh_2024_051
crossref_primary_10_1111_jocd_14582
crossref_primary_10_1007_s00403_024_03265_w
crossref_primary_10_3390_cells11223583
crossref_primary_10_1155_2022_1821780
crossref_primary_10_3390_ijms25084409
Cites_doi 10.1038/ni.2744
10.1038/cdd.2015.117
10.1034/j.1600-0749.2002.1o049.x
10.1126/sciimmunol.aam6346
10.1016/j.jid.2016.09.016
10.1126/science.1151869
10.1038/s41467-019-09963-8
10.1111/bjd.15550
10.1016/j.jid.2017.06.033
10.1016/j.freeradbiomed.2019.05.011
10.1016/j.jid.2019.03.1148
10.1126/scitranslmed.3005127
10.1096/fj.09-132621
10.1111/pcmr.12789
10.1111/1523-1747.ep12329664
10.1016/S0140-6736(20)30747-9
10.1038/s41467-019-09397-2
10.1016/S0140-6736(20)30609-7
10.1083/jcb.200311122
10.1016/j.cell.2018.03.006
10.1111/1523-1747.ep12460991
10.1016/j.jdermsci.2009.02.004
10.1016/j.jdermsci.2017.06.018
10.1126/scitranslmed.aam7710
10.1111/j.1600-0560.1983.tb00328.x
10.1111/pcmr.12208
10.1111/1523-1747.ep12500086
10.2174/138920210793175895
10.1016/j.jid.2016.10.048
10.1002/jcp.22027
10.1016/j.jid.2019.12.035
10.1111/j.1600-0749.2007.00385.x
10.1038/jid.2015.335
10.1038/sj.jid.5700700
10.1038/jid.2011.463
10.1111/imr.12369
10.1016/j.jdermsci.2016.04.005
10.1111/exd.13858
10.1034/j.1600-0749.2001.140303.x
10.1016/j.jid.2017.04.025
10.1111/1523-1747.ep12492612
10.1111/pcmr.12667
10.1111/j.0022-202X.2005.23653.x
10.1016/j.jid.2019.11.013
10.1038/nature21379
10.1016/j.jaci.2019.10.036
10.1034/j.1600-0749.2003.00070.x
10.1016/j.immuni.2015.11.008
10.4049/jimmunol.168.1.108
10.1111/exd.13868
10.1007/BF00387600
10.1242/dev.121.3.731
10.3390/genes9020074
10.1038/nrg2843
10.1016/j.freeradbiomed.2018.08.022
10.4049/jimmunol.171.2.1078
10.1126/scitranslmed.3010641
10.1016/j.jaad.2006.09.004
10.1111/j.1600-0749.2006.00326.x
10.1038/nm962
10.1016/j.yexcr.2019.111615
10.1172/jci.insight.133772
10.1371/journal.pone.0059782
10.1016/j.gene.2013.11.024
10.1016/j.immuni.2017.01.009
10.12659/MSM.914898
10.1111/bjd.13109
10.1038/srep18761
10.1155/2012/238980
10.1016/j.jid.2017.08.038
10.1007/s13555-020-00447-y
10.1038/s41577-019-0162-3
10.1016/j.arr.2019.100981
ContentType Journal Article
Copyright 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons A/S
Copyright_xml – notice: 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons A/S
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TO
8FD
FR3
H94
K9.
P64
7X8
DOI 10.1111/pcmr.12949
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1755-148X
EndPage 243
ExternalDocumentID 33278065
10_1111_pcmr_12949
PCMR12949
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HGLYW
HVGLF
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7QO
7TO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H94
K9.
P64
7X8
ID FETCH-LOGICAL-c4599-7829aa8d7fab7c231d47fe7f35af98f3849e561f99e9e3946c756c83508d2ffc3
IEDL.DBID DR2
ISSN 1755-1471
1755-148X
IngestDate Fri Jul 11 03:29:07 EDT 2025
Wed Aug 13 09:21:33 EDT 2025
Wed Feb 19 02:28:26 EST 2025
Tue Jul 01 02:08:44 EDT 2025
Thu Apr 24 23:01:15 EDT 2025
Wed Jan 22 16:30:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cell-cell cross talk
fibroblasts
immunopathogenesis
keratinocytes
IFN-gamma
memory T cells
Language English
License 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4599-7829aa8d7fab7c231d47fe7f35af98f3849e561f99e9e3946c756c83508d2ffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0669-1442
0000-0003-4899-6639
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/pcmr.12949
PMID 33278065
PQID 2497902580
PQPubID 1036336
PageCount 8
ParticipantIDs proquest_miscellaneous_2467613240
proquest_journals_2497902580
pubmed_primary_33278065
crossref_citationtrail_10_1111_pcmr_12949
crossref_primary_10_1111_pcmr_12949
wiley_primary_10_1111_pcmr_12949_PCMR12949
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: La Jolla
PublicationTitle Pigment cell and melanoma research
PublicationTitleAlternate Pigment Cell Melanoma Res
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2004; 165
2014; 535
2002; 15
2017; 2
2012; 2012
2019; 10
1991; 96
2017; 88
1991; 97
2017; 46
2018; 126
2010; 223
2014; 27
1983; 10
2019; 19
2003; 16
2020; 57
2016; 269
2014; 171
2020; 10
2013; 8
2013; 5
1996; 107
2017a; 177
2018; 9
2012; 132
2013; 14
2018; 173
2009; 54
2018; 138
2015; 135
2015; 43
2003; 9
2008; 319
2019; 25
2019; 28
2016; 83
2007; 20
1995; 121
2018; 31
2001; 14
2009; 23
1982; 79
2009; 24
2007; 127
2020; 140
2019; 32
2003; 171
2006; 19
2020; 145
2015; 7
2007; 56
2017; 137
2019; 384
2016; 6
1994; 286
2020; 396
2020
2005; 124
2002; 168
2019; 139
2018; 10
2017; 543
2016; 23
e_1_2_4_40_1
e_1_2_4_63_1
Moretti S. (e_1_2_4_48_1) 2009; 24
e_1_2_4_61_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_67_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_65_1
e_1_2_4_25_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_69_1
e_1_2_4_29_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_73_1
e_1_2_4_50_1
e_1_2_4_71_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_75_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_58_1
e_1_2_4_18_1
e_1_2_4_39_1
Wehrle‐Haller B. (e_1_2_4_74_1) 1995; 121
e_1_2_4_41_1
e_1_2_4_62_1
e_1_2_4_60_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_66_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_64_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_68_1
e_1_2_4_28_1
Azzolino V. (e_1_2_4_4_1) 2020
e_1_2_4_2_1
e_1_2_4_70_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_72_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_76_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_59_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_57_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 43
  start-page: 1101
  year: 2015
  end-page: 1111
  article-title: T‐box transcription factors combine with the cytokines TGF‐β and IL‐15 to control tissue‐resident memory T cell fate
  publication-title: Immunity
– volume: 19
  start-page: 490
  year: 2019
  end-page: 502
  article-title: T cells and the skin: From protective immunity to inflammatory skin disorders
  publication-title: Nature Reviews Immunology
– volume: 9
  start-page: 74
  year: 2018
  article-title: Covalent strategies for targeting messenger and non‐coding RNAs: An updated review on siRNA, miRNA and antimiR conjugates
  publication-title: Genes (Basel)
– volume: 28
  start-page: 667
  year: 2019
  end-page: 673
  article-title: Involvement of non‐melanocytic skin cells in vitiligo
  publication-title: Experimental Dermatology
– year: 2020
  article-title: Type‐1 cytokines regulate matrix metalloprotease‐9 production and E‐cadherin disruption to promote melanocyte loss in vitiligo
  publication-title: JCI Insight
– volume: 6
  year: 2016
  article-title: Microbial community profiling shows dysbiosis in the lesional skin of Vitiligo subjects
  publication-title: Scientific Reports
– volume: 286
  start-page: 273
  year: 1994
  end-page: 277
  article-title: Expression of c‐kit ligand in human keratinocytes
  publication-title: Archives of Dermatological Research
– volume: 2
  year: 2017
  article-title: Resident memory T cells in the skin mediate durable immunity to melanoma
  publication-title: Science Immunology
– volume: 10
  start-page: 1689
  year: 2019
  article-title: Gasdermin pores permeabilize mitochondria to augment caspase‐3 activation during apoptosis and inflammasome activation
  publication-title: Nature Communications
– volume: 54
  start-page: 157
  year: 2009
  end-page: 167
  article-title: Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin
  publication-title: Journal of Dermatological Science
– volume: 168
  start-page: 108
  year: 2002
  end-page: 117
  article-title: Noncovalent association with stress protein facilitates cross‐priming of CD8+ T cells to tumor cell antigens by dendritic cells
  publication-title: The Journal of Immunology
– volume: 140
  start-page: 1794
  year: 2020
  end-page: 1804
  article-title: ATP‐P2X7‐induced inflammasome activation contributes to melanocyte death and CD8(+) T cell trafficking to the skin in vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 8
  year: 2013
  article-title: Vitiligo: A possible model of degenerative diseases
  publication-title: PLoS One
– volume: 535
  start-page: 12
  year: 2014
  end-page: 16
  article-title: Association of glutathione S‐transferase M1/T1 polymorphisms with susceptibility to vitiligo
  publication-title: Gene
– volume: 138
  start-page: 355
  year: 2018
  end-page: 364
  article-title: Vitiligo skin is imprinted with resident memory CD8 T cells expressing CXCR3
  publication-title: The Journal of Investigative Dermatology
– volume: 10
  start-page: 207
  year: 1983
  end-page: 212
  article-title: Keratinocyte damage in vitiligo
  publication-title: Journal of Cutaneous Pathology
– volume: 384
  year: 2019
  article-title: miR‐9 regulates melanocytes adhesion and migration during vitiligo repigmentation induced by UVB treatment
  publication-title: Experimental Cell Research
– volume: 7
  start-page: 269rv1
  year: 2015
  article-title: Resident memory T cells in human health and disease
  publication-title: Science Translational Medicine
– volume: 19
  start-page: 434
  year: 2006
  end-page: 442
  article-title: In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation
  publication-title: Pigment Cell Research
– volume: 9
  start-page: 1469
  year: 2003
  end-page: 1476
  article-title: Hsp70 promotes antigen‐presenting cell function and converts T cell tolerance to autoimmunity in vivo
  publication-title: Nature Medicine
– volume: 14
  start-page: 148
  year: 2001
  end-page: 154
  article-title: Redox regulation in human melanocytes and melanoma
  publication-title: Pigment Cell Research
– volume: 32
  start-page: 842
  year: 2019
  end-page: 847
  article-title: IL‐17A is not a treatment target in progressive vitiligo
  publication-title: Pigment Cell & Melanoma Research
– volume: 140
  start-page: 1143
  year: 2020
  end-page: 1153
  article-title: NKG2D defines a subset of skin effector memory CD8 T cells with proinflammatory functions in vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 269
  start-page: 11
  year: 2016
  end-page: 25
  article-title: Cellular stress and innate inflammation in organ‐specific autoimmunity: Lessons learned from vitiligo
  publication-title: Immunological Reviews
– volume: 11
  start-page: 597
  year: 2010
  end-page: 610
  article-title: The widespread regulation of microRNA biogenesis, function and decay
  publication-title: Nature Reviews Genetics
– volume: 107
  start-page: 219
  year: 1996
  end-page: 224
  article-title: Release of stem cell factor from a human keratinocyte line, HaCaT, is increased in differentiating versus proliferating cells
  publication-title: The Journal of Investigative Dermatology
– volume: 126
  start-page: 259
  year: 2018
  end-page: 268
  article-title: TRPM2 mediates mitochondria‐dependent apoptosis of melanocytes under oxidative stress
  publication-title: Free Radical Biology and Medicine
– volume: 97
  start-page: 1081
  year: 1991
  end-page: 1085
  article-title: Low catalase levels in the epidermis of patients with vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 165
  start-page: 275
  year: 2004
  end-page: 285
  article-title: Mesenchymal‐epithelial interactions in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation
  publication-title: Journal of Cell Biology
– volume: 2012
  year: 2012
  article-title: The role of endoplasmic reticulum stress in autoimmune‐mediated beta‐cell destruction in type 1 diabetes
  publication-title: Experimental Diabetes Research
– volume: 83
  start-page: 45
  year: 2016
  end-page: 51
  article-title: Wnt/β‐catenin signaling pathway activates melanocyte stem cells in vitro and in vivo
  publication-title: Journal of Dermatological Science
– volume: 5
  start-page: 174ra28
  year: 2013
  article-title: Mutant HSP70 reverses autoimmune depigmentation in vitiligo
  publication-title: Science Translational Medicine
– volume: 96
  start-page: 180
  year: 1991
  end-page: 185
  article-title: Interleukins 1 alpha and 6 and tumor necrosis factor‐alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis
  publication-title: The Journal of Investigative Dermatology
– volume: 171
  start-page: 1263
  year: 2014
  end-page: 1267
  article-title: MicroRNA profiling reveals differentially expressed microRNA signatures from the skin of patients with nonsegmental vitiligo
  publication-title: British Journal of Dermatology
– volume: 14
  start-page: 1294
  year: 2013
  end-page: 1301
  article-title: The developmental pathway for CD103(+)CD8+ tissue‐resident memory T cells of skin
  publication-title: Nature Immunology
– volume: 137
  start-page: 1965
  year: 2017
  end-page: 1974
  article-title: MicroRNA‐211 regulates oxidative phosphorylation and energy metabolism in human vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 137
  start-page: 350
  year: 2017
  end-page: 358
  article-title: Keratinocyte‐derived chemokines orchestrate T cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease
  publication-title: The Journal of Investigative Dermatology
– volume: 10
  year: 2018
  article-title: Antibody blockade of IL‐15 signaling has the potential to durably reverse vitiligo
  publication-title: Science Translational Medicine
– volume: 319
  start-page: 198
  year: 2008
  end-page: 202
  article-title: Dendritic cell‐induced memory T cell activation in nonlymphoid tissues
  publication-title: Science
– volume: 396
  start-page: 74
  year: 2020
  end-page: 75
  article-title: First step in a new era for treatment of patients with vitiligo
  publication-title: Lancet
– volume: 137
  start-page: 982
  year: 2017
  end-page: 985
  article-title: CXCR3 depleting antibodies prevent and reverse vitiligo in mice
  publication-title: The Journal of Investigative Dermatology
– volume: 173
  start-page: 20
  year: 2018
  end-page: 51
  article-title: Metazoan microRNAs
  publication-title: Cell
– volume: 20
  start-page: 288
  year: 2007
  end-page: 300
  article-title: Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour
  publication-title: Pigment Cell Research
– volume: 56
  start-page: 274
  year: 2007
  end-page: 278
  article-title: Efficacy, predictors of response, and long‐term follow‐up in patients with vitiligo treated with narrowband UVB phototherapy
  publication-title: Journal of the American Academy of Dermatology
– volume: 135
  start-page: 3105
  year: 2015
  end-page: 3114
  article-title: Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: A promising target for repigmenting vitiligo patients
  publication-title: The Journal of Investigative Dermatology
– volume: 31
  start-page: 330
  year: 2018
  end-page: 336
  article-title: CXCL‐10 and Interleukin‐6 are reliable serum markers for vitiligo activity: A multicenter cross‐sectional study
  publication-title: Pigment Cell. Melanoma Res.
– volume: 16
  start-page: 322
  year: 2003
  end-page: 332
  article-title: A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy?
  publication-title: Pigment Cell Research
– volume: 23
  start-page: 496
  year: 2016
  end-page: 508
  article-title: Oxidative stress‐induced overexpression of miR‐25: The mechanism underlying the degeneration of melanocytes in vitiligo
  publication-title: Cell Death and Differentiation
– volume: 10
  start-page: 2178
  year: 2019
  article-title: Innate lymphocyte‐induced CXCR3B‐mediated melanocyte apoptosis is a potential initiator of T cell autoreactivity in vitiligo
  publication-title: Nature Communications
– volume: 171
  start-page: 1078
  year: 2003
  end-page: 1084
  article-title: A second step of chemotaxis after transendothelial migration: Keratinocytes undergoing apoptosis release IFN‐gamma‐inducible protein 10, monokine induced by IFN‐gamma, and IFN‐gamma‐inducible alpha‐chemoattractant for T cell chemotaxis toward epidermis in atopic dermatitis
  publication-title: The Journal of Immunology
– volume: 132
  start-page: 1869
  year: 2012
  end-page: 1876
  article-title: A mouse model of vitiligo with focused epidermal depigmentation requires IFN‐γ for autoreactive CD8⁺ T cell accumulation in the skin
  publication-title: The Journal of Investigative Dermatology
– volume: 145
  start-page: 632
  year: 2020
  end-page: 645
  article-title: Activated NLR family pyrin domain containing 3 (NLRP3) inflammasome in keratinocytes promotes cutaneous T cell response in patients with vitiligo
  publication-title: The Journal of Allergy and Clinical Immunology
– volume: 15
  start-page: 87
  year: 2002
  end-page: 92
  article-title: New insights into the pathogenesis of vitiligo: Imbalance of epidermal cytokines at sites of lesions
  publication-title: Pigment Cell Research
– volume: 46
  start-page: 287
  year: 2017
  end-page: 300
  article-title: CD49a expression defines tissue‐resident CD8(+) T cells poised for cytotoxic function in human skin
  publication-title: Immunity
– volume: 138
  start-page: 394
  year: 2018
  end-page: 404
  article-title: Vitiligo skin: Exploring the dermal compartment
  publication-title: The Journal of Investigative Dermatology
– volume: 25
  start-page: 1017
  year: 2019
  end-page: 1023
  article-title: Perspectives of new advances in the pathogenesis of vitiligo: From oxidative stress to autoimmunity
  publication-title: Medical Science Monitor
– volume: 124
  start-page: 798
  year: 2005
  end-page: 806
  article-title: 4‐Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell‐mediated killing: Relevance to vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 24
  start-page: 849
  year: 2009
  end-page: 857
  article-title: Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis
  publication-title: Histology and Histopathology
– volume: 10
  start-page: 1185
  year: 2020
  end-page: 1198
  article-title: Vitiligo, from physiopathology to emerging treatments: A review
  publication-title: Dermatology and Therapy
– volume: 396
  start-page: 110
  year: 2020
  end-page: 120
  article-title: Ruxolitinib cream for treatment of vitiligo: A randomised, controlled, phase 2 trial
  publication-title: Lancet
– volume: 79
  start-page: 321
  year: 1982
  end-page: 330
  article-title: Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 27
  start-page: 209
  year: 2014
  end-page: 220
  article-title: Preferential secretion of inducible HSP70 by vitiligo melanocytes under stress
  publication-title: Pigment Cell & Melanoma Research
– volume: 139
  start-page: 2174
  year: 2019
  end-page: 2184
  article-title: Oxidative stress‐induced HMGB1 release from melanocytes: A paracrine mechanism underlying the cutaneous inflammation in vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 177
  start-page: 1367
  year: 2017a
  end-page: 1375
  article-title: Heat shock protein 70 potentiates interferon alpha production by plasmacytoid dendritic cells: Relevance for cutaneous lupus and vitiligo pathogenesis
  publication-title: British Journal of Dermatology
– volume: 11
  start-page: 537
  year: 2010
  end-page: 561
  article-title: MicroRNA: Biogenesis, function and role in cancer
  publication-title: Current Genomics
– volume: 543
  start-page: 252
  year: 2017
  end-page: 256
  article-title: Survival of tissue‐resident memory T cells requires exogenous lipid uptake and metabolism
  publication-title: Nature
– year: 2020
  article-title: Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells
  publication-title: Journal of Investigative Dermatology
– volume: 28
  start-page: 662
  year: 2019
  end-page: 666
  article-title: Molecular and cellular basis of depigmentation in vitiligo patients
  publication-title: Experimental Dermatology
– volume: 139
  start-page: 80
  year: 2019
  end-page: 91
  article-title: Oxidative stress‐induced IL‐15 trans‐presentation in keratinocytes contributes to CD8(+) T cells activation via JAK‐STAT pathway in vitiligo
  publication-title: Free Radical Biology and Medicine
– volume: 23
  start-page: 3790
  year: 2009
  end-page: 3807
  article-title: Enhanced DNA binding capacity on up‐regulated epidermal wild‐type p53 in vitiligo by H2O2‐mediated oxidation: A possible repair mechanism for DNA damage
  publication-title: The FASEB Journal
– volume: 127
  start-page: 1226
  year: 2007
  end-page: 1233
  article-title: Membrane lipid alterations as a possible basis for melanocyte degeneration in vitiligo
  publication-title: The Journal of Investigative Dermatology
– volume: 223
  start-page: 187
  year: 2010
  end-page: 193
  article-title: Membrane lipid defects are responsible for the generation of reactive oxygen species in peripheral blood mononuclear cells from vitiligo patients
  publication-title: Journal of Cellular Physiology
– volume: 88
  start-page: 159
  year: 2017
  end-page: 166
  article-title: Precise role of dermal fibroblasts on melanocyte pigmentation
  publication-title: Journal of Dermatological Science
– volume: 57
  year: 2020
  article-title: Premature cell senescence in human skin: Dual face in chronic acquired pigmentary disorders
  publication-title: Ageing Research Reviews
– volume: 121
  start-page: 731
  year: 1995
  end-page: 742
  article-title: Soluble and cell‐bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway
  publication-title: Development
– ident: e_1_2_4_40_1
  doi: 10.1038/ni.2744
– ident: e_1_2_4_66_1
  doi: 10.1038/cdd.2015.117
– ident: e_1_2_4_49_1
  doi: 10.1034/j.1600-0749.2002.1o049.x
– ident: e_1_2_4_42_1
  doi: 10.1126/sciimmunol.aam6346
– year: 2020
  ident: e_1_2_4_4_1
  article-title: Jak inhibitors reverse vitiligo in mice but do not deplete skin resident memory T cells
  publication-title: Journal of Investigative Dermatology
– ident: e_1_2_4_58_1
  doi: 10.1016/j.jid.2016.09.016
– ident: e_1_2_4_71_1
  doi: 10.1126/science.1151869
– ident: e_1_2_4_70_1
  doi: 10.1038/s41467-019-09963-8
– ident: e_1_2_4_30_1
  doi: 10.1111/bjd.15550
– ident: e_1_2_4_34_1
  doi: 10.1016/j.jid.2017.06.033
– ident: e_1_2_4_14_1
  doi: 10.1016/j.freeradbiomed.2019.05.011
– ident: e_1_2_4_17_1
  doi: 10.1016/j.jid.2019.03.1148
– ident: e_1_2_4_52_1
  doi: 10.1126/scitranslmed.3005127
– ident: e_1_2_4_64_1
  doi: 10.1096/fj.09-132621
– ident: e_1_2_4_67_1
  doi: 10.1111/pcmr.12789
– ident: e_1_2_4_23_1
  doi: 10.1111/1523-1747.ep12329664
– ident: e_1_2_4_55_1
  doi: 10.1016/S0140-6736(20)30747-9
– ident: e_1_2_4_61_1
  doi: 10.1038/s41467-019-09397-2
– ident: e_1_2_4_62_1
  doi: 10.1016/S0140-6736(20)30609-7
– ident: e_1_2_4_75_1
  doi: 10.1083/jcb.200311122
– ident: e_1_2_4_5_1
  doi: 10.1016/j.cell.2018.03.006
– ident: e_1_2_4_69_1
  doi: 10.1111/1523-1747.ep12460991
– ident: e_1_2_4_56_1
  doi: 10.1016/j.jdermsci.2009.02.004
– ident: e_1_2_4_73_1
  doi: 10.1016/j.jdermsci.2017.06.018
– ident: e_1_2_4_60_1
  doi: 10.1126/scitranslmed.aam7710
– ident: e_1_2_4_9_1
  doi: 10.1111/j.1600-0560.1983.tb00328.x
– ident: e_1_2_4_51_1
  doi: 10.1111/pcmr.12208
– ident: e_1_2_4_47_1
  doi: 10.1111/1523-1747.ep12500086
– ident: e_1_2_4_39_1
  doi: 10.2174/138920210793175895
– ident: e_1_2_4_59_1
  doi: 10.1016/j.jid.2016.10.048
– ident: e_1_2_4_19_1
  doi: 10.1002/jcp.22027
– ident: e_1_2_4_3_1
  doi: 10.1016/j.jid.2019.12.035
– ident: e_1_2_4_10_1
  doi: 10.1111/j.1600-0749.2007.00385.x
– ident: e_1_2_4_57_1
  doi: 10.1038/jid.2015.335
– ident: e_1_2_4_18_1
  doi: 10.1038/sj.jid.5700700
– ident: e_1_2_4_27_1
  doi: 10.1038/jid.2011.463
– ident: e_1_2_4_26_1
  doi: 10.1111/imr.12369
– ident: e_1_2_4_25_1
  doi: 10.1016/j.jdermsci.2016.04.005
– ident: e_1_2_4_20_1
  doi: 10.1111/exd.13858
– ident: e_1_2_4_44_1
  doi: 10.1034/j.1600-0749.2001.140303.x
– ident: e_1_2_4_63_1
  doi: 10.1016/j.jid.2017.04.025
– ident: e_1_2_4_65_1
  doi: 10.1111/1523-1747.ep12492612
– ident: e_1_2_4_2_1
  doi: 10.1111/pcmr.12667
– volume: 24
  start-page: 849
  year: 2009
  ident: e_1_2_4_48_1
  article-title: Keratinocyte dysfunction in vitiligo epidermis: Cytokine microenvironment and correlation to keratinocyte apoptosis
  publication-title: Histology and Histopathology
– ident: e_1_2_4_36_1
  doi: 10.1111/j.0022-202X.2005.23653.x
– ident: e_1_2_4_29_1
  doi: 10.1016/j.jid.2019.11.013
– ident: e_1_2_4_54_1
  doi: 10.1038/nature21379
– ident: e_1_2_4_37_1
  doi: 10.1016/j.jaci.2019.10.036
– ident: e_1_2_4_22_1
  doi: 10.1034/j.1600-0749.2003.00070.x
– ident: e_1_2_4_41_1
  doi: 10.1016/j.immuni.2015.11.008
– ident: e_1_2_4_31_1
  doi: 10.4049/jimmunol.168.1.108
– ident: e_1_2_4_6_1
  doi: 10.1111/exd.13868
– ident: e_1_2_4_50_1
  doi: 10.1007/BF00387600
– volume: 121
  start-page: 731
  year: 1995
  ident: e_1_2_4_74_1
  article-title: Soluble and cell‐bound forms of steel factor activity play distinct roles in melanocyte precursor dispersal and survival on the lateral neural crest migration pathway
  publication-title: Development
  doi: 10.1242/dev.121.3.731
– ident: e_1_2_4_24_1
  doi: 10.3390/genes9020074
– ident: e_1_2_4_35_1
  doi: 10.1038/nrg2843
– ident: e_1_2_4_32_1
  doi: 10.1016/j.freeradbiomed.2018.08.022
– ident: e_1_2_4_33_1
  doi: 10.4049/jimmunol.171.2.1078
– ident: e_1_2_4_16_1
  doi: 10.1126/scitranslmed.3010641
– ident: e_1_2_4_53_1
  doi: 10.1016/j.jaad.2006.09.004
– ident: e_1_2_4_13_1
  doi: 10.1111/j.1600-0749.2006.00326.x
– ident: e_1_2_4_46_1
  doi: 10.1038/nm962
– ident: e_1_2_4_68_1
  doi: 10.1016/j.yexcr.2019.111615
– ident: e_1_2_4_12_1
  doi: 10.1172/jci.insight.133772
– ident: e_1_2_4_8_1
  doi: 10.1371/journal.pone.0059782
– ident: e_1_2_4_38_1
  doi: 10.1016/j.gene.2013.11.024
– ident: e_1_2_4_15_1
  doi: 10.1016/j.immuni.2017.01.009
– ident: e_1_2_4_72_1
  doi: 10.12659/MSM.914898
– ident: e_1_2_4_43_1
  doi: 10.1111/bjd.13109
– ident: e_1_2_4_21_1
  doi: 10.1038/srep18761
– ident: e_1_2_4_76_1
  doi: 10.1155/2012/238980
– ident: e_1_2_4_11_1
  doi: 10.1016/j.jid.2017.08.038
– ident: e_1_2_4_45_1
  doi: 10.1007/s13555-020-00447-y
– ident: e_1_2_4_28_1
  doi: 10.1038/s41577-019-0162-3
– ident: e_1_2_4_7_1
  doi: 10.1016/j.arr.2019.100981
SSID ssj0060593
Score 2.5579996
SecondaryResourceType review_article
Snippet Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 236
SubjectTerms Animals
Autoimmunity
cell–cell cross talk
Fibroblasts
Humans
IFN‐gamma
Immunity, Innate
Immunological memory
Immunology
immunopathogenesis
Keratinocytes
Lymphocytes
Lymphocytes T
Lymphoid cells
Melanocytes
Memory cells
memory T cells
Natural killer cells
Pathogenesis
Pathophysiology
Skin diseases
T-Lymphocytes - immunology
Vitiligo
Vitiligo - immunology
Vitiligo - pathology
Title An update on Vitiligo pathogenesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpcmr.12949
https://www.ncbi.nlm.nih.gov/pubmed/33278065
https://www.proquest.com/docview/2497902580
https://www.proquest.com/docview/2467613240
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5EEXzxPqK1xONFIaXNbo4FX2q1FKEiRUUECZtNtgRrUtr0xV_vTi5PBH0LyYTNZmZ2vt2d-Rbg2JU0YAG1DWkRaWDNssGkaStbFpK0fJNaAguc-9d2745ePVgPc3BW1sLk_BDVght6RjZeo4Nzf_rBycfiZdJQ0Ypi9R4mayEiGlTcUXYzZ9xV4dEyWmoILrhJMY3n_dXP0egbxPyMWLOQ012Bp_Jj80yT58Ys9Rvi9QuP4397swrLBRbV27nxrMFcGK_D4mOSrbRvwGE71mdjXBHQk1i_j9JoFA0THc8wToY4REbTTbjrXt52ekZxpIIhqMWYofAA49wNHMl9RyhsF1BHho4kFpfMlcSlLFSISjIWspAwagvHsoVCaU03MKUUZAvm4yQOd0CXJt5HOjPLppwzlyjwpgBLIPxmS3BXg5Py13qi4BvHYy9GXjnvwD57WZ81OKpkxznLxo9StVJDXuFpU09NHx3cKnWbGhxUj5WP4MYHj8NkhjK2o2CLAi8abOearZohxHRwc1mD00w_v7Tv3XT6g-xq9y_Ce7BkYiJMlrhWg_l0Mgv3FZJJ_TostM8vzrv1zHLfAHGp7ZE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60IvrifUSrxuNFISXNbo59LFWp2hYprYgvIdlkpahJ6fHir3dnk8YTQd9CMmHZY3a-nZn9BuDEEzRiEXUMYRNh4J1lgwnLkWuZC1INLWpzvODcajuNHr2-t-_z3By8C5PxQxQON9QMtV-jgqND-oOWD_jLsCLNFWWzMIclvbGAwXmnYI9yzIxzVxpI26jKTThnJ8VEnvd_P9ujbyDzM2ZVRudyOausOlJchZhr8lSZjMMKf_3C5Pjv_qzAUg5H9Vq2flZhJk7WYP4hVc72dTiqJfpkgE4BPU30u_64_9x_THUsY5w-4i7ZH21A7_KiW28YeVUFg1ObMUNCAhYEXuSKIHS5hHcRdUXsCmIHgnmCeJTFElQJxmIWE0Yd7toOl0DN9CJLCE42oZSkSbwNurDwPTKa2Q4NAuYRid8kZol4aFZ54GlwOh1bn-eU41j54tmfHj2wz77qswbHhewgI9r4Uao8nSI_V7aRL0-QLkZLPVODw-KzVBOMfQRJnE5QxnElcpH4RYOtbGqLZgixXIwva3CmJuiX9v3bequjnnb-InwAC41uq-k3r9o3u7BoYV6MymMrQ2k8nMR7EtiMw321fN8A0L_wOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60ovjifcQzHi8KKWl2s8mCL6IWb0qxUgQJySZbijUptX3x17uTyxNB30IyYbPZOb7dnfkWYN-VNOQhZYa0iTSwZtng0mJKl4UktcCitsAC55tbdt6il227PQZHRS1Mxg9RLrihZaT-Gg28H8oPRt4Xz4OqilaUj8MEZcpaEBI1S_IoZmaUuyo-2kZN-eCcnBTzeN7f_RyOvmHMz5A1jTn1WXgsvjZLNXmqjoZBVbx-IXL8b3fmYCYHo_pxpj3zMBbFCzD5kKRL7Yuwexzroz4uCehJrN93h91et5PoeIhx0kEf2X1Zglb97O7k3MjPVDAEtTk3FCDgvu-GjvQDRyhwF1JHRo4kti-5K4lLeaQgleQ84hHhlAnHZkLBNNMNLSkFWYZKnMTRKujSwvvIZ2Yz6vvcJQq9KcQSisCsCd_V4KD4tZ7ICcfx3IueV0w8sM9e2mcN9krZfkaz8aPURjFCXm5qL56aPzq4V-qaGuyUj5WR4M6HH0fJCGWYo3CLQi8arGQjWzZDiOXg7rIGh-n4_NK-1zi5aaZXa38R3oapxmndu764vVqHaQuTYtIktg2oDAejaFOhmmGwlSrvGyTj7vE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+update+on+Vitiligo+pathogenesis&rft.jtitle=Pigment+cell+and+melanoma+research&rft.au=Seneschal%2C+Julien&rft.au=Boniface%2C+Katia&rft.au=D%E2%80%99Arino%2C+Andrea&rft.au=Picardo%2C+Mauro&rft.date=2021-03-01&rft.issn=1755-1471&rft.eissn=1755-148X&rft.volume=34&rft.issue=2&rft.spage=236&rft.epage=243&rft_id=info:doi/10.1111%2Fpcmr.12949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pcmr_12949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-1471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-1471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-1471&client=summon