Electroretinographical and histological study of mouse retina after optic nerve section: a comparison between wild-type and retinal degeneration 1 mice

Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic...

Full description

Saved in:
Bibliographic Details
Published inClinical & experimental ophthalmology Vol. 41; no. 6; pp. 593 - 602
Main Authors Germain, Francisco, Istillarte, Mirna, Gómez-Vicente, Violeta, Pérez-Rico, Consuelo, de la Villa, Pedro
Format Journal Article
LanguageEnglish
Published Australia Blackwell Publishing Ltd 01.08.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods Surviving retinal ganglion cells were double‐stained by exposing both superior colliculi to fluorogold, and by applying dextran‐tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild‐type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild‐type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild‐type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy‐driven damage.
AbstractList Abstract Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods Surviving retinal ganglion cells were double‐stained by exposing both superior colliculi to fluorogold, and by applying dextran‐tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild‐type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild‐type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild‐type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy‐driven damage.
BACKGROUNDRetinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model.METHODSSurviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses.RESULTSA significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter.CONCLUSIONSAfter optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage.
Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Surviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage.
Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods Surviving retinal ganglion cells were double‐stained by exposing both superior colliculi to fluorogold, and by applying dextran‐tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild‐type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild‐type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild‐type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy‐driven damage.
Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods Surviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage [PUBLICATION ABSTRACT].
Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Surviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage.
Author Istillarte, Mirna
Pérez-Rico, Consuelo
Germain, Francisco
de la Villa, Pedro
Gómez-Vicente, Violeta
Author_xml – sequence: 1
  givenname: Francisco
  surname: Germain
  fullname: Germain, Francisco
  email: francisco.germain@uah.es
  organization: Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
– sequence: 2
  givenname: Mirna
  surname: Istillarte
  fullname: Istillarte, Mirna
  organization: Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
– sequence: 3
  givenname: Violeta
  surname: Gómez-Vicente
  fullname: Gómez-Vicente, Violeta
  organization: Departamento de Medicina Celular y Molecular, 3D Lab, Desarrollo, Diferenciación y Degeneración, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
– sequence: 4
  givenname: Consuelo
  surname: Pérez-Rico
  fullname: Pérez-Rico, Consuelo
  organization: Servicio de Oftalmología, Hospital Príncipe de Asturias, Alcalá de Henares, Spain
– sequence: 5
  givenname: Pedro
  surname: de la Villa
  fullname: de la Villa, Pedro
  organization: Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23279351$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH9gwQsgS2xgkdaOf2KzQ6NhQCp0AQipG8txbqYpSRzshHaepK-Lm0y7QELCm2tdfefY955jdND7HhB6SckpTefMgT-lOeHyCTqinOeZJgU92N8lJ_wQHcd4TQgROZPP0GHO8kIzQY_Q3boFNwYfYGx6vw12uGqcbbHtK3zVxNG3fjs34jhVO-xr3PkpAp55i209QsB-GBuHewi_Acdk1_j-HbbY-W6woYm-xyWMNwA9vmnaKht3A8wPLCYtrmALSW3vhZjirnHwHD2tbRvhxb6eoO8f1t9WH7Pzi82n1fvzzHGhZVYTIMwRRUvlcl4o54SlUkulRQWqdFrySnGheEm01VqWiltmC6JcxWQhHTtBbxbfIfhfE8TRdE100La2hzSooZwRJXNRsP9AaSFY2jFJ6Ou_0Gs_hTTqTAlRpP_pRL1dKBd8jAFqM4Sms2FnKDH3wZoUrJmDTeyrveNUdlA9kg9JJuBsAdKKYfdvJ7NaXzxYZosixQy3jwobfhpZsEKYH1825rPUm8vVV24u2R_sAr6l
CitedBy_id crossref_primary_10_1016_j_exer_2015_09_011
crossref_primary_10_1007_s10633_014_9433_2
crossref_primary_10_1021_acsnano_8b00596
crossref_primary_10_3390_ijms23084287
crossref_primary_10_1016_j_preteyeres_2014_10_003
crossref_primary_10_1371_journal_pone_0137826
Cites_doi 10.1113/jphysiol.2003.052738
10.1076/ceyr.27.3.183.16053
10.1167/iovs.07-0097
10.1016/0306-4522(81)90151-2
10.1016/0165-3806(84)90027-0
10.1016/j.visres.2008.09.029
10.1016/j.exer.2003.09.012
10.1113/jphysiol.2002.019703
10.1016/j.visres.2004.06.010
10.1523/JNEUROSCI.16-22-07193.1996
10.1038/cdd.2011.88
10.1016/j.exer.2011.02.008
10.1167/iovs.03-0674
10.1016/j.visres.2010.08.014
10.1002/cne.901850108
10.1073/pnas.88.19.8322
10.1002/neu.480250408
10.1523/JNEUROSCI.4968-08.2008
10.1016/0014-4835(72)90104-2
10.1006/exer.2002.2021
10.1002/cne.22802
10.1016/j.visres.2009.08.020
10.1258/0023677011911525
10.1167/iovs.04-1123
10.1523/JNEUROSCI.0730-10.2010
10.1002/neu.480240103
10.1111/j.1460-9568.1991.tb00054.x
10.1080/15216540500137586
10.1073/pnas.87.5.1855
10.1523/JNEUROSCI.14-03-01441.1994
10.1097/00001756-199608120-00028
10.1167/iovs.05-0520
10.1016/j.exer.2010.10.003
10.3129/i07-046
10.1523/JNEUROSCI.2837-05.2005
10.1136/bjo.40.11.652
10.1523/JNEUROSCI.13-02-00455.1993
10.1016/S0042-6989(02)00594-1
10.1016/j.visres.2009.01.010
10.1016/0014-4886(88)90081-7
10.1046/j.1460-9568.2003.02842.x
10.1016/j.neuroscience.2006.10.039
10.1017/S0952523800001966
10.1016/0014-4835(91)90254-C
ContentType Journal Article
Copyright 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists
2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.
Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists
Copyright_xml – notice: 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists
– notice: 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.
– notice: Clinical and Experimental Ophthalmology © 2013 Royal Australian and New Zealand College of Ophthalmologists
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
K9.
7X8
DOI 10.1111/ceo.12046
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1442-9071
EndPage 602
ExternalDocumentID 3032355281
10_1111_ceo_12046
23279351
CEO12046
ark_67375_WNG_M69GZCS4_Z
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GrantInformation_xml – fundername: Instituto de Salud Carlos III
  funderid: RD07/0062/0008
– fundername: Spanish Ministerio de Educación y Ciencia
  funderid: SAF2007‐66175; SAF2010‐21879
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KTM
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
K9.
7X8
ID FETCH-LOGICAL-c4596-f0e03c081b8c2478cc5a1696895de8bc964d84584b09a996b84a3a708cd3676c3
IEDL.DBID DR2
ISSN 1442-6404
IngestDate Sat Aug 17 04:01:24 EDT 2024
Fri Aug 16 10:21:34 EDT 2024
Fri Sep 13 02:49:56 EDT 2024
Fri Aug 23 01:17:00 EDT 2024
Sat Sep 28 07:52:17 EDT 2024
Sat Aug 24 00:51:11 EDT 2024
Wed Jan 17 04:59:21 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords electroretinogram
optic neuropathy
retinal degeneration
retina
Language English
License 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4596-f0e03c081b8c2478cc5a1696895de8bc964d84584b09a996b84a3a708cd3676c3
Notes Spanish Ministerio de Educación y Ciencia - No. SAF2007-66175; No. SAF2010-21879
Instituto de Salud Carlos III - No. RD07/0062/0008
ArticleID:CEO12046
istex:5919B9BBC83779AE20B88F17205A0C415F7A239B
ark:/67375/WNG-M69GZCS4-Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://rua.ua.es/dspace/bitstream/10045/40110/3/2013_Germain_etal_C%26EO.pdf.pdf
PMID 23279351
PQID 1415578959
PQPubID 1006520
PageCount 10
ParticipantIDs proquest_miscellaneous_1430862573
proquest_miscellaneous_1417530050
proquest_journals_1415578959
crossref_primary_10_1111_ceo_12046
pubmed_primary_23279351
wiley_primary_10_1111_ceo_12046_CEO12046
istex_primary_ark_67375_WNG_M69GZCS4_Z
PublicationCentury 2000
PublicationDate 2013-08
August 2013
2013-Aug
2013-08-00
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08
PublicationDecade 2010
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Surry Hills
PublicationTitle Clinical & experimental ophthalmology
PublicationTitleAlternate Clin Experiment Ophthalmol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Frishman LJ, Sieving PA, Steinberg RH. Contributions to the electroretinogram of currents originating in proximal retina. Vis Neurosci 1988; 1: 307-315.
McKernan DP, Caplis C, Donovan M, O'Brien CJ, Cotter TG. Age-dependent susceptibility of the retinal ganglion cell layer to cell death. Invest Ophthalmol Vis Sci 2006; 47: 807-814.
Dieterle P, Gordon E. Standard curve and physiological limits of dark adaptation by means of the Goldmann-Weekers adaptometer. Br J Ophthalmol 1956; 40: 652-655.
Thanos S, Mey J, Wild M. Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. J Neurosci 1993; 13: 455-466.
Bush RA, Williams TP. The effect of unilateral optic nerve section on retinal light damage in rats. Exp Eye Res 1991; 52: 139-153.
Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ. Retinal ganglion cell death in the experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995; 36: 774-786.
Brzezinski JA, Brown NL, Tanikawa A et al. Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Invest Ophthalmol Vis Sci 2005; 46: 2540-2551.
Galindo-Romero C, Avilés-Trigueros M, Jiménez-López M et al. Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp Eye Res 2011; 92: 377-387.
Robinson GA, Madison RD. Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Res 2004; 44: 2667-2674.
Parrilla-Reverter G, Agudo M, Nadal-Nicolás F et al. Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: a comparative study. Vision Res 2009; 49: 2808-2825.
Germain F, Fernández E, de la Villa P. Morphometrical analysis of dendritic arborization in axotomized retinal ganglion cells. Eur J Neurosci 2003; 18: 1103-1109.
Salinas-Navarro M, Mayor-Torroglosa S, Jiménez-López M et al. A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats. Vision Res 2009b; 49: 115-126.
Kostyk SK, D'Amore PA, Herman IM, Wagner JA. Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract. J Neurosci 1994; 14: 1441-1449.
Alarcón-Martínez L, Avilés-Trigueros M, Galindo-Romero C et al. ERG changes in albino and pigmented mice after optic nerve transection. Vision Res 2010; 50: 2176-2187.
Wang S, Villegas-Pérez MP, Holmes T et al. Evolving neurovascular relationships in the RCS rat with age. Curr Eye Res 2003; 27: 183-196.
Saszik SM, Robson JG, Frishman LJ. The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 2002; 543: 899-916.
Yi H, Nakamura RE, Mohamed O, Dufort D, Hackam AS. Characterization of Wnt signaling during photoreceptor degeneration. Invest Ophthalmol Vis Sci 2007; 48: 5733-5741.
Williams RW, Strom RC, Rice DS, Goldwitz D. Genetic and environmental control of variation in retinal ganglion cell number in mice. J Neurosci 1996; 16: 7193-7205.
Damiani D, Novelli E, Mazzoni F, Strettoi E. Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: a paradigm of early onset photoreceptor degeneration. J Comp Neurol 2012; 520: 1406-1423.
Casson RJ, Chidlow G, Wood JP, Vidal-Sanz M, Osborne NN. The effect of retinal ganglion cell injury on light-induced photoreceptor degeneration. Invest Ophthalmol Vis Sci 2004; 45: 685-693.
Thanos S. The relationship of microglial cells to dying neurons during natural neuronal cell death and axotomy induced degeneration of the rat retina. Eur J Neurosci 1991; 3: 1189-1207.
Germain F, Fernández E, de la Villa P. Morphological signs of apoptosis in axotomized ganglion cells of the rabbit retina. Neuroscience 2007; 144: 898-910.
Levin LA. Axonal loss and neuroprotection in optic neuropathies. Can J Ophthalmol 2007; 42: 403-408.
Germain F, Calvo M, de la Villa P. Rabbit retinal ganglion cell survival after optic nerve section and its effect on the inner plexiform layer. Exp Eye Res 2004; 78: 95-102.
Hackam AS. The Wnt signaling pathway in retinal degenerations. IUBMB Life 2005; 57: 381-388.
Alarcón-Martínez L, de la Villa P, Avilés-Trigueros M, Blanco R, Villegas-Pérez MP, Vidal-Sanz M. Short and long term axotomy-induced ERG changes in albino and pigmented rats. Mol Vis 2009; 15: 2373-2383.
Blanco R, Germain F, Velasco A, de la Villa P. Down-regulation of glutamate-induced conductances of retinal horizontal cells after ganglion cell axotomy. Exp Eye Res 2002; 75: 209-216.
Allcutt D, Berry M, Sievers J. A quantitative comparison of the reactions of retinal ganglion cells to optic nerve crush in neonatal and adult mice. Brain Res 1984; 318: 219-230.
Giménez E, Montoliu L. A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdebrd1) in FVB/N-derived transgenic mice. Lab Anim 2001; 35: 153-156.
Strettoi E, Pignatelli V, Rossi C, Porciatti V, Falsini B. Remodelling of second-order neurons in the retina of rd/rd mutant mice. Vision Res 2003; 43: 867-877.
Winkler BS. Analysis of the rabbit's electroretinogram following unilateral transection of the optic nerve. Exp Eye Res 1972; 13: 227-235.
Boycott BB, Hopkins JM. Microglia in the retina of monkey and other mammals: its distinction from other types of glia and horizontal cells. Neuroscience 1981; 6: 679-688.
García-Ayuso D, Salinas-Navarro M, Agudo M et al. Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina. Exp Eye Res 2010; 91: 800-810.
Rodríguez-Muela N, Germain F, Mariño G, Fitze PS, Boya P. Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice. Cell Death Differ 2012; 19: 162-169.
García-Valenzuela E, Gorczyca W, Darzynkiewicz Z, Sharma SC. Apoptosis in adult retinal ganglion cells after axotomy. J Neurobiol 1994; 25: 431-438.
Seitz R, Hackl S, Seibuchner T, Tamm ER, Ohlmann A. Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/β-catenin signaling pathway and the induction of neuroprotective growth factors in Müller cells. J Neurosci 2010; 30: 5998-6010.
Mazzoni F, Novelli E, Strettoi E. Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci 2008; 28: 14282-14292.
Provis JM. The distribution and size of ganglion cells in the retina of the pigmented rabbit: a quantitative analysis. J Comp Neurol 1979; 185: 121-137.
Villegas-Pérez MP, Vidal-Sanz M, Lund RD. Mechanism of retinal ganglion cell loss in inherited retinal dystrophy. Neuroreport 1996; 7: 1995-1999.
Salinas-Navarro M, Jiménez-López M, Valiente-Soriano FJ et al. Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vision Res 2009a; 49: 637-647.
Agudo M, Pérez-Marín MC, Lönngren U et al. Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush. Mol Vis 2008; 14: 1050-1063.
Villegas-Pérez MP, Vidal-Sanz M, Rasminsky M, Bray GM, Aguayo AJ. Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J Neurobiol 1993; 24: 23-36.
Bui BV, Fortune B. Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 2004; 555: 153-173.
Quina VH, Pak W, Lanier J et al. Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J Neurosci 2005; 25: 11595-11604.
Pittler SJ, Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A 1991; 88: 8322-8326.
Vidal-Sanz M, Villegas-Pérez MP, Bray GM, Aguayo AJ. Persistent retrograde labelling of adult rat retinal ganglion cells with the carbocyanine dye dil. Exp Neurol 1988; 102: 92-101.
Dowling JE. The Retina: An Approachable Part of the Brain. Cambridge, MA: Harvard University Press, 1987.
Germain F, Blanco R, de la Villa P. Expression and functionality of GABA and Glutamate receptors in axotomized ganglion cells of the rabbit retina. Invest Ophthalmol Vis Sci 2006; 47: E-Abstract 160.
Maffei L, Carmingnoto G, Perry VH, Candeo P, Ferrari G. Schwann cells promote the survival of rat retinal ganglion cells after optic nerve section. Proc Natl Acad Sci U S A 1990; 87: 1855-1859.
Wang S, Villegas-Pérez MP, Vidal-Sanz M, Lund RD. Progressive optic axon dystrophy and vascular changes in rd mice. Invest Ophthalmol Vis Sci 2000; 41: 537-545.
2009b; 49
1993; 24
2012; 520
1995; 36
1991; 52
2007; 144
2000; 41
1988; 102
1994; 25
2012; 19
2003; 18
2009; 49
2005; 25
1990; 87
1991; 88
1956; 40
2002; 543
2004; 78
2008; 28
1987
1984; 318
1972; 13
2010; 30
2009; 15
2003; 43
1996; 7
1991; 3
2004; 44
2002; 75
2004; 45
2008; 14
1981; 6
1996; 16
2005; 46
1988; 1
1993; 13
2004; 555
2011; 92
2006; 47
1994; 14
2009a; 49
2003; 27
2007; 42
2010; 91
2001; 35
1979; 185
2010; 50
2007; 48
2005; 57
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Agudo M (e_1_2_6_36_1) 2008; 14
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
Wang S (e_1_2_6_41_1) 2000; 41
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Dowling JE (e_1_2_6_9_1) 1987
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Germain F (e_1_2_6_50_1) 2006; 47
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
Alarcón‐Martínez L (e_1_2_6_14_1) 2009; 15
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
Quigley HA (e_1_2_6_6_1) 1995; 36
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 40
  start-page: 652
  year: 1956
  end-page: 655
  article-title: Standard curve and physiological limits of dark adaptation by means of the Goldmann‐Weekers adaptometer
  publication-title: Br J Ophthalmol
– volume: 44
  start-page: 2667
  year: 2004
  end-page: 2674
  article-title: Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft
  publication-title: Vision Res
– volume: 7
  start-page: 1995
  year: 1996
  end-page: 1999
  article-title: Mechanism of retinal ganglion cell loss in inherited retinal dystrophy
  publication-title: Neuroreport
– volume: 6
  start-page: 679
  year: 1981
  end-page: 688
  article-title: Microglia in the retina of monkey and other mammals: its distinction from other types of glia and horizontal cells
  publication-title: Neuroscience
– volume: 47
  start-page: 807
  year: 2006
  end-page: 814
  article-title: Age‐dependent susceptibility of the retinal ganglion cell layer to cell death
  publication-title: Invest Ophthalmol Vis Sci
– volume: 75
  start-page: 209
  year: 2002
  end-page: 216
  article-title: Down‐regulation of glutamate‐induced conductances of retinal horizontal cells after ganglion cell axotomy
  publication-title: Exp Eye Res
– volume: 35
  start-page: 153
  year: 2001
  end-page: 156
  article-title: A simple polymerase chain reaction assay for genotyping the retinal degeneration mutation (Pdeb ) in FVB/N‐derived transgenic mice
  publication-title: Lab Anim
– volume: 1
  start-page: 307
  year: 1988
  end-page: 315
  article-title: Contributions to the electroretinogram of currents originating in proximal retina
  publication-title: Vis Neurosci
– volume: 87
  start-page: 1855
  year: 1990
  end-page: 1859
  article-title: Schwann cells promote the survival of rat retinal ganglion cells after optic nerve section
  publication-title: Proc Natl Acad Sci U S A
– volume: 15
  start-page: 2373
  year: 2009
  end-page: 2383
  article-title: Short and long term axotomy‐induced ERG changes in albino and pigmented rats
  publication-title: Mol Vis
– volume: 3
  start-page: 1189
  year: 1991
  end-page: 1207
  article-title: The relationship of microglial cells to dying neurons during natural neuronal cell death and axotomy induced degeneration of the rat retina
  publication-title: Eur J Neurosci
– volume: 88
  start-page: 8322
  year: 1991
  end-page: 8326
  article-title: Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta‐subunit gene of the rd mouse
  publication-title: Proc Natl Acad Sci U S A
– volume: 520
  start-page: 1406
  year: 2012
  end-page: 1423
  article-title: Undersized dendritic arborizations in retinal ganglion cells of the rd1 mutant mouse: a paradigm of early onset photoreceptor degeneration
  publication-title: J Comp Neurol
– volume: 49
  start-page: 115
  year: 2009b
  end-page: 126
  article-title: A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats
  publication-title: Vision Res
– volume: 102
  start-page: 92
  year: 1988
  end-page: 101
  article-title: Persistent retrograde labelling of adult rat retinal ganglion cells with the carbocyanine dye dil
  publication-title: Exp Neurol
– volume: 47
  start-page: 160
  year: 2006
  article-title: Expression and functionality of GABA and Glutamate receptors in axotomized ganglion cells of the rabbit retina
  publication-title: Invest Ophthalmol Vis Sci
– volume: 18
  start-page: 1103
  year: 2003
  end-page: 1109
  article-title: Morphometrical analysis of dendritic arborization in axotomized retinal ganglion cells
  publication-title: Eur J Neurosci
– volume: 318
  start-page: 219
  year: 1984
  end-page: 230
  article-title: A quantitative comparison of the reactions of retinal ganglion cells to optic nerve crush in neonatal and adult mice
  publication-title: Brain Res
– volume: 144
  start-page: 898
  year: 2007
  end-page: 910
  article-title: Morphological signs of apoptosis in axotomized ganglion cells of the rabbit retina
  publication-title: Neuroscience
– volume: 41
  start-page: 537
  year: 2000
  end-page: 545
  article-title: Progressive optic axon dystrophy and vascular changes in rd mice
  publication-title: Invest Ophthalmol Vis Sci
– volume: 24
  start-page: 23
  year: 1993
  end-page: 36
  article-title: Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats
  publication-title: J Neurobiol
– volume: 50
  start-page: 2176
  year: 2010
  end-page: 2187
  article-title: ERG changes in albino and pigmented mice after optic nerve transection
  publication-title: Vision Res
– volume: 13
  start-page: 455
  year: 1993
  end-page: 466
  article-title: Treatment of the adult retina with microglia‐suppressing factors retards axotomy‐induced neuronal degradation and enhances axonal regeneration and
  publication-title: J Neurosci
– volume: 57
  start-page: 381
  year: 2005
  end-page: 388
  article-title: The Wnt signaling pathway in retinal degenerations
  publication-title: IUBMB Life
– volume: 185
  start-page: 121
  year: 1979
  end-page: 137
  article-title: The distribution and size of ganglion cells in the retina of the pigmented rabbit: a quantitative analysis
  publication-title: J Comp Neurol
– volume: 13
  start-page: 227
  year: 1972
  end-page: 235
  article-title: Analysis of the rabbit's electroretinogram following unilateral transection of the optic nerve
  publication-title: Exp Eye Res
– volume: 19
  start-page: 162
  year: 2012
  end-page: 169
  article-title: Autophagy promotes survival of retinal ganglion cells after optic nerve axotomy in mice
  publication-title: Cell Death Differ
– volume: 42
  start-page: 403
  year: 2007
  end-page: 408
  article-title: Axonal loss and neuroprotection in optic neuropathies
  publication-title: Can J Ophthalmol
– year: 1987
– volume: 92
  start-page: 377
  year: 2011
  end-page: 387
  article-title: Axotomy‐induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses
  publication-title: Exp Eye Res
– volume: 555
  start-page: 153
  year: 2004
  end-page: 173
  article-title: Ganglion cell contributions to the rat full‐field electroretinogram
  publication-title: J Physiol
– volume: 78
  start-page: 95
  year: 2004
  end-page: 102
  article-title: Rabbit retinal ganglion cell survival after optic nerve section and its effect on the inner plexiform layer
  publication-title: Exp Eye Res
– volume: 45
  start-page: 685
  year: 2004
  end-page: 693
  article-title: The effect of retinal ganglion cell injury on light‐induced photoreceptor degeneration
  publication-title: Invest Ophthalmol Vis Sci
– volume: 49
  start-page: 2808
  year: 2009
  end-page: 2825
  article-title: Time‐course of the retinal nerve fibre layer degeneration after complete intra‐orbital optic nerve transection or crush: a comparative study
  publication-title: Vision Res
– volume: 543
  start-page: 899
  year: 2002
  end-page: 916
  article-title: The scotopic threshold response of the dark‐adapted electroretinogram of the mouse
  publication-title: J Physiol
– volume: 14
  start-page: 1050
  year: 2008
  end-page: 1063
  article-title: Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush
  publication-title: Mol Vis
– volume: 14
  start-page: 1441
  year: 1994
  end-page: 1449
  article-title: Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract
  publication-title: J Neurosci
– volume: 25
  start-page: 431
  year: 1994
  end-page: 438
  article-title: Apoptosis in adult retinal ganglion cells after axotomy
  publication-title: J Neurobiol
– volume: 16
  start-page: 7193
  year: 1996
  end-page: 7205
  article-title: Genetic and environmental control of variation in retinal ganglion cell number in mice
  publication-title: J Neurosci
– volume: 48
  start-page: 5733
  year: 2007
  end-page: 5741
  article-title: Characterization of Wnt signaling during photoreceptor degeneration
  publication-title: Invest Ophthalmol Vis Sci
– volume: 28
  start-page: 14282
  year: 2008
  end-page: 14292
  article-title: Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration
  publication-title: J Neurosci
– volume: 52
  start-page: 139
  year: 1991
  end-page: 153
  article-title: The effect of unilateral optic nerve section on retinal light damage in rats
  publication-title: Exp Eye Res
– volume: 43
  start-page: 867
  year: 2003
  end-page: 877
  article-title: Remodelling of second‐order neurons in the retina of rd/rd mutant mice
  publication-title: Vision Res
– volume: 91
  start-page: 800
  year: 2010
  end-page: 810
  article-title: Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina
  publication-title: Exp Eye Res
– volume: 36
  start-page: 774
  year: 1995
  end-page: 786
  article-title: Retinal ganglion cell death in the experimental glaucoma and after axotomy occurs by apoptosis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 27
  start-page: 183
  year: 2003
  end-page: 196
  article-title: Evolving neurovascular relationships in the RCS rat with age
  publication-title: Curr Eye Res
– volume: 25
  start-page: 11595
  year: 2005
  end-page: 11604
  article-title: Brn3a‐expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways
  publication-title: J Neurosci
– volume: 46
  start-page: 2540
  year: 2005
  end-page: 2551
  article-title: Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice
  publication-title: Invest Ophthalmol Vis Sci
– volume: 30
  start-page: 5998
  year: 2010
  end-page: 6010
  article-title: Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/β‐catenin signaling pathway and the induction of neuroprotective growth factors in Müller cells
  publication-title: J Neurosci
– volume: 49
  start-page: 637
  year: 2009a
  end-page: 647
  article-title: Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution
  publication-title: Vision Res
– volume: 14
  start-page: 1050
  year: 2008
  ident: e_1_2_6_36_1
  article-title: Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush
  publication-title: Mol Vis
  contributor:
    fullname: Agudo M
– ident: e_1_2_6_12_1
  doi: 10.1113/jphysiol.2003.052738
– ident: e_1_2_6_42_1
  doi: 10.1076/ceyr.27.3.183.16053
– ident: e_1_2_6_44_1
  doi: 10.1167/iovs.07-0097
– ident: e_1_2_6_28_1
  doi: 10.1016/0306-4522(81)90151-2
– ident: e_1_2_6_18_1
  doi: 10.1016/0165-3806(84)90027-0
– ident: e_1_2_6_35_1
  doi: 10.1016/j.visres.2008.09.029
– ident: e_1_2_6_47_1
  doi: 10.1016/j.exer.2003.09.012
– ident: e_1_2_6_11_1
  doi: 10.1113/jphysiol.2002.019703
– ident: e_1_2_6_21_1
  doi: 10.1016/j.visres.2004.06.010
– ident: e_1_2_6_34_1
  doi: 10.1523/JNEUROSCI.16-22-07193.1996
– volume: 41
  start-page: 537
  year: 2000
  ident: e_1_2_6_41_1
  article-title: Progressive optic axon dystrophy and vascular changes in rd mice
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Wang S
– ident: e_1_2_6_8_1
  doi: 10.1038/cdd.2011.88
– ident: e_1_2_6_33_1
  doi: 10.1016/j.exer.2011.02.008
– ident: e_1_2_6_13_1
  doi: 10.1167/iovs.03-0674
– ident: e_1_2_6_15_1
  doi: 10.1016/j.visres.2010.08.014
– ident: e_1_2_6_30_1
  doi: 10.1002/cne.901850108
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.88.19.8322
– ident: e_1_2_6_5_1
  doi: 10.1002/neu.480250408
– ident: e_1_2_6_24_1
  doi: 10.1523/JNEUROSCI.4968-08.2008
– ident: e_1_2_6_51_1
  doi: 10.1016/0014-4835(72)90104-2
– ident: e_1_2_6_49_1
  doi: 10.1006/exer.2002.2021
– volume-title: The Retina: An Approachable Part of the Brain
  year: 1987
  ident: e_1_2_6_9_1
  contributor:
    fullname: Dowling JE
– ident: e_1_2_6_25_1
  doi: 10.1002/cne.22802
– ident: e_1_2_6_17_1
  doi: 10.1016/j.visres.2009.08.020
– ident: e_1_2_6_26_1
  doi: 10.1258/0023677011911525
– ident: e_1_2_6_16_1
  doi: 10.1167/iovs.04-1123
– ident: e_1_2_6_46_1
  doi: 10.1523/JNEUROSCI.0730-10.2010
– ident: e_1_2_6_4_1
  doi: 10.1002/neu.480240103
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1460-9568.1991.tb00054.x
– ident: e_1_2_6_45_1
  doi: 10.1080/15216540500137586
– ident: e_1_2_6_29_1
  doi: 10.1073/pnas.87.5.1855
– volume: 36
  start-page: 774
  year: 1995
  ident: e_1_2_6_6_1
  article-title: Retinal ganglion cell death in the experimental glaucoma and after axotomy occurs by apoptosis
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Quigley HA
– ident: e_1_2_6_39_1
  doi: 10.1523/JNEUROSCI.14-03-01441.1994
– volume: 15
  start-page: 2373
  year: 2009
  ident: e_1_2_6_14_1
  article-title: Short and long term axotomy‐induced ERG changes in albino and pigmented rats
  publication-title: Mol Vis
  contributor:
    fullname: Alarcón‐Martínez L
– ident: e_1_2_6_40_1
  doi: 10.1097/00001756-199608120-00028
– ident: e_1_2_6_19_1
  doi: 10.1167/iovs.05-0520
– ident: e_1_2_6_43_1
  doi: 10.1016/j.exer.2010.10.003
– ident: e_1_2_6_2_1
  doi: 10.3129/i07-046
– ident: e_1_2_6_37_1
  doi: 10.1523/JNEUROSCI.2837-05.2005
– volume: 47
  start-page: 160
  year: 2006
  ident: e_1_2_6_50_1
  article-title: Expression and functionality of GABA and Glutamate receptors in axotomized ganglion cells of the rabbit retina
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Germain F
– ident: e_1_2_6_31_1
  doi: 10.1136/bjo.40.11.652
– ident: e_1_2_6_20_1
  doi: 10.1523/JNEUROSCI.13-02-00455.1993
– ident: e_1_2_6_23_1
  doi: 10.1016/S0042-6989(02)00594-1
– ident: e_1_2_6_27_1
  doi: 10.1016/j.visres.2009.01.010
– ident: e_1_2_6_32_1
  doi: 10.1016/0014-4886(88)90081-7
– ident: e_1_2_6_48_1
  doi: 10.1046/j.1460-9568.2003.02842.x
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroscience.2006.10.039
– ident: e_1_2_6_10_1
  doi: 10.1017/S0952523800001966
– ident: e_1_2_6_38_1
  doi: 10.1016/0014-4835(91)90254-C
SSID ssj0005236
Score 2.0792398
Snippet Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the...
Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential...
Abstract Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess...
Background Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the...
BACKGROUNDRetinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 593
SubjectTerms Animals
Axotomy
Cell Count
Cell Death
Cell Survival
Disease Models, Animal
electroretinogram
Electroretinography
Medical research
Mice
Mice, Inbred C57BL
Mice, Inbred ICR
Mice, Mutant Strains
Night Vision - physiology
Optic nerve
Optic Nerve - physiology
Optic Nerve Diseases - diagnosis
Optic Nerve Diseases - physiopathology
optic neuropathy
Retina
Retina - physiopathology
retinal degeneration
Retinal Dystrophies - diagnosis
Retinal Dystrophies - physiopathology
Retinal Ganglion Cells - pathology
Stilbamidines
Title Electroretinographical and histological study of mouse retina after optic nerve section: a comparison between wild-type and retinal degeneration 1 mice
URI https://api.istex.fr/ark:/67375/WNG-M69GZCS4-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fceo.12046
https://www.ncbi.nlm.nih.gov/pubmed/23279351
https://www.proquest.com/docview/1415578959/abstract/
https://search.proquest.com/docview/1417530050
https://search.proquest.com/docview/1430862573
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KBfHFb220yigivuTYSzZf9kmOa4twFdRiKULYnez5UM1J7wrSp_4Jvvrv-Zd0ZjcJraiIb4HMJvsxMzuzM_sbgGdlQq6wWseNBA516kqWuaqJHWmqEmfJ-fops718d1-_PsgO1mCrvwsT8CGGAzeRDK-vRcCNXV4QcnKL0Thh9471rwDpiUH0NrmQ3pGGm0U6iXOtdIcqJFk8Q8tLe9EVmdZvvzM0L9utfuPZvgEf-y6HfJOj0cnKjuj0FzTH_xzTTbjeGaT4KnDQLVhz7W24OutC7nfgxzQUypHbjm3At5Z1RdM26MGKO-WJHqgWF3OUwwSHnt6gr0GOC1ZMhK1kV-LSJ3-1L9EgDUUQscsXQ-538_Psu5wM-1-Ez3zGxn3yANnSFMf4hfXbXdjfnr6f7MZdPYeYdFbl8Vw5lRLbILakRBclUWbGAs5TZY0rLVW5bkqJ21pVGfbDbKlNagpVUiO4cpTeg_V20boNQGXIKFLGKaM0c5iVwLbJHesnrecuj-Bpv7L11wDbUffuDk9y7Sc5gud-zQcKc3wkeW5FVn_Y26lnebVzOHmn68MINnumqDsRX7LPxKZYwX2vIngyvGbhlIiLaR3PtdCwOygYO3-jScWtzIo0gvuB4YYOsbnL-jMbR_DCs82fx1JPpm_8w4N_J30I1xJf3EPSGTdhfXV84h6xibWyj70snQMR6SOR
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuvKGBAgNCiEtW3sR5IS5ote0C3UWCVlSVkGU73h4KWdRuJcSJn8CVv8cvYcZOohYBQtwiZZz4MTOe8Yy_AXhUJtYVRsq45sChTF1JMlfVsbPSVokz1vn6KdNZPtmVL_eyvRV41t2FCfgQ_YEbS4bX1yzgfCB9SsqtWwyGCfl352CNxD3zDtWb5FSCRxruFskkzqWQLa4Q5_H0Tc_sRms8sZ9_Z2qetVz91rN5Gd53nQ4ZJ4eDk6UZ2C-_4Dn-76iuwKXWJsXngYmuwoprrsH5aRt1vw7fx6FWDl94bALENS8t6qZGj1fc6k_0WLW4mCOfJzj09Bp9GXJckG6y2HCCJR77_K_mKWq0fR1EbFPGkDpe__j6jQ-H_S_CZz5g7Q48RjY3xSF-JBV3A3Y3xzujSdyWdIitzKo8ngsnUktmiCltIovS2kwPGZ-nympXGlvlsi45dGtEpckVM6XUqS5EaWuGlrPpTVhtFo1bBxTaamGFdkILSUxmOLatc0cqSsq5yyN42C2t-hSQO1Tn8dAkKz_JETz2i95T6KNDTnUrMvVutqWmebW1P3or1X4EGx1XqFbKj8ltImusoL5XETzoX5N8ctBFN47mmmmINRlm5280KXuWWZFGcCtwXN8hsnhJhWbDCJ54vvnzWNRo_No_3P530vtwYbIz3VbbL2av7sDFxNf64OzGDVhdHp24u2RxLc09L1g_AUDpJ7M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq48H4ECgwIIS5ZeRPnBSe03W157IKAiqpCsmzHy6GQrdqthDjxE7jy9_glzNhJ1CJAiFukjBM_ZsYznvE3APfLxLrCSBnXHDiUqStJ5qo6dlbaKnHGOl8_ZTrLt3fks91sdwUed3dhAj5Ef-DGkuH1NQv4QT0_IeTWLQbDhNy7M7Am8zRhlt58nZzI70jD1SKZxLkUsoUV4jSevumpzWiN5_Xz7yzN04ar33km5-F91-eQcLI_OF6agf3yC5zjfw7qApxrLVJ8EljoIqy45hKsT9uY-2X4Pg6Vcvi6YxMArnlhUTc1erTiVnuiR6rFxRz5NMGhp9foi5DjgjSTxYbTK_HIZ381j1Cj7asgYpswhtTv-sfXb3w07H8RPvMRa_fBI2RzUxziJ1JwV2BnMn472o7bgg6xlVmVx3PhRGrJCDGlTWRRWpvpIaPzVFntSmOrXNYlB26NqDQ5YqaUOtWFKG3NwHI2vQqrzaJx1wGFtlpYoZ3QQhKLGY5s69yRgpJy7vII7nUrqw4Cbofq_B2aZOUnOYIHfs17Cn24z4luRabezbbUNK-29kZvpNqLYKNjCtXK-BE5TWSLFdT3KoK7_WuSTg656MbRXDMN-YMMsvM3mpT9yqxII7gWGK7vENm7pECzYQQPPdv8eSxqNH7pH278O-kdWH-1OVEvns6e34SziS_0wamNG7C6PDx2t8jcWprbXqx-ArMxJmI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electroretinographical+and+histological+study+of+mouse+retina+after+optic+nerve+section%3A+a+comparison+between+wild%E2%80%90type+and+retinal+degeneration+1+mice&rft.jtitle=Clinical+%26+experimental+ophthalmology&rft.au=Germain%2C+Francisco&rft.au=Istillarte%2C+Mirna&rft.au=G%C3%B3mez%E2%80%90Vicente%2C+Violeta&rft.au=P%C3%A9rez%E2%80%90Rico%2C+Consuelo&rft.date=2013-08-01&rft.issn=1442-6404&rft.eissn=1442-9071&rft.volume=41&rft.issue=6&rft.spage=593&rft.epage=602&rft_id=info:doi/10.1111%2Fceo.12046&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ceo_12046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-6404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-6404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-6404&client=summon