Molecular underpinnings of methyl jasmonate‐induced resistance in Norway spruce
In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resi...
Saved in:
Published in | Plant, cell and environment Vol. 43; no. 8; pp. 1827 - 1843 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.08.2020
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm.
We explored the mechanisms underlying MeJA‐induced resistance in Norway spruce. We showed that a suite of spruce inducible defenses was primed following MeJA treatment and that they are part of a complex mixture of defense responses that underpins long‐lasting increased resistance. |
---|---|
AbstractList | In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree-killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA-induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA-treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long-lived gymnosperm. In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm. Abstract In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce ( Picea abies ) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm. We explored the mechanisms underlying MeJA‐induced resistance in Norway spruce. We showed that a suite of spruce inducible defenses was primed following MeJA treatment and that they are part of a complex mixture of defense responses that underpins long‐lasting increased resistance. In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm. We explored the mechanisms underlying MeJA‐induced resistance in Norway spruce. We showed that a suite of spruce inducible defenses was primed following MeJA treatment and that they are part of a complex mixture of defense responses that underpins long‐lasting increased resistance. |
Author | Vivian‐Smith, Adam Mageroy, Melissa H. Tengs, Torstein Fossdal, Carl Gunnar Wilkinson, Samuel W. Almvik, Marit Krokene, Paal Zhao, Tao Cross, Hugh Pétriacq, Pierre |
Author_xml | – sequence: 1 givenname: Melissa H. orcidid: 0000-0001-7801-1007 surname: Mageroy fullname: Mageroy, Melissa H. email: melissa.mageroy@nibio.no organization: Norwegian Institute of Bioeconomy Research – sequence: 2 givenname: Samuel W. surname: Wilkinson fullname: Wilkinson, Samuel W. organization: University of Sheffield – sequence: 3 givenname: Torstein surname: Tengs fullname: Tengs, Torstein organization: Norwegian University of Life Sciences – sequence: 4 givenname: Hugh surname: Cross fullname: Cross, Hugh organization: University of Otago – sequence: 5 givenname: Marit surname: Almvik fullname: Almvik, Marit organization: Norwegian Institute of Bioeconomy Research – sequence: 6 givenname: Pierre surname: Pétriacq fullname: Pétriacq, Pierre organization: UMR 1332 BFP, INRA, University of Bordeaux, MetaboHUB‐Bordeaux, MetaboHUB, PHENOME‐EMPHASIS – sequence: 7 givenname: Adam surname: Vivian‐Smith fullname: Vivian‐Smith, Adam organization: Norwegian Institute of Bioeconomy Research – sequence: 8 givenname: Tao surname: Zhao fullname: Zhao, Tao organization: Örebro University – sequence: 9 givenname: Carl Gunnar surname: Fossdal fullname: Fossdal, Carl Gunnar organization: Norwegian Institute of Bioeconomy Research – sequence: 10 givenname: Paal orcidid: 0000-0002-7205-0715 surname: Krokene fullname: Krokene, Paal email: paal.krokene@nibio.no organization: Norwegian Institute of Bioeconomy Research |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32323322$$D View this record in MEDLINE/PubMed https://hal.inrae.fr/hal-02749427$$DView record in HAL https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-81401$$DView record from Swedish Publication Index |
BookMark | eNp1kctKAzEUhoMoWi8LX0AGXAmOJpNM0yxLrReoN1C3IZM51ZRpMiYdS3c-gs_ok5g6XnBhDiGHk48Pkn8TrVpnAaFdgo9IXMe1hiNCOWcrqENoN08pZngVdTBhOOVckA20GcIE4zjgYh1t0CwWzbIOur10FeimUj5pbAm-NtYa-xgSN06mMHtaVMlEhamzagbvr2_Glo2GMvEQTJgpqyExNrlyfq4WSah9vNxGa2NVBdj5OrfQ_enwbnCejq7PLgb9UapZLlgKhJYZ6RZFqbHWgBkpGAeAnqCCKj3ukp4oWdEVuoexjj0WkPOcMUILxVlJt9Bh6w1zqJtC1t5MlV9Ip4w8MQ996fxj3I3sxV8gET9o8SdV_WHP-yO5nOGMM8Ey_rJk91u29u65gTCTE9d4G18jM5blLKcCi1-j9i4ED-MfLcFymYuMucjPXCK792VsiimUP-R3EBE4boG5qWDxv0neDIat8gNCm5lj |
CitedBy_id | crossref_primary_10_1007_s11240_022_02322_4 crossref_primary_10_1016_j_cois_2021_04_007 crossref_primary_10_3389_fpls_2022_824781 crossref_primary_10_1007_s00344_023_11183_w crossref_primary_10_1093_treephys_tpae056 crossref_primary_10_1016_j_chemosphere_2021_133501 crossref_primary_10_1007_s11103_022_01291_8 crossref_primary_10_1016_j_foreco_2024_121893 crossref_primary_10_3390_ijms241813813 crossref_primary_10_1007_s40725_023_00201_5 crossref_primary_10_1093_plphys_kiae051 crossref_primary_10_3389_fpls_2022_874434 crossref_primary_10_3389_fpls_2023_1165156 crossref_primary_10_1007_s00709_022_01789_4 crossref_primary_10_1002_ps_6370 crossref_primary_10_1016_j_aac_2023_11_002 crossref_primary_10_1016_j_plgene_2021_100301 crossref_primary_10_3390_molecules27206917 crossref_primary_10_3389_fpls_2021_678959 crossref_primary_10_1016_j_tplants_2021_01_001 crossref_primary_10_1016_j_phytochem_2022_113414 crossref_primary_10_1007_s10340_021_01341_y crossref_primary_10_3390_ijms232012173 crossref_primary_10_1002_pei3_10053 crossref_primary_10_1111_pce_14320 crossref_primary_10_1186_s12870_023_04391_9 crossref_primary_10_3389_fpls_2023_1155170 crossref_primary_10_1016_j_indcrop_2024_118039 |
Cites_doi | 10.3390/ijms19020629 10.1105/tpc.108.062158 10.1186/1471-2105-10-421 10.1007/s00442-006-0394-3 10.1016/S1360-1385(02)02244-6 10.1146/annurev-arplant-043014-114633 10.1111/j.2517-6161.1995.tb02031.x 10.1093/treephys/26.8.977 10.1104/pp.122.1.67 10.1007/s00425-012-1822-8 10.1146/annurev.phyto.44.070505.143425 10.1104/pp.103.037929 10.1016/j.pmpp.2007.09.002 10.1038/nature12211 10.1111/pce.13661 10.1111/j.1365-313X.2009.04020.x 10.1104/pp.107.112029 10.1111/ecog.02769 10.1080/21501203.2018.1473299 10.1146/annurev-phyto-082718-095959 10.1007/s00442-011-2017-x 10.2307/2446529 10.1111/mpp.12755 10.1007/s10886-006-9191-z 10.1104/pp.106.089425 10.1016/j.tplants.2011.06.004 10.1146/annurev-phyto-082712-102340 10.1111/nph.13557 10.1016/j.tplants.2016.07.009 10.1104/pp.19.00673 10.1093/nar/gky995 10.1074/jbc.M801760200 10.1016/j.pbi.2007.07.013 10.1201/b16589-5 10.1016/j.ygeno.2011.05.002 10.1038/embor.2010.186 10.1074/jbc.M109.061432 10.1038/nplants.2016.169 10.1093/bioinformatics/btp616 10.1038/s41580-018-0016-z 10.1111/nph.15984 10.2307/2656626 10.1142/9781848165632_0019 10.1111/j.1365-313X.2008.03540.x 10.1146/annurev-arplant-042916-041132 10.1104/pp.15.00551 10.1111/tpj.13252 10.1104/pp.011001 10.1016/j.agrformet.2017.04.004 10.1007/s00425-016-2484-8 10.1111/ppa.12725 10.3732/ajb.89.4.578 10.1146/annurev-phyto-080614-120132 10.1104/pp.17.00124 10.1016/B978-0-12-417156-5.00005-8 10.3389/fpls.2014.00295 10.36333/fs08 10.1111/j.1469-8137.2005.01436.x 10.1093/nar/gks042 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd. 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd. – notice: 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7ST C1K SOI 1XC AABEP ADTPV AOWAS D8T D91 ZZAVC |
DOI | 10.1111/pce.13774 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Hyper Article en Ligne (HAL) SWEPUB Örebro universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Örebro universitet SwePub Articles full text |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 1843 |
ExternalDocumentID | oai_DiVA_org_oru_81401 oai_HAL_hal_02749427v1 10_1111_pce_13774 32323322 PCE13774 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Norway |
GeographicLocations_xml | – name: Norway |
GrantInformation_xml | – fundername: The Research Council of Norway funderid: 249920; 249958/F20 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7ST C1K SOI 1XC AABEP ADTPV AOWAS D8T D91 ZZAVC |
ID | FETCH-LOGICAL-c4594-e13d216bbdc0cce041b47eee89393acf6189d4b69c800c89d09e5754413ba74d3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Tue Oct 01 22:39:32 EDT 2024 Tue Oct 15 15:56:44 EDT 2024 Thu Oct 10 18:35:49 EDT 2024 Thu Sep 26 17:56:57 EDT 2024 Sat Sep 28 08:46:01 EDT 2024 Sat Aug 24 01:06:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | gymnosperm induced resistance terpenes transcriptomics defense priming Picea abies epigenetics jasmonic acid arbre forestier |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4594-e13d216bbdc0cce041b47eee89393acf6189d4b69c800c89d09e5754413ba74d3 |
Notes | Funding information The Research Council of Norway, Grant/Award Numbers: 249920, 249958/F20 |
ORCID | 0000-0001-7801-1007 0000-0002-7205-0715 0000-0001-8151-7420 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13774 |
PMID | 32323322 |
PQID | 2425453909 |
PQPubID | 37957 |
PageCount | 17 |
ParticipantIDs | swepub_primary_oai_DiVA_org_oru_81401 hal_primary_oai_HAL_hal_02749427v1 proquest_journals_2425453909 crossref_primary_10_1111_pce_13774 pubmed_primary_32323322 wiley_primary_10_1111_pce_13774_PCE13774 |
PublicationCentury | 2000 |
PublicationDate | August 2020 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 40 2006; 32 2000; 87 2007; 143 2019; 57 2011; 98 2007; 70 2011; 12 2008; 146 1998; 85 2011; 16 2014; 66 2018; 9 2018; 176 2014; 5 2010; 26 2009; 10 2004; 135 2019; 20 2013; 237 2002; 89 2006; 26 2016; 113 2009; 284 2000; 122 2020; 43 2017; 242 2014; 52 2014; 12 2011; 167 2016; 88 2009; 23 2009; 21 2009; 60 1995; 57 2015; 53 2002; 7 2017; 68 2016; 243 2019; 224 2015; 208 2008; 55 2018; 67 2007; 10 2008; 283 2018; 19 2019; 181 2016; 2 2005; 167 2006; 44 2019; 47 2016; 21 2013; 497 2019 2002; 129 2016 2015 2006; 148 2016; 170 2012; 40 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 Ausin I. (e_1_2_10_3_1) 2016; 113 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 208 start-page: 1149 issue: 4 year: 2015 end-page: 1156 article-title: The plant genome integrative explorer resource: PlantGenIE.org publication-title: New Phytologist – start-page: 177 year: 2015 end-page: 207 – volume: 176 start-page: 2395 issue: 3 year: 2018 end-page: 2405 article-title: Sulforaphane modifies histone H3, unpacks chromatin, and primes defense publication-title: Plant Physiology – volume: 26 start-page: 977 issue: 8 year: 2006 end-page: 988 article-title: Methyl jasmonate treatment of mature Norway spruce ( ) trees increases the accumulation of terpenoid resin components and protects against infection by , a bark beetle‐associated fungus publication-title: Tree Physiology – volume: 60 start-page: 1015 issue: 6 year: 2009 end-page: 1030 article-title: Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi‐level study of methyl jasmonate‐treated Norway spruce ( ) publication-title: Plant Journal – volume: 53 start-page: 97 issue: 1 year: 2015 end-page: 119 article-title: Priming for enhanced defense publication-title: Annual Review of Phytopathology – volume: 16 start-page: 524 year: 2011 end-page: 531 article-title: Molecular aspects of defence priming publication-title: Trends in Plant Science – volume: 148 start-page: 426 year: 2006 end-page: 436 article-title: Exogenous application of methyl jasmonate elicits defenses in Norway spruce ( ) and reduces host colonization by the bark beetle publication-title: Oecologia – volume: 242 start-page: 85 year: 2017 end-page: 95 article-title: Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus – An infernal trio in Norway spruce forests of the central European high Tatra Mountains publication-title: Agricultural and Forest Meteorology – volume: 283 start-page: 16400 issue: 24 year: 2008 end-page: 16407 article-title: Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding publication-title: Journal of Biological Chemistry – volume: 21 start-page: 818 issue: 10 year: 2016 end-page: 822 article-title: Recognizing plant defense priming publication-title: Trends in Plant Science – volume: 70 start-page: 161 issue: 4–6 year: 2007 end-page: 173 article-title: Local and systemic stress responses in Norway spruce: Similarities in gene expression between a compatible pathogen interaction and drought stress publication-title: Physiological and Molecular Plant Pathology – volume: 40 start-page: 1426 issue: 12 year: 2017 end-page: 1435 article-title: Climate drivers of bark beetle outbreak dynamics in Norway spruce forests publication-title: Ecography – volume: 89 start-page: 578 issue: 4 year: 2002 end-page: 586 article-title: Application of methyl jasmonate on (Pinaceae) stems induces defense‐related responses in phloem and xylem publication-title: American Journal of Botany – volume: 44 start-page: 135 year: 2006 end-page: 162 article-title: Significance of inducible defense‐related proteins in infected plants publication-title: Annual Review of Phytopathology – volume: 55 start-page: 555 issue: 4 year: 2008 end-page: 567 article-title: Wounding of Arabidopsis leaves causes a powerful but transient protection against infection publication-title: The Plant Journal – volume: 7 start-page: 210 issue: 5 year: 2002 end-page: 216 article-title: Priming in plant‐pathogen interactions publication-title: Trends in Plant Science – volume: 237 start-page: 1037 issue: 4 year: 2013 end-page: 1045 article-title: The primary module in Norway spruce defence signalling against s.l. seems to be jasmonate‐mediated signalling without antagonism of salicylate‐mediated signalling publication-title: Planta – volume: 40 start-page: 4288 issue: 10 year: 2012 end-page: 4297 article-title: Differential expression analysis of multifactor RNA‐Seq experiments with respect to biological variation publication-title: Nucleic Acids Research – volume: 43 start-page: 420 issue: 2 year: 2020 end-page: 430 article-title: Priming of inducible defenses protects Norway spruce against tree‐killing bark beetles publication-title: Plant, Cell & Environment – volume: 12 start-page: 41 year: 2014 end-page: 74 – volume: 10 start-page: 645 issue: 6 year: 2007 end-page: 652 article-title: Histone modifications and dynamic regulation of genome accessibility in plants publication-title: Current Opinion in Plant Biology – volume: 113 start-page: 1 issue: 50 year: 2016 end-page: 8 article-title: DNA methylome of the 20‐gigabase Norway spruce genome publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 170 start-page: 2325 issue: 4 year: 2016 end-page: 2339 article-title: Spore density determines infection strategy by the plant pathogenic fungus publication-title: Plant Physiology – volume: 122 start-page: 67 issue: 1 year: 2000 end-page: 74 article-title: Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin‐like proteinase family from tomato plants publication-title: Plant Physiology – volume: 10 start-page: 421 issue: 1 year: 2009 article-title: BLAST+: Architecture and applications publication-title: BMC Bioinformatics – volume: 5 start-page: 295 year: 2014 article-title: Preparing to fight back: Generation and storage of priming compounds publication-title: Frontiers in Plant Science – year: 2019 – volume: 85 start-page: 601 issue: 5 year: 1998 end-page: 615 article-title: Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions publication-title: American Journal of Botany – volume: 284 start-page: 34506 issue: 50 year: 2009 end-page: 34513 article-title: Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis publication-title: Journal of Biological Chemistry – volume: 57 start-page: 289 year: 1995 article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society. Series B (Methodological) – volume: 26 start-page: 139 issue: 1 year: 2010 end-page: 140 article-title: edgeR: A bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 167 start-page: 353 issue: 2 year: 2005 end-page: 376 article-title: Anatomical and chemical defenses of conifer bark against bark beetles and other pests publication-title: New Phytologist – volume: 146 start-page: 839 issue: 3 year: 2008 end-page: 844 article-title: Cross talk in defense signaling publication-title: Plant Physiology – volume: 224 start-page: 1444 year: 2019 end-page: 1463 article-title: Oleoresin defenses in conifers: Chemical diversity, terpene synthases and limitations of oleoresin defense under climate change publication-title: New Phytologist – volume: 143 start-page: 410 issue: 1 year: 2007 end-page: 424 article-title: Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene‐dependent induced conifer defense. Full‐length cDNA cloning of a multigene family, differential constitutive, and wound‐ and insect‐induced expression, and cellular and subcellular publication-title: Plant Physiology – volume: 19 start-page: 489 year: 2018 end-page: 506 article-title: Dynamics and function of DNA methylation in plants publication-title: Nature Reviews Molecular Cell Biology – volume: 12 start-page: 50 issue: 1 year: 2011 end-page: 55 article-title: Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response publication-title: EMBO Reports – volume: 57 start-page: 505 year: 2019 end-page: 529 article-title: Surviving in a hostile world: Plant strategies to resist pests and diseases publication-title: Annual Review of Phytopathology – volume: 20 start-page: 309 issue: 3 year: 2019 end-page: 322 article-title: The cotton laccase gene GhLAC15 enhances wilt resistance via an increase in defence‐induced lignification and lignin components in the cell walls of plants publication-title: Molecular Plant Pathology – volume: 167 start-page: 691 year: 2011 end-page: 699 article-title: Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle, publication-title: Oecologia – volume: 135 start-page: 2134 issue: 4 year: 2004 end-page: 2149 article-title: Methyl Jasmonate‐induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation publication-title: Plant Physiology – volume: 98 start-page: 128 issue: 2 year: 2011 end-page: 136 article-title: Origin and evolutionary analysis of the plant‐specific TIFY transcription factor family publication-title: Genomics – year: 2016 – volume: 23 start-page: 205 issue: 1 year: 2009 end-page: 211 article-title: A new generation of homology search tools based on probabilistic inference publication-title: Genome Informatics. International Conference on Genome Informatics – volume: 19 start-page: 1 issue: 2 year: 2018 end-page: 26 article-title: Indispensable role of proteases in plant innate immunity publication-title: International Journal of Molecular Sciences – volume: 129 start-page: 1003 issue: 3 year: 2002 end-page: 1018 article-title: Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems publication-title: Plant Physiology – volume: 243 start-page: 1237 issue: 5 year: 2016 end-page: 1249 article-title: Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce publication-title: Planta – volume: 87 start-page: 302 issue: 3 year: 2000 end-page: 313 article-title: Wound‐induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits publication-title: American Journal of Botany – volume: 2 issue: 11 year: 2016 article-title: The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications publication-title: Nature Plants – volume: 497 start-page: 579 issue: 7451 year: 2013 end-page: 584 article-title: The Norway spruce genome sequence and conifer genome evolution publication-title: Nature – volume: 47 start-page: D427 issue: D1 year: 2019 end-page: D432 article-title: The Pfam protein families database in 2019 publication-title: Nucleic Acids Research – volume: 21 start-page: 944 issue: March year: 2009 end-page: 953 article-title: Mitogen‐activated protein kinases 3 and 6 are required for full priming of stress responses in publication-title: The Plant Cell – volume: 67 start-page: 30 issue: 1 year: 2018 end-page: 41 article-title: Long‐lasting β‐aminobutyric acid‐induced resistance protects tomato fruit against publication-title: Plant Pathology – volume: 68 start-page: 485 issue: 1 year: 2017 end-page: 512 article-title: Defense priming: An adaptive part of induced resistance publication-title: Annual Review of Plant Biology – volume: 9 start-page: 189 issue: 3 year: 2018 end-page: 201 article-title: Chitin and chitin‐related compounds in plant–fungal interactions publication-title: Mycology – volume: 32 start-page: 2679 year: 2006 end-page: 2685 article-title: Rapid analysis of Abietanes in conifers publication-title: Journal of Chemical Ecology – volume: 88 start-page: 361 issue: 3 year: 2016 end-page: 374 article-title: The role of DNA (de)methylation in immune responsiveness of Arabidopsis publication-title: Plant Journal – volume: 66 start-page: 243 issue: 1 year: 2014 end-page: 267 article-title: RNA‐directed DNA methylation: The evolution of a complex epigenetic pathway in flowering plants publication-title: Annual Review of Plant Biology – volume: 52 start-page: 347 issue: 1 year: 2014 end-page: 375 article-title: Induced systemic resistance by beneficial microbes publication-title: Annual Review of Phytopathology – volume: 181 start-page: 817 issue: 2 year: 2019 end-page: 833 article-title: Isolation of open chromatin identifies regulators of systemic acquired resistance publication-title: Plant Physiology – ident: e_1_2_10_5_1 doi: 10.3390/ijms19020629 – ident: e_1_2_10_7_1 doi: 10.1105/tpc.108.062158 – ident: e_1_2_10_9_1 doi: 10.1186/1471-2105-10-421 – ident: e_1_2_10_18_1 doi: 10.1007/s00442-006-0394-3 – ident: e_1_2_10_14_1 doi: 10.1016/S1360-1385(02)02244-6 – ident: e_1_2_10_38_1 doi: 10.1146/annurev-arplant-043014-114633 – ident: e_1_2_10_8_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_10_58_1 doi: 10.1093/treephys/26.8.977 – ident: e_1_2_10_28_1 doi: 10.1104/pp.122.1.67 – ident: e_1_2_10_2_1 doi: 10.1007/s00425-012-1822-8 – ident: e_1_2_10_54_1 doi: 10.1146/annurev.phyto.44.070505.143425 – ident: e_1_2_10_26_1 doi: 10.1104/pp.103.037929 – ident: e_1_2_10_19_1 doi: 10.1016/j.pmpp.2007.09.002 – ident: e_1_2_10_43_1 doi: 10.1038/nature12211 – ident: e_1_2_10_34_1 doi: 10.1111/pce.13661 – ident: e_1_2_10_62_1 doi: 10.1111/j.1365-313X.2009.04020.x – ident: e_1_2_10_30_1 doi: 10.1104/pp.107.112029 – ident: e_1_2_10_35_1 doi: 10.1111/ecog.02769 – ident: e_1_2_10_48_1 doi: 10.1080/21501203.2018.1473299 – ident: e_1_2_10_56_1 doi: 10.1146/annurev-phyto-082718-095959 – ident: e_1_2_10_61_1 doi: 10.1007/s00442-011-2017-x – ident: e_1_2_10_20_1 doi: 10.2307/2446529 – ident: e_1_2_10_60_1 doi: 10.1111/mpp.12755 – ident: e_1_2_10_29_1 doi: 10.1007/s10886-006-9191-z – ident: e_1_2_10_49_1 doi: 10.1104/pp.106.089425 – ident: e_1_2_10_12_1 doi: 10.1016/j.tplants.2011.06.004 – ident: e_1_2_10_15_1 – ident: e_1_2_10_47_1 doi: 10.1146/annurev-phyto-082712-102340 – ident: e_1_2_10_52_1 doi: 10.1111/nph.13557 – ident: e_1_2_10_37_1 doi: 10.1016/j.tplants.2016.07.009 – ident: e_1_2_10_6_1 doi: 10.1104/pp.19.00673 – ident: e_1_2_10_17_1 doi: 10.1093/nar/gky995 – volume: 113 start-page: 1 issue: 50 year: 2016 ident: e_1_2_10_3_1 article-title: DNA methylome of the 20‐gigabase Norway spruce genome publication-title: Proceedings of the National Academy of Sciences of the United States of America contributor: fullname: Ausin I. – ident: e_1_2_10_24_1 doi: 10.1074/jbc.M801760200 – ident: e_1_2_10_46_1 doi: 10.1016/j.pbi.2007.07.013 – ident: e_1_2_10_32_1 doi: 10.1201/b16589-5 – ident: e_1_2_10_4_1 doi: 10.1016/j.ygeno.2011.05.002 – ident: e_1_2_10_27_1 doi: 10.1038/embor.2010.186 – ident: e_1_2_10_23_1 doi: 10.1074/jbc.M109.061432 – ident: e_1_2_10_53_1 doi: 10.1038/nplants.2016.169 – ident: e_1_2_10_50_1 doi: 10.1093/bioinformatics/btp616 – ident: e_1_2_10_59_1 doi: 10.1038/s41580-018-0016-z – ident: e_1_2_10_10_1 doi: 10.1111/nph.15984 – ident: e_1_2_10_42_1 doi: 10.2307/2656626 – ident: e_1_2_10_16_1 doi: 10.1142/9781848165632_0019 – ident: e_1_2_10_11_1 doi: 10.1111/j.1365-313X.2008.03540.x – ident: e_1_2_10_39_1 doi: 10.1146/annurev-arplant-042916-041132 – ident: e_1_2_10_45_1 doi: 10.1104/pp.15.00551 – ident: e_1_2_10_33_1 doi: 10.1111/tpj.13252 – ident: e_1_2_10_36_1 doi: 10.1104/pp.011001 – ident: e_1_2_10_41_1 doi: 10.1016/j.agrformet.2017.04.004 – ident: e_1_2_10_57_1 doi: 10.1007/s00425-016-2484-8 – ident: e_1_2_10_55_1 doi: 10.1111/ppa.12725 – ident: e_1_2_10_21_1 doi: 10.3732/ajb.89.4.578 – ident: e_1_2_10_13_1 doi: 10.1146/annurev-phyto-080614-120132 – ident: e_1_2_10_51_1 doi: 10.1104/pp.17.00124 – ident: e_1_2_10_31_1 doi: 10.1016/B978-0-12-417156-5.00005-8 – ident: e_1_2_10_44_1 doi: 10.3389/fpls.2014.00295 – ident: e_1_2_10_25_1 doi: 10.36333/fs08 – ident: e_1_2_10_22_1 doi: 10.1111/j.1469-8137.2005.01436.x – ident: e_1_2_10_40_1 doi: 10.1093/nar/gks042 |
SSID | ssj0001479 |
Score | 2.528072 |
Snippet | In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to... Abstract In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly... |
SourceID | swepub hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1827 |
SubjectTerms | Acetates - pharmacology Animals Bark Beetles Biosynthesis Chemical defense Coleoptera - microbiology Colonization Cyclopentanes - metabolism Cyclopentanes - pharmacology defense priming Diterpenes DNA Methylation - drug effects epigenetics Gene expression Gene Expression Regulation, Plant - drug effects gymnosperm Histones - metabolism Immune response induced resistance jasmonic acid Life Sciences Metabolites Methyl jasmonate Monoterpenes Monoterpenes - metabolism Oxylipins - metabolism Oxylipins - pharmacology Pest resistance Pests Phenotype Phytopathogenic fungi Picea - drug effects Picea - physiology Picea abies Pine trees Plant Bark - drug effects Plant Bark - genetics Plant Growth Regulators - metabolism Plant Proteins - genetics Plant Proteins - metabolism Priming Spraying terpenes Transcription transcriptomics Trees Vegetal Biology Wounding |
Title | Molecular underpinnings of methyl jasmonate‐induced resistance in Norway spruce |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13774 https://www.ncbi.nlm.nih.gov/pubmed/32323322 https://www.proquest.com/docview/2425453909 https://hal.inrae.fr/hal-02749427 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-81401 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7trkDiwmN5FZaVhUDikiqOJ8lanMo-VCF2tSAW7QHJsh0XyqOpmhZUTvwEfiO_hJmkCRSEhDhEiRIndjwz9jfW-BuABz5WSciSItJhpCJEpyONUkY-iW2aq2IkA28UPj7Jhmf49Dw934DH7V6Yhh-iW3Bjy6jHazZw66pfjHzqQ5_p8pgLlM4cznXw4id1lMSGZ4_DF_NcyxWrEEfxdG-uzUWbbzkS8k-Y2XGIrsPXev45ugKv25Y3YSfv-4u56_svv5E6_uevXYXLK1wqBo0iXYONMNmGi02myuU2XHhSEopcXofnx20-XcHbz2bTcZ3zqBLlSHA26uUH8c5WH3lNPnz_-o08ftKdQpBTz0CVNEyMJ-KknH22S1FNWbFuwNnR4cv9YbRKyxB5TDVGQaoikZlzhY-9DzFKh3kIgZCPVtaPMrmnC3SZ9gRGPV3HOqTMsyeVszkW6iZsTcpJuA0CraKBOrF7CnO0PnWhsDlhDJd6ApqY9uB-KyAzbdg3TOu1UCeZupOoEImue8582cPBM8P32OfWmOSfZA92WsmalZVWht0tTJWOdQ9uNdLuPqMIaioa7XrwsBH_WgUH41cDU87e0LEwTBpGFTyqRfr3dprT_cP64s6_F70LlxJ28OuIwx3Yms8W4R6hoLnbhc0ET3drpf8Br_MCkA |
link.rule.ids | 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tA8Re0BhfhQ0sBBIvQXF8SWaJl7IPFWirIW1ob5btuNBpNFW7DfWNP4G_kb-Eu6SJqBASD5GsxImjO9_5d9b5dwAvfaySkCVFpMNIRYhORxqljHwS2zRXxUgGPig8GGa9M_xwnp6vwdvmLEzND9FuuLFlVP6aDZw3pP-w8qkPb5gvD9dhEzOaiMzrjCetH5ZYM-1xAmOea7nkFeI8nvbVldVo_SvnQv4NNFsW0VUAW61Ax9twdwkdRbfW9T1YC5MduF0Xk1zswK13JQG9xX34NGhK3go-ITabjquyRHNRjgQXjF5cigs7_8bb5uHXj58UlJN6C0FxN2NJmgRiPBHDcvbdLsR8yrp_AGfHR6cHvWhZOSHymGqMglRFIjPnCh97H2KUDvMQAoETrawfZXJfF-gy7QkvemrHOqRMhSeVszkW6iFsTMpJeAwCrSJfmth9hTlan7pQ2JxggEs9YUFMO_CikaCZ1gQZpgksSMymEjN1Itm2z5nSutftG77HYbHGJL-RHdhtRG-WhjQ3HBFhqnSsO_CoVkf7GUVoUJFD6sCrWj8rAxyOP3dNOftC17VhXi8a4HWlvn__pzk5OKoaT_6_63O40zsd9E3__fDjU9hKOB6vEgR3YeNqdh32CLRcuWfV3PwN5JTlGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615SEuPAqUhQIWAolLVnHsJLU4LW1XC7SrgijqoZIVP0KXxybaB2g58RP4jfwSZpJNYEFIiEMkK3FixzNjf2ONvwF4aEMR-SRygfK5CKQ0KlCS88BGYRanwuXc00Hhw2EyOJbPT-KTNXjSnIWp-SHaDTeyjGq-JgMvXf6LkZfWd4kuT67DOZkg8iVE9OondxSXNdEexS-mqeJLWiEK42lfXVmM1s8oFPJPnNmSiK7i12oB6l-B06brddzJ--58Zrr2y2-sjv_5b1fh8hKYsl6tSddgzY834UKdqnKxCeefFggjF9fh5WGTUJfR-bNJOaqSHk1ZkTNKR734wN5l04-0Ke-_f_2GLj8qj2Po1RNSRRVjozEbFpPP2YJNS9KsG3Dc33-9OwiWeRkCK2MlA8-Fi3hijLOhtT6U3MjUe4_QR4nM5gnfUU6aRFlEoxbLofIxEe1xYbJUOnETNsbF2N8CJjOBM3WU7QiZyszGxrssRZBhYotIU8YdeNAISJc1_YZu3BYcJF0NElZC0bXPiTB70DvQdI-cbiWj9BPvwHYjWb0006kmf0vGQoWqA1u1tNvPCMSaAqe7Djyqxb_SwN7oTU8Xk7d4zTWxhmEDjyuR_r2f-mh3vyrc_veq9-Hi0V5fHzwbvrgDlyJy9qvow23YmE3m_i4iopm5V2n-D5pHBIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+underpinnings+of+methyl+jasmonate-induced+resistance+in+Norway+spruce&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Mageroy%2C+Melissa+H&rft.au=Wilkinson%2C+Samuel+W&rft.au=Tengs%2C+Torstein&rft.au=Cross%2C+Hugh&rft.date=2020-08-01&rft.eissn=1365-3040&rft.volume=43&rft.issue=8&rft.spage=1827&rft_id=info:doi/10.1111%2Fpce.13774&rft_id=info%3Apmid%2F32323322&rft.externalDocID=32323322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |