Molecular underpinnings of methyl jasmonate‐induced resistance in Norway spruce

In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resi...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 43; no. 8; pp. 1827 - 1843
Main Authors Mageroy, Melissa H., Wilkinson, Samuel W., Tengs, Torstein, Cross, Hugh, Almvik, Marit, Pétriacq, Pierre, Vivian‐Smith, Adam, Zhao, Tao, Fossdal, Carl Gunnar, Krokene, Paal
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.08.2020
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm. We explored the mechanisms underlying MeJA‐induced resistance in Norway spruce. We showed that a suite of spruce inducible defenses was primed following MeJA treatment and that they are part of a complex mixture of defense responses that underpins long‐lasting increased resistance.
AbstractList In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree-killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA-induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA-treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long-lived gymnosperm. 
In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm.
Abstract In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce ( Picea abies ) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm. We explored the mechanisms underlying MeJA‐induced resistance in Norway spruce. We showed that a suite of spruce inducible defenses was primed following MeJA treatment and that they are part of a complex mixture of defense responses that underpins long‐lasting increased resistance.
In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree‐killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA‐induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA‐treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long‐lived gymnosperm. We explored the mechanisms underlying MeJA‐induced resistance in Norway spruce. We showed that a suite of spruce inducible defenses was primed following MeJA treatment and that they are part of a complex mixture of defense responses that underpins long‐lasting increased resistance.
Author Vivian‐Smith, Adam
Mageroy, Melissa H.
Tengs, Torstein
Fossdal, Carl Gunnar
Wilkinson, Samuel W.
Almvik, Marit
Krokene, Paal
Zhao, Tao
Cross, Hugh
Pétriacq, Pierre
Author_xml – sequence: 1
  givenname: Melissa H.
  orcidid: 0000-0001-7801-1007
  surname: Mageroy
  fullname: Mageroy, Melissa H.
  email: melissa.mageroy@nibio.no
  organization: Norwegian Institute of Bioeconomy Research
– sequence: 2
  givenname: Samuel W.
  surname: Wilkinson
  fullname: Wilkinson, Samuel W.
  organization: University of Sheffield
– sequence: 3
  givenname: Torstein
  surname: Tengs
  fullname: Tengs, Torstein
  organization: Norwegian University of Life Sciences
– sequence: 4
  givenname: Hugh
  surname: Cross
  fullname: Cross, Hugh
  organization: University of Otago
– sequence: 5
  givenname: Marit
  surname: Almvik
  fullname: Almvik, Marit
  organization: Norwegian Institute of Bioeconomy Research
– sequence: 6
  givenname: Pierre
  surname: Pétriacq
  fullname: Pétriacq, Pierre
  organization: UMR 1332 BFP, INRA, University of Bordeaux, MetaboHUB‐Bordeaux, MetaboHUB, PHENOME‐EMPHASIS
– sequence: 7
  givenname: Adam
  surname: Vivian‐Smith
  fullname: Vivian‐Smith, Adam
  organization: Norwegian Institute of Bioeconomy Research
– sequence: 8
  givenname: Tao
  surname: Zhao
  fullname: Zhao, Tao
  organization: Örebro University
– sequence: 9
  givenname: Carl Gunnar
  surname: Fossdal
  fullname: Fossdal, Carl Gunnar
  organization: Norwegian Institute of Bioeconomy Research
– sequence: 10
  givenname: Paal
  orcidid: 0000-0002-7205-0715
  surname: Krokene
  fullname: Krokene, Paal
  email: paal.krokene@nibio.no
  organization: Norwegian Institute of Bioeconomy Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32323322$$D View this record in MEDLINE/PubMed
https://hal.inrae.fr/hal-02749427$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-81401$$DView record from Swedish Publication Index
BookMark eNp1kctKAzEUhoMoWi8LX0AGXAmOJpNM0yxLrReoN1C3IZM51ZRpMiYdS3c-gs_ok5g6XnBhDiGHk48Pkn8TrVpnAaFdgo9IXMe1hiNCOWcrqENoN08pZngVdTBhOOVckA20GcIE4zjgYh1t0CwWzbIOur10FeimUj5pbAm-NtYa-xgSN06mMHtaVMlEhamzagbvr2_Glo2GMvEQTJgpqyExNrlyfq4WSah9vNxGa2NVBdj5OrfQ_enwbnCejq7PLgb9UapZLlgKhJYZ6RZFqbHWgBkpGAeAnqCCKj3ukp4oWdEVuoexjj0WkPOcMUILxVlJt9Bh6w1zqJtC1t5MlV9Ip4w8MQ996fxj3I3sxV8gET9o8SdV_WHP-yO5nOGMM8Ey_rJk91u29u65gTCTE9d4G18jM5blLKcCi1-j9i4ED-MfLcFymYuMucjPXCK792VsiimUP-R3EBE4boG5qWDxv0neDIat8gNCm5lj
CitedBy_id crossref_primary_10_1007_s11240_022_02322_4
crossref_primary_10_1016_j_cois_2021_04_007
crossref_primary_10_3389_fpls_2022_824781
crossref_primary_10_1007_s00344_023_11183_w
crossref_primary_10_1093_treephys_tpae056
crossref_primary_10_1016_j_chemosphere_2021_133501
crossref_primary_10_1007_s11103_022_01291_8
crossref_primary_10_1016_j_foreco_2024_121893
crossref_primary_10_3390_ijms241813813
crossref_primary_10_1007_s40725_023_00201_5
crossref_primary_10_1093_plphys_kiae051
crossref_primary_10_3389_fpls_2022_874434
crossref_primary_10_3389_fpls_2023_1165156
crossref_primary_10_1007_s00709_022_01789_4
crossref_primary_10_1002_ps_6370
crossref_primary_10_1016_j_aac_2023_11_002
crossref_primary_10_1016_j_plgene_2021_100301
crossref_primary_10_3390_molecules27206917
crossref_primary_10_3389_fpls_2021_678959
crossref_primary_10_1016_j_tplants_2021_01_001
crossref_primary_10_1016_j_phytochem_2022_113414
crossref_primary_10_1007_s10340_021_01341_y
crossref_primary_10_3390_ijms232012173
crossref_primary_10_1002_pei3_10053
crossref_primary_10_1111_pce_14320
crossref_primary_10_1186_s12870_023_04391_9
crossref_primary_10_3389_fpls_2023_1155170
crossref_primary_10_1016_j_indcrop_2024_118039
Cites_doi 10.3390/ijms19020629
10.1105/tpc.108.062158
10.1186/1471-2105-10-421
10.1007/s00442-006-0394-3
10.1016/S1360-1385(02)02244-6
10.1146/annurev-arplant-043014-114633
10.1111/j.2517-6161.1995.tb02031.x
10.1093/treephys/26.8.977
10.1104/pp.122.1.67
10.1007/s00425-012-1822-8
10.1146/annurev.phyto.44.070505.143425
10.1104/pp.103.037929
10.1016/j.pmpp.2007.09.002
10.1038/nature12211
10.1111/pce.13661
10.1111/j.1365-313X.2009.04020.x
10.1104/pp.107.112029
10.1111/ecog.02769
10.1080/21501203.2018.1473299
10.1146/annurev-phyto-082718-095959
10.1007/s00442-011-2017-x
10.2307/2446529
10.1111/mpp.12755
10.1007/s10886-006-9191-z
10.1104/pp.106.089425
10.1016/j.tplants.2011.06.004
10.1146/annurev-phyto-082712-102340
10.1111/nph.13557
10.1016/j.tplants.2016.07.009
10.1104/pp.19.00673
10.1093/nar/gky995
10.1074/jbc.M801760200
10.1016/j.pbi.2007.07.013
10.1201/b16589-5
10.1016/j.ygeno.2011.05.002
10.1038/embor.2010.186
10.1074/jbc.M109.061432
10.1038/nplants.2016.169
10.1093/bioinformatics/btp616
10.1038/s41580-018-0016-z
10.1111/nph.15984
10.2307/2656626
10.1142/9781848165632_0019
10.1111/j.1365-313X.2008.03540.x
10.1146/annurev-arplant-042916-041132
10.1104/pp.15.00551
10.1111/tpj.13252
10.1104/pp.011001
10.1016/j.agrformet.2017.04.004
10.1007/s00425-016-2484-8
10.1111/ppa.12725
10.3732/ajb.89.4.578
10.1146/annurev-phyto-080614-120132
10.1104/pp.17.00124
10.1016/B978-0-12-417156-5.00005-8
10.3389/fpls.2014.00295
10.36333/fs08
10.1111/j.1469-8137.2005.01436.x
10.1093/nar/gks042
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd.
2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd.
– notice: 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
1XC
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
DOI 10.1111/pce.13774
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Free Archive
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Hyper Article en Ligne (HAL)
SWEPUB Örebro universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Örebro universitet
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Calcium & Calcified Tissue Abstracts
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 1843
ExternalDocumentID oai_DiVA_org_oru_81401
oai_HAL_hal_02749427v1
10_1111_pce_13774
32323322
PCE13774
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Norway
GeographicLocations_xml – name: Norway
GrantInformation_xml – fundername: The Research Council of Norway
  funderid: 249920; 249958/F20
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
1XC
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
ID FETCH-LOGICAL-c4594-e13d216bbdc0cce041b47eee89393acf6189d4b69c800c89d09e5754413ba74d3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Tue Oct 01 22:39:32 EDT 2024
Tue Oct 15 15:56:44 EDT 2024
Thu Oct 10 18:35:49 EDT 2024
Thu Sep 26 17:56:57 EDT 2024
Sat Sep 28 08:46:01 EDT 2024
Sat Aug 24 01:06:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords gymnosperm
induced resistance
terpenes
transcriptomics
defense priming
Picea abies
epigenetics
jasmonic acid
arbre forestier
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4594-e13d216bbdc0cce041b47eee89393acf6189d4b69c800c89d09e5754413ba74d3
Notes Funding information
The Research Council of Norway, Grant/Award Numbers: 249920, 249958/F20
ORCID 0000-0001-7801-1007
0000-0002-7205-0715
0000-0001-8151-7420
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13774
PMID 32323322
PQID 2425453909
PQPubID 37957
PageCount 17
ParticipantIDs swepub_primary_oai_DiVA_org_oru_81401
hal_primary_oai_HAL_hal_02749427v1
proquest_journals_2425453909
crossref_primary_10_1111_pce_13774
pubmed_primary_32323322
wiley_primary_10_1111_pce_13774_PCE13774
PublicationCentury 2000
PublicationDate August 2020
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: United States
– name: Oxford
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2020
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 40
2006; 32
2000; 87
2007; 143
2019; 57
2011; 98
2007; 70
2011; 12
2008; 146
1998; 85
2011; 16
2014; 66
2018; 9
2018; 176
2014; 5
2010; 26
2009; 10
2004; 135
2019; 20
2013; 237
2002; 89
2006; 26
2016; 113
2009; 284
2000; 122
2020; 43
2017; 242
2014; 52
2014; 12
2011; 167
2016; 88
2009; 23
2009; 21
2009; 60
1995; 57
2015; 53
2002; 7
2017; 68
2016; 243
2019; 224
2015; 208
2008; 55
2018; 67
2007; 10
2008; 283
2018; 19
2019; 181
2016; 2
2005; 167
2006; 44
2019; 47
2016; 21
2013; 497
2019
2002; 129
2016
2015
2006; 148
2016; 170
2012; 40
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
Ausin I. (e_1_2_10_3_1) 2016; 113
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 208
  start-page: 1149
  issue: 4
  year: 2015
  end-page: 1156
  article-title: The plant genome integrative explorer resource: PlantGenIE.org
  publication-title: New Phytologist
– start-page: 177
  year: 2015
  end-page: 207
– volume: 176
  start-page: 2395
  issue: 3
  year: 2018
  end-page: 2405
  article-title: Sulforaphane modifies histone H3, unpacks chromatin, and primes defense
  publication-title: Plant Physiology
– volume: 26
  start-page: 977
  issue: 8
  year: 2006
  end-page: 988
  article-title: Methyl jasmonate treatment of mature Norway spruce ( ) trees increases the accumulation of terpenoid resin components and protects against infection by , a bark beetle‐associated fungus
  publication-title: Tree Physiology
– volume: 60
  start-page: 1015
  issue: 6
  year: 2009
  end-page: 1030
  article-title: Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multi‐level study of methyl jasmonate‐treated Norway spruce ( )
  publication-title: Plant Journal
– volume: 53
  start-page: 97
  issue: 1
  year: 2015
  end-page: 119
  article-title: Priming for enhanced defense
  publication-title: Annual Review of Phytopathology
– volume: 16
  start-page: 524
  year: 2011
  end-page: 531
  article-title: Molecular aspects of defence priming
  publication-title: Trends in Plant Science
– volume: 148
  start-page: 426
  year: 2006
  end-page: 436
  article-title: Exogenous application of methyl jasmonate elicits defenses in Norway spruce ( ) and reduces host colonization by the bark beetle
  publication-title: Oecologia
– volume: 242
  start-page: 85
  year: 2017
  end-page: 95
  article-title: Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus – An infernal trio in Norway spruce forests of the central European high Tatra Mountains
  publication-title: Agricultural and Forest Meteorology
– volume: 283
  start-page: 16400
  issue: 24
  year: 2008
  end-page: 16407
  article-title: Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding
  publication-title: Journal of Biological Chemistry
– volume: 21
  start-page: 818
  issue: 10
  year: 2016
  end-page: 822
  article-title: Recognizing plant defense priming
  publication-title: Trends in Plant Science
– volume: 70
  start-page: 161
  issue: 4–6
  year: 2007
  end-page: 173
  article-title: Local and systemic stress responses in Norway spruce: Similarities in gene expression between a compatible pathogen interaction and drought stress
  publication-title: Physiological and Molecular Plant Pathology
– volume: 40
  start-page: 1426
  issue: 12
  year: 2017
  end-page: 1435
  article-title: Climate drivers of bark beetle outbreak dynamics in Norway spruce forests
  publication-title: Ecography
– volume: 89
  start-page: 578
  issue: 4
  year: 2002
  end-page: 586
  article-title: Application of methyl jasmonate on (Pinaceae) stems induces defense‐related responses in phloem and xylem
  publication-title: American Journal of Botany
– volume: 44
  start-page: 135
  year: 2006
  end-page: 162
  article-title: Significance of inducible defense‐related proteins in infected plants
  publication-title: Annual Review of Phytopathology
– volume: 55
  start-page: 555
  issue: 4
  year: 2008
  end-page: 567
  article-title: Wounding of Arabidopsis leaves causes a powerful but transient protection against infection
  publication-title: The Plant Journal
– volume: 7
  start-page: 210
  issue: 5
  year: 2002
  end-page: 216
  article-title: Priming in plant‐pathogen interactions
  publication-title: Trends in Plant Science
– volume: 237
  start-page: 1037
  issue: 4
  year: 2013
  end-page: 1045
  article-title: The primary module in Norway spruce defence signalling against s.l. seems to be jasmonate‐mediated signalling without antagonism of salicylate‐mediated signalling
  publication-title: Planta
– volume: 40
  start-page: 4288
  issue: 10
  year: 2012
  end-page: 4297
  article-title: Differential expression analysis of multifactor RNA‐Seq experiments with respect to biological variation
  publication-title: Nucleic Acids Research
– volume: 43
  start-page: 420
  issue: 2
  year: 2020
  end-page: 430
  article-title: Priming of inducible defenses protects Norway spruce against tree‐killing bark beetles
  publication-title: Plant, Cell & Environment
– volume: 12
  start-page: 41
  year: 2014
  end-page: 74
– volume: 10
  start-page: 645
  issue: 6
  year: 2007
  end-page: 652
  article-title: Histone modifications and dynamic regulation of genome accessibility in plants
  publication-title: Current Opinion in Plant Biology
– volume: 113
  start-page: 1
  issue: 50
  year: 2016
  end-page: 8
  article-title: DNA methylome of the 20‐gigabase Norway spruce genome
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 170
  start-page: 2325
  issue: 4
  year: 2016
  end-page: 2339
  article-title: Spore density determines infection strategy by the plant pathogenic fungus
  publication-title: Plant Physiology
– volume: 122
  start-page: 67
  issue: 1
  year: 2000
  end-page: 74
  article-title: Characterization of P69E and P69F, two differentially regulated genes encoding new members of the subtilisin‐like proteinase family from tomato plants
  publication-title: Plant Physiology
– volume: 10
  start-page: 421
  issue: 1
  year: 2009
  article-title: BLAST+: Architecture and applications
  publication-title: BMC Bioinformatics
– volume: 5
  start-page: 295
  year: 2014
  article-title: Preparing to fight back: Generation and storage of priming compounds
  publication-title: Frontiers in Plant Science
– year: 2019
– volume: 85
  start-page: 601
  issue: 5
  year: 1998
  end-page: 615
  article-title: Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions
  publication-title: American Journal of Botany
– volume: 284
  start-page: 34506
  issue: 50
  year: 2009
  end-page: 34513
  article-title: Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis
  publication-title: Journal of Biological Chemistry
– volume: 57
  start-page: 289
  year: 1995
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– volume: 26
  start-page: 139
  issue: 1
  year: 2010
  end-page: 140
  article-title: edgeR: A bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 167
  start-page: 353
  issue: 2
  year: 2005
  end-page: 376
  article-title: Anatomical and chemical defenses of conifer bark against bark beetles and other pests
  publication-title: New Phytologist
– volume: 146
  start-page: 839
  issue: 3
  year: 2008
  end-page: 844
  article-title: Cross talk in defense signaling
  publication-title: Plant Physiology
– volume: 224
  start-page: 1444
  year: 2019
  end-page: 1463
  article-title: Oleoresin defenses in conifers: Chemical diversity, terpene synthases and limitations of oleoresin defense under climate change
  publication-title: New Phytologist
– volume: 143
  start-page: 410
  issue: 1
  year: 2007
  end-page: 424
  article-title: Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene‐dependent induced conifer defense. Full‐length cDNA cloning of a multigene family, differential constitutive, and wound‐ and insect‐induced expression, and cellular and subcellular
  publication-title: Plant Physiology
– volume: 19
  start-page: 489
  year: 2018
  end-page: 506
  article-title: Dynamics and function of DNA methylation in plants
  publication-title: Nature Reviews Molecular Cell Biology
– volume: 12
  start-page: 50
  issue: 1
  year: 2011
  end-page: 55
  article-title: Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response
  publication-title: EMBO Reports
– volume: 57
  start-page: 505
  year: 2019
  end-page: 529
  article-title: Surviving in a hostile world: Plant strategies to resist pests and diseases
  publication-title: Annual Review of Phytopathology
– volume: 20
  start-page: 309
  issue: 3
  year: 2019
  end-page: 322
  article-title: The cotton laccase gene GhLAC15 enhances wilt resistance via an increase in defence‐induced lignification and lignin components in the cell walls of plants
  publication-title: Molecular Plant Pathology
– volume: 167
  start-page: 691
  year: 2011
  end-page: 699
  article-title: Host resistance elicited by methyl jasmonate reduces emission of aggregation pheromones by the spruce bark beetle,
  publication-title: Oecologia
– volume: 135
  start-page: 2134
  issue: 4
  year: 2004
  end-page: 2149
  article-title: Methyl Jasmonate‐induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation
  publication-title: Plant Physiology
– volume: 98
  start-page: 128
  issue: 2
  year: 2011
  end-page: 136
  article-title: Origin and evolutionary analysis of the plant‐specific TIFY transcription factor family
  publication-title: Genomics
– year: 2016
– volume: 23
  start-page: 205
  issue: 1
  year: 2009
  end-page: 211
  article-title: A new generation of homology search tools based on probabilistic inference
  publication-title: Genome Informatics. International Conference on Genome Informatics
– volume: 19
  start-page: 1
  issue: 2
  year: 2018
  end-page: 26
  article-title: Indispensable role of proteases in plant innate immunity
  publication-title: International Journal of Molecular Sciences
– volume: 129
  start-page: 1003
  issue: 3
  year: 2002
  end-page: 1018
  article-title: Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems
  publication-title: Plant Physiology
– volume: 243
  start-page: 1237
  issue: 5
  year: 2016
  end-page: 1249
  article-title: Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce
  publication-title: Planta
– volume: 87
  start-page: 302
  issue: 3
  year: 2000
  end-page: 313
  article-title: Wound‐induced traumatic resin duct development in stems of Norway spruce (Pinaceae): Anatomy and cytochemical traits
  publication-title: American Journal of Botany
– volume: 2
  issue: 11
  year: 2016
  article-title: The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications
  publication-title: Nature Plants
– volume: 497
  start-page: 579
  issue: 7451
  year: 2013
  end-page: 584
  article-title: The Norway spruce genome sequence and conifer genome evolution
  publication-title: Nature
– volume: 47
  start-page: D427
  issue: D1
  year: 2019
  end-page: D432
  article-title: The Pfam protein families database in 2019
  publication-title: Nucleic Acids Research
– volume: 21
  start-page: 944
  issue: March
  year: 2009
  end-page: 953
  article-title: Mitogen‐activated protein kinases 3 and 6 are required for full priming of stress responses in
  publication-title: The Plant Cell
– volume: 67
  start-page: 30
  issue: 1
  year: 2018
  end-page: 41
  article-title: Long‐lasting β‐aminobutyric acid‐induced resistance protects tomato fruit against
  publication-title: Plant Pathology
– volume: 68
  start-page: 485
  issue: 1
  year: 2017
  end-page: 512
  article-title: Defense priming: An adaptive part of induced resistance
  publication-title: Annual Review of Plant Biology
– volume: 9
  start-page: 189
  issue: 3
  year: 2018
  end-page: 201
  article-title: Chitin and chitin‐related compounds in plant–fungal interactions
  publication-title: Mycology
– volume: 32
  start-page: 2679
  year: 2006
  end-page: 2685
  article-title: Rapid analysis of Abietanes in conifers
  publication-title: Journal of Chemical Ecology
– volume: 88
  start-page: 361
  issue: 3
  year: 2016
  end-page: 374
  article-title: The role of DNA (de)methylation in immune responsiveness of Arabidopsis
  publication-title: Plant Journal
– volume: 66
  start-page: 243
  issue: 1
  year: 2014
  end-page: 267
  article-title: RNA‐directed DNA methylation: The evolution of a complex epigenetic pathway in flowering plants
  publication-title: Annual Review of Plant Biology
– volume: 52
  start-page: 347
  issue: 1
  year: 2014
  end-page: 375
  article-title: Induced systemic resistance by beneficial microbes
  publication-title: Annual Review of Phytopathology
– volume: 181
  start-page: 817
  issue: 2
  year: 2019
  end-page: 833
  article-title: Isolation of open chromatin identifies regulators of systemic acquired resistance
  publication-title: Plant Physiology
– ident: e_1_2_10_5_1
  doi: 10.3390/ijms19020629
– ident: e_1_2_10_7_1
  doi: 10.1105/tpc.108.062158
– ident: e_1_2_10_9_1
  doi: 10.1186/1471-2105-10-421
– ident: e_1_2_10_18_1
  doi: 10.1007/s00442-006-0394-3
– ident: e_1_2_10_14_1
  doi: 10.1016/S1360-1385(02)02244-6
– ident: e_1_2_10_38_1
  doi: 10.1146/annurev-arplant-043014-114633
– ident: e_1_2_10_8_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_10_58_1
  doi: 10.1093/treephys/26.8.977
– ident: e_1_2_10_28_1
  doi: 10.1104/pp.122.1.67
– ident: e_1_2_10_2_1
  doi: 10.1007/s00425-012-1822-8
– ident: e_1_2_10_54_1
  doi: 10.1146/annurev.phyto.44.070505.143425
– ident: e_1_2_10_26_1
  doi: 10.1104/pp.103.037929
– ident: e_1_2_10_19_1
  doi: 10.1016/j.pmpp.2007.09.002
– ident: e_1_2_10_43_1
  doi: 10.1038/nature12211
– ident: e_1_2_10_34_1
  doi: 10.1111/pce.13661
– ident: e_1_2_10_62_1
  doi: 10.1111/j.1365-313X.2009.04020.x
– ident: e_1_2_10_30_1
  doi: 10.1104/pp.107.112029
– ident: e_1_2_10_35_1
  doi: 10.1111/ecog.02769
– ident: e_1_2_10_48_1
  doi: 10.1080/21501203.2018.1473299
– ident: e_1_2_10_56_1
  doi: 10.1146/annurev-phyto-082718-095959
– ident: e_1_2_10_61_1
  doi: 10.1007/s00442-011-2017-x
– ident: e_1_2_10_20_1
  doi: 10.2307/2446529
– ident: e_1_2_10_60_1
  doi: 10.1111/mpp.12755
– ident: e_1_2_10_29_1
  doi: 10.1007/s10886-006-9191-z
– ident: e_1_2_10_49_1
  doi: 10.1104/pp.106.089425
– ident: e_1_2_10_12_1
  doi: 10.1016/j.tplants.2011.06.004
– ident: e_1_2_10_15_1
– ident: e_1_2_10_47_1
  doi: 10.1146/annurev-phyto-082712-102340
– ident: e_1_2_10_52_1
  doi: 10.1111/nph.13557
– ident: e_1_2_10_37_1
  doi: 10.1016/j.tplants.2016.07.009
– ident: e_1_2_10_6_1
  doi: 10.1104/pp.19.00673
– ident: e_1_2_10_17_1
  doi: 10.1093/nar/gky995
– volume: 113
  start-page: 1
  issue: 50
  year: 2016
  ident: e_1_2_10_3_1
  article-title: DNA methylome of the 20‐gigabase Norway spruce genome
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  contributor:
    fullname: Ausin I.
– ident: e_1_2_10_24_1
  doi: 10.1074/jbc.M801760200
– ident: e_1_2_10_46_1
  doi: 10.1016/j.pbi.2007.07.013
– ident: e_1_2_10_32_1
  doi: 10.1201/b16589-5
– ident: e_1_2_10_4_1
  doi: 10.1016/j.ygeno.2011.05.002
– ident: e_1_2_10_27_1
  doi: 10.1038/embor.2010.186
– ident: e_1_2_10_23_1
  doi: 10.1074/jbc.M109.061432
– ident: e_1_2_10_53_1
  doi: 10.1038/nplants.2016.169
– ident: e_1_2_10_50_1
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_2_10_59_1
  doi: 10.1038/s41580-018-0016-z
– ident: e_1_2_10_10_1
  doi: 10.1111/nph.15984
– ident: e_1_2_10_42_1
  doi: 10.2307/2656626
– ident: e_1_2_10_16_1
  doi: 10.1142/9781848165632_0019
– ident: e_1_2_10_11_1
  doi: 10.1111/j.1365-313X.2008.03540.x
– ident: e_1_2_10_39_1
  doi: 10.1146/annurev-arplant-042916-041132
– ident: e_1_2_10_45_1
  doi: 10.1104/pp.15.00551
– ident: e_1_2_10_33_1
  doi: 10.1111/tpj.13252
– ident: e_1_2_10_36_1
  doi: 10.1104/pp.011001
– ident: e_1_2_10_41_1
  doi: 10.1016/j.agrformet.2017.04.004
– ident: e_1_2_10_57_1
  doi: 10.1007/s00425-016-2484-8
– ident: e_1_2_10_55_1
  doi: 10.1111/ppa.12725
– ident: e_1_2_10_21_1
  doi: 10.3732/ajb.89.4.578
– ident: e_1_2_10_13_1
  doi: 10.1146/annurev-phyto-080614-120132
– ident: e_1_2_10_51_1
  doi: 10.1104/pp.17.00124
– ident: e_1_2_10_31_1
  doi: 10.1016/B978-0-12-417156-5.00005-8
– ident: e_1_2_10_44_1
  doi: 10.3389/fpls.2014.00295
– ident: e_1_2_10_25_1
  doi: 10.36333/fs08
– ident: e_1_2_10_22_1
  doi: 10.1111/j.1469-8137.2005.01436.x
– ident: e_1_2_10_40_1
  doi: 10.1093/nar/gks042
SSID ssj0001479
Score 2.528072
Snippet In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to...
Abstract In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly...
SourceID swepub
hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1827
SubjectTerms Acetates - pharmacology
Animals
Bark
Beetles
Biosynthesis
Chemical defense
Coleoptera - microbiology
Colonization
Cyclopentanes - metabolism
Cyclopentanes - pharmacology
defense priming
Diterpenes
DNA Methylation - drug effects
epigenetics
Gene expression
Gene Expression Regulation, Plant - drug effects
gymnosperm
Histones - metabolism
Immune response
induced resistance
jasmonic acid
Life Sciences
Metabolites
Methyl jasmonate
Monoterpenes
Monoterpenes - metabolism
Oxylipins - metabolism
Oxylipins - pharmacology
Pest resistance
Pests
Phenotype
Phytopathogenic fungi
Picea - drug effects
Picea - physiology
Picea abies
Pine trees
Plant Bark - drug effects
Plant Bark - genetics
Plant Growth Regulators - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Priming
Spraying
terpenes
Transcription
transcriptomics
Trees
Vegetal Biology
Wounding
Title Molecular underpinnings of methyl jasmonate‐induced resistance in Norway spruce
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13774
https://www.ncbi.nlm.nih.gov/pubmed/32323322
https://www.proquest.com/docview/2425453909
https://hal.inrae.fr/hal-02749427
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-81401
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7trkDiwmN5FZaVhUDikiqOJ8lanMo-VCF2tSAW7QHJsh0XyqOpmhZUTvwEfiO_hJmkCRSEhDhEiRIndjwz9jfW-BuABz5WSciSItJhpCJEpyONUkY-iW2aq2IkA28UPj7Jhmf49Dw934DH7V6Yhh-iW3Bjy6jHazZw66pfjHzqQ5_p8pgLlM4cznXw4id1lMSGZ4_DF_NcyxWrEEfxdG-uzUWbbzkS8k-Y2XGIrsPXev45ugKv25Y3YSfv-4u56_svv5E6_uevXYXLK1wqBo0iXYONMNmGi02myuU2XHhSEopcXofnx20-XcHbz2bTcZ3zqBLlSHA26uUH8c5WH3lNPnz_-o08ftKdQpBTz0CVNEyMJ-KknH22S1FNWbFuwNnR4cv9YbRKyxB5TDVGQaoikZlzhY-9DzFKh3kIgZCPVtaPMrmnC3SZ9gRGPV3HOqTMsyeVszkW6iZsTcpJuA0CraKBOrF7CnO0PnWhsDlhDJd6ApqY9uB-KyAzbdg3TOu1UCeZupOoEImue8582cPBM8P32OfWmOSfZA92WsmalZVWht0tTJWOdQ9uNdLuPqMIaioa7XrwsBH_WgUH41cDU87e0LEwTBpGFTyqRfr3dprT_cP64s6_F70LlxJ28OuIwx3Yms8W4R6hoLnbhc0ET3drpf8Br_MCkA
link.rule.ids 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tA8Re0BhfhQ0sBBIvQXF8SWaJl7IPFWirIW1ob5btuNBpNFW7DfWNP4G_kb-Eu6SJqBASD5GsxImjO9_5d9b5dwAvfaySkCVFpMNIRYhORxqljHwS2zRXxUgGPig8GGa9M_xwnp6vwdvmLEzND9FuuLFlVP6aDZw3pP-w8qkPb5gvD9dhEzOaiMzrjCetH5ZYM-1xAmOea7nkFeI8nvbVldVo_SvnQv4NNFsW0VUAW61Ax9twdwkdRbfW9T1YC5MduF0Xk1zswK13JQG9xX34NGhK3go-ITabjquyRHNRjgQXjF5cigs7_8bb5uHXj58UlJN6C0FxN2NJmgRiPBHDcvbdLsR8yrp_AGfHR6cHvWhZOSHymGqMglRFIjPnCh97H2KUDvMQAoETrawfZXJfF-gy7QkvemrHOqRMhSeVszkW6iFsTMpJeAwCrSJfmth9hTlan7pQ2JxggEs9YUFMO_CikaCZ1gQZpgksSMymEjN1Itm2z5nSutftG77HYbHGJL-RHdhtRG-WhjQ3HBFhqnSsO_CoVkf7GUVoUJFD6sCrWj8rAxyOP3dNOftC17VhXi8a4HWlvn__pzk5OKoaT_6_63O40zsd9E3__fDjU9hKOB6vEgR3YeNqdh32CLRcuWfV3PwN5JTlGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615SEuPAqUhQIWAolLVnHsJLU4LW1XC7SrgijqoZIVP0KXxybaB2g58RP4jfwSZpJNYEFIiEMkK3FixzNjf2ONvwF4aEMR-SRygfK5CKQ0KlCS88BGYRanwuXc00Hhw2EyOJbPT-KTNXjSnIWp-SHaDTeyjGq-JgMvXf6LkZfWd4kuT67DOZkg8iVE9OondxSXNdEexS-mqeJLWiEK42lfXVmM1s8oFPJPnNmSiK7i12oB6l-B06brddzJ--58Zrr2y2-sjv_5b1fh8hKYsl6tSddgzY834UKdqnKxCeefFggjF9fh5WGTUJfR-bNJOaqSHk1ZkTNKR734wN5l04-0Ke-_f_2GLj8qj2Po1RNSRRVjozEbFpPP2YJNS9KsG3Dc33-9OwiWeRkCK2MlA8-Fi3hijLOhtT6U3MjUe4_QR4nM5gnfUU6aRFlEoxbLofIxEe1xYbJUOnETNsbF2N8CJjOBM3WU7QiZyszGxrssRZBhYotIU8YdeNAISJc1_YZu3BYcJF0NElZC0bXPiTB70DvQdI-cbiWj9BPvwHYjWb0006kmf0vGQoWqA1u1tNvPCMSaAqe7Djyqxb_SwN7oTU8Xk7d4zTWxhmEDjyuR_r2f-mh3vyrc_veq9-Hi0V5fHzwbvrgDlyJy9qvow23YmE3m_i4iopm5V2n-D5pHBIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+underpinnings+of+methyl+jasmonate-induced+resistance+in+Norway+spruce&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Mageroy%2C+Melissa+H&rft.au=Wilkinson%2C+Samuel+W&rft.au=Tengs%2C+Torstein&rft.au=Cross%2C+Hugh&rft.date=2020-08-01&rft.eissn=1365-3040&rft.volume=43&rft.issue=8&rft.spage=1827&rft_id=info:doi/10.1111%2Fpce.13774&rft_id=info%3Apmid%2F32323322&rft.externalDocID=32323322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon