Enhanced interferon regulatory factor 3 binding to the interleukin-23p19 promoter correlates with enhanced interleukin-23 expression in systemic lupus erythematosus

Objective To examine the role of interferon regulatory factor 3 (IRF‐3) in the regulation of interleukin‐23 (IL‐23) production in patients with systemic lupus erythematosus (SLE). Methods Bone marrow–derived macrophages were isolated from both wild‐type and IRF3−/− C57BL/6 mice. These cells were sti...

Full description

Saved in:
Bibliographic Details
Published inArthritis & rheumatology (Hoboken, N.J.) Vol. 64; no. 5; pp. 1601 - 1609
Main Authors Smith, Siobhán, Gabhann, Joan Nı´, Higgs, Rowan, Stacey, Kevin, Wahren-Herlenius, Marie, Espinosa, Alexander, Totaro, Maria Grazia, Sica, Antonio, Ball, Elizabeth, Bell, Aubrey, Johnston, James, Browne, Peter, O'Neill, Lorraine, Kearns, Grainne, Jefferies, Caroline A.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2012
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective To examine the role of interferon regulatory factor 3 (IRF‐3) in the regulation of interleukin‐23 (IL‐23) production in patients with systemic lupus erythematosus (SLE). Methods Bone marrow–derived macrophages were isolated from both wild‐type and IRF3−/− C57BL/6 mice. These cells were stimulated with the Toll‐like receptor 3 (TLR‐3) agonist poly(I‐C), and IL‐23p19 cytokine levels were analyzed by enzyme‐linked immunosorbent assay. IRF‐3 binding to the IL‐23p19 gene promoter region in monocytes from patients with SLE and healthy control subjects was analyzed by chromatin immunoprecipitation (ChIP) assay. Luciferase reporter gene assays were performed to identify key drivers of IL‐23p19 promoter activity. TANK‐binding kinase 1 (TBK‐1) protein levels were determined by Western blotting. Results ChIP assays demonstrated that IRF‐3 was stably bound to the human IL‐23p19 promoter in monocytes; this association increased following TLR‐3 stimulation. Patients with SLE demonstrated increased levels of IRF‐3 bound to the IL‐23p19 promoter compared with control subjects, which correlated with enhanced IL‐23p19 production in monocytes from patients with SLE. Investigations of the TLR‐3–driven responses in monocytes from patients with SLE revealed that TBK‐1, which is critical for regulating IRF‐3 activity, was hyperactivated in both resting and TLR‐3–stimulated cells. Conclusion Our results demonstrate for the first time that patients with SLE display enhanced IL‐23p19 expression as a result of hyperactivation of TBK‐1, resulting in increased binding of IRF‐3 to the promoter. These findings provide novel insights into the molecular pathogenesis of SLE and the potential role for TLR‐3 in driving this response.
AbstractList Objective To examine the role of interferon regulatory factor 3 (IRF-3) in the regulation of interleukin-23 (IL-23) production in patients with systemic lupus erythematosus (SLE). Methods Bone marrow-derived macrophages were isolated from both wild-type and IRF3-/- C57BL/6 mice. These cells were stimulated with the Toll-like receptor 3 (TLR-3) agonist poly(I-C), and IL-23p19 cytokine levels were analyzed by enzyme-linked immunosorbent assay. IRF-3 binding to the IL-23p19 gene promoter region in monocytes from patients with SLE and healthy control subjects was analyzed by chromatin immunoprecipitation (ChIP) assay. Luciferase reporter gene assays were performed to identify key drivers of IL-23p19 promoter activity. TANK-binding kinase 1 (TBK-1) protein levels were determined by Western blotting. Results ChIP assays demonstrated that IRF-3 was stably bound to the human IL-23p19 promoter in monocytes; this association increased following TLR-3 stimulation. Patients with SLE demonstrated increased levels of IRF-3 bound to the IL-23p19 promoter compared with control subjects, which correlated with enhanced IL-23p19 production in monocytes from patients with SLE. Investigations of the TLR-3-driven responses in monocytes from patients with SLE revealed that TBK-1, which is critical for regulating IRF-3 activity, was hyperactivated in both resting and TLR-3-stimulated cells. Conclusion Our results demonstrate for the first time that patients with SLE display enhanced IL-23p19 expression as a result of hyperactivation of TBK-1, resulting in increased binding of IRF-3 to the promoter. These findings provide novel insights into the molecular pathogenesis of SLE and the potential role for TLR-3 in driving this response. [PUBLICATION ABSTRACT]
To examine the role of interferon regulatory factor 3 (IRF-3) in the regulation of interleukin-23 (IL-23) production in patients with systemic lupus erythematosus (SLE). Bone marrow-derived macrophages were isolated from both wild-type and IRF3(-/-) C57BL/6 mice. These cells were stimulated with the Toll-like receptor 3 (TLR-3) agonist poly(I-C), and IL-23p19 cytokine levels were analyzed by enzyme-linked immunosorbent assay. IRF-3 binding to the IL-23p19 gene promoter region in monocytes from patients with SLE and healthy control subjects was analyzed by chromatin immunoprecipitation (ChIP) assay. Luciferase reporter gene assays were performed to identify key drivers of IL-23p19 promoter activity. TANK-binding kinase 1 (TBK-1) protein levels were determined by Western blotting. ChIP assays demonstrated that IRF-3 was stably bound to the human IL-23p19 promoter in monocytes; this association increased following TLR-3 stimulation. Patients with SLE demonstrated increased levels of IRF-3 bound to the IL-23p19 promoter compared with control subjects, which correlated with enhanced IL-23p19 production in monocytes from patients with SLE. Investigations of the TLR-3-driven responses in monocytes from patients with SLE revealed that TBK-1, which is critical for regulating IRF-3 activity, was hyperactivated in both resting and TLR-3-stimulated cells. Our results demonstrate for the first time that patients with SLE display enhanced IL-23p19 expression as a result of hyperactivation of TBK-1, resulting in increased binding of IRF-3 to the promoter. These findings provide novel insights into the molecular pathogenesis of SLE and the potential role for TLR-3 in driving this response.
Objective To examine the role of interferon regulatory factor 3 (IRF‐3) in the regulation of interleukin‐23 (IL‐23) production in patients with systemic lupus erythematosus (SLE). Methods Bone marrow–derived macrophages were isolated from both wild‐type and IRF3−/− C57BL/6 mice. These cells were stimulated with the Toll‐like receptor 3 (TLR‐3) agonist poly(I‐C), and IL‐23p19 cytokine levels were analyzed by enzyme‐linked immunosorbent assay. IRF‐3 binding to the IL‐23p19 gene promoter region in monocytes from patients with SLE and healthy control subjects was analyzed by chromatin immunoprecipitation (ChIP) assay. Luciferase reporter gene assays were performed to identify key drivers of IL‐23p19 promoter activity. TANK‐binding kinase 1 (TBK‐1) protein levels were determined by Western blotting. Results ChIP assays demonstrated that IRF‐3 was stably bound to the human IL‐23p19 promoter in monocytes; this association increased following TLR‐3 stimulation. Patients with SLE demonstrated increased levels of IRF‐3 bound to the IL‐23p19 promoter compared with control subjects, which correlated with enhanced IL‐23p19 production in monocytes from patients with SLE. Investigations of the TLR‐3–driven responses in monocytes from patients with SLE revealed that TBK‐1, which is critical for regulating IRF‐3 activity, was hyperactivated in both resting and TLR‐3–stimulated cells. Conclusion Our results demonstrate for the first time that patients with SLE display enhanced IL‐23p19 expression as a result of hyperactivation of TBK‐1, resulting in increased binding of IRF‐3 to the promoter. These findings provide novel insights into the molecular pathogenesis of SLE and the potential role for TLR‐3 in driving this response.
To examine the role of interferon regulatory factor 3 (IRF-3) in the regulation of interleukin-23 (IL-23) production in patients with systemic lupus erythematosus (SLE).OBJECTIVETo examine the role of interferon regulatory factor 3 (IRF-3) in the regulation of interleukin-23 (IL-23) production in patients with systemic lupus erythematosus (SLE).Bone marrow-derived macrophages were isolated from both wild-type and IRF3(-/-) C57BL/6 mice. These cells were stimulated with the Toll-like receptor 3 (TLR-3) agonist poly(I-C), and IL-23p19 cytokine levels were analyzed by enzyme-linked immunosorbent assay. IRF-3 binding to the IL-23p19 gene promoter region in monocytes from patients with SLE and healthy control subjects was analyzed by chromatin immunoprecipitation (ChIP) assay. Luciferase reporter gene assays were performed to identify key drivers of IL-23p19 promoter activity. TANK-binding kinase 1 (TBK-1) protein levels were determined by Western blotting.METHODSBone marrow-derived macrophages were isolated from both wild-type and IRF3(-/-) C57BL/6 mice. These cells were stimulated with the Toll-like receptor 3 (TLR-3) agonist poly(I-C), and IL-23p19 cytokine levels were analyzed by enzyme-linked immunosorbent assay. IRF-3 binding to the IL-23p19 gene promoter region in monocytes from patients with SLE and healthy control subjects was analyzed by chromatin immunoprecipitation (ChIP) assay. Luciferase reporter gene assays were performed to identify key drivers of IL-23p19 promoter activity. TANK-binding kinase 1 (TBK-1) protein levels were determined by Western blotting.ChIP assays demonstrated that IRF-3 was stably bound to the human IL-23p19 promoter in monocytes; this association increased following TLR-3 stimulation. Patients with SLE demonstrated increased levels of IRF-3 bound to the IL-23p19 promoter compared with control subjects, which correlated with enhanced IL-23p19 production in monocytes from patients with SLE. Investigations of the TLR-3-driven responses in monocytes from patients with SLE revealed that TBK-1, which is critical for regulating IRF-3 activity, was hyperactivated in both resting and TLR-3-stimulated cells.RESULTSChIP assays demonstrated that IRF-3 was stably bound to the human IL-23p19 promoter in monocytes; this association increased following TLR-3 stimulation. Patients with SLE demonstrated increased levels of IRF-3 bound to the IL-23p19 promoter compared with control subjects, which correlated with enhanced IL-23p19 production in monocytes from patients with SLE. Investigations of the TLR-3-driven responses in monocytes from patients with SLE revealed that TBK-1, which is critical for regulating IRF-3 activity, was hyperactivated in both resting and TLR-3-stimulated cells.Our results demonstrate for the first time that patients with SLE display enhanced IL-23p19 expression as a result of hyperactivation of TBK-1, resulting in increased binding of IRF-3 to the promoter. These findings provide novel insights into the molecular pathogenesis of SLE and the potential role for TLR-3 in driving this response.CONCLUSIONOur results demonstrate for the first time that patients with SLE display enhanced IL-23p19 expression as a result of hyperactivation of TBK-1, resulting in increased binding of IRF-3 to the promoter. These findings provide novel insights into the molecular pathogenesis of SLE and the potential role for TLR-3 in driving this response.
Author Johnston, James
Stacey, Kevin
Sica, Antonio
Higgs, Rowan
Totaro, Maria Grazia
Espinosa, Alexander
Bell, Aubrey
Wahren-Herlenius, Marie
Ball, Elizabeth
Kearns, Grainne
O'Neill, Lorraine
Gabhann, Joan Nı
Browne, Peter
Jefferies, Caroline A.
Smith, Siobhán
Author_xml – sequence: 1
  givenname: Siobhán
  surname: Smith
  fullname: Smith, Siobhán
  organization: Royal College of Surgeons in Ireland, Dublin, Ireland
– sequence: 2
  givenname: Joan Nı´
  surname: Gabhann
  fullname: Gabhann, Joan Nı´
  organization: Royal College of Surgeons in Ireland, Dublin, Ireland
– sequence: 3
  givenname: Rowan
  surname: Higgs
  fullname: Higgs, Rowan
  organization: Trinity College Dublin, Dublin, Ireland
– sequence: 4
  givenname: Kevin
  surname: Stacey
  fullname: Stacey, Kevin
  organization: Royal College of Surgeons in Ireland, Dublin, Ireland
– sequence: 5
  givenname: Marie
  surname: Wahren-Herlenius
  fullname: Wahren-Herlenius, Marie
  organization: Karolinska Institutet, Stockholm, Sweden
– sequence: 6
  givenname: Alexander
  surname: Espinosa
  fullname: Espinosa, Alexander
  organization: Karolinska Institutet, Stockholm, Sweden
– sequence: 7
  givenname: Maria Grazia
  surname: Totaro
  fullname: Totaro, Maria Grazia
  organization: Istituto Clinico Humanitas, Milan, Italy
– sequence: 8
  givenname: Antonio
  surname: Sica
  fullname: Sica, Antonio
  organization: Istituto Clinico Humanitas, Milan, Italy
– sequence: 9
  givenname: Elizabeth
  surname: Ball
  fullname: Ball, Elizabeth
  organization: Queens University, Belfast, County Antrim, UK
– sequence: 10
  givenname: Aubrey
  surname: Bell
  fullname: Bell, Aubrey
  organization: Belfast Health and Social Care Trust, Belfast City Hospital, Belfast, County Antrim, UK
– sequence: 11
  givenname: James
  surname: Johnston
  fullname: Johnston, James
  organization: Queens University, Belfast, County Antrim, UK
– sequence: 12
  givenname: Peter
  surname: Browne
  fullname: Browne, Peter
  organization: Beaumont Hospital, Dublin, Ireland
– sequence: 13
  givenname: Lorraine
  surname: O'Neill
  fullname: O'Neill, Lorraine
  organization: Beaumont Hospital, Dublin, Ireland
– sequence: 14
  givenname: Grainne
  surname: Kearns
  fullname: Kearns, Grainne
  organization: Beaumont Hospital, Dublin, Ireland
– sequence: 15
  givenname: Caroline A.
  surname: Jefferies
  fullname: Jefferies, Caroline A.
  email: cjefferies@rcsi.ie
  organization: Royal College of Surgeons in Ireland, Dublin, Ireland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25893299$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22127978$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:124526804$$DView record from Swedish Publication Index
BookMark eNp1ks1u1DAQxyNURLeFAy-ALCEkOKT1R7yOj1VVCqICqRR6tBzvpOtu1gl2ou2-Dw_KLJtdRAUHf41__5nxeI6yg9AGyLKXjJ4wSvmpjf2JEIUunmQTJrnOKRPsIJtQSotcSM0Os6OU7vHIhRTPskPOGVdalZPs50WY2-BgRnzoIdYQ20Ai3A2N7du4JrV1uBJBKh9mPtyRviX9HLZ0A8PCh5yLjmnSxXbZopG4NkZAOSSy8v2cwF8R9hoCD12ElDwG9IGkdeph6R1phm5IBOIawywxiTSk59nT2jYJXozrcfbt_cXN-Yf86svlx_Ozq9wVUhc5DldxJ-2slEwxnHAuRMUk1Q6vYCpZ4UpV8ZkouBMazaWmStVCKSqcOM7yrd-0gm6oTBf90sa1aa03o2mBOzCyoAUvkX-75fHtPwZIvVn65KBpbIB2SIZRhhXnjG7Q14_Q-3aIAV9j2CZZqkotkXo1UkO1hNk-gd1_IfBmBGxytqkjVtanP5wsteBaI3e65VxsU4pQG-d722Ot-2h9g5mZTecY7Bzzu3NQ8e6RYuf0X-zofeUbWP8fNGfXNzvFWFmPv_ywV9i4MFMllDS3ny_N7XUpPqnpV_Nd_AL3XeLn
CODEN ARHEAW
CitedBy_id crossref_primary_10_1002_art_37860
crossref_primary_10_1186_s12920_016_0227_0
crossref_primary_10_1111_cei_12840
crossref_primary_10_1038_icb_2015_77
crossref_primary_10_4103_AIHB_AIHB_45_19
crossref_primary_10_1016_j_cytogfr_2014_07_019
crossref_primary_10_1016_j_clim_2014_05_004
crossref_primary_10_1111_cei_12429
crossref_primary_10_1360_SSV_2024_0146
crossref_primary_10_1586_17512433_2016_1145543
crossref_primary_10_1007_s00393_013_1279_6
crossref_primary_10_1371_journal_pone_0103609
crossref_primary_10_4049_jimmunol_1201484
crossref_primary_10_1007_s10787_021_00890_z
crossref_primary_10_3109_08916934_2013_853050
crossref_primary_10_1016_j_smim_2019_05_001
crossref_primary_10_1016_j_cyto_2017_02_006
crossref_primary_10_1002_art_38187
crossref_primary_10_1002_eji_201545760
crossref_primary_10_1038_mi_2014_56
crossref_primary_10_1016_j_jaut_2018_02_001
crossref_primary_10_1002_eji_201546095
crossref_primary_10_1016_j_kint_2023_03_030
crossref_primary_10_4049_jimmunol_1403015
crossref_primary_10_3389_fimmu_2019_00325
crossref_primary_10_4049_jimmunol_1401614
crossref_primary_10_1097_BOR_0000000000000132
crossref_primary_10_1155_2012_582352
crossref_primary_10_1002_prp2_482
Cites_doi 10.1016/S1074-7613(00)00070-4
10.3899/jrheum.100293
10.1002/art.24499
10.1038/ni1261
10.4049/jimmunol.176.12.7768
10.1038/ni1254
10.1136/gut.52.1.65
10.1016/S1074-7613(00)80141-7
10.4049/jimmunol.181.7.4523
10.1084/jem.20090585
10.4049/jimmunol.181.12.8761
10.1038/35099560
10.4049/jimmunol.0903595
10.1006/meth.2001.1262
10.1007/s10753-008-9070-6
10.1093/jnci/81.19.1492
10.4049/jimmunol.181.3.1780
10.1189/jlb.0808503
10.1002/art.1780400928
10.1084/jem.20021996
10.1038/ni1087
10.1002/art.27336
10.1111/j.1365-3083.2009.02361.x
10.1111/j.0105-2896.2004.00214.x
10.4049/jimmunol.178.1.186
10.1016/j.clim.2008.01.019
10.1128/MCB.00788-06
10.4049/jimmunol.0900385
10.1084/jem.20041257
ContentType Journal Article
Copyright Copyright © 2012 by the American College of Rheumatology
2015 INIST-CNRS
Copyright © 2012 by the American College of Rheumatology.
Copyright_xml – notice: Copyright © 2012 by the American College of Rheumatology
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 by the American College of Rheumatology.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
ADTPV
AOWAS
DOI 10.1002/art.33494
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Toxicology Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1529-0131
2326-5205
EndPage 1609
ExternalDocumentID oai_swepub_ki_se_540428
3277933791
22127978
25893299
10_1002_art_33494
ART33494
ark_67375_WNG_WR83K76S_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science Foundation Ireland
  funderid: 08/IN.1/B2091
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
10A
1CY
1KJ
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3O-
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5RE
66C
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEVG
AAHHS
AAKAS
AANLZ
AAQQT
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBTR
ADEOM
ADIZJ
ADMGS
ADOZA
ADZCM
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J5H
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M65
MEWTI
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NNB
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q11
QB0
QRW
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RXW
RYL
SAMSI
SJN
SUPJJ
SV3
TAE
TEORI
TWZ
UB1
V2E
V8K
V9Y
VH1
W8V
WH7
WIB
WIH
WIJ
WIK
WIN
WJL
WOW
WQJ
WRC
WUP
WXI
WXSBR
X6Y
X7M
XG1
XPP
XV2
YFH
YOC
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAFWJ
AAYXX
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
0R~
3SF
52U
52V
5VS
7QL
7QP
7T5
7TM
7U7
AAESR
AASGY
ABLJU
ABPVW
ACGFS
ACGOF
ACIWK
ACPRK
ADBBV
ADKYN
ADXAS
ADZMN
AENEX
AEYWJ
AFRAH
AHMBA
ALAGY
ALVPJ
AZVAB
BFHJK
BHBCM
BMXJE
C1K
DIK
FUBAC
H94
K9.
KBYEO
NF~
O66
O9-
PQQKQ
WBKPD
WHWMO
WOHZO
WVDHM
7X8
ADTPV
AOWAS
ID FETCH-LOGICAL-c4594-594cb2c5ad8517185117143b1509c4cbe6514c87b2d342c3909c89077f37703c3
IEDL.DBID DR2
ISSN 0004-3591
2326-5191
1529-0131
IngestDate Mon Aug 25 03:24:31 EDT 2025
Fri Jul 11 04:56:51 EDT 2025
Mon Jun 30 10:12:41 EDT 2025
Wed Feb 19 01:49:10 EST 2025
Mon Jul 21 09:14:19 EDT 2025
Tue Jul 01 01:05:19 EDT 2025
Thu Apr 24 23:02:05 EDT 2025
Wed Jan 22 17:09:02 EST 2025
Wed Oct 30 09:56:08 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Promoter
Immunopathology
Connective tissue disease
Skin disease
Systemic lupus erythematosus
Systemic disease
Rheumatology
Autoimmune disease
Interferon
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2012 by the American College of Rheumatology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4594-594cb2c5ad8517185117143b1509c4cbe6514c87b2d342c3909c89077f37703c3
Notes istex:264AE9AA0CA2A08CF885553BE11A44AA82218740
Science Foundation Ireland - No. 08/IN.1/B2091
ArticleID:ART33494
ark:/67375/WNG-WR83K76S-V
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22127978
PQID 1517107895
PQPubID 946334
PageCount 9
ParticipantIDs swepub_primary_oai_swepub_ki_se_540428
proquest_miscellaneous_1010232108
proquest_journals_1517107895
pubmed_primary_22127978
pascalfrancis_primary_25893299
crossref_citationtrail_10_1002_art_33494
crossref_primary_10_1002_art_33494
wiley_primary_10_1002_art_33494_ART33494
istex_primary_ark_67375_WNG_WR83K76S_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2012
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: May 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken , NJ
– name: United States
– name: Atlanta
PublicationTitle Arthritis & rheumatology (Hoboken, N.J.)
PublicationTitleAlternate Arthritis & Rheumatism
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Cox GW, Mathieson BJ, Gandino L, Blasi E, Radzioch D, Varesio L. Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liver. J Natl Cancer Inst 1989; 81: 1492-6.
Paradowska-Gorycka A, Grzybowska-Kowalcyzk A, Wojtecka-Lukasik E, Maslinski S. IL-23 in the pathogenesis of rheumatoid arthritis. Scand J Immunol 2010; 71: 134-45.
Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 2008; 181: 8761-6.
Carmody RJ, Ruan Q, Liou HC, Chen YH. Essential roles of cRel in TLR-induced IL-23 p19 gene expression in dendritic cells. J Immunol 2007; 178: 186-91.
Al-Salleeh F, Petro T. Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages. J Immunol 2008; 181: 4523-33.
Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730-7.
Yang J, Chu Y, Xang X, Goa D, Zhu L, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1472-83.
Santiago-Raber ML, Baccala R, Haraldsson KM, Choubey D, Steward TA, Kono DH, et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 2003; 197: 777-88.
Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 2008; 127: 385-93.
Vakin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 2006; 176: 7768-74.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔC T method. Methods 2001; 25: 402-8.
Mus AM, Cornelissen F, Asmawidjaja PS, van Hamburg JP, Boon L, Hendricks RW, et al. Interleukin-23 promotes Th17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of interleukin-22, but not interleukin-21, in autoimmune experimental arthritis. Arthritis Rheum 2010; 62: 1043-50.
Kyttaris VC, Zhang Z, Kuchroo VK, Oukka M, Tsokos GC. IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J Immunol 2010; 184: 4605-9.
Makela SM, Strengell M, Pietila TE, Osterlund P, Jurkunen I. Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells. J Leukoc Biol 2009; 5: 664-72.
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001; 413: 732-8.
Higgs R, Ni Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA. The E3 ubiquitin ligase Ro52 negatively regulates IFN-β production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 2008; 181: 1780-6.
Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133-41.
Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2010; 13: 715-25.
Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2010; 201: 233-40.
Zhang Z, Kyttaris VC, Tsokos GC. The role of IL-23/IL-17 axis in lupus nephritis. J Immunol 2009; 183: 3160-9.
Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123-32.
Espinosa A, Dardalhon V, Brauner S, Ambrosi A, Higgs R, Quintana FJ, et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. J Exp Med 2009; 206: 1661-71.
Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52: 65-70.
Zhou L, Nazarian AA, Xu J, Tantin D, Corcoran LM, Smale ST. An inducible enhancer required for IL-12β promoter activity in an insulated chromatin environment. Mol Cell Biol 2007; 27: 2698-712.
Mok MY, Wu HJ, Lo Y, Lau CS. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol 2010; 37: 2046-52.
Garret S, Fitzgerald MC, Sullivan KE. LPS and poly I:C induce chromatin modification at a novel upstream region of the IL-23 p19 promoter. Inflammation 2008; 31: 235-44.
Hochberg MC, for the Diagnostic and Therapeutic Criteria Committee of the American College of Rheumatology. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum 1997; 40: 1725.
Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96-105.
Weinmann AS, Plevy SE, Smale ST. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 1999; 11: 665-75.
1997; 40
2010; 37
2004; 202
2010; 13
2009; 60
1989; 81
2010; 201
2006; 176
2004; 5
2008; 127
2010; 184
2008; 31
2003; 52
2001; 25
2010; 62
2003; 197
2008; 181
2007; 178
1999; 11
2005; 6
2009; 183
2009; 5
2009; 206
2010; 71
2007; 27
2001; 413
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_16_2
Langrish CL (e_1_2_6_2_2) 2010; 201
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 2003; 52: 65-70.
– reference: Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔC T method. Methods 2001; 25: 402-8.
– reference: Crispin JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 2008; 181: 8761-6.
– reference: Al-Salleeh F, Petro T. Promoter analysis reveals critical roles for SMAD-3 and ATF-2 in expression of IL-23 p19 in macrophages. J Immunol 2008; 181: 4523-33.
– reference: Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001; 413: 732-8.
– reference: Weinmann AS, Plevy SE, Smale ST. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 1999; 11: 665-75.
– reference: Kyttaris VC, Zhang Z, Kuchroo VK, Oukka M, Tsokos GC. IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J Immunol 2010; 184: 4605-9.
– reference: Santiago-Raber ML, Baccala R, Haraldsson KM, Choubey D, Steward TA, Kono DH, et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J Exp Med 2003; 197: 777-88.
– reference: Zhou L, Nazarian AA, Xu J, Tantin D, Corcoran LM, Smale ST. An inducible enhancer required for IL-12β promoter activity in an insulated chromatin environment. Mol Cell Biol 2007; 27: 2698-712.
– reference: Vakin-Dembinsky A, Balashov K, Weiner HL. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 2006; 176: 7768-74.
– reference: Yang J, Chu Y, Xang X, Goa D, Zhu L, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1472-83.
– reference: Hochberg MC, for the Diagnostic and Therapeutic Criteria Committee of the American College of Rheumatology. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum 1997; 40: 1725.
– reference: Carmody RJ, Ruan Q, Liou HC, Chen YH. Essential roles of cRel in TLR-induced IL-23 p19 gene expression in dendritic cells. J Immunol 2007; 178: 186-91.
– reference: Garret S, Fitzgerald MC, Sullivan KE. LPS and poly I:C induce chromatin modification at a novel upstream region of the IL-23 p19 promoter. Inflammation 2008; 31: 235-44.
– reference: Paradowska-Gorycka A, Grzybowska-Kowalcyzk A, Wojtecka-Lukasik E, Maslinski S. IL-23 in the pathogenesis of rheumatoid arthritis. Scand J Immunol 2010; 71: 134-45.
– reference: Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6: 1133-41.
– reference: Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev 2004; 202: 96-105.
– reference: Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2010; 201: 233-40.
– reference: Espinosa A, Dardalhon V, Brauner S, Ambrosi A, Higgs R, Quintana FJ, et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway. J Exp Med 2009; 206: 1661-71.
– reference: Higgs R, Ni Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA. The E3 ubiquitin ligase Ro52 negatively regulates IFN-β production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 2008; 181: 1780-6.
– reference: Cox GW, Mathieson BJ, Gandino L, Blasi E, Radzioch D, Varesio L. Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liver. J Natl Cancer Inst 1989; 81: 1492-6.
– reference: Mok MY, Wu HJ, Lo Y, Lau CS. The relation of interleukin 17 (IL-17) and IL-23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus. J Rheumatol 2010; 37: 2046-52.
– reference: Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2010; 13: 715-25.
– reference: Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6: 1123-32.
– reference: Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730-7.
– reference: Zhang Z, Kyttaris VC, Tsokos GC. The role of IL-23/IL-17 axis in lupus nephritis. J Immunol 2009; 183: 3160-9.
– reference: Makela SM, Strengell M, Pietila TE, Osterlund P, Jurkunen I. Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells. J Leukoc Biol 2009; 5: 664-72.
– reference: Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin Immunol 2008; 127: 385-93.
– reference: Mus AM, Cornelissen F, Asmawidjaja PS, van Hamburg JP, Boon L, Hendricks RW, et al. Interleukin-23 promotes Th17 differentiation by inhibiting T-bet and FoxP3 and is required for elevation of interleukin-22, but not interleukin-21, in autoimmune experimental arthritis. Arthritis Rheum 2010; 62: 1043-50.
– volume: 5
  start-page: 664
  year: 2009
  end-page: 72
  article-title: Multiple signaling pathways contribute to synergistic TLR ligand‐dependent cytokine gene expression in human monocyte‐derived macrophages and dendritic cells
  publication-title: J Leukoc Biol
– volume: 81
  start-page: 1492
  year: 1989
  end-page: 6
  article-title: Heterogeneity of hematopoietic cells immortalized by v‐myc/v‐raf recombinant retrovirus infection of bone marrow or fetal liver
  publication-title: J Natl Cancer Inst
– volume: 13
  start-page: 715
  year: 2010
  end-page: 25
  article-title: Novel p19 protein engages IL‐12p40 to form a cytokine, IL‐23, with biological activities similar as well as distinct from IL‐12
  publication-title: Immunity
– volume: 176
  start-page: 7768
  year: 2006
  end-page: 74
  article-title: IL‐23 is increased in dendritic cells in multiple sclerosis and down‐regulation of IL‐23 by antisense oligos increases dendritic cell IL‐10 production
  publication-title: J Immunol
– volume: 197
  start-page: 777
  year: 2003
  end-page: 88
  article-title: Type‐I interferon receptor deficiency reduces lupus‐like disease in NZB mice
  publication-title: J Exp Med
– volume: 181
  start-page: 1780
  year: 2008
  end-page: 6
  article-title: The E3 ubiquitin ligase Ro52 negatively regulates IFN‐β production post‐pathogen recognition by polyubiquitin‐mediated degradation of IRF3
  publication-title: J Immunol
– volume: 52
  start-page: 65
  year: 2003
  end-page: 70
  article-title: Increased expression of interleukin 17 in inflammatory bowel disease
  publication-title: Gut
– volume: 71
  start-page: 134
  year: 2010
  end-page: 45
  article-title: IL‐23 in the pathogenesis of rheumatoid arthritis
  publication-title: Scand J Immunol
– volume: 127
  start-page: 385
  year: 2008
  end-page: 93
  article-title: Hyperproduction of IL‐23 and IL‐17 in patients with systemic lupus erythematosus: implications for Th17‐mediated inflammation in auto‐immunity
  publication-title: Clin Immunol
– volume: 181
  start-page: 8761
  year: 2008
  end-page: 6
  article-title: Expanded double negative T cells in patients with systemic lupus erythematosus produce IL‐17 and infiltrate the kidneys
  publication-title: J Immunol
– volume: 178
  start-page: 186
  year: 2007
  end-page: 91
  article-title: Essential roles of cRel in TLR‐induced IL‐23 p19 gene expression in dendritic cells
  publication-title: J Immunol
– volume: 5
  start-page: 730
  year: 2004
  end-page: 7
  article-title: The RNA helicase RIG‐I has an essential function in double‐stranded RNA‐induced innate antiviral responses
  publication-title: Nat Immunol
– volume: 60
  start-page: 1472
  year: 2009
  end-page: 83
  article-title: Th17 and natural Treg cell population dynamics in systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 27
  start-page: 2698
  year: 2007
  end-page: 712
  article-title: An inducible enhancer required for IL‐12β promoter activity in an insulated chromatin environment
  publication-title: Mol Cell Biol
– volume: 40
  start-page: 1725
  year: 1997
  article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 184
  start-page: 4605
  year: 2010
  end-page: 9
  article-title: IL‐23 receptor deficiency prevents the development of lupus nephritis in C57BL/6‐lpr/lpr mice
  publication-title: J Immunol
– volume: 206
  start-page: 1661
  year: 2009
  end-page: 71
  article-title: Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL‐23‐Th17 pathway
  publication-title: J Exp Med
– volume: 6
  start-page: 1123
  year: 2005
  end-page: 32
  article-title: Interleukin 17‐producing CD4 effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages
  publication-title: Nat Immunol
– volume: 11
  start-page: 665
  year: 1999
  end-page: 75
  article-title: Rapid and selective remodeling of a positioned nucleosome during the induction of IL‐12 p40 transcription
  publication-title: Immunity
– volume: 202
  start-page: 96
  year: 2004
  end-page: 105
  article-title: IL‐12 and IL‐23: master regulators of innate and adaptive immunity
  publication-title: Immunol Rev
– volume: 62
  start-page: 1043
  year: 2010
  end-page: 50
  article-title: Interleukin‐23 promotes Th17 differentiation by inhibiting T‐bet and FoxP3 and is required for elevation of interleukin‐22, but not interleukin‐21, in autoimmune experimental arthritis
  publication-title: Arthritis Rheum
– volume: 37
  start-page: 2046
  year: 2010
  end-page: 52
  article-title: The relation of interleukin 17 (IL‐17) and IL‐23 to Th1/Th2 cytokines and disease activity in systemic lupus erythematosus
  publication-title: J Rheumatol
– volume: 25
  start-page: 402
  year: 2001
  end-page: 8
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 method
  publication-title: Methods
– volume: 6
  start-page: 1133
  year: 2005
  end-page: 41
  article-title: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17
  publication-title: Nat Immunol
– volume: 413
  start-page: 732
  year: 2001
  end-page: 8
  article-title: Recognition of double‐stranded RNA and activation of NF‐κB by Toll‐like receptor 3
  publication-title: Nature
– volume: 183
  start-page: 3160
  year: 2009
  end-page: 9
  article-title: The role of IL‐23/IL‐17 axis in lupus nephriti
  publication-title: J Immunol
– volume: 201
  start-page: 233
  year: 2010
  end-page: 40
  article-title: IL‐23 drives a pathogenic T cell population that induces autoimmune inflammation
  publication-title: J Exp Med
– volume: 181
  start-page: 4523
  year: 2008
  end-page: 33
  article-title: Promoter analysis reveals critical roles for SMAD‐3 and ATF‐2 in expression of IL‐23 p19 in macrophages
  publication-title: J Immunol
– volume: 31
  start-page: 235
  year: 2008
  end-page: 44
  article-title: LPS and poly I:C induce chromatin modification at a novel upstream region of the IL‐23 p19 promoter
  publication-title: Inflammation
– ident: e_1_2_6_3_2
  doi: 10.1016/S1074-7613(00)00070-4
– ident: e_1_2_6_12_2
  doi: 10.3899/jrheum.100293
– ident: e_1_2_6_13_2
  doi: 10.1002/art.24499
– ident: e_1_2_6_6_2
  doi: 10.1038/ni1261
– ident: e_1_2_6_9_2
  doi: 10.4049/jimmunol.176.12.7768
– ident: e_1_2_6_7_2
  doi: 10.1038/ni1254
– ident: e_1_2_6_10_2
  doi: 10.1136/gut.52.1.65
– ident: e_1_2_6_19_2
  doi: 10.1016/S1074-7613(00)80141-7
– ident: e_1_2_6_21_2
  doi: 10.4049/jimmunol.181.7.4523
– ident: e_1_2_6_22_2
  doi: 10.1084/jem.20090585
– ident: e_1_2_6_14_2
  doi: 10.4049/jimmunol.181.12.8761
– ident: e_1_2_6_25_2
  doi: 10.1038/35099560
– ident: e_1_2_6_15_2
  doi: 10.4049/jimmunol.0903595
– ident: e_1_2_6_28_2
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_6_17_2
  doi: 10.1007/s10753-008-9070-6
– ident: e_1_2_6_26_2
  doi: 10.1093/jnci/81.19.1492
– ident: e_1_2_6_23_2
  doi: 10.4049/jimmunol.181.3.1780
– ident: e_1_2_6_16_2
  doi: 10.1189/jlb.0808503
– ident: e_1_2_6_27_2
  doi: 10.1002/art.1780400928
– ident: e_1_2_6_29_2
  doi: 10.1084/jem.20021996
– ident: e_1_2_6_24_2
  doi: 10.1038/ni1087
– ident: e_1_2_6_5_2
  doi: 10.1002/art.27336
– ident: e_1_2_6_8_2
  doi: 10.1111/j.1365-3083.2009.02361.x
– ident: e_1_2_6_4_2
  doi: 10.1111/j.0105-2896.2004.00214.x
– ident: e_1_2_6_18_2
  doi: 10.4049/jimmunol.178.1.186
– ident: e_1_2_6_11_2
  doi: 10.1016/j.clim.2008.01.019
– ident: e_1_2_6_20_2
  doi: 10.1128/MCB.00788-06
– ident: e_1_2_6_30_2
  doi: 10.4049/jimmunol.0900385
– volume: 201
  start-page: 233
  year: 2010
  ident: e_1_2_6_2_2
  article-title: IL‐23 drives a pathogenic T cell population that induces autoimmune inflammation
  publication-title: J Exp Med
  doi: 10.1084/jem.20041257
SSID ssj0002353
ssj0000970605
Score 2.2014773
Snippet Objective To examine the role of interferon regulatory factor 3 (IRF‐3) in the regulation of interleukin‐23 (IL‐23) production in patients with systemic lupus...
To examine the role of interferon regulatory factor 3 (IRF-3) in the regulation of interleukin-23 (IL-23) production in patients with systemic lupus...
Objective To examine the role of interferon regulatory factor 3 (IRF-3) in the regulation of interleukin-23 (IL-23) production in patients with systemic lupus...
SourceID swepub
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1601
SubjectTerms Animals
Biological and medical sciences
Bone Marrow Cells - drug effects
Bone Marrow Cells - metabolism
Chromatin Immunoprecipitation
Disease Models, Animal
Diseases of the osteoarticular system
Female
Gene Expression Regulation
Genes
Humans
Interferon Regulatory Factor-3 - genetics
Interferon Regulatory Factor-3 - metabolism
Interleukin-23 Subunit p19 - genetics
Interleukin-23 Subunit p19 - metabolism
Kinases
Lupus
Lupus Erythematosus, Systemic - metabolism
Macrophages - drug effects
Macrophages - metabolism
Male
Medical sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Monocytes - metabolism
Poly I-C - pharmacology
Protein Array Analysis - methods
Protein Binding
Protein-Serine-Threonine Kinases - pharmacology
Sarcoidosis. Granulomatous diseases of unproved etiology. Connective tissue diseases. Elastic tissue diseases. Vasculitis
Toll-Like Receptor 3 - immunology
Title Enhanced interferon regulatory factor 3 binding to the interleukin-23p19 promoter correlates with enhanced interleukin-23 expression in systemic lupus erythematosus
URI https://api.istex.fr/ark:/67375/WNG-WR83K76S-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.33494
https://www.ncbi.nlm.nih.gov/pubmed/22127978
https://www.proquest.com/docview/1517107895
https://www.proquest.com/docview/1010232108
http://kipublications.ki.se/Default.aspx?queryparsed=id:124526804
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEB9KBfFF6__YeqwixZdc73bzF59EWqulfajW9kFYkr1dPO5IjuQCrU9-BD-Gn8tP4sxukvOkgvhwEDKzF3aYnf3NZvIbgBfGqARxt_EFjzFBmejQz0bCYM6jMRrGSkeW8eb4JDo8C95fhBcb8Kr7FsbxQ_QHbrQybLymBZ7l9d6KNBQtOxREroLxl2q1CBCdrqijuGgZKOnkP0zHHavQiO_1I9f2ohtk1kuqjcxqNI9xfS2uA549q-g6oLU70sEd-NzNxRWizIbNMh-qr3_QPP7nZLfgdotU2WvnWndhQxf34OZx-y7-PvzYL77Y8gFGlBOV0VVZsMq1ti-rK-Y6-TDB8qn9coYtS4Zo02nPdTObFj-_fediMU7ZwhYF6oopahYyJ_zL6ISY6bVn_DaK6cu2hLdAGXOE1FPF5s2iqZmurhwbbVk39QM4O9j_-ObQb_s--CoI08DHn8q5CrMJwkHcOxETUpf2HLFrqlCkI0R5KolzPhEBVyLF2wkm-bERMQYwJR7CZlEW-jGwbKI5gdDIZCZQAbH_xSMVJeMsxbwv5B687DxAqpYUnXpzzKWjc-YSLS-t5T143qsuHBPIdUq71o16jayaUelcHMrzk7fy_DQRR3H0QX7yYLDmZ_0AHiKCRIzgwU7neLINK7Uckz2oQUDowbNejAGB3vJkhS6bmmr20Pkxk088eOQcdvXnxOefxijZdR7cS4hlvL01wystEcljZor2sW759xlLzLvsxZN_V92GW4g7uasb3YHNZdXop4jtlvkAF_G7o4Fdyr8AdaBOiA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VVgIu5Z8aSlkQqrgkTXb9K3FBqCXQJofS0l6qlb1ZiyiRHdmx1HLiEXgMnosnYWbXdggqEuIQyfLMJtrJ7Ow36_E3AK_SVIWIu9OO4AEmKGPtdeKeSDHn0RgNA6V9w3gzHPmDU_fjuXe-Bm-ad2EsP0R74EYrw8RrWuB0IL23ZA1F03YFsavcgA3q6G0SquMleRQXNQclnf17Ub_hFerxvXboym60QYa9pOrIuEQDpbazxXXQs-UVXYW0Zk86uAMXzWxsKcq0Wy2Srvr6B9Hj_073LmzWYJW9td51D9Z0dh9uDuvH8Q_gx372xVQQMGKdKFJd5BkrbHf7vLhitpkPEyyZmJdn2CJnCDit9kxX00n289t3Lub9iM1NXaAumKJ-ITOCwIwOiZle-Y3fRjF9WVfxZihjlpN6otismlcl08WVJaTNy6p8CKcH-yfvBp269UNHuV7kdvCjEq68eIyIELdPhIXUqD1B-BopFGn8v10VBgkfC5crEeHtEPP8IBUBxjAlHsF6lmd6C1g81pxwqJ_GqatcIgAMesoP-3GEqZ_HHXjduIBUNS86teeYScvozCVaXhrLO_CyVZ1bMpDrlHaNH7UacTGl6rnAk2ej9_LsOBSHgf9JfnZgZ8XR2gHcQxCJMMGB7cbzZB1ZStkne1CPAM-BF60YYwI96IkznVclle2h92MyHzrw2Hrs8suJ0j8KULJrXbiVENF4fWuKV1oimMfkFO1j_PLvM5aYepmLJ_-u-hxuDU6GR_Low-jwKdxGGMptGek2rC-KSj9DqLdIdsyK_gU7_VGq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VVqq48P9jKGVBqOLiNNn1rzgh2lAojVChtAeklb1ZiyiRHdmx1HLiEXgMnosnYWbXdggqEuIQyfLMxtrR7Ow36_E3AM-yTEWIuzNX8BATlLH23aQvMsx5NEbDUOnAMN4cjYKDE-_tmX-2Bi_ab2EsP0R34EYrw8RrWuDzcba7JA1Fy_YEkatcgQ0v6Efk0nvHS-4oLhoKSjr69-NBSyvU57vd0JXNaIPsek7FkUmF9slsY4vLkGdHK7qKaM2WNLwOn9vJ2EqUaa9epD319Q-ex_-c7Q241kBV9tL61k1Y0_kt2DxqXsbfhh_7-RdTP8CIc6LMdFnkrLS97YvygtlWPkywdGI-nWGLgiHctNozXU8n-c9v37mYD2I2N1WBumSKuoXMCAAzOiJmeuUZv41i-ryp4c1Rxiwj9USxWT2vK6bLC0tHW1R1dQdOhvsfXx24TeMHV3l-7Ln4UylXfjJGPIibJ4JCatOeIniNFYp0gDBPRWHKx8LjSsR4O8IsP8xEiBFMibuwnhe5vg8sGWtOKDTIksxTHtH_hX0VRIMkxsTP5w48bz1AqoYVnZpzzKTlc-YSLS-N5R142qnOLRXIZUo7xo06jaScUu1c6MvT0Wt5ehyJwzD4ID85sL3iZ90A7iOERJDgwFbreLKJK5UckD2oQ4DvwJNOjBGBXvMkuS7qior20PkxlY8cuGcddvnnROgfhyjZsR7cSYhmvLk1xSstEcpjaor2MW759xlLTLzMxYN_V30Mm-_3hvLdm9HhQ7iKGJTbGtItWF-UtX6EOG-Rbpv1_As3kVBi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+interferon+regulatory+factor+3+binding+to+the+interleukin-23p19+promoter+correlates+with+enhanced+interleukin-23+expression+in+systemic+lupus+erythematosus&rft.jtitle=Arthritis+and+rheumatism&rft.au=Smith%2C+S&rft.au=Gabhann%2C+JN&rft.au=Higgs%2C+R&rft.au=Stacey%2C+K&rft.date=2012-05-01&rft.issn=0004-3591&rft.volume=64&rft.issue=5&rft.spage=1601&rft_id=info:doi/10.1002%2Fart.33494&rft.externalDocID=oai_swepub_ki_se_540428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3591&client=summon