Free-running 4D whole-heart self-navigated golden angle MRI: Initial results

Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D) acquisition. Methods A free‐running 4D whole‐heart self‐navigated acquisition incorporating a golden angle radial trajectory was implemented and test...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 74; no. 5; pp. 1306 - 1316
Main Authors Coppo, Simone, Piccini, Davide, Bonanno, Gabriele, Chaptinel, Jérôme, Vincenti, Gabriella, Feliciano, Hélène, van Heeswijk, Ruud B., Schwitter, Juerg, Stuber, Matthias
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25523

Cover

Loading…
Abstract Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D) acquisition. Methods A free‐running 4D whole‐heart self‐navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self‐navigated electrocardiography (ECG) ‐triggered coronary MRA. From the 4D datasets, the left‐ventricular end‐systolic, end‐diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. Results The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm3. Coronary artery image quality was very similar to that of the ECG‐triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. Conclusion The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306–1316, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D) acquisition. Methods A free‐running 4D whole‐heart self‐navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self‐navigated electrocardiography (ECG) ‐triggered coronary MRA. From the 4D datasets, the left‐ventricular end‐systolic, end‐diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. Results The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm3. Coronary artery image quality was very similar to that of the ECG‐triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. Conclusion The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306–1316, 2015. © 2014 Wiley Periodicals, Inc.
To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence.
To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition.PURPOSETo test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition.A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images.METHODSA free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images.The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF.RESULTSThe 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF.The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence.CONCLUSIONThe hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence.
Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. Methods A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. Results The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm super(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. Conclusion The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306-1316, 2015.
Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. Methods A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. Results The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm3. Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. Conclusion The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306-1316, 2015. © 2014 Wiley Periodicals, Inc.
Author Chaptinel, Jérôme
Stuber, Matthias
Coppo, Simone
Bonanno, Gabriele
Piccini, Davide
Feliciano, Hélène
van Heeswijk, Ruud B.
Schwitter, Juerg
Vincenti, Gabriella
Author_xml – sequence: 1
  givenname: Simone
  surname: Coppo
  fullname: Coppo, Simone
  organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
– sequence: 2
  givenname: Davide
  surname: Piccini
  fullname: Piccini, Davide
  organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
– sequence: 3
  givenname: Gabriele
  surname: Bonanno
  fullname: Bonanno, Gabriele
  organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
– sequence: 4
  givenname: Jérôme
  surname: Chaptinel
  fullname: Chaptinel, Jérôme
  organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
– sequence: 5
  givenname: Gabriella
  surname: Vincenti
  fullname: Vincenti, Gabriella
  organization: Department of Cardiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
– sequence: 6
  givenname: Hélène
  surname: Feliciano
  fullname: Feliciano, Hélène
  organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
– sequence: 7
  givenname: Ruud B.
  surname: van Heeswijk
  fullname: van Heeswijk, Ruud B.
  organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
– sequence: 8
  givenname: Juerg
  surname: Schwitter
  fullname: Schwitter, Juerg
  organization: Department of Cardiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
– sequence: 9
  givenname: Matthias
  surname: Stuber
  fullname: Stuber, Matthias
  email: mstuber.mri@gmail.com
  organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25376772$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEURi1URNPCghdAI7GBhVv_jsfsUCElKAEpAsHOcmfupC4eT7E9lL49LklYVCCxsq51zifd-x2hgzAGQOgpJSeUEHY6xOGEScn4AzSjkjHMpBYHaEaUIJhTLQ7RUUpXhBCtlXiEDpnkqlaKzdByHgFwnEJwYVOJN9XN5egBX4KNuUrgexzsD7exGbpqM_oOQmXDxkO1Wi9eVYvgsrO-ipAmn9Nj9LC3PsGT3XuMPs_ffjp7h5cfzxdnr5e4FVJz3HNxwbmkjW5qVbdMsYYT3pFeCdUBt8A6WUPN-74pHxqIqFnDelC2zFQDP0YvtrnXcfw-QcpmcKkF722AcUqGKl4E0ojmP1CmBJea1gV9fg-9GqcYyiJ3lOSSNFoX6tmOmi4G6Mx1dIONt2Z_0gKcboE2jilF6E3rss1uDDla5w0l5q40U0ozv0srxst7xj70b-wu_cZ5uP03aFbr1d7AW8OlDD__GDZ-M7XiSpovH87NV6XJej5_b1b8F3s9sVg
CODEN MRMEEN
CitedBy_id crossref_primary_10_1016_j_mri_2024_07_008
crossref_primary_10_1002_mrm_28221
crossref_primary_10_1002_mrm_28267
crossref_primary_10_1002_mrm_28101
crossref_primary_10_15212_CVIA_2016_0058
crossref_primary_10_1002_mrm_30469
crossref_primary_10_1109_TBME_2017_2764111
crossref_primary_10_1002_mrm_27898
crossref_primary_10_3390_s20195680
crossref_primary_10_1016_j_jocmr_2024_101006
crossref_primary_10_1002_mrm_26764
crossref_primary_10_1016_j_hfc_2020_08_001
crossref_primary_10_1016_j_zemedi_2022_01_003
crossref_primary_10_1016_j_mri_2016_12_021
crossref_primary_10_1002_mrm_26273
crossref_primary_10_1016_j_mri_2020_09_026
crossref_primary_10_1002_nbm_3874
crossref_primary_10_1002_mrm_29023
crossref_primary_10_1002_mrm_29144
crossref_primary_10_1007_s10334_017_0624_1
crossref_primary_10_1002_nbm_4409
crossref_primary_10_1002_mrm_26117
crossref_primary_10_1016_j_jocmr_2025_101854
crossref_primary_10_1016_j_jcmg_2015_12_003
crossref_primary_10_1016_j_mri_2020_06_008
crossref_primary_10_1016_j_jocmr_2024_101037
crossref_primary_10_1016_j_pnmrs_2025_101561
crossref_primary_10_3390_diagnostics14171946
crossref_primary_10_1371_journal_pone_0304612
crossref_primary_10_1002_mp_17188
crossref_primary_10_1002_mrm_30322
crossref_primary_10_1002_mrm_30323
crossref_primary_10_1002_mrm_29892
crossref_primary_10_1002_mrm_26221
crossref_primary_10_1002_mrm_27353
crossref_primary_10_1186_s12968_019_0525_8
crossref_primary_10_1016_j_mri_2017_07_002
crossref_primary_10_1002_mrm_30207
crossref_primary_10_3938_jkps_73_138
crossref_primary_10_1002_mrm_26942
crossref_primary_10_1002_mrm_25898
crossref_primary_10_1002_mrm_26503
crossref_primary_10_1002_mrm_26745
crossref_primary_10_1002_jmri_28187
crossref_primary_10_1002_mrm_29613
crossref_primary_10_1007_s10334_017_0607_2
crossref_primary_10_1002_mrm_29698
crossref_primary_10_1002_mrm_26665
crossref_primary_10_1002_mrm_27830
crossref_primary_10_1002_mrm_29853
crossref_primary_10_1007_s10334_016_0598_4
crossref_primary_10_22468_cvia_2016_00066
crossref_primary_10_1007_s10334_016_0550_7
crossref_primary_10_1002_jmri_25150
crossref_primary_10_1109_TMI_2021_3073091
crossref_primary_10_1148_radiol_2021203696
crossref_primary_10_1148_ryct_2020200219
crossref_primary_10_1002_mrm_25858
crossref_primary_10_1109_TCI_2019_2940916
crossref_primary_10_1186_s13244_019_0754_2
crossref_primary_10_1016_j_mri_2022_09_003
crossref_primary_10_1016_j_pneurobio_2020_101885
crossref_primary_10_1109_TMI_2019_2908140
crossref_primary_10_3389_fcvm_2021_682924
crossref_primary_10_1186_s12880_020_00478_z
crossref_primary_10_3389_fcvm_2022_826283
crossref_primary_10_1002_mrm_27021
crossref_primary_10_1002_nbm_4589
crossref_primary_10_1002_mrm_26171
crossref_primary_10_1186_s12968_022_00871_3
crossref_primary_10_1002_mrm_29680
crossref_primary_10_1007_s10334_020_00859_z
crossref_primary_10_1016_j_jcmg_2020_01_006
crossref_primary_10_1016_j_semarthrit_2017_03_020
crossref_primary_10_1002_mrm_28119
crossref_primary_10_1002_mrm_28713
crossref_primary_10_1002_mrm_27942
crossref_primary_10_1002_mrm_27945
crossref_primary_10_1002_mrm_28835
crossref_primary_10_1002_mrm_26332
crossref_primary_10_1002_mrm_26730
crossref_primary_10_1007_s00330_017_5035_1
crossref_primary_10_1002_mrm_29204
crossref_primary_10_1161_CIRCRESAHA_115_306247
crossref_primary_10_1038_s41598_020_70551_8
Cites_doi 10.1002/mrm.21617
10.1161/01.CIR.51.4.5
10.1371/journal.pone.0089315
10.1002/jmri.21278
10.1002/jmri.20877
10.1002/mrm.24628
10.1148/radiol.13132045
10.1002/mrm.20024
10.1161/01.CIR.99.24.3139
10.1016/j.mri.2011.02.011
10.1081/JCMR-120038086
10.1002/mrm.24652
10.1002/mrm.23247
10.1148/radiol.2482071568
10.1007/s00330-009-1522-3
10.1002/mrm.1910150211
10.1002/jmri.22269
10.1002/mrm.10253
10.1002/mrm.20557
10.1002/mrm.10171
10.1161/CIRCIMAGING.112.974972
10.1002/mrm.21522
10.1002/jmri.21056
10.1148/radiology.212.2.r99au50579
10.1002/jmri.22140
10.1002/mrm.22898
10.1002/mrm.24683
10.1002/mrm.24346
10.1088/0031-9155/30/4/008
10.1186/1532-429X-16-S1-O18
10.1615/CritRevBiomedEng.v40.i2.20
10.1002/mrm.22306
10.1002/mrm.25450
10.1002/mrm.24633
10.1002/mrm.21365
10.1002/jmri.10078
10.1097/RLI.0b013e31817ed1ff
10.1016/j.jacc.2009.03.016
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25523
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Engineering Research Database
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1316
ExternalDocumentID 3844422411
25376772
10_1002_mrm_25523
MRM25523
ark_67375_WNG_X790RFFJ_M
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 320030_143923
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4593-f34b3351898676c2728303d0f747de3ae2d56e63ff847d9e046282fe7a84719e3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 13:32:43 EDT 2025
Thu Jul 10 18:55:15 EDT 2025
Fri Jul 25 12:18:38 EDT 2025
Mon Jul 21 05:57:35 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Tue Jul 01 01:20:57 EDT 2025
Wed Jan 22 16:26:14 EST 2025
Wed Oct 30 09:54:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords radial
coronary
whole heart
four dimensional
function
self-navigation
cardiac
golden angle
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4593-f34b3351898676c2728303d0f747de3ae2d56e63ff847d9e046282fe7a84719e3
Notes ark:/67375/WNG-X790RFFJ-M
istex:9FC493E538E1C11E6B46886315DD138409051605
ArticleID:MRM25523
Swiss National Science Foundation - No. 320030_143923
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25523
PMID 25376772
PQID 1725350899
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_1732820848
proquest_miscellaneous_1727435916
proquest_journals_1725350899
pubmed_primary_25376772
crossref_citationtrail_10_1002_mrm_25523
crossref_primary_10_1002_mrm_25523
wiley_primary_10_1002_mrm_25523_MRM25523
istex_primary_ark_67375_WNG_X790RFFJ_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11
November 2015
2015-11-00
2015-Nov
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Zheng J, Li D, Bae KT, Haacke EM, Woodard PK. 3D Gadolinium enhanced coronary MRA: initial experience. Proc Soc Magn Reson Med 1998;2:853.
Haase A, Frahm J, Hanicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 1985;30:341-344.
Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang ZP. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 2008;59:571-580.
Liu J, Spincemaille P, Codella NC, Nguyen TD, Prince MR, Wang Y. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 2010;63:1230-1237.
Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, Li D. ECG and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med 2014;72:1208-1217.
Pang J, Bhat H, Sharif B, Fan Z, Thomson LE, LaBounty T, Friedman JD, Min J, Berman DS, Li D. Whole-heart coronary MRA with 100% respiratory gating efficiency: self-navigated three-dimensional retrospective image-based motion correction (TRIM). Magn Reson Med 2014;71:67-74.
Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M. Coronary MR angiography at 3T during diastole and systole. J Magn Reson Imaging 2007;26:921-926.
Akcakaya M, Basha TA, Chan RH, Manning WJ, Nezafat R. Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging. Magn Reson Med 2014;71:815-822.
Eberle HC, Nassenstein K, Jensen CJ, Schlosser T, Sabin GV, Naber CK, Bruder O. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol 2010;20:73-80.
Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 2004;51:799-806.
Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 2012;68:571-579.
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.
Liu J, Wieben O, Jung Y, Samsonov AA, Reeder SB, Block WF. Single breathhold cardiac CINE imaging with multi-echo three-dimensional hybrid radial SSFP acquisition. J Magn Reson Imaging 2010;32:434-440.
Yang Q, Li K, Liu X, Bi X, Liu Z, An J, Zhang A, Jerecic R, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 2009;54:69-76.
Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med 1990;15:287-304.
Yang Q, Li K, Liu X, et al. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging 2012;5:573-579.
Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 2005;54:476-480.
Lai P, Larson AC, Park J, Carr JC, Li D. Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med 2008;59:1378-1385.
Spincemaille P, Liu J, Nguyen T, Prince MR, Wang Y. Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging. Magn Reson Imaging 2011;29:861-868.
Jahnke C, Nagel E, Gebker R, Bornstedt A, Schnackenburg B, Kozerke S, Fleck E, Paetsch I. Four-dimensional single breathhold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging 2007;25:737-742.
Coppo S, Piccini D, Chaptinel J, Bonanno G, Stuber M. Dynamic self-navigated 3D whole-heart radial coronary MRA with retrospective acquisition window selection. J Cardiovasc Magn Reson 2014;16(Suppl. 1):O18.
Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN. Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson 2004;6:663-673.
Lai P, Huang F, Larson AC, Li D. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging 2008;27:659-665.
Liu J, Nguyen TD, Zhu Y, Spincemaille P, Prince MR, Weinsaft JW, Saloner D, Wang Y. Self-gated free-breathing 3D coronary CINE imaging with simultaneous water and fat visualization. PLoS One 2014;9:e89315.
Henningsson M, Prieto C, Chiribiri A, Vaillant G, Razavi R, Botnar RM. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation. Magn Reson Med 2014;71:173-181.
Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975;51(Suppl.):5-40.
Etienne A, Botnar RM, Van Muiswinkel AM, Boesiger P, Manning WJ, Stuber M. "Soap-Bubble" visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 2002;48:658-666.
Uribe S, Tangchaoren T, Parish V, Wolf I, Razavi R, Greil G, Schaeffter T. Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology 2008;248:606-614.
Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 2008;43:663-668.
Moran CJ, Brodsky EK, Bancroft LH, Reeder SB, Yu H, Kijowski R, Engel D, Block WF. High-resolution 3D radial bSSFP with IDEAL. Magn Reson Med 2014;71:95-104.
van Heeswijk RB, Bonanno G, Coppo S, Coristine A, Kober T, Stuber M. Motion compensation strategies in magnetic resonance imaging. Crit Rev Biomed Eng 2012;40:99-119.
Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 1999;212:579-587.
Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 1999;99:3139-3148.
Kressler B, Spincemaille P, Nguyen TD, Cheng L, Xi Hai Z, Prince MR, Wang Y. Three-dimensional cine imaging using variable-density spiral trajectories and SSFP with application to coronary artery angiography. Magn Reson Med 2007;58:535-543.
Xie J, Lai P, Bhat H, Li D. Whole-heart coronary magnetic resonance angiography at 3.0T using short-TR steady-state free precession, vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging 2010;31:1230-1235.
Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 2011;66:1049-1056.
Wu HH, Gurney PT, Hu BS, Nishimura DG, McConnell MV. Free-breathing multiphase whole-heart coronary MR angiography using image-based navigators and three-dimensional cones imaging. Magn Reson Med 2013;69:1083-1093.
Piccini D, Monney P, Sierro C, et al. Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients. Radiology 2014;270:378-386.
Bornert P, Stuber M, Botnar RM, Kissinger KV, Manning WJ. Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography. J Magn Reson Imaging 2002;15:462-466.
2010; 32
2010; 31
2002; 15
2013; 69
1990; 15
2008; 59
2004; 6
2008; 248
2014; 270
1975; 51
2010; 63
2007; 58
2002; 47
2010; 20
2002; 48
2004; 51
2009; 54
2008; 27
2014; 16
2011; 66
1999; 99
2005; 54
1999; 212
2008; 43
1985; 30
1998; 2
2014; 9
2012; 68
2014; 72
2014; 71
2011; 29
2012; 5
2007; 25
2007; 26
2012; 40
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
Zheng J (e_1_2_5_35_1) 1998; 2
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – reference: Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 2012;68:571-579.
– reference: Bornert P, Stuber M, Botnar RM, Kissinger KV, Manning WJ. Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography. J Magn Reson Imaging 2002;15:462-466.
– reference: Yang Q, Li K, Liu X, Bi X, Liu Z, An J, Zhang A, Jerecic R, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 2009;54:69-76.
– reference: Moran CJ, Brodsky EK, Bancroft LH, Reeder SB, Yu H, Kijowski R, Engel D, Block WF. High-resolution 3D radial bSSFP with IDEAL. Magn Reson Med 2014;71:95-104.
– reference: Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med 1990;15:287-304.
– reference: Eberle HC, Nassenstein K, Jensen CJ, Schlosser T, Sabin GV, Naber CK, Bruder O. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol 2010;20:73-80.
– reference: Coppo S, Piccini D, Chaptinel J, Bonanno G, Stuber M. Dynamic self-navigated 3D whole-heart radial coronary MRA with retrospective acquisition window selection. J Cardiovasc Magn Reson 2014;16(Suppl. 1):O18.
– reference: Henningsson M, Prieto C, Chiribiri A, Vaillant G, Razavi R, Botnar RM. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation. Magn Reson Med 2014;71:173-181.
– reference: Liu J, Wieben O, Jung Y, Samsonov AA, Reeder SB, Block WF. Single breathhold cardiac CINE imaging with multi-echo three-dimensional hybrid radial SSFP acquisition. J Magn Reson Imaging 2010;32:434-440.
– reference: Xie J, Lai P, Bhat H, Li D. Whole-heart coronary magnetic resonance angiography at 3.0T using short-TR steady-state free precession, vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging 2010;31:1230-1235.
– reference: Lai P, Larson AC, Park J, Carr JC, Li D. Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med 2008;59:1378-1385.
– reference: Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M. Coronary MR angiography at 3T during diastole and systole. J Magn Reson Imaging 2007;26:921-926.
– reference: Haase A, Frahm J, Hanicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 1985;30:341-344.
– reference: Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN. Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson 2004;6:663-673.
– reference: Etienne A, Botnar RM, Van Muiswinkel AM, Boesiger P, Manning WJ, Stuber M. "Soap-Bubble" visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 2002;48:658-666.
– reference: Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210.
– reference: Jahnke C, Nagel E, Gebker R, Bornstedt A, Schnackenburg B, Kozerke S, Fleck E, Paetsch I. Four-dimensional single breathhold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging 2007;25:737-742.
– reference: Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975;51(Suppl.):5-40.
– reference: Liu J, Nguyen TD, Zhu Y, Spincemaille P, Prince MR, Weinsaft JW, Saloner D, Wang Y. Self-gated free-breathing 3D coronary CINE imaging with simultaneous water and fat visualization. PLoS One 2014;9:e89315.
– reference: Uribe S, Tangchaoren T, Parish V, Wolf I, Razavi R, Greil G, Schaeffter T. Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology 2008;248:606-614.
– reference: Kressler B, Spincemaille P, Nguyen TD, Cheng L, Xi Hai Z, Prince MR, Wang Y. Three-dimensional cine imaging using variable-density spiral trajectories and SSFP with application to coronary artery angiography. Magn Reson Med 2007;58:535-543.
– reference: Lai P, Huang F, Larson AC, Li D. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging 2008;27:659-665.
– reference: van Heeswijk RB, Bonanno G, Coppo S, Coristine A, Kober T, Stuber M. Motion compensation strategies in magnetic resonance imaging. Crit Rev Biomed Eng 2012;40:99-119.
– reference: Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 1999;212:579-587.
– reference: Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 2004;51:799-806.
– reference: Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang ZP. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 2008;59:571-580.
– reference: Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 2008;43:663-668.
– reference: Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 1999;99:3139-3148.
– reference: Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 2011;66:1049-1056.
– reference: Yang Q, Li K, Liu X, et al. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging 2012;5:573-579.
– reference: Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 2005;54:476-480.
– reference: Spincemaille P, Liu J, Nguyen T, Prince MR, Wang Y. Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging. Magn Reson Imaging 2011;29:861-868.
– reference: Akcakaya M, Basha TA, Chan RH, Manning WJ, Nezafat R. Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging. Magn Reson Med 2014;71:815-822.
– reference: Liu J, Spincemaille P, Codella NC, Nguyen TD, Prince MR, Wang Y. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 2010;63:1230-1237.
– reference: Zheng J, Li D, Bae KT, Haacke EM, Woodard PK. 3D Gadolinium enhanced coronary MRA: initial experience. Proc Soc Magn Reson Med 1998;2:853.
– reference: Wu HH, Gurney PT, Hu BS, Nishimura DG, McConnell MV. Free-breathing multiphase whole-heart coronary MR angiography using image-based navigators and three-dimensional cones imaging. Magn Reson Med 2013;69:1083-1093.
– reference: Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, Li D. ECG and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med 2014;72:1208-1217.
– reference: Piccini D, Monney P, Sierro C, et al. Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients. Radiology 2014;270:378-386.
– reference: Pang J, Bhat H, Sharif B, Fan Z, Thomson LE, LaBounty T, Friedman JD, Min J, Berman DS, Li D. Whole-heart coronary MRA with 100% respiratory gating efficiency: self-navigated three-dimensional retrospective image-based motion correction (TRIM). Magn Reson Med 2014;71:67-74.
– volume: 51
  start-page: 5
  issue: Suppl.
  year: 1975
  end-page: 40
  article-title: A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association
  publication-title: Circulation
– volume: 30
  start-page: 341
  year: 1985
  end-page: 344
  article-title: 1H NMR chemical shift selective (CHESS) imaging
  publication-title: Phys Med Biol
– volume: 71
  start-page: 95
  year: 2014
  end-page: 104
  article-title: High‐resolution 3D radial bSSFP with IDEAL
  publication-title: Magn Reson Med
– volume: 63
  start-page: 1230
  year: 2010
  end-page: 1237
  article-title: Respiratory and cardiac self‐gated free‐breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition
  publication-title: Magn Reson Med
– volume: 58
  start-page: 535
  year: 2007
  end-page: 543
  article-title: Three‐dimensional cine imaging using variable‐density spiral trajectories and SSFP with application to coronary artery angiography
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1049
  year: 2011
  end-page: 1056
  article-title: Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI
  publication-title: Magn Reson Med
– volume: 16
  start-page: O18
  issue: Suppl. 1
  year: 2014
  article-title: Dynamic self‐navigated 3D whole‐heart radial coronary MRA with retrospective acquisition window selection
  publication-title: J Cardiovasc Magn Reson
– volume: 43
  start-page: 663
  year: 2008
  end-page: 668
  article-title: Contrast‐enhanced whole‐heart coronary magnetic resonance angiography at 3.0 T: comparison with steady‐state free precession technique at 1.5 T
  publication-title: Invest Radiol
– volume: 99
  start-page: 3139
  year: 1999
  end-page: 3148
  article-title: Improved coronary artery definition with T2‐weighted, free‐breathing, three‐dimensional coronary MRA
  publication-title: Circulation
– volume: 59
  start-page: 1378
  year: 2008
  end-page: 1385
  article-title: Respiratory self‐gated four‐dimensional coronary MR angiography: a feasibility study
  publication-title: Magn Reson Med
– volume: 31
  start-page: 1230
  year: 2010
  end-page: 1235
  article-title: Whole‐heart coronary magnetic resonance angiography at 3.0T using short‐TR steady‐state free precession, vastly undersampled isotropic projection reconstruction
  publication-title: J Magn Reson Imaging
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 212
  start-page: 579
  year: 1999
  end-page: 587
  article-title: Submillimeter three‐dimensional coronary MR angiography with real‐time navigator correction: comparison of navigator locations
  publication-title: Radiology
– volume: 270
  start-page: 378
  year: 2014
  end-page: 386
  article-title: Respiratory self‐navigated postcontrast whole‐heart coronary MR angiography: initial experience in patients
  publication-title: Radiology
– volume: 6
  start-page: 663
  year: 2004
  end-page: 673
  article-title: Three‐dimensional, time‐resolved motion of the coronary arteries
  publication-title: J Cardiovasc Magn Reson
– volume: 2
  start-page: 853
  year: 1998
  article-title: 3D Gadolinium enhanced coronary MRA: initial experience
  publication-title: Proc Soc Magn Reson Med
– volume: 68
  start-page: 571
  year: 2012
  end-page: 579
  article-title: Respiratory self‐navigation for whole‐heart bright‐blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool
  publication-title: Magn Reson Med
– volume: 248
  start-page: 606
  year: 2008
  end-page: 614
  article-title: Volumetric cardiac quantification by using 3D dual‐phase whole‐heart MR imaging
  publication-title: Radiology
– volume: 5
  start-page: 573
  year: 2012
  end-page: 579
  article-title: 3.0T whole‐heart coronary magnetic resonance angiography performed with 32‐channel cardiac coils: a single‐center experience
  publication-title: Circ Cardiovasc Imaging
– volume: 48
  start-page: 658
  year: 2002
  end-page: 666
  article-title: “Soap‐Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms
  publication-title: Magn Reson Med
– volume: 40
  start-page: 99
  year: 2012
  end-page: 119
  article-title: Motion compensation strategies in magnetic resonance imaging
  publication-title: Crit Rev Biomed Eng
– volume: 27
  start-page: 659
  year: 2008
  end-page: 665
  article-title: Fast four‐dimensional coronary MR angiography with k‐t GRAPPA
  publication-title: J Magn Reson Imaging
– volume: 25
  start-page: 737
  year: 2007
  end-page: 742
  article-title: Four‐dimensional single breathhold magnetic resonance imaging using kt‐BLAST enables reliable assessment of left‐ and right‐ventricular volumes and mass
  publication-title: J Magn Reson Imaging
– volume: 20
  start-page: 73
  year: 2010
  end-page: 80
  article-title: Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath‐hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide‐point modelling analysis of left ventricular function
  publication-title: Eur Radiol
– volume: 71
  start-page: 67
  year: 2014
  end-page: 74
  article-title: Whole‐heart coronary MRA with 100% respiratory gating efficiency: self‐navigated three‐dimensional retrospective image‐based motion correction (TRIM)
  publication-title: Magn Reson Med
– volume: 29
  start-page: 861
  year: 2011
  end-page: 868
  article-title: Z intensity‐weighted position self‐respiratory gating method for free‐breathing 3D cardiac CINE imaging
  publication-title: Magn Reson Imaging
– volume: 59
  start-page: 571
  year: 2008
  end-page: 580
  article-title: Joint estimation of water/fat images and field inhomogeneity map
  publication-title: Magn Reson Med
– volume: 51
  start-page: 799
  year: 2004
  end-page: 806
  article-title: Cardiac SSFP imaging at 3 Tesla
  publication-title: Magn Reson Med
– volume: 15
  start-page: 462
  year: 2002
  end-page: 466
  article-title: Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 287
  year: 1990
  end-page: 304
  article-title: Simultaneous spatial and spectral selective excitation
  publication-title: Magn Reson Med
– volume: 71
  start-page: 815
  year: 2014
  end-page: 822
  article-title: Accelerated isotropic sub‐millimeter whole‐heart coronary MRI: compressed sensing versus parallel imaging
  publication-title: Magn Reson Med
– volume: 72
  start-page: 1208
  year: 2014
  end-page: 1217
  article-title: ECG and navigator‐free four‐dimensional whole‐heart coronary MRA for simultaneous visualization of cardiac anatomy and function
  publication-title: Magn Reson Med
– volume: 32
  start-page: 434
  year: 2010
  end-page: 440
  article-title: Single breathhold cardiac CINE imaging with multi‐echo three‐dimensional hybrid radial SSFP acquisition
  publication-title: J Magn Reson Imaging
– volume: 54
  start-page: 476
  year: 2005
  end-page: 480
  article-title: Free‐breathing whole‐heart coronary MRA with 3D radial SSFP and self‐navigated image reconstruction
  publication-title: Magn Reson Med
– volume: 9
  start-page: e89315
  year: 2014
  article-title: Self‐gated free‐breathing 3D coronary CINE imaging with simultaneous water and fat visualization
  publication-title: PLoS One
– volume: 69
  start-page: 1083
  year: 2013
  end-page: 1093
  article-title: Free‐breathing multiphase whole‐heart coronary MR angiography using image‐based navigators and three‐dimensional cones imaging
  publication-title: Magn Reson Med
– volume: 26
  start-page: 921
  year: 2007
  end-page: 926
  article-title: Coronary MR angiography at 3T during diastole and systole
  publication-title: J Magn Reson Imaging
– volume: 71
  start-page: 173
  year: 2014
  end-page: 181
  article-title: Whole‐heart coronary MRA with 3D affine motion correction using 3D image‐based navigation
  publication-title: Magn Reson Med
– volume: 54
  start-page: 69
  year: 2009
  end-page: 76
  article-title: Contrast‐enhanced whole‐heart coronary magnetic resonance angiography at 3.0‐T: a comparative study with X‐ray angiography in a single center
  publication-title: J Am Coll Cardiol
– ident: e_1_2_5_4_1
  doi: 10.1002/mrm.21617
– ident: e_1_2_5_25_1
  doi: 10.1161/01.CIR.51.4.5
– ident: e_1_2_5_39_1
  doi: 10.1371/journal.pone.0089315
– ident: e_1_2_5_9_1
  doi: 10.1002/jmri.21278
– ident: e_1_2_5_15_1
  doi: 10.1002/jmri.20877
– ident: e_1_2_5_6_1
  doi: 10.1002/mrm.24628
– ident: e_1_2_5_23_1
  doi: 10.1148/radiol.13132045
– ident: e_1_2_5_33_1
  doi: 10.1002/mrm.20024
– ident: e_1_2_5_18_1
– ident: e_1_2_5_32_1
  doi: 10.1161/01.CIR.99.24.3139
– ident: e_1_2_5_14_1
  doi: 10.1016/j.mri.2011.02.011
– ident: e_1_2_5_28_1
  doi: 10.1081/JCMR-120038086
– ident: e_1_2_5_5_1
  doi: 10.1002/mrm.24652
– ident: e_1_2_5_3_1
  doi: 10.1002/mrm.23247
– ident: e_1_2_5_12_1
  doi: 10.1148/radiol.2482071568
– ident: e_1_2_5_16_1
  doi: 10.1007/s00330-009-1522-3
– ident: e_1_2_5_36_1
  doi: 10.1002/mrm.1910150211
– ident: e_1_2_5_17_1
  doi: 10.1002/jmri.22269
– ident: e_1_2_5_26_1
  doi: 10.1002/mrm.10253
– ident: e_1_2_5_2_1
  doi: 10.1002/mrm.20557
– ident: e_1_2_5_24_1
  doi: 10.1002/mrm.10171
– ident: e_1_2_5_29_1
  doi: 10.1161/CIRCIMAGING.112.974972
– ident: e_1_2_5_38_1
  doi: 10.1002/mrm.21522
– ident: e_1_2_5_11_1
  doi: 10.1002/jmri.21056
– ident: e_1_2_5_21_1
  doi: 10.1148/radiology.212.2.r99au50579
– ident: e_1_2_5_34_1
  doi: 10.1002/jmri.22140
– ident: e_1_2_5_19_1
  doi: 10.1002/mrm.22898
– ident: e_1_2_5_41_1
  doi: 10.1002/mrm.24683
– ident: e_1_2_5_8_1
  doi: 10.1002/mrm.24346
– ident: e_1_2_5_20_1
  doi: 10.1088/0031-9155/30/4/008
– ident: e_1_2_5_22_1
  doi: 10.1186/1532-429X-16-S1-O18
– ident: e_1_2_5_7_1
  doi: 10.1615/CritRevBiomedEng.v40.i2.20
– ident: e_1_2_5_13_1
  doi: 10.1002/mrm.22306
– ident: e_1_2_5_27_1
  doi: 10.1002/mrm.25450
– ident: e_1_2_5_40_1
  doi: 10.1002/mrm.24633
– ident: e_1_2_5_10_1
  doi: 10.1002/mrm.21365
– ident: e_1_2_5_37_1
  doi: 10.1002/jmri.10078
– ident: e_1_2_5_30_1
  doi: 10.1097/RLI.0b013e31817ed1ff
– ident: e_1_2_5_31_1
  doi: 10.1016/j.jacc.2009.03.016
– volume: 2
  start-page: 853
  year: 1998
  ident: e_1_2_5_35_1
  article-title: 3D Gadolinium enhanced coronary MRA: initial experience
  publication-title: Proc Soc Magn Reson Med
SSID ssj0009974
Score 2.4772508
Snippet Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D)...
To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. A...
Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D)...
To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D)...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1306
SubjectTerms Adult
Algorithms
cardiac
Cardiac Imaging Techniques - methods
coronary
Female
four dimensional
function
golden angle
Heart - anatomy & histology
Heart - physiology
Humans
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging - methods
Male
radial
self-navigation
Signal-To-Noise Ratio
whole heart
Young Adult
Title Free-running 4D whole-heart self-navigated golden angle MRI: Initial results
URI https://api.istex.fr/ark:/67375/WNG-X790RFFJ-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25523
https://www.ncbi.nlm.nih.gov/pubmed/25376772
https://www.proquest.com/docview/1725350899
https://www.proquest.com/docview/1727435916
https://www.proquest.com/docview/1732820848
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC1FQSAuLGEzBGQQQlw8mfRiT8MJASaJ5BwsIuaA1Grb5RzieJAXQJz4BL6RL6G67XEUFBDi5qVs91LV9dpd_QrgaYg065CCLE2ZIhBY7AYqKrNA5uTeuWCkVXaimByGe0fiYCmXG_ByvRdm4IeYfrhZy3DjtTVwk7U7Z6Shp83pjPAws0yfNlbLAqL0jDpKqYGBORJ2nFFizSo0ZzvTk-d80SXbrF8vAprncatzPPF1-Lgu8hBvcjLru2yWf_uNzfE_63QDro2A1H81aNBN2MB6C64k45L7Flx2MaJ5ewvSuEH8-f1H07s0R75443-x2XXpkk2L3fktViWd1Oaz5e3Awj9eVTSs-aY-rtBP0v0X_r6NVaLP0SS_r7r2NhzFb9-_3gvGlAxBLqTiQclFxrncXahFGIU5iyx_GC_mJc1KCuQGWSFDDHlZktcrFLqtr6zEyFgvqJDfgc16VeM98Auem1KgygkiiVKZjN4kM5S8UBkzuPDg-bpzdD7yldu0GZUemJaZptbSrrU8eDKJfhpIOi4SeuZ6eJIwzYmNaouk_nD4Ti8jNU_j-EAnHmyvVUCPBt1qwnmSS7tG6sHj6TaZol1fMTWueidDeEwS4P6bDKcGsUkMPLg7qNdUIOaodSJGNXdK8ue66CRN3MH9fxd9AFcJ7MlhH-U2bHZNjw8JUHXZI2c5vwDMWBr4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuPAq0gQIBIcQl260fyRpxQUDYLc0eolbsBVlO4vTQNIuyCSBO_AR-I7-EsfOoigpC3PKYJLYz4_nGj28Anvoaow7O0NKEyjymsz1PBHni8RTdO2UEtcoEitHcnx6x_QVfrMHLfi9Myw8xDLgZy7D9tTFwMyC9e8YaelqdjhAQE3oJNkxGbxtQxWfkUUK0HMwBMz2NYD2v0JjsDo-e80YbpmG_XgQ1zyNX63rCG_CxL3S74uRk1NTJKP32G5_j_9bqJlzvMKn7qlWiW7Cmy024EnWz7ptw2S4TTVe3IQ4rrX9-_1E1NtORy964X0yCXbxkMmPX7koXOZ6U6rOh7tCZe7wssGdzVXlcaDeKZy_cmVmuhJ_DOL8p6tUdOArfHr6eel1WBi9lXFAvpyyhlO9NxMQP_JQEhkKMZuMcA5NMU6VJxn3t0zxHx5cJbXe_klwHyjhCoeldWC-Xpd4GN6OpypkWKaIklguV4Jt4ojnNREKUnjjwvP87Mu0oy03mjEK2ZMtEYmtJ21oOPBlEP7U8HRcJPbO_eJBQ1YlZ2BZw-WH-Ti4CMY7DcF9GDuz0OiA7m15JhHqccjNN6sDj4TZao5liUaVeNlYGIRlHzP03GYoNYvIYOLDV6tdQIGLZdQKCNbda8ue6yCiO7MG9fxd9BFenh9GBPJjN39-Ha4j9eLutcgfW66rRDxBf1clDa0a_AGSpHxM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRceJRXoEBACHHJdhvbyRpOiCV0C1mhiKp7QLKc2OmhabbKJoA48RP4jfwSxs6jKioIcctjkvgx4_kmtr8BeBpojDoYRUvjUnlUq12Ph3nqsQzdO6E-apUJFON5sHdA9xdssQYv-70wLT_E8MPNWIYdr42Bn6p854w09KQ6GSEe9skl2KDBeGJUepqccUdx3lIwh9QMNJz2tEJjf2d49Jwz2jDt-vUipHkeuFrPE12DT32Z2wUnx6OmTkfZt9_oHP-zUtfhaodI3VetCt2ANV1uwWbczblvwWW7SDRb3YQkqrT--f1H1dg8Ry6dul9Mel28ZPJi1-5KFzmelPKzIe7Qyj1aFjiuubI8KrQbJ7MX7swsVsLPYZTfFPXqFhxEbz6-3vO6nAxeRhknXk5oSgjbnfBJEAaZHxoCMaLGOYYlShOpfcUCHZA8R7enuLZ7X_1ch9K4Qa7JbVgvl6W-C64imcyp5hliJJpzmeKbWKoZUTz1pZ448LzvHJF1hOUmb0YhWqplX2BrCdtaDjwZRE9blo6LhJ7ZHh4kZHVslrWFTBzO34pFyMdJFO2L2IHtXgVEZ9ErgUCPEWYmSR14PNxGWzQTLLLUy8bKICBjiLj_JkOwQUwWAwfutOo1FMi33DqhjzW3SvLnuog4ie3BvX8XfQSbH6aReD-bv7sPVxD4sXZP5Tas11WjHyC4qtOH1oh-ARBIHcs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free%E2%80%90running+4D+whole%E2%80%90heart+self%E2%80%90navigated+golden+angle+MRI%3A+Initial+results&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Coppo%2C+Simone&rft.au=Piccini%2C+Davide&rft.au=Bonanno%2C+Gabriele&rft.au=Chaptinel%2C+J%C3%A9r%C3%B4me&rft.date=2015-11-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=74&rft.issue=5&rft.spage=1306&rft.epage=1316&rft_id=info:doi/10.1002%2Fmrm.25523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_25523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon