Free-running 4D whole-heart self-navigated golden angle MRI: Initial results
Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D) acquisition. Methods A free‐running 4D whole‐heart self‐navigated acquisition incorporating a golden angle radial trajectory was implemented and test...
Saved in:
Published in | Magnetic resonance in medicine Vol. 74; no. 5; pp. 1306 - 1316 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.11.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.25523 |
Cover
Loading…
Abstract | Purpose
To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D) acquisition.
Methods
A free‐running 4D whole‐heart self‐navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self‐navigated electrocardiography (ECG) ‐triggered coronary MRA. From the 4D datasets, the left‐ventricular end‐systolic, end‐diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images.
Results
The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm3. Coronary artery image quality was very similar to that of the ECG‐triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF.
Conclusion
The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306–1316, 2015. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose
To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D) acquisition.
Methods
A free‐running 4D whole‐heart self‐navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self‐navigated electrocardiography (ECG) ‐triggered coronary MRA. From the 4D datasets, the left‐ventricular end‐systolic, end‐diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images.
Results
The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm3. Coronary artery image quality was very similar to that of the ECG‐triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF.
Conclusion
The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306–1316, 2015. © 2014 Wiley Periodicals, Inc. To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition.PURPOSETo test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition.A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images.METHODSA free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images.The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF.RESULTSThe 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF.The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence.CONCLUSIONThe hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. Methods A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. Results The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm super(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. Conclusion The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306-1316, 2015. Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. Methods A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. Results The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm3. Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. Conclusion The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence. Magn Reson Med 74:1306-1316, 2015. © 2014 Wiley Periodicals, Inc. |
Author | Chaptinel, Jérôme Stuber, Matthias Coppo, Simone Bonanno, Gabriele Piccini, Davide Feliciano, Hélène van Heeswijk, Ruud B. Schwitter, Juerg Vincenti, Gabriella |
Author_xml | – sequence: 1 givenname: Simone surname: Coppo fullname: Coppo, Simone organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland – sequence: 2 givenname: Davide surname: Piccini fullname: Piccini, Davide organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland – sequence: 3 givenname: Gabriele surname: Bonanno fullname: Bonanno, Gabriele organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland – sequence: 4 givenname: Jérôme surname: Chaptinel fullname: Chaptinel, Jérôme organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland – sequence: 5 givenname: Gabriella surname: Vincenti fullname: Vincenti, Gabriella organization: Department of Cardiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland – sequence: 6 givenname: Hélène surname: Feliciano fullname: Feliciano, Hélène organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland – sequence: 7 givenname: Ruud B. surname: van Heeswijk fullname: van Heeswijk, Ruud B. organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland – sequence: 8 givenname: Juerg surname: Schwitter fullname: Schwitter, Juerg organization: Department of Cardiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland – sequence: 9 givenname: Matthias surname: Stuber fullname: Stuber, Matthias email: mstuber.mri@gmail.com organization: Center for Biomedical Imaging (CIBM), Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25376772$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uEzEURi1URNPCghdAI7GBhVv_jsfsUCElKAEpAsHOcmfupC4eT7E9lL49LklYVCCxsq51zifd-x2hgzAGQOgpJSeUEHY6xOGEScn4AzSjkjHMpBYHaEaUIJhTLQ7RUUpXhBCtlXiEDpnkqlaKzdByHgFwnEJwYVOJN9XN5egBX4KNuUrgexzsD7exGbpqM_oOQmXDxkO1Wi9eVYvgsrO-ipAmn9Nj9LC3PsGT3XuMPs_ffjp7h5cfzxdnr5e4FVJz3HNxwbmkjW5qVbdMsYYT3pFeCdUBt8A6WUPN-74pHxqIqFnDelC2zFQDP0YvtrnXcfw-QcpmcKkF722AcUqGKl4E0ojmP1CmBJea1gV9fg-9GqcYyiJ3lOSSNFoX6tmOmi4G6Mx1dIONt2Z_0gKcboE2jilF6E3rss1uDDla5w0l5q40U0ozv0srxst7xj70b-wu_cZ5uP03aFbr1d7AW8OlDD__GDZ-M7XiSpovH87NV6XJej5_b1b8F3s9sVg |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1016_j_mri_2024_07_008 crossref_primary_10_1002_mrm_28221 crossref_primary_10_1002_mrm_28267 crossref_primary_10_1002_mrm_28101 crossref_primary_10_15212_CVIA_2016_0058 crossref_primary_10_1002_mrm_30469 crossref_primary_10_1109_TBME_2017_2764111 crossref_primary_10_1002_mrm_27898 crossref_primary_10_3390_s20195680 crossref_primary_10_1016_j_jocmr_2024_101006 crossref_primary_10_1002_mrm_26764 crossref_primary_10_1016_j_hfc_2020_08_001 crossref_primary_10_1016_j_zemedi_2022_01_003 crossref_primary_10_1016_j_mri_2016_12_021 crossref_primary_10_1002_mrm_26273 crossref_primary_10_1016_j_mri_2020_09_026 crossref_primary_10_1002_nbm_3874 crossref_primary_10_1002_mrm_29023 crossref_primary_10_1002_mrm_29144 crossref_primary_10_1007_s10334_017_0624_1 crossref_primary_10_1002_nbm_4409 crossref_primary_10_1002_mrm_26117 crossref_primary_10_1016_j_jocmr_2025_101854 crossref_primary_10_1016_j_jcmg_2015_12_003 crossref_primary_10_1016_j_mri_2020_06_008 crossref_primary_10_1016_j_jocmr_2024_101037 crossref_primary_10_1016_j_pnmrs_2025_101561 crossref_primary_10_3390_diagnostics14171946 crossref_primary_10_1371_journal_pone_0304612 crossref_primary_10_1002_mp_17188 crossref_primary_10_1002_mrm_30322 crossref_primary_10_1002_mrm_30323 crossref_primary_10_1002_mrm_29892 crossref_primary_10_1002_mrm_26221 crossref_primary_10_1002_mrm_27353 crossref_primary_10_1186_s12968_019_0525_8 crossref_primary_10_1016_j_mri_2017_07_002 crossref_primary_10_1002_mrm_30207 crossref_primary_10_3938_jkps_73_138 crossref_primary_10_1002_mrm_26942 crossref_primary_10_1002_mrm_25898 crossref_primary_10_1002_mrm_26503 crossref_primary_10_1002_mrm_26745 crossref_primary_10_1002_jmri_28187 crossref_primary_10_1002_mrm_29613 crossref_primary_10_1007_s10334_017_0607_2 crossref_primary_10_1002_mrm_29698 crossref_primary_10_1002_mrm_26665 crossref_primary_10_1002_mrm_27830 crossref_primary_10_1002_mrm_29853 crossref_primary_10_1007_s10334_016_0598_4 crossref_primary_10_22468_cvia_2016_00066 crossref_primary_10_1007_s10334_016_0550_7 crossref_primary_10_1002_jmri_25150 crossref_primary_10_1109_TMI_2021_3073091 crossref_primary_10_1148_radiol_2021203696 crossref_primary_10_1148_ryct_2020200219 crossref_primary_10_1002_mrm_25858 crossref_primary_10_1109_TCI_2019_2940916 crossref_primary_10_1186_s13244_019_0754_2 crossref_primary_10_1016_j_mri_2022_09_003 crossref_primary_10_1016_j_pneurobio_2020_101885 crossref_primary_10_1109_TMI_2019_2908140 crossref_primary_10_3389_fcvm_2021_682924 crossref_primary_10_1186_s12880_020_00478_z crossref_primary_10_3389_fcvm_2022_826283 crossref_primary_10_1002_mrm_27021 crossref_primary_10_1002_nbm_4589 crossref_primary_10_1002_mrm_26171 crossref_primary_10_1186_s12968_022_00871_3 crossref_primary_10_1002_mrm_29680 crossref_primary_10_1007_s10334_020_00859_z crossref_primary_10_1016_j_jcmg_2020_01_006 crossref_primary_10_1016_j_semarthrit_2017_03_020 crossref_primary_10_1002_mrm_28119 crossref_primary_10_1002_mrm_28713 crossref_primary_10_1002_mrm_27942 crossref_primary_10_1002_mrm_27945 crossref_primary_10_1002_mrm_28835 crossref_primary_10_1002_mrm_26332 crossref_primary_10_1002_mrm_26730 crossref_primary_10_1007_s00330_017_5035_1 crossref_primary_10_1002_mrm_29204 crossref_primary_10_1161_CIRCRESAHA_115_306247 crossref_primary_10_1038_s41598_020_70551_8 |
Cites_doi | 10.1002/mrm.21617 10.1161/01.CIR.51.4.5 10.1371/journal.pone.0089315 10.1002/jmri.21278 10.1002/jmri.20877 10.1002/mrm.24628 10.1148/radiol.13132045 10.1002/mrm.20024 10.1161/01.CIR.99.24.3139 10.1016/j.mri.2011.02.011 10.1081/JCMR-120038086 10.1002/mrm.24652 10.1002/mrm.23247 10.1148/radiol.2482071568 10.1007/s00330-009-1522-3 10.1002/mrm.1910150211 10.1002/jmri.22269 10.1002/mrm.10253 10.1002/mrm.20557 10.1002/mrm.10171 10.1161/CIRCIMAGING.112.974972 10.1002/mrm.21522 10.1002/jmri.21056 10.1148/radiology.212.2.r99au50579 10.1002/jmri.22140 10.1002/mrm.22898 10.1002/mrm.24683 10.1002/mrm.24346 10.1088/0031-9155/30/4/008 10.1186/1532-429X-16-S1-O18 10.1615/CritRevBiomedEng.v40.i2.20 10.1002/mrm.22306 10.1002/mrm.25450 10.1002/mrm.24633 10.1002/mrm.21365 10.1002/jmri.10078 10.1097/RLI.0b013e31817ed1ff 10.1016/j.jacc.2009.03.016 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25523 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1316 |
ExternalDocumentID | 3844422411 25376772 10_1002_mrm_25523 MRM25523 ark_67375_WNG_X790RFFJ_M |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 320030_143923 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c4593-f34b3351898676c2728303d0f747de3ae2d56e63ff847d9e046282fe7a84719e3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 13:32:43 EDT 2025 Thu Jul 10 18:55:15 EDT 2025 Fri Jul 25 12:18:38 EDT 2025 Mon Jul 21 05:57:35 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Tue Jul 01 01:20:57 EDT 2025 Wed Jan 22 16:26:14 EST 2025 Wed Oct 30 09:54:06 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | radial coronary whole heart four dimensional function self-navigation cardiac golden angle |
Language | English |
License | 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4593-f34b3351898676c2728303d0f747de3ae2d56e63ff847d9e046282fe7a84719e3 |
Notes | ark:/67375/WNG-X790RFFJ-M istex:9FC493E538E1C11E6B46886315DD138409051605 ArticleID:MRM25523 Swiss National Science Foundation - No. 320030_143923 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25523 |
PMID | 25376772 |
PQID | 1725350899 |
PQPubID | 1016391 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1732820848 proquest_miscellaneous_1727435916 proquest_journals_1725350899 pubmed_primary_25376772 crossref_citationtrail_10_1002_mrm_25523 crossref_primary_10_1002_mrm_25523 wiley_primary_10_1002_mrm_25523_MRM25523 istex_primary_ark_67375_WNG_X790RFFJ_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11 November 2015 2015-11-00 2015-Nov 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Zheng J, Li D, Bae KT, Haacke EM, Woodard PK. 3D Gadolinium enhanced coronary MRA: initial experience. Proc Soc Magn Reson Med 1998;2:853. Haase A, Frahm J, Hanicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 1985;30:341-344. Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang ZP. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 2008;59:571-580. Liu J, Spincemaille P, Codella NC, Nguyen TD, Prince MR, Wang Y. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 2010;63:1230-1237. Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, Li D. ECG and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med 2014;72:1208-1217. Pang J, Bhat H, Sharif B, Fan Z, Thomson LE, LaBounty T, Friedman JD, Min J, Berman DS, Li D. Whole-heart coronary MRA with 100% respiratory gating efficiency: self-navigated three-dimensional retrospective image-based motion correction (TRIM). Magn Reson Med 2014;71:67-74. Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M. Coronary MR angiography at 3T during diastole and systole. J Magn Reson Imaging 2007;26:921-926. Akcakaya M, Basha TA, Chan RH, Manning WJ, Nezafat R. Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging. Magn Reson Med 2014;71:815-822. Eberle HC, Nassenstein K, Jensen CJ, Schlosser T, Sabin GV, Naber CK, Bruder O. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol 2010;20:73-80. Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 2004;51:799-806. Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 2012;68:571-579. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210. Liu J, Wieben O, Jung Y, Samsonov AA, Reeder SB, Block WF. Single breathhold cardiac CINE imaging with multi-echo three-dimensional hybrid radial SSFP acquisition. J Magn Reson Imaging 2010;32:434-440. Yang Q, Li K, Liu X, Bi X, Liu Z, An J, Zhang A, Jerecic R, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 2009;54:69-76. Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med 1990;15:287-304. Yang Q, Li K, Liu X, et al. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging 2012;5:573-579. Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 2005;54:476-480. Lai P, Larson AC, Park J, Carr JC, Li D. Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med 2008;59:1378-1385. Spincemaille P, Liu J, Nguyen T, Prince MR, Wang Y. Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging. Magn Reson Imaging 2011;29:861-868. Jahnke C, Nagel E, Gebker R, Bornstedt A, Schnackenburg B, Kozerke S, Fleck E, Paetsch I. Four-dimensional single breathhold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging 2007;25:737-742. Coppo S, Piccini D, Chaptinel J, Bonanno G, Stuber M. Dynamic self-navigated 3D whole-heart radial coronary MRA with retrospective acquisition window selection. J Cardiovasc Magn Reson 2014;16(Suppl. 1):O18. Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN. Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson 2004;6:663-673. Lai P, Huang F, Larson AC, Li D. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging 2008;27:659-665. Liu J, Nguyen TD, Zhu Y, Spincemaille P, Prince MR, Weinsaft JW, Saloner D, Wang Y. Self-gated free-breathing 3D coronary CINE imaging with simultaneous water and fat visualization. PLoS One 2014;9:e89315. Henningsson M, Prieto C, Chiribiri A, Vaillant G, Razavi R, Botnar RM. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation. Magn Reson Med 2014;71:173-181. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975;51(Suppl.):5-40. Etienne A, Botnar RM, Van Muiswinkel AM, Boesiger P, Manning WJ, Stuber M. "Soap-Bubble" visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 2002;48:658-666. Uribe S, Tangchaoren T, Parish V, Wolf I, Razavi R, Greil G, Schaeffter T. Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology 2008;248:606-614. Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 2008;43:663-668. Moran CJ, Brodsky EK, Bancroft LH, Reeder SB, Yu H, Kijowski R, Engel D, Block WF. High-resolution 3D radial bSSFP with IDEAL. Magn Reson Med 2014;71:95-104. van Heeswijk RB, Bonanno G, Coppo S, Coristine A, Kober T, Stuber M. Motion compensation strategies in magnetic resonance imaging. Crit Rev Biomed Eng 2012;40:99-119. Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 1999;212:579-587. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 1999;99:3139-3148. Kressler B, Spincemaille P, Nguyen TD, Cheng L, Xi Hai Z, Prince MR, Wang Y. Three-dimensional cine imaging using variable-density spiral trajectories and SSFP with application to coronary artery angiography. Magn Reson Med 2007;58:535-543. Xie J, Lai P, Bhat H, Li D. Whole-heart coronary magnetic resonance angiography at 3.0T using short-TR steady-state free precession, vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging 2010;31:1230-1235. Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 2011;66:1049-1056. Wu HH, Gurney PT, Hu BS, Nishimura DG, McConnell MV. Free-breathing multiphase whole-heart coronary MR angiography using image-based navigators and three-dimensional cones imaging. Magn Reson Med 2013;69:1083-1093. Piccini D, Monney P, Sierro C, et al. Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients. Radiology 2014;270:378-386. Bornert P, Stuber M, Botnar RM, Kissinger KV, Manning WJ. Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography. J Magn Reson Imaging 2002;15:462-466. 2010; 32 2010; 31 2002; 15 2013; 69 1990; 15 2008; 59 2004; 6 2008; 248 2014; 270 1975; 51 2010; 63 2007; 58 2002; 47 2010; 20 2002; 48 2004; 51 2009; 54 2008; 27 2014; 16 2011; 66 1999; 99 2005; 54 1999; 212 2008; 43 1985; 30 1998; 2 2014; 9 2012; 68 2014; 72 2014; 71 2011; 29 2012; 5 2007; 25 2007; 26 2012; 40 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 Zheng J (e_1_2_5_35_1) 1998; 2 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – reference: Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 2012;68:571-579. – reference: Bornert P, Stuber M, Botnar RM, Kissinger KV, Manning WJ. Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography. J Magn Reson Imaging 2002;15:462-466. – reference: Yang Q, Li K, Liu X, Bi X, Liu Z, An J, Zhang A, Jerecic R, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 2009;54:69-76. – reference: Moran CJ, Brodsky EK, Bancroft LH, Reeder SB, Yu H, Kijowski R, Engel D, Block WF. High-resolution 3D radial bSSFP with IDEAL. Magn Reson Med 2014;71:95-104. – reference: Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med 1990;15:287-304. – reference: Eberle HC, Nassenstein K, Jensen CJ, Schlosser T, Sabin GV, Naber CK, Bruder O. Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath-hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide-point modelling analysis of left ventricular function. Eur Radiol 2010;20:73-80. – reference: Coppo S, Piccini D, Chaptinel J, Bonanno G, Stuber M. Dynamic self-navigated 3D whole-heart radial coronary MRA with retrospective acquisition window selection. J Cardiovasc Magn Reson 2014;16(Suppl. 1):O18. – reference: Henningsson M, Prieto C, Chiribiri A, Vaillant G, Razavi R, Botnar RM. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation. Magn Reson Med 2014;71:173-181. – reference: Liu J, Wieben O, Jung Y, Samsonov AA, Reeder SB, Block WF. Single breathhold cardiac CINE imaging with multi-echo three-dimensional hybrid radial SSFP acquisition. J Magn Reson Imaging 2010;32:434-440. – reference: Xie J, Lai P, Bhat H, Li D. Whole-heart coronary magnetic resonance angiography at 3.0T using short-TR steady-state free precession, vastly undersampled isotropic projection reconstruction. J Magn Reson Imaging 2010;31:1230-1235. – reference: Lai P, Larson AC, Park J, Carr JC, Li D. Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med 2008;59:1378-1385. – reference: Gharib AM, Herzka DA, Ustun AO, Desai MY, Locklin J, Pettigrew RI, Stuber M. Coronary MR angiography at 3T during diastole and systole. J Magn Reson Imaging 2007;26:921-926. – reference: Haase A, Frahm J, Hanicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 1985;30:341-344. – reference: Johnson KR, Patel SJ, Whigham A, Hakim A, Pettigrew RI, Oshinski JN. Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson 2004;6:663-673. – reference: Etienne A, Botnar RM, Van Muiswinkel AM, Boesiger P, Manning WJ, Stuber M. "Soap-Bubble" visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 2002;48:658-666. – reference: Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210. – reference: Jahnke C, Nagel E, Gebker R, Bornstedt A, Schnackenburg B, Kozerke S, Fleck E, Paetsch I. Four-dimensional single breathhold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging 2007;25:737-742. – reference: Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS, McGoon DC, Murphy ML, Roe BB. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975;51(Suppl.):5-40. – reference: Liu J, Nguyen TD, Zhu Y, Spincemaille P, Prince MR, Weinsaft JW, Saloner D, Wang Y. Self-gated free-breathing 3D coronary CINE imaging with simultaneous water and fat visualization. PLoS One 2014;9:e89315. – reference: Uribe S, Tangchaoren T, Parish V, Wolf I, Razavi R, Greil G, Schaeffter T. Volumetric cardiac quantification by using 3D dual-phase whole-heart MR imaging. Radiology 2008;248:606-614. – reference: Kressler B, Spincemaille P, Nguyen TD, Cheng L, Xi Hai Z, Prince MR, Wang Y. Three-dimensional cine imaging using variable-density spiral trajectories and SSFP with application to coronary artery angiography. Magn Reson Med 2007;58:535-543. – reference: Lai P, Huang F, Larson AC, Li D. Fast four-dimensional coronary MR angiography with k-t GRAPPA. J Magn Reson Imaging 2008;27:659-665. – reference: van Heeswijk RB, Bonanno G, Coppo S, Coristine A, Kober T, Stuber M. Motion compensation strategies in magnetic resonance imaging. Crit Rev Biomed Eng 2012;40:99-119. – reference: Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ. Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 1999;212:579-587. – reference: Schar M, Kozerke S, Fischer SE, Boesiger P. Cardiac SSFP imaging at 3 Tesla. Magn Reson Med 2004;51:799-806. – reference: Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang ZP. Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 2008;59:571-580. – reference: Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 2008;43:663-668. – reference: Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 1999;99:3139-3148. – reference: Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 2011;66:1049-1056. – reference: Yang Q, Li K, Liu X, et al. 3.0T whole-heart coronary magnetic resonance angiography performed with 32-channel cardiac coils: a single-center experience. Circ Cardiovasc Imaging 2012;5:573-579. – reference: Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 2005;54:476-480. – reference: Spincemaille P, Liu J, Nguyen T, Prince MR, Wang Y. Z intensity-weighted position self-respiratory gating method for free-breathing 3D cardiac CINE imaging. Magn Reson Imaging 2011;29:861-868. – reference: Akcakaya M, Basha TA, Chan RH, Manning WJ, Nezafat R. Accelerated isotropic sub-millimeter whole-heart coronary MRI: compressed sensing versus parallel imaging. Magn Reson Med 2014;71:815-822. – reference: Liu J, Spincemaille P, Codella NC, Nguyen TD, Prince MR, Wang Y. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 2010;63:1230-1237. – reference: Zheng J, Li D, Bae KT, Haacke EM, Woodard PK. 3D Gadolinium enhanced coronary MRA: initial experience. Proc Soc Magn Reson Med 1998;2:853. – reference: Wu HH, Gurney PT, Hu BS, Nishimura DG, McConnell MV. Free-breathing multiphase whole-heart coronary MR angiography using image-based navigators and three-dimensional cones imaging. Magn Reson Med 2013;69:1083-1093. – reference: Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, Li D. ECG and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med 2014;72:1208-1217. – reference: Piccini D, Monney P, Sierro C, et al. Respiratory self-navigated postcontrast whole-heart coronary MR angiography: initial experience in patients. Radiology 2014;270:378-386. – reference: Pang J, Bhat H, Sharif B, Fan Z, Thomson LE, LaBounty T, Friedman JD, Min J, Berman DS, Li D. Whole-heart coronary MRA with 100% respiratory gating efficiency: self-navigated three-dimensional retrospective image-based motion correction (TRIM). Magn Reson Med 2014;71:67-74. – volume: 51 start-page: 5 issue: Suppl. year: 1975 end-page: 40 article-title: A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association publication-title: Circulation – volume: 30 start-page: 341 year: 1985 end-page: 344 article-title: 1H NMR chemical shift selective (CHESS) imaging publication-title: Phys Med Biol – volume: 71 start-page: 95 year: 2014 end-page: 104 article-title: High‐resolution 3D radial bSSFP with IDEAL publication-title: Magn Reson Med – volume: 63 start-page: 1230 year: 2010 end-page: 1237 article-title: Respiratory and cardiac self‐gated free‐breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition publication-title: Magn Reson Med – volume: 58 start-page: 535 year: 2007 end-page: 543 article-title: Three‐dimensional cine imaging using variable‐density spiral trajectories and SSFP with application to coronary artery angiography publication-title: Magn Reson Med – volume: 66 start-page: 1049 year: 2011 end-page: 1056 article-title: Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI publication-title: Magn Reson Med – volume: 16 start-page: O18 issue: Suppl. 1 year: 2014 article-title: Dynamic self‐navigated 3D whole‐heart radial coronary MRA with retrospective acquisition window selection publication-title: J Cardiovasc Magn Reson – volume: 43 start-page: 663 year: 2008 end-page: 668 article-title: Contrast‐enhanced whole‐heart coronary magnetic resonance angiography at 3.0 T: comparison with steady‐state free precession technique at 1.5 T publication-title: Invest Radiol – volume: 99 start-page: 3139 year: 1999 end-page: 3148 article-title: Improved coronary artery definition with T2‐weighted, free‐breathing, three‐dimensional coronary MRA publication-title: Circulation – volume: 59 start-page: 1378 year: 2008 end-page: 1385 article-title: Respiratory self‐gated four‐dimensional coronary MR angiography: a feasibility study publication-title: Magn Reson Med – volume: 31 start-page: 1230 year: 2010 end-page: 1235 article-title: Whole‐heart coronary magnetic resonance angiography at 3.0T using short‐TR steady‐state free precession, vastly undersampled isotropic projection reconstruction publication-title: J Magn Reson Imaging – volume: 47 start-page: 1202 year: 2002 end-page: 1210 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 212 start-page: 579 year: 1999 end-page: 587 article-title: Submillimeter three‐dimensional coronary MR angiography with real‐time navigator correction: comparison of navigator locations publication-title: Radiology – volume: 270 start-page: 378 year: 2014 end-page: 386 article-title: Respiratory self‐navigated postcontrast whole‐heart coronary MR angiography: initial experience in patients publication-title: Radiology – volume: 6 start-page: 663 year: 2004 end-page: 673 article-title: Three‐dimensional, time‐resolved motion of the coronary arteries publication-title: J Cardiovasc Magn Reson – volume: 2 start-page: 853 year: 1998 article-title: 3D Gadolinium enhanced coronary MRA: initial experience publication-title: Proc Soc Magn Reson Med – volume: 68 start-page: 571 year: 2012 end-page: 579 article-title: Respiratory self‐navigation for whole‐heart bright‐blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool publication-title: Magn Reson Med – volume: 248 start-page: 606 year: 2008 end-page: 614 article-title: Volumetric cardiac quantification by using 3D dual‐phase whole‐heart MR imaging publication-title: Radiology – volume: 5 start-page: 573 year: 2012 end-page: 579 article-title: 3.0T whole‐heart coronary magnetic resonance angiography performed with 32‐channel cardiac coils: a single‐center experience publication-title: Circ Cardiovasc Imaging – volume: 48 start-page: 658 year: 2002 end-page: 666 article-title: “Soap‐Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms publication-title: Magn Reson Med – volume: 40 start-page: 99 year: 2012 end-page: 119 article-title: Motion compensation strategies in magnetic resonance imaging publication-title: Crit Rev Biomed Eng – volume: 27 start-page: 659 year: 2008 end-page: 665 article-title: Fast four‐dimensional coronary MR angiography with k‐t GRAPPA publication-title: J Magn Reson Imaging – volume: 25 start-page: 737 year: 2007 end-page: 742 article-title: Four‐dimensional single breathhold magnetic resonance imaging using kt‐BLAST enables reliable assessment of left‐ and right‐ventricular volumes and mass publication-title: J Magn Reson Imaging – volume: 20 start-page: 73 year: 2010 end-page: 80 article-title: Rapid MR assessment of left ventricular systolic function after acute myocardial infarction using single breath‐hold cine imaging with the temporal parallel acquisition technique (TPAT) and 4D guide‐point modelling analysis of left ventricular function publication-title: Eur Radiol – volume: 71 start-page: 67 year: 2014 end-page: 74 article-title: Whole‐heart coronary MRA with 100% respiratory gating efficiency: self‐navigated three‐dimensional retrospective image‐based motion correction (TRIM) publication-title: Magn Reson Med – volume: 29 start-page: 861 year: 2011 end-page: 868 article-title: Z intensity‐weighted position self‐respiratory gating method for free‐breathing 3D cardiac CINE imaging publication-title: Magn Reson Imaging – volume: 59 start-page: 571 year: 2008 end-page: 580 article-title: Joint estimation of water/fat images and field inhomogeneity map publication-title: Magn Reson Med – volume: 51 start-page: 799 year: 2004 end-page: 806 article-title: Cardiac SSFP imaging at 3 Tesla publication-title: Magn Reson Med – volume: 15 start-page: 462 year: 2002 end-page: 466 article-title: Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography publication-title: J Magn Reson Imaging – volume: 15 start-page: 287 year: 1990 end-page: 304 article-title: Simultaneous spatial and spectral selective excitation publication-title: Magn Reson Med – volume: 71 start-page: 815 year: 2014 end-page: 822 article-title: Accelerated isotropic sub‐millimeter whole‐heart coronary MRI: compressed sensing versus parallel imaging publication-title: Magn Reson Med – volume: 72 start-page: 1208 year: 2014 end-page: 1217 article-title: ECG and navigator‐free four‐dimensional whole‐heart coronary MRA for simultaneous visualization of cardiac anatomy and function publication-title: Magn Reson Med – volume: 32 start-page: 434 year: 2010 end-page: 440 article-title: Single breathhold cardiac CINE imaging with multi‐echo three‐dimensional hybrid radial SSFP acquisition publication-title: J Magn Reson Imaging – volume: 54 start-page: 476 year: 2005 end-page: 480 article-title: Free‐breathing whole‐heart coronary MRA with 3D radial SSFP and self‐navigated image reconstruction publication-title: Magn Reson Med – volume: 9 start-page: e89315 year: 2014 article-title: Self‐gated free‐breathing 3D coronary CINE imaging with simultaneous water and fat visualization publication-title: PLoS One – volume: 69 start-page: 1083 year: 2013 end-page: 1093 article-title: Free‐breathing multiphase whole‐heart coronary MR angiography using image‐based navigators and three‐dimensional cones imaging publication-title: Magn Reson Med – volume: 26 start-page: 921 year: 2007 end-page: 926 article-title: Coronary MR angiography at 3T during diastole and systole publication-title: J Magn Reson Imaging – volume: 71 start-page: 173 year: 2014 end-page: 181 article-title: Whole‐heart coronary MRA with 3D affine motion correction using 3D image‐based navigation publication-title: Magn Reson Med – volume: 54 start-page: 69 year: 2009 end-page: 76 article-title: Contrast‐enhanced whole‐heart coronary magnetic resonance angiography at 3.0‐T: a comparative study with X‐ray angiography in a single center publication-title: J Am Coll Cardiol – ident: e_1_2_5_4_1 doi: 10.1002/mrm.21617 – ident: e_1_2_5_25_1 doi: 10.1161/01.CIR.51.4.5 – ident: e_1_2_5_39_1 doi: 10.1371/journal.pone.0089315 – ident: e_1_2_5_9_1 doi: 10.1002/jmri.21278 – ident: e_1_2_5_15_1 doi: 10.1002/jmri.20877 – ident: e_1_2_5_6_1 doi: 10.1002/mrm.24628 – ident: e_1_2_5_23_1 doi: 10.1148/radiol.13132045 – ident: e_1_2_5_33_1 doi: 10.1002/mrm.20024 – ident: e_1_2_5_18_1 – ident: e_1_2_5_32_1 doi: 10.1161/01.CIR.99.24.3139 – ident: e_1_2_5_14_1 doi: 10.1016/j.mri.2011.02.011 – ident: e_1_2_5_28_1 doi: 10.1081/JCMR-120038086 – ident: e_1_2_5_5_1 doi: 10.1002/mrm.24652 – ident: e_1_2_5_3_1 doi: 10.1002/mrm.23247 – ident: e_1_2_5_12_1 doi: 10.1148/radiol.2482071568 – ident: e_1_2_5_16_1 doi: 10.1007/s00330-009-1522-3 – ident: e_1_2_5_36_1 doi: 10.1002/mrm.1910150211 – ident: e_1_2_5_17_1 doi: 10.1002/jmri.22269 – ident: e_1_2_5_26_1 doi: 10.1002/mrm.10253 – ident: e_1_2_5_2_1 doi: 10.1002/mrm.20557 – ident: e_1_2_5_24_1 doi: 10.1002/mrm.10171 – ident: e_1_2_5_29_1 doi: 10.1161/CIRCIMAGING.112.974972 – ident: e_1_2_5_38_1 doi: 10.1002/mrm.21522 – ident: e_1_2_5_11_1 doi: 10.1002/jmri.21056 – ident: e_1_2_5_21_1 doi: 10.1148/radiology.212.2.r99au50579 – ident: e_1_2_5_34_1 doi: 10.1002/jmri.22140 – ident: e_1_2_5_19_1 doi: 10.1002/mrm.22898 – ident: e_1_2_5_41_1 doi: 10.1002/mrm.24683 – ident: e_1_2_5_8_1 doi: 10.1002/mrm.24346 – ident: e_1_2_5_20_1 doi: 10.1088/0031-9155/30/4/008 – ident: e_1_2_5_22_1 doi: 10.1186/1532-429X-16-S1-O18 – ident: e_1_2_5_7_1 doi: 10.1615/CritRevBiomedEng.v40.i2.20 – ident: e_1_2_5_13_1 doi: 10.1002/mrm.22306 – ident: e_1_2_5_27_1 doi: 10.1002/mrm.25450 – ident: e_1_2_5_40_1 doi: 10.1002/mrm.24633 – ident: e_1_2_5_10_1 doi: 10.1002/mrm.21365 – ident: e_1_2_5_37_1 doi: 10.1002/jmri.10078 – ident: e_1_2_5_30_1 doi: 10.1097/RLI.0b013e31817ed1ff – ident: e_1_2_5_31_1 doi: 10.1016/j.jacc.2009.03.016 – volume: 2 start-page: 853 year: 1998 ident: e_1_2_5_35_1 article-title: 3D Gadolinium enhanced coronary MRA: initial experience publication-title: Proc Soc Magn Reson Med |
SSID | ssj0009974 |
Score | 2.4772508 |
Snippet | Purpose
To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four‐dimensional (4D)... To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. A... Purpose To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D)... To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D)... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1306 |
SubjectTerms | Adult Algorithms cardiac Cardiac Imaging Techniques - methods coronary Female four dimensional function golden angle Heart - anatomy & histology Heart - physiology Humans Imaging, Three-Dimensional - methods Magnetic Resonance Imaging - methods Male radial self-navigation Signal-To-Noise Ratio whole heart Young Adult |
Title | Free-running 4D whole-heart self-navigated golden angle MRI: Initial results |
URI | https://api.istex.fr/ark:/67375/WNG-X790RFFJ-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25523 https://www.ncbi.nlm.nih.gov/pubmed/25376772 https://www.proquest.com/docview/1725350899 https://www.proquest.com/docview/1727435916 https://www.proquest.com/docview/1732820848 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC1FQSAuLGEzBGQQQlw8mfRiT8MJASaJ5BwsIuaA1Grb5RzieJAXQJz4BL6RL6G67XEUFBDi5qVs91LV9dpd_QrgaYg065CCLE2ZIhBY7AYqKrNA5uTeuWCkVXaimByGe0fiYCmXG_ByvRdm4IeYfrhZy3DjtTVwk7U7Z6Shp83pjPAws0yfNlbLAqL0jDpKqYGBORJ2nFFizSo0ZzvTk-d80SXbrF8vAprncatzPPF1-Lgu8hBvcjLru2yWf_uNzfE_63QDro2A1H81aNBN2MB6C64k45L7Flx2MaJ5ewvSuEH8-f1H07s0R75443-x2XXpkk2L3fktViWd1Oaz5e3Awj9eVTSs-aY-rtBP0v0X_r6NVaLP0SS_r7r2NhzFb9-_3gvGlAxBLqTiQclFxrncXahFGIU5iyx_GC_mJc1KCuQGWSFDDHlZktcrFLqtr6zEyFgvqJDfgc16VeM98Auem1KgygkiiVKZjN4kM5S8UBkzuPDg-bpzdD7yldu0GZUemJaZptbSrrU8eDKJfhpIOi4SeuZ6eJIwzYmNaouk_nD4Ti8jNU_j-EAnHmyvVUCPBt1qwnmSS7tG6sHj6TaZol1fMTWueidDeEwS4P6bDKcGsUkMPLg7qNdUIOaodSJGNXdK8ue66CRN3MH9fxd9AFcJ7MlhH-U2bHZNjw8JUHXZI2c5vwDMWBr4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVjwuPAq0gQIBIcQl260fyRpxQUDYLc0eolbsBVlO4vTQNIuyCSBO_AR-I7-EsfOoigpC3PKYJLYz4_nGj28Anvoaow7O0NKEyjymsz1PBHni8RTdO2UEtcoEitHcnx6x_QVfrMHLfi9Myw8xDLgZy7D9tTFwMyC9e8YaelqdjhAQE3oJNkxGbxtQxWfkUUK0HMwBMz2NYD2v0JjsDo-e80YbpmG_XgQ1zyNX63rCG_CxL3S74uRk1NTJKP32G5_j_9bqJlzvMKn7qlWiW7Cmy024EnWz7ptw2S4TTVe3IQ4rrX9-_1E1NtORy964X0yCXbxkMmPX7koXOZ6U6rOh7tCZe7wssGdzVXlcaDeKZy_cmVmuhJ_DOL8p6tUdOArfHr6eel1WBi9lXFAvpyyhlO9NxMQP_JQEhkKMZuMcA5NMU6VJxn3t0zxHx5cJbXe_klwHyjhCoeldWC-Xpd4GN6OpypkWKaIklguV4Jt4ojnNREKUnjjwvP87Mu0oy03mjEK2ZMtEYmtJ21oOPBlEP7U8HRcJPbO_eJBQ1YlZ2BZw-WH-Ti4CMY7DcF9GDuz0OiA7m15JhHqccjNN6sDj4TZao5liUaVeNlYGIRlHzP03GYoNYvIYOLDV6tdQIGLZdQKCNbda8ue6yCiO7MG9fxd9BFenh9GBPJjN39-Ha4j9eLutcgfW66rRDxBf1clDa0a_AGSpHxM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlRceJRXoEBACHHJdhvbyRpOiCV0C1mhiKp7QLKc2OmhabbKJoA48RP4jfwSxs6jKioIcctjkvgx4_kmtr8BeBpojDoYRUvjUnlUq12Ph3nqsQzdO6E-apUJFON5sHdA9xdssQYv-70wLT_E8MPNWIYdr42Bn6p854w09KQ6GSEe9skl2KDBeGJUepqccUdx3lIwh9QMNJz2tEJjf2d49Jwz2jDt-vUipHkeuFrPE12DT32Z2wUnx6OmTkfZt9_oHP-zUtfhaodI3VetCt2ANV1uwWbczblvwWW7SDRb3YQkqrT--f1H1dg8Ry6dul9Mel28ZPJi1-5KFzmelPKzIe7Qyj1aFjiuubI8KrQbJ7MX7swsVsLPYZTfFPXqFhxEbz6-3vO6nAxeRhknXk5oSgjbnfBJEAaZHxoCMaLGOYYlShOpfcUCHZA8R7enuLZ7X_1ch9K4Qa7JbVgvl6W-C64imcyp5hliJJpzmeKbWKoZUTz1pZ448LzvHJF1hOUmb0YhWqplX2BrCdtaDjwZRE9blo6LhJ7ZHh4kZHVslrWFTBzO34pFyMdJFO2L2IHtXgVEZ9ErgUCPEWYmSR14PNxGWzQTLLLUy8bKICBjiLj_JkOwQUwWAwfutOo1FMi33DqhjzW3SvLnuog4ie3BvX8XfQSbH6aReD-bv7sPVxD4sXZP5Tas11WjHyC4qtOH1oh-ARBIHcs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Free%E2%80%90running+4D+whole%E2%80%90heart+self%E2%80%90navigated+golden+angle+MRI%3A+Initial+results&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Coppo%2C+Simone&rft.au=Piccini%2C+Davide&rft.au=Bonanno%2C+Gabriele&rft.au=Chaptinel%2C+J%C3%A9r%C3%B4me&rft.date=2015-11-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=74&rft.issue=5&rft.spage=1306&rft.epage=1316&rft_id=info:doi/10.1002%2Fmrm.25523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_25523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |