Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: A pilot study

Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady‐state free preces...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 74; no. 5; pp. 1257 - 1265
Main Authors Kording, Fabian, Schoennagel, Bjoern, Lund, Gunnar, Ueberle, Friedrich, Jung, Caroline, Adam, Gerhard, Yamamura, Jin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady‐state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Results Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with −1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8). Conclusion Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257–1265, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Results Mean difference between DUS and ECG in detected RR intervals was 0.04 plus or minus 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 plus or minus 0.2 / 2.6 plus or minus 0.2 / 2.9 plus or minus 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 plus or minus 7 mL (ECG/DUS, P = 0.9) and 2 plus or minus 10 mL (ECG/POX, P = 0.8). Conclusion Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257-1265, 2015.
Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Results Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8). Conclusion Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257-1265, 2015. © 2014 Wiley Periodicals, Inc.
Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady‐state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Results Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with −1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8). Conclusion Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257–1265, 2015. © 2014 Wiley Periodicals, Inc.
Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI.PURPOSEAccurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI.Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG.METHODSSteady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG.Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8).RESULTSMean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8).Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting.CONCLUSIONCine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting.
Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8). Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting.
Author Jung, Caroline
Adam, Gerhard
Lund, Gunnar
Kording, Fabian
Ueberle, Friedrich
Schoennagel, Bjoern
Yamamura, Jin
Author_xml – sequence: 1
  givenname: Fabian
  surname: Kording
  fullname: Kording, Fabian
  email: f.kording@uke.de
  organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany
– sequence: 2
  givenname: Bjoern
  surname: Schoennagel
  fullname: Schoennagel, Bjoern
  organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany
– sequence: 3
  givenname: Gunnar
  surname: Lund
  fullname: Lund, Gunnar
  organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany
– sequence: 4
  givenname: Friedrich
  surname: Ueberle
  fullname: Ueberle, Friedrich
  organization: Hamburg University of Applied Sciences, Hamburg, Germany
– sequence: 5
  givenname: Caroline
  surname: Jung
  fullname: Jung, Caroline
  organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany
– sequence: 6
  givenname: Gerhard
  surname: Adam
  fullname: Adam, Gerhard
  organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany
– sequence: 7
  givenname: Jin
  surname: Yamamura
  fullname: Yamamura, Jin
  organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25359183$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFvFCEYhompsdvVg3_AkHjRw7TwATOLt6ZqNenWpK3pkbAMM1JnhikwafffS7u7HpqaeOLA87yB9z1Ae4MfLEJvKTmkhMBRH_pDEILACzSjAqAAIfkempGKk4JRyffRQYw3hBApK_4K7YNgQtIFm6H2sx_HzgY8dSno6Kehxsb3ow62xncu_cK2syYFb3SonW-D7rHOzDh10WJ_73qbwho_3mqDU3Bta4Mb2k_4GI-u8wnHNNXr1-hlo7PyZnvO0c-vX65OvhVnP06_nxyfFYYLCYWRUuS325JCIzk0nFQrBsBIbSXXUNESjG3KsjS1XhlSS-CVXlC2qhcEbFmxOfqwyR2Dv51sTKp30diu04P1U1S0YrAAQdj_oFDx3JMoM_r-CXrjpzDkjzxQgnEpMjpH77bUtOptrcbgeh3Watd2Bo42gAk-xmAbZVzSyfkhd-86RYl62FPlPdXjntn4-MTYhT7HbtPvXGfX_wbV8mK5M4qN4WKy938NHX6rXGUl1PX5qbqUTIqrJVfX7A9q_b1c
CODEN MRMEEN
CitedBy_id crossref_primary_10_1055_a_1761_3500
crossref_primary_10_1152_ajpregu_00273_2017
crossref_primary_10_1186_s12938_022_01015_5
crossref_primary_10_1002_jmri_26842
crossref_primary_10_1186_s12968_018_0440_4
crossref_primary_10_1109_ACCESS_2019_2936184
crossref_primary_10_1186_s12968_017_0383_1
crossref_primary_10_1002_mrm_27032
crossref_primary_10_3389_fphys_2017_00305
crossref_primary_10_1109_TBME_2017_2764111
crossref_primary_10_1148_ryct_230182
crossref_primary_10_1016_j_mri_2021_06_015
crossref_primary_10_1109_TIM_2022_3177203
crossref_primary_10_1088_1361_6560_ac4213
crossref_primary_10_1109_ACCESS_2019_2963221
crossref_primary_10_1186_s12880_020_00523_x
crossref_primary_10_2463_mrms_mp_2017_0100
crossref_primary_10_3390_s20154079
crossref_primary_10_1002_jmri_25723
crossref_primary_10_1109_RBME_2021_3055550
crossref_primary_10_1186_s12968_017_0346_6
crossref_primary_10_1007_s10554_023_03002_w
crossref_primary_10_1007_s12350_021_02675_x
crossref_primary_10_1016_j_engappai_2024_108483
crossref_primary_10_1088_1361_6579_aa6e8c
crossref_primary_10_1002_mrm_29467
crossref_primary_10_2463_mrms_mp_2015_0104
crossref_primary_10_1007_s10554_016_0963_4
Cites_doi 10.1002/mrm.20815
10.1152/ajpheart.1981.241.4.H620
10.1097/RLI.0b013e31828236c3
10.1002/jmri.23541
10.1007/BF02546511
10.1088/0967-3334/25/2/015
10.1002/1522-2586(200011)12:5<678::AID-JMRI4>3.0.CO;2-5
10.1515/bmt-2012-4443
10.1007/s10334-013-0404-5
10.1007/s00330-003-1841-8
10.1016/S0140-6736(86)90837-8
10.1002/mrm.22250
10.1148/radiology.155.3.4001369
10.1002/(SICI)1522-2594(199904)41:4<715::AID-MRM9>3.0.CO;2-7
10.1080/10976640500295516
10.1186/1475-925X-10-92
10.1118/1.4711757
10.1186/1532-429X-12-67
10.1186/1532-429X-15-104
10.1016/S1076-6332(00)80065-3
10.1002/mrm.1910160113
10.1088/0967-3334/20/4/303
10.1002/(SICI)1521-186X(1996)17:1<21::AID-BEM3>3.0.CO;2-8
10.3813/AAA.918017
10.1007/978-3-642-21028-0_42
10.1002/mrm.20140
10.1007/s00330-009-1676-z
10.7863/jum.2005.24.11.1519
10.1002/jmri.22530
10.1002/mrm.10664
10.1002/mrm.22529
10.1109/TMI.2007.911000
10.1002/jmri.10262
10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9
10.1148/radiol.2323030830
10.1080/10976640600572889
10.1002/mrm.25078
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
DOI 10.1002/mrm.25502
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
Biochemistry Abstracts 1

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1265
ExternalDocumentID 3844422631
25359183
10_1002_mrm_25502
MRM25502
ark_67375_WNG_S9395TM4_W
Genre article
Journal Article
Comparative Study
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
ID FETCH-LOGICAL-c4592-c995594e612f942f407b32230de94a27162cef666cdabc0d9247a813bd802e673
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 16:21:26 EDT 2025
Thu Jul 10 22:00:18 EDT 2025
Fri Jul 25 12:17:56 EDT 2025
Mon Jul 21 05:55:32 EDT 2025
Tue Jul 01 01:20:57 EDT 2025
Thu Apr 24 22:51:08 EDT 2025
Wed Jan 22 16:26:14 EST 2025
Wed Oct 30 09:45:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords computer-assisted image processing
oximetry
electrocardiogram
cine magnetic resonance imaging
Doppler ultrasound
cardiac-gated imaging techniques
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4592-c995594e612f942f407b32230de94a27162cef666cdabc0d9247a813bd802e673
Notes ark:/67375/WNG-S9395TM4-W
istex:A48F1C1C968745FEE047C26DEF213794A49ADFED
ArticleID:MRM25502
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25502
PMID 25359183
PQID 1725349574
PQPubID 1016391
PageCount 9
ParticipantIDs proquest_miscellaneous_1732825037
proquest_miscellaneous_1727435956
proquest_journals_1725349574
pubmed_primary_25359183
crossref_citationtrail_10_1002_mrm_25502
crossref_primary_10_1002_mrm_25502
wiley_primary_10_1002_mrm_25502_MRM25502
istex_primary_ark_67375_WNG_S9395TM4_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11
November 2015
2015-11-00
2015-Nov
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 2005;7:775-782.
Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging 2000;12:678-688.
Wu V, Barbash IM, Ratnayaka K, Saikus CE, Sonmez M, Kocaturk O, Lederman RJ, Faranesh AZ. Adaptive noise cancellation to suppress electrocardiography artifacts during real-time interventional MRI. J Magn Reson Imaging 2011;33:1184-1193.
Tang AM, Kacher DF, Lam EY, Wong KK, Jolesz FA, Yang ES. Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom. IEEE Trans Med Imaging 2008;27:247-254.
Keltner JR, Roos MS, Brakeman PR, Budinger TF. Magnetohydrodynamics of blood flow. Magn Reson Med 1990;16:139-149.
Brandts A, Westenberg JJ, Versluis MJ, Kroft LJ, Smith NB, Webb AG, de Roos A. Quantitative assessment of left ventricular function in humans at 7 T. Magn Reson Med 2010;64:1471-1477.
Jezewski J, Roj D, Wrobel J, Horoba K. A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed Eng Online 2011;10:1-17.
Maceira A, Prasad S, Khan M, Pennell D. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006;8:417-426.
Jawad IA. A practical guide to echocardiography and cardiac doppler ultrasound. Philadelphia: Lippincott Williams & Wilkins; 1996.
Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 1999;41:715-721.
Kinouchi Y, Yamaguchi H, Tenforde T. Theoretical analysis of magnetic field interactions with aortic blood flow. Bioelectromagnetics 1996;17:21-32.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-310.
Gregory TS, Schmidt EJ, Zhang SH, Ho Tse ZT. 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12-lead electrocardiogram traces. Magn Reson Med 2014;71:1374-1380.
Liu G, Qi X-L, Robert N, Dick AJ, Wright GA. Ultrasound-guided identification of cardiac imaging windows. Med Phys 2012;39:3009-3018.
Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging. Acta Acust United Ac 2008;94:148-155.
Allen M, Kawamura DM, Craig M, Berman MC. Diagnostic medical sonography: echocardiography. Philadelphia: Lippincott Williams & Wilkins; 1998.
Wrobel J, Jezewski J, Roj D, Przybyla T, Czabanski R, Matonia A. The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements. Int J Biol Biomed Eng v4 i4 2010:79-87.
Ueberle F, Dettmann E, Eden C, et al. Cardiac MR: imaging of the foetal heart dynamics using doppler ultrasound triggering. Biomed Tech 2012;57:1.
Rubin JM, Brian Fowlkes J, Prince MR, Rhee RT, Chenevert TL. Doppler US gating of cardiac MR imaging. Acad Radiol 2000;7:1116-1122.
Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999;42:361-370.
Wiener N. Generalized harmonic analysis. Acta Math 1930;55:117-258.
Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 2006;55:506-513.
Günther M, Feinberg DA. Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med 2004;52:27-32.
Shakespeare SA, Moore RJ, Crowe JA, Gowland PA, Hayes-Gill BR. A method for foetal heart rate monitoring during magnetic resonance imaging using Doppler ultrasound. Physiol Meas 1999;20:363.
Tridandapani S, Fowlkes JB, Rubin JM. Echocardiography-based selection of quiescent heart phases implications for cardiac imaging. J Ultras Med 2005;24:1519-1526.
Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, Adam G, Wedegärtner U. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging 2012;35:1071-1076.
Krug JW, Rose G, Clifford GD, Oster J. ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach. J Cardiovasc Magn Reson 2013;15:104.
Kugel H, Bremer C, Püschel M, Fischbach R, Lenzen H, Tombach B, Van Aken H, Heindel W. Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 2003;13:690-694.
Martin V, Drochon A, Fokapu O, Gerbeau J-F. Magnetohemodynamics effect on electrocardiograms. Functional imaging and modeling of the heart. New York: Springer; 2011. p 325-332.
Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 2003;17:323-329.
Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart C 1981;241:620-629.
Schoennagel BP, Remus CC, Yamamura J, et al. Fetal blood flow velocimetry by phase-contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study. MAGMA 2014;27:237-244.
Becker M, Frauenrath T, Hezel F, et al. Comparison of left ventricular function assessment using phonocardiogram-and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 2010;20:1344-1355.
Petrusca L, Cattin P, De Luca V, et al. Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen. Invest Radiol 2013;48:333-340.
Lanzer P, Barta C, Botvinick E, Wiesendanger H, Modin G, Higgins C. ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 1985;155:681-686.
Frauenrath T, Hezel F, Renz W, de Geyer d'Orth T, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz-Menger J, Niendorf T. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010;12:67.
Feinberg DA, Giese D, Bongers DA, Ramanna S, Zaitsev M, Markl M, Günther M. Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control. Magn Reson Med 2010;63:290-296.
Peters C, ten Broeke E, Andriessen P, Vermeulen B, Berendsen R, Wijn P, Oei SG. Beat-to-beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain. Physiol Meas 2004;25:585.
Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology 2004;232:635-652.
Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac cine MRI. Magn Reson Med 2004;51:93-102.
2010; 12
2013; 48
1996; 17
1990; 16
2011
1930; 55
2006; 55
1981; 241
2004; 25
2000; 7
2003; 13
2014; 27
1998
2006; 8
1996
2011; 33
2011; 10
1999; 42
1999; 20
2003; 17
1999; 41
2012; 39
2003
2008; 94
2012; 57
2012; 35
2010; 63
2005; 24
2004; 232
2004; 52
1986; 1
2010; 64
2010; 20
2010; v4
2013; 15
2004; 51
2000; 12
2008; 27
2005; 7
2014; 71
1985; 155
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Allen M (e_1_2_5_34_1) 1998
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
Wrobel J (e_1_2_5_32_1) 2010; 4
Jawad IA (e_1_2_5_25_1) 1996
References_xml – reference: Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, Adam G, Wedegärtner U. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging 2012;35:1071-1076.
– reference: Liu G, Qi X-L, Robert N, Dick AJ, Wright GA. Ultrasound-guided identification of cardiac imaging windows. Med Phys 2012;39:3009-3018.
– reference: Feinberg DA, Giese D, Bongers DA, Ramanna S, Zaitsev M, Markl M, Günther M. Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control. Magn Reson Med 2010;63:290-296.
– reference: Wu V, Barbash IM, Ratnayaka K, Saikus CE, Sonmez M, Kocaturk O, Lederman RJ, Faranesh AZ. Adaptive noise cancellation to suppress electrocardiography artifacts during real-time interventional MRI. J Magn Reson Imaging 2011;33:1184-1193.
– reference: Kugel H, Bremer C, Püschel M, Fischbach R, Lenzen H, Tombach B, Van Aken H, Heindel W. Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 2003;13:690-694.
– reference: Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999;42:361-370.
– reference: Peters C, ten Broeke E, Andriessen P, Vermeulen B, Berendsen R, Wijn P, Oei SG. Beat-to-beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain. Physiol Meas 2004;25:585.
– reference: Lanzer P, Barta C, Botvinick E, Wiesendanger H, Modin G, Higgins C. ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 1985;155:681-686.
– reference: Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 2006;55:506-513.
– reference: Martin V, Drochon A, Fokapu O, Gerbeau J-F. Magnetohemodynamics effect on electrocardiograms. Functional imaging and modeling of the heart. New York: Springer; 2011. p 325-332.
– reference: Jawad IA. A practical guide to echocardiography and cardiac doppler ultrasound. Philadelphia: Lippincott Williams & Wilkins; 1996.
– reference: Rubin JM, Brian Fowlkes J, Prince MR, Rhee RT, Chenevert TL. Doppler US gating of cardiac MR imaging. Acad Radiol 2000;7:1116-1122.
– reference: Tang AM, Kacher DF, Lam EY, Wong KK, Jolesz FA, Yang ES. Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom. IEEE Trans Med Imaging 2008;27:247-254.
– reference: Günther M, Feinberg DA. Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med 2004;52:27-32.
– reference: Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging 2000;12:678-688.
– reference: Shakespeare SA, Moore RJ, Crowe JA, Gowland PA, Hayes-Gill BR. A method for foetal heart rate monitoring during magnetic resonance imaging using Doppler ultrasound. Physiol Meas 1999;20:363.
– reference: Schoennagel BP, Remus CC, Yamamura J, et al. Fetal blood flow velocimetry by phase-contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study. MAGMA 2014;27:237-244.
– reference: Petrusca L, Cattin P, De Luca V, et al. Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen. Invest Radiol 2013;48:333-340.
– reference: Maceira A, Prasad S, Khan M, Pennell D. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006;8:417-426.
– reference: Krug JW, Rose G, Clifford GD, Oster J. ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach. J Cardiovasc Magn Reson 2013;15:104.
– reference: Ueberle F, Dettmann E, Eden C, et al. Cardiac MR: imaging of the foetal heart dynamics using doppler ultrasound triggering. Biomed Tech 2012;57:1.
– reference: Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 1999;41:715-721.
– reference: Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging. Acta Acust United Ac 2008;94:148-155.
– reference: Becker M, Frauenrath T, Hezel F, et al. Comparison of left ventricular function assessment using phonocardiogram-and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 2010;20:1344-1355.
– reference: Tridandapani S, Fowlkes JB, Rubin JM. Echocardiography-based selection of quiescent heart phases implications for cardiac imaging. J Ultras Med 2005;24:1519-1526.
– reference: Wrobel J, Jezewski J, Roj D, Przybyla T, Czabanski R, Matonia A. The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements. Int J Biol Biomed Eng v4 i4 2010:79-87.
– reference: Wiener N. Generalized harmonic analysis. Acta Math 1930;55:117-258.
– reference: Allen M, Kawamura DM, Craig M, Berman MC. Diagnostic medical sonography: echocardiography. Philadelphia: Lippincott Williams & Wilkins; 1998.
– reference: Brandts A, Westenberg JJ, Versluis MJ, Kroft LJ, Smith NB, Webb AG, de Roos A. Quantitative assessment of left ventricular function in humans at 7 T. Magn Reson Med 2010;64:1471-1477.
– reference: Kinouchi Y, Yamaguchi H, Tenforde T. Theoretical analysis of magnetic field interactions with aortic blood flow. Bioelectromagnetics 1996;17:21-32.
– reference: Gregory TS, Schmidt EJ, Zhang SH, Ho Tse ZT. 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12-lead electrocardiogram traces. Magn Reson Med 2014;71:1374-1380.
– reference: Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart C 1981;241:620-629.
– reference: Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-310.
– reference: Jezewski J, Roj D, Wrobel J, Horoba K. A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed Eng Online 2011;10:1-17.
– reference: Keltner JR, Roos MS, Brakeman PR, Budinger TF. Magnetohydrodynamics of blood flow. Magn Reson Med 1990;16:139-149.
– reference: Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology 2004;232:635-652.
– reference: Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 2003;17:323-329.
– reference: Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 2005;7:775-782.
– reference: Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac cine MRI. Magn Reson Med 2004;51:93-102.
– reference: Frauenrath T, Hezel F, Renz W, de Geyer d'Orth T, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz-Menger J, Niendorf T. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010;12:67.
– volume: 241
  start-page: 620
  year: 1981
  end-page: 629
  article-title: Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate
  publication-title: Am J Physiol Heart C
– volume: 17
  start-page: 323
  year: 2003
  end-page: 329
  article-title: Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady‐state free precession imaging sequences
  publication-title: J Magn Reson Imaging
– volume: 8
  start-page: 417
  year: 2006
  end-page: 426
  article-title: Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance
  publication-title: J Cardiovasc Magn Reson
– volume: 48
  start-page: 333
  year: 2013
  end-page: 340
  article-title: Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen
  publication-title: Invest Radiol
– volume: 15
  start-page: 104
  year: 2013
  article-title: ECG‐based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach
  publication-title: J Cardiovasc Magn Reson
– volume: 10
  start-page: 1
  year: 2011
  end-page: 17
  article-title: A novel technique for fetal heart rate estimation from Doppler ultrasound signal
  publication-title: Biomed Eng Online
– volume: 27
  start-page: 247
  year: 2008
  end-page: 254
  article-title: Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom
  publication-title: IEEE Trans Med Imaging
– year: 2003
– year: 1996
– volume: 39
  start-page: 3009
  year: 2012
  end-page: 3018
  article-title: Ultrasound‐guided identification of cardiac imaging windows
  publication-title: Med Phys
– volume: 7
  start-page: 775
  year: 2005
  end-page: 782
  article-title: Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging
  publication-title: J Cardiovasc Magn Reson
– volume: 94
  start-page: 148
  year: 2008
  end-page: 155
  article-title: Acoustic method for synchronization of magnetic resonance imaging
  publication-title: Acta Acust United Ac
– volume: 17
  start-page: 21
  year: 1996
  end-page: 32
  article-title: Theoretical analysis of magnetic field interactions with aortic blood flow
  publication-title: Bioelectromagnetics
– volume: 71
  start-page: 1374
  year: 2014
  end-page: 1380
  article-title: 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12‐lead electrocardiogram traces
  publication-title: Magn Reson Med
– volume: 1
  start-page: 307
  year: 1986
  end-page: 310
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– volume: 63
  start-page: 290
  year: 2010
  end-page: 296
  article-title: Hybrid ultrasound MRI for improved cardiac imaging and real‐time respiration control
  publication-title: Magn Reson Med
– volume: 41
  start-page: 715
  year: 1999
  end-page: 721
  article-title: Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences
  publication-title: Magn Reson Med
– year: 1998
– volume: 33
  start-page: 1184
  year: 2011
  end-page: 1193
  article-title: Adaptive noise cancellation to suppress electrocardiography artifacts during real‐time interventional MRI
  publication-title: J Magn Reson Imaging
– volume: 55
  start-page: 506
  year: 2006
  end-page: 513
  article-title: Cardiac and respiratory double self‐gated cine MRI in the mouse at 7 T
  publication-title: Magn Reson Med
– volume: 52
  start-page: 27
  year: 2004
  end-page: 32
  article-title: Ultrasound‐guided MRI: preliminary results using a motion phantom
  publication-title: Magn Reson Med
– volume: 42
  start-page: 361
  year: 1999
  end-page: 370
  article-title: Novel real‐time R‐wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions
  publication-title: Magn Reson Med
– volume: 57
  start-page: 1
  year: 2012
  article-title: Cardiac MR: imaging of the foetal heart dynamics using doppler ultrasound triggering
  publication-title: Biomed Tech
– volume: 7
  start-page: 1116
  year: 2000
  end-page: 1122
  article-title: Doppler US gating of cardiac MR imaging
  publication-title: Acad Radiol
– volume: 24
  start-page: 1519
  year: 2005
  end-page: 1526
  article-title: Echocardiography‐based selection of quiescent heart phases implications for cardiac imaging
  publication-title: J Ultras Med
– volume: 16
  start-page: 139
  year: 1990
  end-page: 149
  article-title: Magnetohydrodynamics of blood flow
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1471
  year: 2010
  end-page: 1477
  article-title: Quantitative assessment of left ventricular function in humans at 7 T
  publication-title: Magn Reson Med
– volume: 12
  start-page: 678
  year: 2000
  end-page: 688
  article-title: Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method
  publication-title: J Magn Reson Imaging
– volume: 20
  start-page: 363
  year: 1999
  article-title: A method for foetal heart rate monitoring during magnetic resonance imaging using Doppler ultrasound
  publication-title: Physiol Meas
– volume: 155
  start-page: 681
  year: 1985
  end-page: 686
  article-title: ECG‐synchronized cardiac MR imaging: method and evaluation
  publication-title: Radiology
– volume: 51
  start-page: 93
  year: 2004
  end-page: 102
  article-title: Self‐gated cardiac cine MRI
  publication-title: Magn Reson Med
– volume: v4
  start-page: 79
  issue: i4
  year: 2010
  end-page: 87
  article-title: The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements
  publication-title: Int J Biol Biomed Eng
– volume: 13
  start-page: 690
  year: 2003
  end-page: 694
  article-title: Hazardous situation in the MR bore: induction in ECG leads causes fire
  publication-title: Eur Radiol
– volume: 232
  start-page: 635
  year: 2004
  end-page: 652
  article-title: MR procedures: biologic effects, safety, and patient care
  publication-title: Radiology
– start-page: 325
  year: 2011
  end-page: 332
– volume: 35
  start-page: 1071
  year: 2012
  end-page: 1076
  article-title: Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model
  publication-title: J Magn Reson Imaging
– volume: 12
  start-page: 67
  year: 2010
  article-title: Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla
  publication-title: J Cardiovasc Magn Reson
– volume: 27
  start-page: 237
  year: 2014
  end-page: 244
  article-title: Fetal blood flow velocimetry by phase‐contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study
  publication-title: MAGMA
– volume: 25
  start-page: 585
  year: 2004
  article-title: Beat‐to‐beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain
  publication-title: Physiol Meas
– volume: 55
  start-page: 117
  year: 1930
  end-page: 258
  article-title: Generalized harmonic analysis
  publication-title: Acta Math
– volume: 20
  start-page: 1344
  year: 2010
  end-page: 1355
  article-title: Comparison of left ventricular function assessment using phonocardiogram‐and electrocardiogram‐triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T
  publication-title: Eur Radiol
– ident: e_1_2_5_13_1
  doi: 10.1002/mrm.20815
– ident: e_1_2_5_26_1
  doi: 10.1152/ajpheart.1981.241.4.H620
– ident: e_1_2_5_17_1
  doi: 10.1097/RLI.0b013e31828236c3
– ident: e_1_2_5_23_1
  doi: 10.1002/jmri.23541
– ident: e_1_2_5_33_1
  doi: 10.1007/BF02546511
– ident: e_1_2_5_31_1
  doi: 10.1088/0967-3334/25/2/015
– ident: e_1_2_5_9_1
  doi: 10.1002/1522-2586(200011)12:5<678::AID-JMRI4>3.0.CO;2-5
– ident: e_1_2_5_22_1
  doi: 10.1515/bmt-2012-4443
– ident: e_1_2_5_18_1
– ident: e_1_2_5_24_1
  doi: 10.1007/s10334-013-0404-5
– ident: e_1_2_5_11_1
  doi: 10.1007/s00330-003-1841-8
– ident: e_1_2_5_28_1
  doi: 10.1016/S0140-6736(86)90837-8
– ident: e_1_2_5_15_1
  doi: 10.1002/mrm.22250
– ident: e_1_2_5_2_1
  doi: 10.1148/radiology.155.3.4001369
– ident: e_1_2_5_29_1
  doi: 10.1002/(SICI)1522-2594(199904)41:4<715::AID-MRM9>3.0.CO;2-7
– ident: e_1_2_5_35_1
  doi: 10.1080/10976640500295516
– ident: e_1_2_5_30_1
  doi: 10.1186/1475-925X-10-92
– ident: e_1_2_5_37_1
  doi: 10.1118/1.4711757
– ident: e_1_2_5_14_1
  doi: 10.1186/1532-429X-12-67
– ident: e_1_2_5_5_1
  doi: 10.1186/1532-429X-15-104
– ident: e_1_2_5_20_1
  doi: 10.1016/S1076-6332(00)80065-3
– volume: 4
  start-page: 79
  issue: 4
  year: 2010
  ident: e_1_2_5_32_1
  article-title: The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements
  publication-title: Int J Biol Biomed Eng
– ident: e_1_2_5_3_1
  doi: 10.1002/mrm.1910160113
– ident: e_1_2_5_21_1
  doi: 10.1088/0967-3334/20/4/303
– ident: e_1_2_5_7_1
  doi: 10.1002/(SICI)1521-186X(1996)17:1<21::AID-BEM3>3.0.CO;2-8
– ident: e_1_2_5_42_1
  doi: 10.3813/AAA.918017
– ident: e_1_2_5_6_1
  doi: 10.1007/978-3-642-21028-0_42
– ident: e_1_2_5_16_1
  doi: 10.1002/mrm.20140
– ident: e_1_2_5_10_1
  doi: 10.1007/s00330-009-1676-z
– volume-title: A practical guide to echocardiography and cardiac doppler ultrasound
  year: 1996
  ident: e_1_2_5_25_1
– ident: e_1_2_5_38_1
  doi: 10.7863/jum.2005.24.11.1519
– ident: e_1_2_5_39_1
  doi: 10.1002/jmri.22530
– ident: e_1_2_5_41_1
  doi: 10.1002/mrm.10664
– volume-title: Diagnostic medical sonography: echocardiography
  year: 1998
  ident: e_1_2_5_34_1
– ident: e_1_2_5_8_1
  doi: 10.1002/mrm.22529
– ident: e_1_2_5_19_1
  doi: 10.1109/TMI.2007.911000
– ident: e_1_2_5_27_1
  doi: 10.1002/jmri.10262
– ident: e_1_2_5_4_1
  doi: 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9
– ident: e_1_2_5_12_1
  doi: 10.1148/radiol.2323030830
– ident: e_1_2_5_36_1
  doi: 10.1080/10976640600572889
– ident: e_1_2_5_40_1
  doi: 10.1002/mrm.25078
SSID ssj0009974
Score 2.3350894
Snippet Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging....
Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The...
Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1257
SubjectTerms Adult
Algorithms
Cardiac Imaging Techniques
cardiac-gated imaging techniques
cine magnetic resonance imaging
computer-assisted image processing
Doppler ultrasound
electrocardiogram
Electrocardiography - methods
Female
Humans
Image Processing, Computer-Assisted - methods
Male
oximetry
Oximetry - methods
Pilot Projects
Signal Processing, Computer-Assisted
Ultrasonography, Doppler - methods
Title Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: A pilot study
URI https://api.istex.fr/ark:/67375/WNG-S9395TM4-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25502
https://www.ncbi.nlm.nih.gov/pubmed/25359183
https://www.proquest.com/docview/1725349574
https://www.proquest.com/docview/1727435956
https://www.proquest.com/docview/1732825037
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrUBcSinQBgoyCCEu2SaxvYnpqQJKhZQeSqv2gGQ5jrNadXezyiZSy69n7DyqooIQp0TyRPFjxv7GnvkM8C4p8iijSe6r0DCf5Vz5KikCvwhURMdZWBhus5HTk_HxOft2yS_X4KDPhWn5IYYNN2sZbr62Bq6y1f4taei8mo8QDzsiSRurZQHR6S11lBAtA3PM7DwjWM8qFET7w5d31qIN263X9wHNu7jVLTxHj-FHX-U23uRq1NTZSP_8jc3xP9u0BZsdICWHrQY9gTWz2IaHaXfkvg0PXIyoXj2FyecSIaupSDOrK7Wy9zGRPoSd2P1c0t2po12Mqw37Igpllg0uv6S8ns5NXd0QV6o0qavpZOKIED-SQ7KczsqaOLLbZ3B-9OXs07Hf3dPga8ZF5GthaeyYQbBUCBYV6CNmOE_QIDeCqchyVGlToJ-kc5XpIEeXL1ZJSLM8CSIzjulzWF-UC7MLBEcrj7ihBh9MhEWWB6GmloJ-LKhOqAcf-hGTuiMxt3dpzGRLvxxJ7ELputCDt4PosmXuuE_ovRv2QUJVVzbULeby4uSr_C6o4Gcpkxce7PV6ITsrX0kEf5yihxkzD94MxWif9tBFLUzZOBkEaRzd0L_JUJtCHNDYg51W54YK4R-4CF3Lneb8uS0yPU3dy4t_F30JjxAB8ja5cg_W66oxrxBl1dlrZ06_AFCeIdY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrXhcCpRHAwUMQohLtklsb2LEpQLKAs0eylbtBVmO46xW3ZeyWanw6xk7j6qoIMQpkTxR_Jixv7HH3wC8Soo8ymiS-yo0zGc5V75KisAvAhXRfhYWhtvbyOmwPzhhX8742Qa8a-_C1PwQ3YabtQw3X1sDtxvS-5esobNy1kNAbJkkt2xGb-dQHV-SRwlRczDHzM40grW8QkG03316ZTXash17cR3UvIpc3dJzeAe-t5WuI07Oe-sq6-mfv_E5_m-r7sJ2g0nJQa1E92DDzHfgZtqcuu_ADRcmqlf3YfxhgajVlGQ9rUq1simZSBvFTuyWLmnS6mgX5mojv4hCmeUaV2CyuJjMTFX-IK5UaVKVk_HYcSG-JQdkOZkuKuL4bh_AyeHH0fuB36Rq8DXjIvK1sEx2zCBeKgSLCnQTM5wqaJAbwVRkaaq0KdBV0rnKdJCj1xerJKRZngSR6cf0IWzOF3OzCwSHK4-4oQYfTIRFlgehppaFvi-oTqgHb9ohk7rhMbfpNKayZmCOJHahdF3owctOdFmTd1wn9NqNeyehynMb7RZzeTr8JL8JKvgoZfLUg71WMWRj6CuJ-I9TdDJj5sGLrhhN1J67qLlZrJ0M4jSOnujfZKi9RRzQ2INHtdJ1FcI_cBG6ljvV-XNbZHqcupfH_y76HG4NRumRPPo8_PoEbiMg5PVdyz3YrMq1eYqgq8qeOdv6BViaJfE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5Vrah44SjXQgGDEOIl2yS2kxieKpalHFmh0qp9qGQ5trNadXezyiZS4ddjO0dVVBDiKZE8UXzM2N_Y428AXiW5CjOcKE8EmnhEUeGJJPe93BchjrIg19TeRk4n0cEx-XxKTzfgXXcXpuGH6DfcrGW4-doa-Erle5ekoYtyMTR42BJJbpHIT6xKjw4vuaMYayiYY2InGkY6WiE_3Os_vbIYbdl-vbgOaV4Frm7lGd-Gs67OTcDJ-bCusqH8-Rud43826g7cahEp2m9U6C5s6OUObKftmfsO3HBBonJ9D6ajwmBWXaJ6XpVibRMyoS6GHdkNXdQm1ZEuyNXGfSFhZFa1WX9RcTFb6Kr8gVypkKgqZ9OpY0J8i_bRajYvKuTYbu_D8fjD0fsDr03U4ElCWehJZnnsiDZoKWckzI2TmJmJAvtKMyJCS1IldW4cJalEJn1lfL5YJAHOVOKHOorxA9hcFkv9CJAZLRVSjbV5EBbkmfIDiS0HfcSwTPAA3nQjxmXLYm6Tacx5w78cctOF3HXhAF72oquGuuM6oddu2HsJUZ7bWLeY8pPJR_6dYUaPUsJPBrDb6QVvzXzNDfqj2LiYMRnAi77YGKg9dRFLXdROxqA0avzQv8lge4fYx_EAHjY611fI_IGywLXcac6f28LTw9S9PP530eew_W005l8_Tb48gZsGDdLmouUubFZlrZ8axFVlz5xl_QLnHCSp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doppler+ultrasound+compared+with+electrocardiogram+and+pulse+oximetry+cardiac+triggering%3A+A+pilot+study&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Kording%2C+Fabian&rft.au=Schoennagel%2C+Bjoern&rft.au=Lund%2C+Gunnar&rft.au=Ueberle%2C+Friedrich&rft.date=2015-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=74&rft.issue=5&rft.spage=1257&rft.epage=1265&rft_id=info:doi/10.1002%2Fmrm.25502&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_S9395TM4_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon