Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: A pilot study
Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady‐state free preces...
Saved in:
Published in | Magnetic resonance in medicine Vol. 74; no. 5; pp. 1257 - 1265 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.11.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI.
Methods
Steady‐state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG.
Results
Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with −1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8).
Conclusion
Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257–1265, 2015. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Results Mean difference between DUS and ECG in detected RR intervals was 0.04 plus or minus 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 plus or minus 0.2 / 2.6 plus or minus 0.2 / 2.9 plus or minus 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 plus or minus 7 mL (ECG/DUS, P = 0.9) and 2 plus or minus 10 mL (ECG/POX, P = 0.8). Conclusion Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257-1265, 2015. Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Results Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8). Conclusion Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257-1265, 2015. © 2014 Wiley Periodicals, Inc. Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Methods Steady‐state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Results Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with −1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8). Conclusion Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Magn Reson Med 74:1257–1265, 2015. © 2014 Wiley Periodicals, Inc. Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI.PURPOSEAccurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI.Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG.METHODSSteady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG.Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8).RESULTSMean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8).Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting.CONCLUSIONCine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The purpose of this work was to evaluate Doppler ultrasound as an alternative trigger method in cardiac MRI. Steady-state free precession (SSFP) 2D cine CMR was performed in 11 healthy subjects at 1.5T. Doppler ultrasound (DUS), electrocardiogram (ECG) and pulse oximetry (POX) were used for cardiac triggering. DUS peak detection was verified in comparison to ECG. Quantitative analysis of image quality of each gating method was determined by calculating endocardial border sharpness (EBS) and left ventricular (LV) function parameters and compared with ECG. Mean difference between DUS and ECG in detected RR intervals was 0.04 ± 63 ms (r = 0.96). Trigger jitter was not different between ECG and DUS (P = 0.15) but significant different between ECG and POX (P = 0.01). EBS was similar between each method (3.1 ± 0.2 / 2.6 ± 0.2 / 2.9 ± 0.2 pixel). Mean differences in stroke volume were not significantly different with -1 ± 7 mL (ECG/DUS, P = 0.9) and 2 ± 10 mL (ECG/POX, P = 0.8). Cine cardiac MRI using DUS was successfully demonstrated. DUS triggering is an alternative method for cardiac MRI and may be applied in a clinical setting. |
Author | Jung, Caroline Adam, Gerhard Lund, Gunnar Kording, Fabian Ueberle, Friedrich Schoennagel, Bjoern Yamamura, Jin |
Author_xml | – sequence: 1 givenname: Fabian surname: Kording fullname: Kording, Fabian email: f.kording@uke.de organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany – sequence: 2 givenname: Bjoern surname: Schoennagel fullname: Schoennagel, Bjoern organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany – sequence: 3 givenname: Gunnar surname: Lund fullname: Lund, Gunnar organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany – sequence: 4 givenname: Friedrich surname: Ueberle fullname: Ueberle, Friedrich organization: Hamburg University of Applied Sciences, Hamburg, Germany – sequence: 5 givenname: Caroline surname: Jung fullname: Jung, Caroline organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany – sequence: 6 givenname: Gerhard surname: Adam fullname: Adam, Gerhard organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany – sequence: 7 givenname: Jin surname: Yamamura fullname: Yamamura, Jin organization: University Medical Centre Hamburg-Eppendorf, Centre for Radiology and Endoscopy, Department of Diagnostic and Interventional Radiology, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25359183$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFvFCEYhompsdvVg3_AkHjRw7TwATOLt6ZqNenWpK3pkbAMM1JnhikwafffS7u7HpqaeOLA87yB9z1Ae4MfLEJvKTmkhMBRH_pDEILACzSjAqAAIfkempGKk4JRyffRQYw3hBApK_4K7YNgQtIFm6H2sx_HzgY8dSno6Kehxsb3ow62xncu_cK2syYFb3SonW-D7rHOzDh10WJ_73qbwho_3mqDU3Bta4Mb2k_4GI-u8wnHNNXr1-hlo7PyZnvO0c-vX65OvhVnP06_nxyfFYYLCYWRUuS325JCIzk0nFQrBsBIbSXXUNESjG3KsjS1XhlSS-CVXlC2qhcEbFmxOfqwyR2Dv51sTKp30diu04P1U1S0YrAAQdj_oFDx3JMoM_r-CXrjpzDkjzxQgnEpMjpH77bUtOptrcbgeh3Watd2Bo42gAk-xmAbZVzSyfkhd-86RYl62FPlPdXjntn4-MTYhT7HbtPvXGfX_wbV8mK5M4qN4WKy938NHX6rXGUl1PX5qbqUTIqrJVfX7A9q_b1c |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1055_a_1761_3500 crossref_primary_10_1152_ajpregu_00273_2017 crossref_primary_10_1186_s12938_022_01015_5 crossref_primary_10_1002_jmri_26842 crossref_primary_10_1186_s12968_018_0440_4 crossref_primary_10_1109_ACCESS_2019_2936184 crossref_primary_10_1186_s12968_017_0383_1 crossref_primary_10_1002_mrm_27032 crossref_primary_10_3389_fphys_2017_00305 crossref_primary_10_1109_TBME_2017_2764111 crossref_primary_10_1148_ryct_230182 crossref_primary_10_1016_j_mri_2021_06_015 crossref_primary_10_1109_TIM_2022_3177203 crossref_primary_10_1088_1361_6560_ac4213 crossref_primary_10_1109_ACCESS_2019_2963221 crossref_primary_10_1186_s12880_020_00523_x crossref_primary_10_2463_mrms_mp_2017_0100 crossref_primary_10_3390_s20154079 crossref_primary_10_1002_jmri_25723 crossref_primary_10_1109_RBME_2021_3055550 crossref_primary_10_1186_s12968_017_0346_6 crossref_primary_10_1007_s10554_023_03002_w crossref_primary_10_1007_s12350_021_02675_x crossref_primary_10_1016_j_engappai_2024_108483 crossref_primary_10_1088_1361_6579_aa6e8c crossref_primary_10_1002_mrm_29467 crossref_primary_10_2463_mrms_mp_2015_0104 crossref_primary_10_1007_s10554_016_0963_4 |
Cites_doi | 10.1002/mrm.20815 10.1152/ajpheart.1981.241.4.H620 10.1097/RLI.0b013e31828236c3 10.1002/jmri.23541 10.1007/BF02546511 10.1088/0967-3334/25/2/015 10.1002/1522-2586(200011)12:5<678::AID-JMRI4>3.0.CO;2-5 10.1515/bmt-2012-4443 10.1007/s10334-013-0404-5 10.1007/s00330-003-1841-8 10.1016/S0140-6736(86)90837-8 10.1002/mrm.22250 10.1148/radiology.155.3.4001369 10.1002/(SICI)1522-2594(199904)41:4<715::AID-MRM9>3.0.CO;2-7 10.1080/10976640500295516 10.1186/1475-925X-10-92 10.1118/1.4711757 10.1186/1532-429X-12-67 10.1186/1532-429X-15-104 10.1016/S1076-6332(00)80065-3 10.1002/mrm.1910160113 10.1088/0967-3334/20/4/303 10.1002/(SICI)1521-186X(1996)17:1<21::AID-BEM3>3.0.CO;2-8 10.3813/AAA.918017 10.1007/978-3-642-21028-0_42 10.1002/mrm.20140 10.1007/s00330-009-1676-z 10.7863/jum.2005.24.11.1519 10.1002/jmri.22530 10.1002/mrm.10664 10.1002/mrm.22529 10.1109/TMI.2007.911000 10.1002/jmri.10262 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9 10.1148/radiol.2323030830 10.1080/10976640600572889 10.1002/mrm.25078 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
DOI | 10.1002/mrm.25502 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1265 |
ExternalDocumentID | 3844422631 25359183 10_1002_mrm_25502 MRM25502 ark_67375_WNG_S9395TM4_W |
Genre | article Journal Article Comparative Study |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO |
ID | FETCH-LOGICAL-c4592-c995594e612f942f407b32230de94a27162cef666cdabc0d9247a813bd802e673 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 16:21:26 EDT 2025 Thu Jul 10 22:00:18 EDT 2025 Fri Jul 25 12:17:56 EDT 2025 Mon Jul 21 05:55:32 EDT 2025 Tue Jul 01 01:20:57 EDT 2025 Thu Apr 24 22:51:08 EDT 2025 Wed Jan 22 16:26:14 EST 2025 Wed Oct 30 09:45:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | computer-assisted image processing oximetry electrocardiogram cine magnetic resonance imaging Doppler ultrasound cardiac-gated imaging techniques |
Language | English |
License | 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4592-c995594e612f942f407b32230de94a27162cef666cdabc0d9247a813bd802e673 |
Notes | ark:/67375/WNG-S9395TM4-W istex:A48F1C1C968745FEE047C26DEF213794A49ADFED ArticleID:MRM25502 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.25502 |
PMID | 25359183 |
PQID | 1725349574 |
PQPubID | 1016391 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1732825037 proquest_miscellaneous_1727435956 proquest_journals_1725349574 pubmed_primary_25359183 crossref_citationtrail_10_1002_mrm_25502 crossref_primary_10_1002_mrm_25502 wiley_primary_10_1002_mrm_25502_MRM25502 istex_primary_ark_67375_WNG_S9395TM4_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11 November 2015 2015-11-00 2015-Nov 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 2005;7:775-782. Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging 2000;12:678-688. Wu V, Barbash IM, Ratnayaka K, Saikus CE, Sonmez M, Kocaturk O, Lederman RJ, Faranesh AZ. Adaptive noise cancellation to suppress electrocardiography artifacts during real-time interventional MRI. J Magn Reson Imaging 2011;33:1184-1193. Tang AM, Kacher DF, Lam EY, Wong KK, Jolesz FA, Yang ES. Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom. IEEE Trans Med Imaging 2008;27:247-254. Keltner JR, Roos MS, Brakeman PR, Budinger TF. Magnetohydrodynamics of blood flow. Magn Reson Med 1990;16:139-149. Brandts A, Westenberg JJ, Versluis MJ, Kroft LJ, Smith NB, Webb AG, de Roos A. Quantitative assessment of left ventricular function in humans at 7 T. Magn Reson Med 2010;64:1471-1477. Jezewski J, Roj D, Wrobel J, Horoba K. A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed Eng Online 2011;10:1-17. Maceira A, Prasad S, Khan M, Pennell D. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006;8:417-426. Jawad IA. A practical guide to echocardiography and cardiac doppler ultrasound. Philadelphia: Lippincott Williams & Wilkins; 1996. Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 1999;41:715-721. Kinouchi Y, Yamaguchi H, Tenforde T. Theoretical analysis of magnetic field interactions with aortic blood flow. Bioelectromagnetics 1996;17:21-32. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-310. Gregory TS, Schmidt EJ, Zhang SH, Ho Tse ZT. 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12-lead electrocardiogram traces. Magn Reson Med 2014;71:1374-1380. Liu G, Qi X-L, Robert N, Dick AJ, Wright GA. Ultrasound-guided identification of cardiac imaging windows. Med Phys 2012;39:3009-3018. Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging. Acta Acust United Ac 2008;94:148-155. Allen M, Kawamura DM, Craig M, Berman MC. Diagnostic medical sonography: echocardiography. Philadelphia: Lippincott Williams & Wilkins; 1998. Wrobel J, Jezewski J, Roj D, Przybyla T, Czabanski R, Matonia A. The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements. Int J Biol Biomed Eng v4 i4 2010:79-87. Ueberle F, Dettmann E, Eden C, et al. Cardiac MR: imaging of the foetal heart dynamics using doppler ultrasound triggering. Biomed Tech 2012;57:1. Rubin JM, Brian Fowlkes J, Prince MR, Rhee RT, Chenevert TL. Doppler US gating of cardiac MR imaging. Acad Radiol 2000;7:1116-1122. Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999;42:361-370. Wiener N. Generalized harmonic analysis. Acta Math 1930;55:117-258. Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 2006;55:506-513. Günther M, Feinberg DA. Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med 2004;52:27-32. Shakespeare SA, Moore RJ, Crowe JA, Gowland PA, Hayes-Gill BR. A method for foetal heart rate monitoring during magnetic resonance imaging using Doppler ultrasound. Physiol Meas 1999;20:363. Tridandapani S, Fowlkes JB, Rubin JM. Echocardiography-based selection of quiescent heart phases implications for cardiac imaging. J Ultras Med 2005;24:1519-1526. Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, Adam G, Wedegärtner U. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging 2012;35:1071-1076. Krug JW, Rose G, Clifford GD, Oster J. ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach. J Cardiovasc Magn Reson 2013;15:104. Kugel H, Bremer C, Püschel M, Fischbach R, Lenzen H, Tombach B, Van Aken H, Heindel W. Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 2003;13:690-694. Martin V, Drochon A, Fokapu O, Gerbeau J-F. Magnetohemodynamics effect on electrocardiograms. Functional imaging and modeling of the heart. New York: Springer; 2011. p 325-332. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 2003;17:323-329. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart C 1981;241:620-629. Schoennagel BP, Remus CC, Yamamura J, et al. Fetal blood flow velocimetry by phase-contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study. MAGMA 2014;27:237-244. Becker M, Frauenrath T, Hezel F, et al. Comparison of left ventricular function assessment using phonocardiogram-and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 2010;20:1344-1355. Petrusca L, Cattin P, De Luca V, et al. Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen. Invest Radiol 2013;48:333-340. Lanzer P, Barta C, Botvinick E, Wiesendanger H, Modin G, Higgins C. ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 1985;155:681-686. Frauenrath T, Hezel F, Renz W, de Geyer d'Orth T, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz-Menger J, Niendorf T. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010;12:67. Feinberg DA, Giese D, Bongers DA, Ramanna S, Zaitsev M, Markl M, Günther M. Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control. Magn Reson Med 2010;63:290-296. Peters C, ten Broeke E, Andriessen P, Vermeulen B, Berendsen R, Wijn P, Oei SG. Beat-to-beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain. Physiol Meas 2004;25:585. Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology 2004;232:635-652. Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac cine MRI. Magn Reson Med 2004;51:93-102. 2010; 12 2013; 48 1996; 17 1990; 16 2011 1930; 55 2006; 55 1981; 241 2004; 25 2000; 7 2003; 13 2014; 27 1998 2006; 8 1996 2011; 33 2011; 10 1999; 42 1999; 20 2003; 17 1999; 41 2012; 39 2003 2008; 94 2012; 57 2012; 35 2010; 63 2005; 24 2004; 232 2004; 52 1986; 1 2010; 64 2010; 20 2010; v4 2013; 15 2004; 51 2000; 12 2008; 27 2005; 7 2014; 71 1985; 155 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Allen M (e_1_2_5_34_1) 1998 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 Wrobel J (e_1_2_5_32_1) 2010; 4 Jawad IA (e_1_2_5_25_1) 1996 |
References_xml | – reference: Yamamura J, Kopp I, Frisch M, Fischer R, Valett K, Hecher K, Adam G, Wedegärtner U. Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model. J Magn Reson Imaging 2012;35:1071-1076. – reference: Liu G, Qi X-L, Robert N, Dick AJ, Wright GA. Ultrasound-guided identification of cardiac imaging windows. Med Phys 2012;39:3009-3018. – reference: Feinberg DA, Giese D, Bongers DA, Ramanna S, Zaitsev M, Markl M, Günther M. Hybrid ultrasound MRI for improved cardiac imaging and real-time respiration control. Magn Reson Med 2010;63:290-296. – reference: Wu V, Barbash IM, Ratnayaka K, Saikus CE, Sonmez M, Kocaturk O, Lederman RJ, Faranesh AZ. Adaptive noise cancellation to suppress electrocardiography artifacts during real-time interventional MRI. J Magn Reson Imaging 2011;33:1184-1193. – reference: Kugel H, Bremer C, Püschel M, Fischbach R, Lenzen H, Tombach B, Van Aken H, Heindel W. Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 2003;13:690-694. – reference: Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999;42:361-370. – reference: Peters C, ten Broeke E, Andriessen P, Vermeulen B, Berendsen R, Wijn P, Oei SG. Beat-to-beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain. Physiol Meas 2004;25:585. – reference: Lanzer P, Barta C, Botvinick E, Wiesendanger H, Modin G, Higgins C. ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 1985;155:681-686. – reference: Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 2006;55:506-513. – reference: Martin V, Drochon A, Fokapu O, Gerbeau J-F. Magnetohemodynamics effect on electrocardiograms. Functional imaging and modeling of the heart. New York: Springer; 2011. p 325-332. – reference: Jawad IA. A practical guide to echocardiography and cardiac doppler ultrasound. Philadelphia: Lippincott Williams & Wilkins; 1996. – reference: Rubin JM, Brian Fowlkes J, Prince MR, Rhee RT, Chenevert TL. Doppler US gating of cardiac MR imaging. Acad Radiol 2000;7:1116-1122. – reference: Tang AM, Kacher DF, Lam EY, Wong KK, Jolesz FA, Yang ES. Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom. IEEE Trans Med Imaging 2008;27:247-254. – reference: Günther M, Feinberg DA. Ultrasound-guided MRI: preliminary results using a motion phantom. Magn Reson Med 2004;52:27-32. – reference: Chia JM, Fischer SE, Wickline SA, Lorenz CH. Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method. J Magn Reson Imaging 2000;12:678-688. – reference: Shakespeare SA, Moore RJ, Crowe JA, Gowland PA, Hayes-Gill BR. A method for foetal heart rate monitoring during magnetic resonance imaging using Doppler ultrasound. Physiol Meas 1999;20:363. – reference: Schoennagel BP, Remus CC, Yamamura J, et al. Fetal blood flow velocimetry by phase-contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study. MAGMA 2014;27:237-244. – reference: Petrusca L, Cattin P, De Luca V, et al. Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen. Invest Radiol 2013;48:333-340. – reference: Maceira A, Prasad S, Khan M, Pennell D. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2006;8:417-426. – reference: Krug JW, Rose G, Clifford GD, Oster J. ECG-based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach. J Cardiovasc Magn Reson 2013;15:104. – reference: Ueberle F, Dettmann E, Eden C, et al. Cardiac MR: imaging of the foetal heart dynamics using doppler ultrasound triggering. Biomed Tech 2012;57:1. – reference: Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C. Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 1999;41:715-721. – reference: Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of magnetic resonance imaging. Acta Acust United Ac 2008;94:148-155. – reference: Becker M, Frauenrath T, Hezel F, et al. Comparison of left ventricular function assessment using phonocardiogram-and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur Radiol 2010;20:1344-1355. – reference: Tridandapani S, Fowlkes JB, Rubin JM. Echocardiography-based selection of quiescent heart phases implications for cardiac imaging. J Ultras Med 2005;24:1519-1526. – reference: Wrobel J, Jezewski J, Roj D, Przybyla T, Czabanski R, Matonia A. The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements. Int J Biol Biomed Eng v4 i4 2010:79-87. – reference: Wiener N. Generalized harmonic analysis. Acta Math 1930;55:117-258. – reference: Allen M, Kawamura DM, Craig M, Berman MC. Diagnostic medical sonography: echocardiography. Philadelphia: Lippincott Williams & Wilkins; 1998. – reference: Brandts A, Westenberg JJ, Versluis MJ, Kroft LJ, Smith NB, Webb AG, de Roos A. Quantitative assessment of left ventricular function in humans at 7 T. Magn Reson Med 2010;64:1471-1477. – reference: Kinouchi Y, Yamaguchi H, Tenforde T. Theoretical analysis of magnetic field interactions with aortic blood flow. Bioelectromagnetics 1996;17:21-32. – reference: Gregory TS, Schmidt EJ, Zhang SH, Ho Tse ZT. 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12-lead electrocardiogram traces. Magn Reson Med 2014;71:1374-1380. – reference: Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart C 1981;241:620-629. – reference: Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-310. – reference: Jezewski J, Roj D, Wrobel J, Horoba K. A novel technique for fetal heart rate estimation from Doppler ultrasound signal. Biomed Eng Online 2011;10:1-17. – reference: Keltner JR, Roos MS, Brakeman PR, Budinger TF. Magnetohydrodynamics of blood flow. Magn Reson Med 1990;16:139-149. – reference: Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology 2004;232:635-652. – reference: Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 2003;17:323-329. – reference: Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S. Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 2005;7:775-782. – reference: Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP. Self-gated cardiac cine MRI. Magn Reson Med 2004;51:93-102. – reference: Frauenrath T, Hezel F, Renz W, de Geyer d'Orth T, Dieringer M, von Knobelsdorff-Brenkenhoff F, Prothmann M, Schulz-Menger J, Niendorf T. Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010;12:67. – volume: 241 start-page: 620 year: 1981 end-page: 629 article-title: Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate publication-title: Am J Physiol Heart C – volume: 17 start-page: 323 year: 2003 end-page: 329 article-title: Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady‐state free precession imaging sequences publication-title: J Magn Reson Imaging – volume: 8 start-page: 417 year: 2006 end-page: 426 article-title: Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance publication-title: J Cardiovasc Magn Reson – volume: 48 start-page: 333 year: 2013 end-page: 340 article-title: Hybrid ultrasound/magnetic resonance simultaneous acquisition and image fusion for motion monitoring in the upper abdomen publication-title: Invest Radiol – volume: 15 start-page: 104 year: 2013 article-title: ECG‐based gating in ultra high field cardiovascular magnetic resonance using an independent component analysis approach publication-title: J Cardiovasc Magn Reson – volume: 10 start-page: 1 year: 2011 end-page: 17 article-title: A novel technique for fetal heart rate estimation from Doppler ultrasound signal publication-title: Biomed Eng Online – volume: 27 start-page: 247 year: 2008 end-page: 254 article-title: Simultaneous ultrasound and MRI system for breast biopsy: compatibility assessment and demonstration in a dual modality phantom publication-title: IEEE Trans Med Imaging – year: 2003 – year: 1996 – volume: 39 start-page: 3009 year: 2012 end-page: 3018 article-title: Ultrasound‐guided identification of cardiac imaging windows publication-title: Med Phys – volume: 7 start-page: 775 year: 2005 end-page: 782 article-title: Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging publication-title: J Cardiovasc Magn Reson – volume: 94 start-page: 148 year: 2008 end-page: 155 article-title: Acoustic method for synchronization of magnetic resonance imaging publication-title: Acta Acust United Ac – volume: 17 start-page: 21 year: 1996 end-page: 32 article-title: Theoretical analysis of magnetic field interactions with aortic blood flow publication-title: Bioelectromagnetics – volume: 71 start-page: 1374 year: 2014 end-page: 1380 article-title: 3DQRS: a method to obtain reliable QRS complex detection within high field MRI using 12‐lead electrocardiogram traces publication-title: Magn Reson Med – volume: 1 start-page: 307 year: 1986 end-page: 310 article-title: Statistical methods for assessing agreement between two methods of clinical measurement publication-title: Lancet – volume: 63 start-page: 290 year: 2010 end-page: 296 article-title: Hybrid ultrasound MRI for improved cardiac imaging and real‐time respiration control publication-title: Magn Reson Med – volume: 41 start-page: 715 year: 1999 end-page: 721 article-title: Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences publication-title: Magn Reson Med – year: 1998 – volume: 33 start-page: 1184 year: 2011 end-page: 1193 article-title: Adaptive noise cancellation to suppress electrocardiography artifacts during real‐time interventional MRI publication-title: J Magn Reson Imaging – volume: 55 start-page: 506 year: 2006 end-page: 513 article-title: Cardiac and respiratory double self‐gated cine MRI in the mouse at 7 T publication-title: Magn Reson Med – volume: 52 start-page: 27 year: 2004 end-page: 32 article-title: Ultrasound‐guided MRI: preliminary results using a motion phantom publication-title: Magn Reson Med – volume: 42 start-page: 361 year: 1999 end-page: 370 article-title: Novel real‐time R‐wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions publication-title: Magn Reson Med – volume: 57 start-page: 1 year: 2012 article-title: Cardiac MR: imaging of the foetal heart dynamics using doppler ultrasound triggering publication-title: Biomed Tech – volume: 7 start-page: 1116 year: 2000 end-page: 1122 article-title: Doppler US gating of cardiac MR imaging publication-title: Acad Radiol – volume: 24 start-page: 1519 year: 2005 end-page: 1526 article-title: Echocardiography‐based selection of quiescent heart phases implications for cardiac imaging publication-title: J Ultras Med – volume: 16 start-page: 139 year: 1990 end-page: 149 article-title: Magnetohydrodynamics of blood flow publication-title: Magn Reson Med – volume: 64 start-page: 1471 year: 2010 end-page: 1477 article-title: Quantitative assessment of left ventricular function in humans at 7 T publication-title: Magn Reson Med – volume: 12 start-page: 678 year: 2000 end-page: 688 article-title: Performance of QRS detection for cardiac magnetic resonance imaging with a novel vectorcardiographic triggering method publication-title: J Magn Reson Imaging – volume: 20 start-page: 363 year: 1999 article-title: A method for foetal heart rate monitoring during magnetic resonance imaging using Doppler ultrasound publication-title: Physiol Meas – volume: 155 start-page: 681 year: 1985 end-page: 686 article-title: ECG‐synchronized cardiac MR imaging: method and evaluation publication-title: Radiology – volume: 51 start-page: 93 year: 2004 end-page: 102 article-title: Self‐gated cardiac cine MRI publication-title: Magn Reson Med – volume: v4 start-page: 79 issue: i4 year: 2010 end-page: 87 article-title: The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements publication-title: Int J Biol Biomed Eng – volume: 13 start-page: 690 year: 2003 end-page: 694 article-title: Hazardous situation in the MR bore: induction in ECG leads causes fire publication-title: Eur Radiol – volume: 232 start-page: 635 year: 2004 end-page: 652 article-title: MR procedures: biologic effects, safety, and patient care publication-title: Radiology – start-page: 325 year: 2011 end-page: 332 – volume: 35 start-page: 1071 year: 2012 end-page: 1076 article-title: Cardiac MRI of the fetal heart using a novel triggering method: initial results in an animal model publication-title: J Magn Reson Imaging – volume: 12 start-page: 67 year: 2010 article-title: Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla publication-title: J Cardiovasc Magn Reson – volume: 27 start-page: 237 year: 2014 end-page: 244 article-title: Fetal blood flow velocimetry by phase‐contrast MRI using a new triggering method and comparison with Doppler ultrasound in a sheep model: a pilot study publication-title: MAGMA – volume: 25 start-page: 585 year: 2004 article-title: Beat‐to‐beat detection of fetal heart rate: Doppler ultrasound cardiotocography compared to direct ECG cardiotocography in time and frequency domain publication-title: Physiol Meas – volume: 55 start-page: 117 year: 1930 end-page: 258 article-title: Generalized harmonic analysis publication-title: Acta Math – volume: 20 start-page: 1344 year: 2010 end-page: 1355 article-title: Comparison of left ventricular function assessment using phonocardiogram‐and electrocardiogram‐triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T publication-title: Eur Radiol – ident: e_1_2_5_13_1 doi: 10.1002/mrm.20815 – ident: e_1_2_5_26_1 doi: 10.1152/ajpheart.1981.241.4.H620 – ident: e_1_2_5_17_1 doi: 10.1097/RLI.0b013e31828236c3 – ident: e_1_2_5_23_1 doi: 10.1002/jmri.23541 – ident: e_1_2_5_33_1 doi: 10.1007/BF02546511 – ident: e_1_2_5_31_1 doi: 10.1088/0967-3334/25/2/015 – ident: e_1_2_5_9_1 doi: 10.1002/1522-2586(200011)12:5<678::AID-JMRI4>3.0.CO;2-5 – ident: e_1_2_5_22_1 doi: 10.1515/bmt-2012-4443 – ident: e_1_2_5_18_1 – ident: e_1_2_5_24_1 doi: 10.1007/s10334-013-0404-5 – ident: e_1_2_5_11_1 doi: 10.1007/s00330-003-1841-8 – ident: e_1_2_5_28_1 doi: 10.1016/S0140-6736(86)90837-8 – ident: e_1_2_5_15_1 doi: 10.1002/mrm.22250 – ident: e_1_2_5_2_1 doi: 10.1148/radiology.155.3.4001369 – ident: e_1_2_5_29_1 doi: 10.1002/(SICI)1522-2594(199904)41:4<715::AID-MRM9>3.0.CO;2-7 – ident: e_1_2_5_35_1 doi: 10.1080/10976640500295516 – ident: e_1_2_5_30_1 doi: 10.1186/1475-925X-10-92 – ident: e_1_2_5_37_1 doi: 10.1118/1.4711757 – ident: e_1_2_5_14_1 doi: 10.1186/1532-429X-12-67 – ident: e_1_2_5_5_1 doi: 10.1186/1532-429X-15-104 – ident: e_1_2_5_20_1 doi: 10.1016/S1076-6332(00)80065-3 – volume: 4 start-page: 79 issue: 4 year: 2010 ident: e_1_2_5_32_1 article-title: The influence of Doppler ultrasound signal processing techniques on fetal heart rate variability measurements publication-title: Int J Biol Biomed Eng – ident: e_1_2_5_3_1 doi: 10.1002/mrm.1910160113 – ident: e_1_2_5_21_1 doi: 10.1088/0967-3334/20/4/303 – ident: e_1_2_5_7_1 doi: 10.1002/(SICI)1521-186X(1996)17:1<21::AID-BEM3>3.0.CO;2-8 – ident: e_1_2_5_42_1 doi: 10.3813/AAA.918017 – ident: e_1_2_5_6_1 doi: 10.1007/978-3-642-21028-0_42 – ident: e_1_2_5_16_1 doi: 10.1002/mrm.20140 – ident: e_1_2_5_10_1 doi: 10.1007/s00330-009-1676-z – volume-title: A practical guide to echocardiography and cardiac doppler ultrasound year: 1996 ident: e_1_2_5_25_1 – ident: e_1_2_5_38_1 doi: 10.7863/jum.2005.24.11.1519 – ident: e_1_2_5_39_1 doi: 10.1002/jmri.22530 – ident: e_1_2_5_41_1 doi: 10.1002/mrm.10664 – volume-title: Diagnostic medical sonography: echocardiography year: 1998 ident: e_1_2_5_34_1 – ident: e_1_2_5_8_1 doi: 10.1002/mrm.22529 – ident: e_1_2_5_19_1 doi: 10.1109/TMI.2007.911000 – ident: e_1_2_5_27_1 doi: 10.1002/jmri.10262 – ident: e_1_2_5_4_1 doi: 10.1002/(SICI)1522-2594(199908)42:2<361::AID-MRM18>3.0.CO;2-9 – ident: e_1_2_5_12_1 doi: 10.1148/radiol.2323030830 – ident: e_1_2_5_36_1 doi: 10.1080/10976640600572889 – ident: e_1_2_5_40_1 doi: 10.1002/mrm.25078 |
SSID | ssj0009974 |
Score | 2.3350894 |
Snippet | Purpose
Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging.... Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging. The... Purpose Accurate triggering of the cardiac cycle is mandatory for optimal image acquisition and thus diagnostic quality in cardiac magnetic resonance imaging.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1257 |
SubjectTerms | Adult Algorithms Cardiac Imaging Techniques cardiac-gated imaging techniques cine magnetic resonance imaging computer-assisted image processing Doppler ultrasound electrocardiogram Electrocardiography - methods Female Humans Image Processing, Computer-Assisted - methods Male oximetry Oximetry - methods Pilot Projects Signal Processing, Computer-Assisted Ultrasonography, Doppler - methods |
Title | Doppler ultrasound compared with electrocardiogram and pulse oximetry cardiac triggering: A pilot study |
URI | https://api.istex.fr/ark:/67375/WNG-S9395TM4-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25502 https://www.ncbi.nlm.nih.gov/pubmed/25359183 https://www.proquest.com/docview/1725349574 https://www.proquest.com/docview/1727435956 https://www.proquest.com/docview/1732825037 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrUBcSinQBgoyCCEu2SaxvYnpqQJKhZQeSqv2gGQ5jrNadXezyiZSy69n7DyqooIQp0TyRPFjxv7GnvkM8C4p8iijSe6r0DCf5Vz5KikCvwhURMdZWBhus5HTk_HxOft2yS_X4KDPhWn5IYYNN2sZbr62Bq6y1f4taei8mo8QDzsiSRurZQHR6S11lBAtA3PM7DwjWM8qFET7w5d31qIN263X9wHNu7jVLTxHj-FHX-U23uRq1NTZSP_8jc3xP9u0BZsdICWHrQY9gTWz2IaHaXfkvg0PXIyoXj2FyecSIaupSDOrK7Wy9zGRPoSd2P1c0t2po12Mqw37Igpllg0uv6S8ns5NXd0QV6o0qavpZOKIED-SQ7KczsqaOLLbZ3B-9OXs07Hf3dPga8ZF5GthaeyYQbBUCBYV6CNmOE_QIDeCqchyVGlToJ-kc5XpIEeXL1ZJSLM8CSIzjulzWF-UC7MLBEcrj7ihBh9MhEWWB6GmloJ-LKhOqAcf-hGTuiMxt3dpzGRLvxxJ7ELputCDt4PosmXuuE_ovRv2QUJVVzbULeby4uSr_C6o4Gcpkxce7PV6ITsrX0kEf5yihxkzD94MxWif9tBFLUzZOBkEaRzd0L_JUJtCHNDYg51W54YK4R-4CF3Lneb8uS0yPU3dy4t_F30JjxAB8ja5cg_W66oxrxBl1dlrZ06_AFCeIdY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrXhcCpRHAwUMQohLtklsb2LEpQLKAs0eylbtBVmO46xW3ZeyWanw6xk7j6qoIMQpkTxR_Jixv7HH3wC8Soo8ymiS-yo0zGc5V75KisAvAhXRfhYWhtvbyOmwPzhhX8742Qa8a-_C1PwQ3YabtQw3X1sDtxvS-5esobNy1kNAbJkkt2xGb-dQHV-SRwlRczDHzM40grW8QkG03316ZTXash17cR3UvIpc3dJzeAe-t5WuI07Oe-sq6-mfv_E5_m-r7sJ2g0nJQa1E92DDzHfgZtqcuu_ADRcmqlf3YfxhgajVlGQ9rUq1simZSBvFTuyWLmnS6mgX5mojv4hCmeUaV2CyuJjMTFX-IK5UaVKVk_HYcSG-JQdkOZkuKuL4bh_AyeHH0fuB36Rq8DXjIvK1sEx2zCBeKgSLCnQTM5wqaJAbwVRkaaq0KdBV0rnKdJCj1xerJKRZngSR6cf0IWzOF3OzCwSHK4-4oQYfTIRFlgehppaFvi-oTqgHb9ohk7rhMbfpNKayZmCOJHahdF3owctOdFmTd1wn9NqNeyehynMb7RZzeTr8JL8JKvgoZfLUg71WMWRj6CuJ-I9TdDJj5sGLrhhN1J67qLlZrJ0M4jSOnujfZKi9RRzQ2INHtdJ1FcI_cBG6ljvV-XNbZHqcupfH_y76HG4NRumRPPo8_PoEbiMg5PVdyz3YrMq1eYqgq8qeOdv6BViaJfE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5Vrah44SjXQgGDEOIl2yS2kxieKpalHFmh0qp9qGQ5trNadXezyiZS4ddjO0dVVBDiKZE8UXzM2N_Y428AXiW5CjOcKE8EmnhEUeGJJPe93BchjrIg19TeRk4n0cEx-XxKTzfgXXcXpuGH6DfcrGW4-doa-Erle5ekoYtyMTR42BJJbpHIT6xKjw4vuaMYayiYY2InGkY6WiE_3Os_vbIYbdl-vbgOaV4Frm7lGd-Gs67OTcDJ-bCusqH8-Rud43826g7cahEp2m9U6C5s6OUObKftmfsO3HBBonJ9D6ajwmBWXaJ6XpVibRMyoS6GHdkNXdQm1ZEuyNXGfSFhZFa1WX9RcTFb6Kr8gVypkKgqZ9OpY0J8i_bRajYvKuTYbu_D8fjD0fsDr03U4ElCWehJZnnsiDZoKWckzI2TmJmJAvtKMyJCS1IldW4cJalEJn1lfL5YJAHOVOKHOorxA9hcFkv9CJAZLRVSjbV5EBbkmfIDiS0HfcSwTPAA3nQjxmXLYm6Tacx5w78cctOF3HXhAF72oquGuuM6oddu2HsJUZ7bWLeY8pPJR_6dYUaPUsJPBrDb6QVvzXzNDfqj2LiYMRnAi77YGKg9dRFLXdROxqA0avzQv8lge4fYx_EAHjY611fI_IGywLXcac6f28LTw9S9PP530eew_W005l8_Tb48gZsGDdLmouUubFZlrZ8axFVlz5xl_QLnHCSp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Doppler+ultrasound+compared+with+electrocardiogram+and+pulse+oximetry+cardiac+triggering%3A+A+pilot+study&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Kording%2C+Fabian&rft.au=Schoennagel%2C+Bjoern&rft.au=Lund%2C+Gunnar&rft.au=Ueberle%2C+Friedrich&rft.date=2015-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=74&rft.issue=5&rft.spage=1257&rft.epage=1265&rft_id=info:doi/10.1002%2Fmrm.25502&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_S9395TM4_W |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |