Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation

Background The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. Purpose To determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 49; no. 1; pp. 280 - 290
Main Authors Liu, Ying, Zhang, Yuwei, Cheng, Runfen, Liu, Shichang, Qu, Fangyuan, Yin, Xiaoyu, Wang, Qin, Xiao, Bohan, Ye, Zhaoxiang
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. Purpose To determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications. Study Type Prospective. Subjects In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix. Field Strength/Sequence Conventional and diffusion‐weighted MR images (b values = 0, 800, 1000 s/mm2) were acquired on a 3.0T MR scanner. Assessment Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole‐tumor segmentation. A total of 624 radiomics features were derived from T2‐weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis. Statistical Tests Parameters were compared using Wilcoxon signed rank test, Bland–Altman analysis, t‐test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation. Results In all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center‐slice and 3D whole‐tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076). Data Conclusion Several radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole‐tumor volumetric 3D radiomics analysis had a better performance than using the 2D center‐slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280–290.
AbstractList Background The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. Purpose To determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications. Study Type Prospective. Subjects In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix. Field Strength/Sequence Conventional and diffusion‐weighted MR images (b values = 0, 800, 1000 s/mm2) were acquired on a 3.0T MR scanner. Assessment Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole‐tumor segmentation. A total of 624 radiomics features were derived from T2‐weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis. Statistical Tests Parameters were compared using Wilcoxon signed rank test, Bland–Altman analysis, t‐test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation. Results In all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center‐slice and 3D whole‐tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076). Data Conclusion Several radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole‐tumor volumetric 3D radiomics analysis had a better performance than using the 2D center‐slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans. Level of Evidence: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280–290.
The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. To determine if there is a difference between radiomics features derived from center-slice 2D versus whole-tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications. Prospective. In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix. Conventional and diffusion-weighted MR images (b values = 0, 800, 1000 s/mm ) were acquired on a 3.0T MR scanner. Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole-tumor segmentation. A total of 624 radiomics features were derived from T -weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis. Parameters were compared using Wilcoxon signed rank test, Bland-Altman analysis, t-test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation. In all, 95 radiomics features were insensitive to ROI variation among T images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center-slice and 3D whole-tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076). Several radiomics features extracted from T images and ADC maps were highly reproducible. Whole-tumor volumetric 3D radiomics analysis had a better performance than using the 2D center-slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm is suggested as the optimal parameter in pelvic DWI scans. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280-290.
BackgroundThe role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.PurposeTo determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.Study TypeProspective.SubjectsIn all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.Field Strength/SequenceConventional and diffusion‐weighted MR images (b values = 0, 800, 1000 s/mm2) were acquired on a 3.0T MR scanner.AssessmentRegions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole‐tumor segmentation. A total of 624 radiomics features were derived from T2‐weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.Statistical TestsParameters were compared using Wilcoxon signed rank test, Bland–Altman analysis, t‐test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.ResultsIn all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center‐slice and 3D whole‐tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).Data ConclusionSeveral radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole‐tumor volumetric 3D radiomics analysis had a better performance than using the 2D center‐slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.Level of Evidence: 1Technical Efficacy: Stage 1J. Magn. Reson. Imaging 2019;49:280–290.
The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.BACKGROUNDThe role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.To determine if there is a difference between radiomics features derived from center-slice 2D versus whole-tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.PURPOSETo determine if there is a difference between radiomics features derived from center-slice 2D versus whole-tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.Prospective.STUDY TYPEProspective.In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.SUBJECTSIn all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.Conventional and diffusion-weighted MR images (b values = 0, 800, 1000 s/mm2 ) were acquired on a 3.0T MR scanner.FIELD STRENGTH/SEQUENCEConventional and diffusion-weighted MR images (b values = 0, 800, 1000 s/mm2 ) were acquired on a 3.0T MR scanner.Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole-tumor segmentation. A total of 624 radiomics features were derived from T2 -weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.ASSESSMENTRegions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole-tumor segmentation. A total of 624 radiomics features were derived from T2 -weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.Parameters were compared using Wilcoxon signed rank test, Bland-Altman analysis, t-test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.STATISTICAL TESTSParameters were compared using Wilcoxon signed rank test, Bland-Altman analysis, t-test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.In all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center-slice and 3D whole-tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).RESULTSIn all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center-slice and 3D whole-tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).Several radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole-tumor volumetric 3D radiomics analysis had a better performance than using the 2D center-slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.DATA CONCLUSIONSeveral radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole-tumor volumetric 3D radiomics analysis had a better performance than using the 2D center-slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280-290.LEVEL OF EVIDENCE1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280-290.
Author Ye, Zhaoxiang
Liu, Ying
Zhang, Yuwei
Cheng, Runfen
Qu, Fangyuan
Xiao, Bohan
Yin, Xiaoyu
Liu, Shichang
Wang, Qin
Author_xml – sequence: 1
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  email: tjliuying2009@163.com
  organization: Tianjin's Clinical Research Center for Cancer
– sequence: 2
  givenname: Yuwei
  surname: Zhang
  fullname: Zhang, Yuwei
  organization: Tianjin Medical University
– sequence: 3
  givenname: Runfen
  surname: Cheng
  fullname: Cheng, Runfen
  organization: Tianjin's Clinical Research Center for Cancer
– sequence: 4
  givenname: Shichang
  surname: Liu
  fullname: Liu, Shichang
  organization: Tianjin's Clinical Research Center for Cancer
– sequence: 5
  givenname: Fangyuan
  surname: Qu
  fullname: Qu, Fangyuan
  organization: Tianjin's Clinical Research Center for Cancer
– sequence: 6
  givenname: Xiaoyu
  surname: Yin
  fullname: Yin, Xiaoyu
  organization: Tianjin's Clinical Research Center for Cancer
– sequence: 7
  givenname: Qin
  surname: Wang
  fullname: Wang, Qin
  organization: Tianjin's Clinical Research Center for Cancer
– sequence: 8
  givenname: Bohan
  surname: Xiao
  fullname: Xiao, Bohan
  organization: Tianjin's Clinical Research Center for Cancer
– sequence: 9
  givenname: Zhaoxiang
  surname: Ye
  fullname: Ye, Zhaoxiang
  organization: Tianjin's Clinical Research Center for Cancer
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29761595$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhYOMOA_d-AMk4EaEGm9SnVTF3TD4GBkRBl2HdB7jbVKVMqka6YX_3XT3zGYQV_fBdw7ce07J0ZhGT8hLBucMgL_bDBnPuWSKPyEnTHDecNHLo9qDaBvWQ3dMTkvZAIBSK_GMHHPVSSaUOCF_bozDNKAt1IwmbgsWmgI102SyH2fqMISlYBqpTT4EtLjbYh19vkNrIrVmrP17ekGn7CMOOJq8pWVe3JZW2U8sc4rpds_eZuM89XcmLmaups_J02Bi8S_u6xn58fHD98vPzfW3T1eXF9eNXQnFG7Y2snPOKGHabr2ywPvWMmZkcLKDDgTjfQgc-rVVTjLuQlC8h1p6D-Da9oy8OfhOOf1afJn1gMX6GM3o01I0h1ZxJYVkFX39CN2kJdfXVIqJTgEXnazUq3tqWQ_e6SnjUM_WD4-tABwAm1Mp2Qdtcd7fPGeDUTPQu-z0Lju9z65K3j6SPLj-E2YH-DdGv_0Pqb98vbk6aP4CZQ6rZg
CitedBy_id crossref_primary_10_1111_1759_7714_13580
crossref_primary_10_7759_cureus_52132
crossref_primary_10_1016_j_crad_2023_07_014
crossref_primary_10_1016_j_ijrobp_2018_08_032
crossref_primary_10_1007_s00432_023_05001_9
crossref_primary_10_1039_D0BM01240H
crossref_primary_10_1109_ACCESS_2024_3522908
crossref_primary_10_3389_fonc_2021_749114
crossref_primary_10_1016_j_ejrad_2019_01_003
crossref_primary_10_1002_acm2_14547
crossref_primary_10_1016_j_bspc_2023_105762
crossref_primary_10_1016_j_clon_2023_05_006
crossref_primary_10_1186_s40644_024_00786_5
crossref_primary_10_1177_0284185120931683
crossref_primary_10_3389_fonc_2021_812993
crossref_primary_10_3389_fonc_2022_948557
crossref_primary_10_1259_bjr_20201342
crossref_primary_10_5812_iranjradiol_86497
crossref_primary_10_1007_s00761_023_01391_0
crossref_primary_10_3389_fonc_2023_1267598
crossref_primary_10_1007_s11307_019_01383_w
crossref_primary_10_2214_AJR_24_31077
crossref_primary_10_1088_2057_1976_ad5207
crossref_primary_10_1186_s41824_022_00129_2
crossref_primary_10_1177_0284185119870157
crossref_primary_10_1016_j_critrevonc_2020_102985
crossref_primary_10_1016_j_jacr_2018_12_017
crossref_primary_10_1007_s00330_019_06124_9
crossref_primary_10_3389_fonc_2022_787489
crossref_primary_10_3389_fonc_2022_852308
crossref_primary_10_3748_wjg_v25_i40_6116
crossref_primary_10_2147_CMAR_S353877
crossref_primary_10_1016_j_ejrad_2020_109111
crossref_primary_10_1016_j_radonc_2022_07_001
crossref_primary_10_3389_fmed_2024_1336640
crossref_primary_10_3390_tomography7030031
crossref_primary_10_1007_s00261_024_04486_3
crossref_primary_10_1007_s00261_021_03287_2
crossref_primary_10_1259_bjr_20210838
crossref_primary_10_3389_fonc_2024_1353780
crossref_primary_10_3390_jcm12216833
crossref_primary_10_1002_jmri_27182
crossref_primary_10_1016_j_ygyno_2022_07_024
crossref_primary_10_1259_bjr_20220952
crossref_primary_10_1007_s00330_021_07690_7
crossref_primary_10_1007_s10143_024_03060_1
crossref_primary_10_1186_s43055_020_00213_2
crossref_primary_10_1259_bjr_20220596
crossref_primary_10_1007_s00330_020_06993_5
crossref_primary_10_1038_s41598_020_76989_0
crossref_primary_10_3389_fonc_2021_687884
crossref_primary_10_1007_s00330_020_06913_7
crossref_primary_10_3892_mmr_2018_9511
crossref_primary_10_3389_fmed_2022_1046551
crossref_primary_10_1016_j_mri_2022_03_002
crossref_primary_10_3390_app132111839
crossref_primary_10_1007_s00330_021_08203_2
crossref_primary_10_1007_s11547_023_01676_9
crossref_primary_10_3348_kjr_2019_0855
crossref_primary_10_4103_jmss_jmss_57_22
crossref_primary_10_1186_s40644_021_00400_y
crossref_primary_10_3390_app10228001
crossref_primary_10_1002_jmri_27297
crossref_primary_10_1177_02841851211065142
crossref_primary_10_1016_j_canrad_2024_09_006
crossref_primary_10_7759_cureus_75707
crossref_primary_10_1002_mp_15195
crossref_primary_10_12677_ACM_2023_1371531
crossref_primary_10_1177_0284185120934471
crossref_primary_10_1186_s13244_022_01350_0
crossref_primary_10_3389_fonc_2021_706043
crossref_primary_10_6009_jjrt_2021_JSRT_77_8_866
crossref_primary_10_1259_bjr_20210986
crossref_primary_10_1007_s00330_019_06467_3
crossref_primary_10_1016_j_ejrad_2022_110272
crossref_primary_10_1097_RCT_0000000000001329
crossref_primary_10_1186_s40644_019_0239_z
crossref_primary_10_1016_j_joca_2020_05_002
crossref_primary_10_1016_j_crad_2023_03_001
crossref_primary_10_1038_s41598_021_94826_w
crossref_primary_10_1093_jrr_rrab104
crossref_primary_10_1007_s00330_020_06692_1
crossref_primary_10_1186_s13244_022_01346_w
crossref_primary_10_1259_bjr_20201314
crossref_primary_10_1016_j_acra_2022_02_018
crossref_primary_10_1186_s13244_022_01324_2
Cites_doi 10.2214/AJR.06.1403
10.1007/s00261-015-0438-4
10.1016/j.neuroimage.2006.01.015
10.2214/AJR.14.13350
10.1177/0284185116656492
10.1177/0284185117694509
10.5152/dir.2015.14427
10.3322/caac.21262
10.1371/journal.pone.0181339
10.1016/j.ejrad.2009.04.025
10.1148/radiol.2015151169
10.1016/j.ejrad.2012.10.023
10.1148/radiol.2017161299
10.3348/kjr.2013.14.4.616
10.1002/jmri.25583
10.1016/j.ygyno.2009.09.044
10.1007/s11547-016-0665-y
10.1007/s11307-017-1073-y
10.1118/1.3081408
10.2307/1932409
10.1007/s00330-014-3500-7
10.1177/0284185115602146
10.2214/AJR.12.9545
10.1007/s00330-015-3701-8
10.1097/IGC.0000000000000472
10.1038/ncomms5006
10.1088/1361-6560/aa8a49
10.1007/s00330-011-2220-5
10.1002/jmri.25460
10.1158/1078-0432.CCR-16-2910
10.1007/s00404-014-3221-9
10.1007/s00330-015-4156-7
10.1007/s00330-016-4417-0
10.1102/1470-7330.2013.0015
10.1148/radiol.2016151908
10.1016/j.neuroimage.2009.03.068
10.1097/RCT.0b013e31819e93af
10.1148/radiol.15142698
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
2019 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
– notice: 2019 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.26192
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 290
ExternalDocumentID 29761595
10_1002_jmri_26192
JMRI26192
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Scientific Foundation of China
  funderid: 81501443
– fundername: National Natural Scientific Foundation of China
  grantid: 81501443
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4592-1ba67dda95a37b4c0283c11a6fd670705128ff208bc9d612dff9280dff8e00d33
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 13:24:18 EDT 2025
Fri Jul 25 10:31:13 EDT 2025
Wed Feb 19 02:30:49 EST 2025
Tue Jul 01 03:56:39 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Wed Jan 22 16:45:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords apparent diffusion coefficient
radiomics
histopathological grade
cervical cancer
diffusion-weighted magnetic resonance imaging
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4592-1ba67dda95a37b4c0283c11a6fd670705128ff208bc9d612dff9280dff8e00d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.26192
PMID 29761595
PQID 2157902576
PQPubID 1006400
PageCount 11
ParticipantIDs proquest_miscellaneous_2039296561
proquest_journals_2157902576
pubmed_primary_29761595
crossref_citationtrail_10_1002_jmri_26192
crossref_primary_10_1002_jmri_26192
wiley_primary_10_1002_jmri_26192_JMRI26192
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 62
2009; 47
2006; 31
2015; 204
2017; 27
2013; 23
2007; 188
2017; 46
2017; 45
2017; 23
2013; 200
2014; 290
2016; 121
2016; 57
2009; 33
2009; 36
2015; 25
2014; 5
2013; 14
2017; 58
2013; 13
2015; 40
2010; 116
1945; 26
2015; 275
2015; 65
2015; 21
2017; 12
2016; 278
2013; 82
2017; 282
2011; 21
2017; 19
2017; 284
2016; 26
2010; 74
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
Kuang F (e_1_2_7_40_1) 2013; 23
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 74
  start-page: e101
  year: 2010
  end-page: 106
  article-title: The utility of diffusion‐weighted MR imaging in cervical cancer
  publication-title: Eur J Radiol
– volume: 58
  start-page: 1400
  year: 2017
  end-page: 1408
  article-title: Histogram analysis of apparent diffusion coefficient for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo‐radiotherapy
  publication-title: Acta Radiol
– volume: 290
  start-page: 341
  year: 2014
  end-page: 348
  article-title: Histogram analysis of apparent diffusion coefficient for the assessment of local aggressiveness of cervical cancer
  publication-title: Arch Gynecol Obstet
– volume: 14
  start-page: 616
  year: 2013
  end-page: 625
  article-title: Pre‐treatment diffusion‐weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients
  publication-title: Korean J Radiol
– volume: 284
  start-page: 432
  year: 2017
  end-page: 442
  article-title: Value of dynamic contrast‐enhanced and diffusion‐weighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: a retrospective observational study
  publication-title: Radiology
– volume: 5
  start-page: 4006
  year: 2014
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 200
  start-page: 314
  year: 2013
  end-page: 320
  article-title: Relationship between imaging biomarkers of stage I cervical cancer and poor‐prognosis histologic features: quantitative histogram analysis of diffusion‐weighted MR images
  publication-title: AJR Am J Roentgenol
– volume: 47
  start-page: 122
  year: 2009
  end-page: 135
  article-title: Performance measure characterization for evaluating neuroimage segmentation algorithms
  publication-title: Neuroimage
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 282
  start-page: 418
  year: 2017
  end-page: 428
  article-title: Quantitative assessment of rectal cancer response to neoadjuvant combined chemotherapy and radiation therapy: comparison of three methods of positioning region of interest for ADC measurements at diffusion‐weighted MR imaging
  publication-title: Radiology
– volume: 19
  start-page: 953
  year: 2017
  end-page: 962
  article-title: ADC histogram analysis of cervical cancer aids detecting lymphatic metastases—a preliminary study
  publication-title: Mol Imaging Biol
– volume: 65
  start-page: 87
  year: 2015
  end-page: 108
  article-title: Global cancer statistics, 2012
  publication-title: Ca A Cancer Journal for Clinicians
– volume: 12
  start-page: e0181339
  year: 2017
  article-title: Tumor spatial heterogeneity in myxoid‐containing soft tissue using texture analysis of diffusion‐weighted MRI
  publication-title: PLoS One
– volume: 23
  start-page: 1050
  year: 2013
  end-page: 1058
  article-title: The value of apparent diffusion coefficient in the assessment of cervical cancer
  publication-title: J China Clin Med Imaging
– volume: 58
  start-page: 481
  year: 2017
  end-page: 488
  article-title: Predicting tumor recurrence in patients with cervical carcinoma treated with definitive chemoradiotherapy: value of quantitative histogram analysis on diffusion‐weighted MR images
  publication-title: Acta Radiol
– volume: 40
  start-page: 2331
  year: 2015
  end-page: 2337
  article-title: CT textural analysis of hepatic metastatic colorectal cancer: pre‐treatment tumor heterogeneity correlates with pathology and clinical outcomes
  publication-title: Abdom Imaging
– volume: 57
  start-page: 869
  year: 2016
  end-page: 877
  article-title: Value of diffusion‐weighted MRI in diagnosis of uterine cervical cancer: a prospective study evaluating the benefits of DWI compared to conventional MR sequences in a 3T environment
  publication-title: Acta Radiol
– volume: 204
  start-page: 1125
  year: 2015
  end-page: 1131
  article-title: Correlation of histogram analysis of apparent diffusion coefficient with uterine cervical pathologic finding
  publication-title: AJR Am J Roentgenol
– volume: 27
  start-page: 627
  year: 2017
  end-page: 636
  article-title: Separation of type and grade in cervical tumours using non‐mono‐exponential models of diffusion‐weighted MRI
  publication-title: Eur Radiol
– volume: 62
  start-page: 8536
  year: 2017
  end-page: 8565
  article-title: Enhancement of multimodality texture‐based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept
  publication-title: Phys Med Biol
– volume: 13
  start-page: 140
  year: 2013
  end-page: 149
  article-title: Quantifying tumour heterogeneity with CT
  publication-title: Cancer Imaging
– volume: 21
  start-page: 368
  year: 2015
  end-page: 375
  article-title: Added value of diffusion‐weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast‐enhanced MRI sequences
  publication-title: Diagn Intervent Radiol
– volume: 188
  start-page: 1622
  year: 2007
  end-page: 1635
  article-title: Diffusion‐weighted MRI in the body: applications and challenges in oncology
  publication-title: AJR Am J Roentgenol
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  article-title: Radiomics: Images are more than pictures, they are data
  publication-title: Radiology
– volume: 116
  start-page: 246
  year: 2010
  end-page: 252
  article-title: Evaluation of magnetic resonance diffusion and spectroscopy measurements as predictive biomarkers in stage 1 cervical cancer
  publication-title: Gynecol Oncol
– volume: 46
  start-page: 483
  year: 2017
  end-page: 489
  article-title: Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology
  publication-title: J Magn Reson Imaging
– volume: 36
  start-page: 1236
  year: 2009
  end-page: 1243
  article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application‐oriented study
  publication-title: Med Phys
– volume: 33
  start-page: 858
  year: 2009
  end-page: 862
  article-title: Diffusion‐weighted magnetic resonance imaging of uterine cervical cancer
  publication-title: J Comput Assist Tomogr
– volume: 121
  start-page: 838
  year: 2016
  end-page: 846
  article-title: Evaluation of diffusion‐weighted imaging (DWI) and MR spectroscopy (MRS) as early response biomarkers in cervical cancer patients
  publication-title: Radiol Med
– volume: 275
  start-page: 384
  year: 2015
  end-page: 392
  article-title: Breast cancer: radiogenomic biomarker reveals associations among dynamic contrast‐enhanced MR imaging, long noncoding RNA, and netastasis
  publication-title: Radiology
– volume: 25
  start-page: 2840
  year: 2015
  end-page: 2850
  article-title: Haralick texture analysis of prostate MRI: utility for differentiating non‐cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores
  publication-title: Eur Radiol
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 23
  start-page: 4259
  year: 2017
  end-page: 4269
  article-title: Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma
  publication-title: Clin Cancer Res
– volume: 25
  start-page: 1073
  year: 2015
  end-page: 1078
  article-title: Clinical application of diffusion‐weighted magnetic resonance imaging in uterine cervical cancer
  publication-title: Int J Gynecol Cancer
– volume: 26
  start-page: 3272
  year: 2016
  end-page: 3279
  article-title: Prediction of disease progression following concurrent chemoradiotherapy for uterine cervical cancer: value of post‐treatment diffusion‐weighted imaging
  publication-title: Eur Radiol
– volume: 82
  start-page: 342
  year: 2013
  end-page: 348
  article-title: Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross‐sectional area be used as an alternative to whole tumor analysis?
  publication-title: Eur J Radiol
– volume: 45
  start-page: 1798
  year: 2017
  end-page: 1808
  article-title: Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer
  publication-title: J Magn Reson Imaging
– volume: 21
  start-page: 2567
  year: 2011
  end-page: 2574
  article-title: Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability
  publication-title: Eur Radiol
– volume: 25
  start-page: 1087
  year: 2015
  end-page: 1096
  article-title: Role of diffusion‐weighted imaging, apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver
  publication-title: Eur Radiol
– ident: e_1_2_7_7_1
  doi: 10.2214/AJR.06.1403
– ident: e_1_2_7_28_1
  doi: 10.1007/s00261-015-0438-4
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_7_20_1
  doi: 10.2214/AJR.14.13350
– ident: e_1_2_7_23_1
  doi: 10.1177/0284185116656492
– ident: e_1_2_7_25_1
  doi: 10.1177/0284185117694509
– ident: e_1_2_7_12_1
  doi: 10.5152/dir.2015.14427
– ident: e_1_2_7_2_1
  doi: 10.3322/caac.21262
– ident: e_1_2_7_19_1
  doi: 10.1371/journal.pone.0181339
– volume: 23
  start-page: 1050
  year: 2013
  ident: e_1_2_7_40_1
  article-title: The value of apparent diffusion coefficient in the assessment of cervical cancer
  publication-title: J China Clin Med Imaging
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ejrad.2009.04.025
– ident: e_1_2_7_13_1
  doi: 10.1148/radiol.2015151169
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ejrad.2012.10.023
– ident: e_1_2_7_4_1
  doi: 10.1148/radiol.2017161299
– ident: e_1_2_7_24_1
  doi: 10.3348/kjr.2013.14.4.616
– ident: e_1_2_7_39_1
  doi: 10.1002/jmri.25583
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ygyno.2009.09.044
– ident: e_1_2_7_10_1
  doi: 10.1007/s11547-016-0665-y
– ident: e_1_2_7_22_1
  doi: 10.1007/s11307-017-1073-y
– ident: e_1_2_7_32_1
  doi: 10.1118/1.3081408
– ident: e_1_2_7_31_1
  doi: 10.2307/1932409
– ident: e_1_2_7_5_1
  doi: 10.1007/s00330-014-3500-7
– ident: e_1_2_7_8_1
  doi: 10.1177/0284185115602146
– ident: e_1_2_7_21_1
  doi: 10.2214/AJR.12.9545
– ident: e_1_2_7_16_1
  doi: 10.1007/s00330-015-3701-8
– ident: e_1_2_7_38_1
  doi: 10.1097/IGC.0000000000000472
– ident: e_1_2_7_14_1
  doi: 10.1038/ncomms5006
– ident: e_1_2_7_33_1
  doi: 10.1088/1361-6560/aa8a49
– ident: e_1_2_7_35_1
  doi: 10.1007/s00330-011-2220-5
– ident: e_1_2_7_18_1
  doi: 10.1002/jmri.25460
– ident: e_1_2_7_34_1
  doi: 10.1158/1078-0432.CCR-16-2910
– ident: e_1_2_7_26_1
  doi: 10.1007/s00404-014-3221-9
– ident: e_1_2_7_11_1
  doi: 10.1007/s00330-015-4156-7
– ident: e_1_2_7_9_1
  doi: 10.1007/s00330-016-4417-0
– ident: e_1_2_7_17_1
  doi: 10.1102/1470-7330.2013.0015
– ident: e_1_2_7_6_1
  doi: 10.1148/radiol.2016151908
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2009.03.068
– ident: e_1_2_7_36_1
  doi: 10.1097/RCT.0b013e31819e93af
– ident: e_1_2_7_15_1
  doi: 10.1148/radiol.15142698
SSID ssj0009945
Score 2.550141
Snippet Background The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved....
The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. To determine...
BackgroundThe role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is...
The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.BACKGROUNDThe...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 280
SubjectTerms Adult
Aged
Aged, 80 and over
apparent diffusion coefficient
Biopsy
Cancer
Carcinoma, Squamous Cell - diagnostic imaging
Cervical cancer
Diffusion
Diffusion coefficient
Diffusion Magnetic Resonance Imaging
diffusion‐weighted magnetic resonance imaging
Feature extraction
Female
Field strength
histopathological grade
Human papillomavirus
Humans
Image acquisition
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Magnetic resonance imaging
Mathematical models
Medical imaging
Middle Aged
Neoplasm Grading
Parameters
Patients
Prospective Studies
Quality
Radiomics
Rank tests
Regression analysis
Reproducibility
Reproducibility of Results
Squamous cell carcinoma
Statistical analysis
Statistical tests
Three dimensional models
Tumors
Two dimensional models
Uterine Cervical Neoplasms - diagnostic imaging
Uterus
Title Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26192
https://www.ncbi.nlm.nih.gov/pubmed/29761595
https://www.proquest.com/docview/2157902576
https://www.proquest.com/docview/2039296561
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bS-QwFIcP4sPii7rrrepKRF8UOqb3ZPFFFkWF8WFQ8EVKmrQy7toZOjMvgv-756SdDl4Q9Klpm_SS5Jx-zeUXgP0wDMJYGM8VQmkXg9zNYlO4xosjLyOJK0HznbtX8flNeHkb3c7B8XQuTK0P0Ta4kWVYf00GrrLR0Uw09OGx6ncs_6MDpsFaRES9mXaUlHaFYuSHwPUET1ptUv9olvT11-gdYr4mVvvJOVuCu-nD1iNN_nUm46yjn97oOH73bZZhsWFRdlJXnp8wl5e_4Ee36W1fgeeeMn2atTxiqtEuYYOCqSGNWi_HjBZXmVBrG9OD3EpR0NE-7loHhJfWVKeqP-yEDSt8wEc7-ZdZSVuGyazYceN82X2lTM5m6uOrcHN2ev333G2Wa3B1GEnf9TIVJ8YoGakgyUJN5KI9T8WFiRP0LIgWoih8LjItDYKVKQrpC44bkXNugmAN5stBmW8AI9VDPF7gv5AME25EiNgqMYWvVMSN78DBtNhS3WiZ05Ia_9NahdlPKT9Tm58O7LVxh7WCx4extqelnzZWPEoRhxLqhk1iB3bb02h_1KmiynwwwTicCBOp2HNgva417W18ZD3ExciBQ1v2n9w_vez2Lmxo8yuRt2ABCU7WbULbMD-uJvlvpKRxtmOt4QVlXA7L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCgXCrRAKC1GcAEpi_O2e0MVaHkshxVI3CLHTtDyyK6yu5dK_e_MOCErWoTUnuI44zixPfbnsf0NwH4YBmEsjOcKobSLQe5msSlc48WRlxHFlaDzzr2ruHsTnt9Gt83eHDoLU_NDtAY30gzbX5OCk0H6aMYaev9UDTp2AvABFsilt51R9WfsUVJaH8WIIALXEzxp2Un9o1na1-PRXyDzNWa1g87pp9qz6thyFdJek4fOdJJ19K8_mBz_-39WYLmBo-y4bj-rMJeXa7DYaxbcP8PvvjIDOrg8ZqqhL2HDgqkRbVwvJ4z8q0zJ4Mb0MLdsFBQ7wFvbB-GrNTWr6gc7ZqMKv_DJnv9lltWWYTLLd9z0v-yuUiZnMwLyL3BzenL9s-s2HhtcHUbSd71MxYkxSkYqSLJQE3jRnqfiwsQJdi6ILkRR-FxkWhrEVqYopC84XkTOuQmCdZgvh2W-CYyIDzG-wOmQDBNuRIjIVWIKX6mIG9-Bg5d6S3VDZ05eNR7TmojZT6k8U1ueDuy1sqOaxONNqe2X6k8bRR6niIgSWolNYgd228eogrSuosp8OEUZTiATgbHnwEbdbNpsfIR7iBgjBw5t5b-Tf3re65_Z0Na_CO_Ax-517zK9PLu6-ApLCOhkbSLahvlJNc2_IWiaZN-tajwDOpoS5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIU28bOPXyBhgBC8gpXMSJ7EnXiZGtQ06oYpJe0GRY8eog6VV1r4g8b9z56SpBggJnuI4duzYd-cvtu8zwEshEpFJG4VSahNikIdlZl1ooyyNSqK4kuTvPDrLjs_F6UV6sQZvlr4wLT9EP-FGmuHtNSn4zLr9FWno5VUzGXj8fwtui4xLkumj8Yo8Sil_RDECiCSMJM97ctJ4f5X35nD0G8a8CVn9mDPcgs_L2rZbTb4OFvNyYL7_QuT4v5-zDZsdGGWHrfTchbWqvgcbo265_T78GGs7Ibfla6Y78hI2dUzPaNt6PWd0usqCptuYmVaei4JiJ3jrLRC-2pBQNQfskM0arOCV9_5lntOWYTbPdtxZX_al0bZiK_rxB3A-fPfp7XHYndcQGpGqOIxKneXWapXqJC-FIehiokhnzmY5mhbEFtK5mMvSKIvIyjqnYsnxIivObZI8hPV6WlePgBHtIcY7_BlSIudWCsStCnPEWqfcxgG8WnZbYToyczpT41vR0jDHBbVn4dszgBd92llL4fHHVHvL3i86Nb4uEA_ltA6bZwE87x-jAtKqiq6r6QLTcIKYCIujAHZaqemLiRHsIV5MA3jt-_4v5Reno_GJD-3-S-JnsPHxaFh8ODl7_xjuIJpT7fzQHqzPm0X1BBHTvHzqFeMnGBkRng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+analysis+of+apparent+diffusion+coefficient+in+cervical+cancer%3A+A+preliminary+study+on+histological+grade+evaluation&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Liu%2C+Ying&rft.au=Zhang%2C+Yuwei&rft.au=Cheng%2C+Runfen&rft.au=Liu%2C+Shichang&rft.date=2019-01-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=49&rft.issue=1&rft.spage=280&rft.epage=290&rft_id=info:doi/10.1002%2Fjmri.26192&rft.externalDBID=10.1002%252Fjmri.26192&rft.externalDocID=JMRI26192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon