Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation
Background The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. Purpose To determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 49; no. 1; pp. 280 - 290 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.
Purpose
To determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.
Study Type
Prospective.
Subjects
In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.
Field Strength/Sequence
Conventional and diffusion‐weighted MR images (b values = 0, 800, 1000 s/mm2) were acquired on a 3.0T MR scanner.
Assessment
Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole‐tumor segmentation. A total of 624 radiomics features were derived from T2‐weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.
Statistical Tests
Parameters were compared using Wilcoxon signed rank test, Bland–Altman analysis, t‐test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.
Results
In all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center‐slice and 3D whole‐tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).
Data Conclusion
Several radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole‐tumor volumetric 3D radiomics analysis had a better performance than using the 2D center‐slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.
Level of Evidence: 1
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;49:280–290. |
---|---|
AbstractList | Background
The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.
Purpose
To determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.
Study Type
Prospective.
Subjects
In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.
Field Strength/Sequence
Conventional and diffusion‐weighted MR images (b values = 0, 800, 1000 s/mm2) were acquired on a 3.0T MR scanner.
Assessment
Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole‐tumor segmentation. A total of 624 radiomics features were derived from T2‐weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.
Statistical Tests
Parameters were compared using Wilcoxon signed rank test, Bland–Altman analysis, t‐test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.
Results
In all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center‐slice and 3D whole‐tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).
Data Conclusion
Several radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole‐tumor volumetric 3D radiomics analysis had a better performance than using the 2D center‐slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.
Level of Evidence: 1
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;49:280–290. The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. To determine if there is a difference between radiomics features derived from center-slice 2D versus whole-tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications. Prospective. In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix. Conventional and diffusion-weighted MR images (b values = 0, 800, 1000 s/mm ) were acquired on a 3.0T MR scanner. Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole-tumor segmentation. A total of 624 radiomics features were derived from T -weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis. Parameters were compared using Wilcoxon signed rank test, Bland-Altman analysis, t-test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation. In all, 95 radiomics features were insensitive to ROI variation among T images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center-slice and 3D whole-tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076). Several radiomics features extracted from T images and ADC maps were highly reproducible. Whole-tumor volumetric 3D radiomics analysis had a better performance than using the 2D center-slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm is suggested as the optimal parameter in pelvic DWI scans. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280-290. BackgroundThe role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.PurposeTo determine if there is a difference between radiomics features derived from center‐slice 2D versus whole‐tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.Study TypeProspective.SubjectsIn all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.Field Strength/SequenceConventional and diffusion‐weighted MR images (b values = 0, 800, 1000 s/mm2) were acquired on a 3.0T MR scanner.AssessmentRegions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole‐tumor segmentation. A total of 624 radiomics features were derived from T2‐weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.Statistical TestsParameters were compared using Wilcoxon signed rank test, Bland–Altman analysis, t‐test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.ResultsIn all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center‐slice and 3D whole‐tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).Data ConclusionSeveral radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole‐tumor volumetric 3D radiomics analysis had a better performance than using the 2D center‐slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.Level of Evidence: 1Technical Efficacy: Stage 1J. Magn. Reson. Imaging 2019;49:280–290. The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.BACKGROUNDThe role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.To determine if there is a difference between radiomics features derived from center-slice 2D versus whole-tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.PURPOSETo determine if there is a difference between radiomics features derived from center-slice 2D versus whole-tumor volumetric 3D for ADC measurements in patients with cervical cancer regarding tumor histopathological grade, and systematically assess the impact of the b value on radiomics analysis in ADC quantifications.Prospective.STUDY TYPEProspective.In all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.SUBJECTSIn all, 160 patients with histopathologically confirmed squamous cell carcinoma of uterine cervix.Conventional and diffusion-weighted MR images (b values = 0, 800, 1000 s/mm2 ) were acquired on a 3.0T MR scanner.FIELD STRENGTH/SEQUENCEConventional and diffusion-weighted MR images (b values = 0, 800, 1000 s/mm2 ) were acquired on a 3.0T MR scanner.Regions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole-tumor segmentation. A total of 624 radiomics features were derived from T2 -weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.ASSESSMENTRegions of interest (ROIs) were drawn manually along the margin of tumor on each slice, and then the center slice of the tumor was selected with naked eyes in the course of whole-tumor segmentation. A total of 624 radiomics features were derived from T2 -weighted images and ADC maps. We randomly selected 50 cases and did the reproducibility analysis.Parameters were compared using Wilcoxon signed rank test, Bland-Altman analysis, t-test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.STATISTICAL TESTSParameters were compared using Wilcoxon signed rank test, Bland-Altman analysis, t-test, and least absolute shrinkage and selection operator (LASSO) regression with crossvalidation.In all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center-slice and 3D whole-tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).RESULTSIn all, 95 radiomics features were insensitive to ROI variation among T2 images, ADC map of b800, and ADC map of b1000 (P > 0.0002). There was a significant statistical difference between the performances of 2D center-slice and 3D whole-tumor radiomics models in both ADC feature sets of b800 and b1000 (P < 0.0001, P < 0.0001). Compared with ADC features of b800 (0.3758 ± 0.0118), the model of b1000 ADC features appeared to be slightly lower in overall misclassification error (0.3642 ± 0.0162) (P = 0.0076).Several radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole-tumor volumetric 3D radiomics analysis had a better performance than using the 2D center-slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.DATA CONCLUSIONSeveral radiomics features extracted from T2 images and ADC maps were highly reproducible. Whole-tumor volumetric 3D radiomics analysis had a better performance than using the 2D center-slice of tumor in stratifying the histological grade of cervical cancer. A b value of 1000 s/mm2 is suggested as the optimal parameter in pelvic DWI scans.1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280-290.LEVEL OF EVIDENCE1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:280-290. |
Author | Ye, Zhaoxiang Liu, Ying Zhang, Yuwei Cheng, Runfen Qu, Fangyuan Xiao, Bohan Yin, Xiaoyu Liu, Shichang Wang, Qin |
Author_xml | – sequence: 1 givenname: Ying surname: Liu fullname: Liu, Ying email: tjliuying2009@163.com organization: Tianjin's Clinical Research Center for Cancer – sequence: 2 givenname: Yuwei surname: Zhang fullname: Zhang, Yuwei organization: Tianjin Medical University – sequence: 3 givenname: Runfen surname: Cheng fullname: Cheng, Runfen organization: Tianjin's Clinical Research Center for Cancer – sequence: 4 givenname: Shichang surname: Liu fullname: Liu, Shichang organization: Tianjin's Clinical Research Center for Cancer – sequence: 5 givenname: Fangyuan surname: Qu fullname: Qu, Fangyuan organization: Tianjin's Clinical Research Center for Cancer – sequence: 6 givenname: Xiaoyu surname: Yin fullname: Yin, Xiaoyu organization: Tianjin's Clinical Research Center for Cancer – sequence: 7 givenname: Qin surname: Wang fullname: Wang, Qin organization: Tianjin's Clinical Research Center for Cancer – sequence: 8 givenname: Bohan surname: Xiao fullname: Xiao, Bohan organization: Tianjin's Clinical Research Center for Cancer – sequence: 9 givenname: Zhaoxiang surname: Ye fullname: Ye, Zhaoxiang organization: Tianjin's Clinical Research Center for Cancer |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29761595$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuLFDEUhYOMOA_d-AMk4EaEGm9SnVTF3TD4GBkRBl2HdB7jbVKVMqka6YX_3XT3zGYQV_fBdw7ce07J0ZhGT8hLBucMgL_bDBnPuWSKPyEnTHDecNHLo9qDaBvWQ3dMTkvZAIBSK_GMHHPVSSaUOCF_bozDNKAt1IwmbgsWmgI102SyH2fqMISlYBqpTT4EtLjbYh19vkNrIrVmrP17ekGn7CMOOJq8pWVe3JZW2U8sc4rpds_eZuM89XcmLmaups_J02Bi8S_u6xn58fHD98vPzfW3T1eXF9eNXQnFG7Y2snPOKGHabr2ywPvWMmZkcLKDDgTjfQgc-rVVTjLuQlC8h1p6D-Da9oy8OfhOOf1afJn1gMX6GM3o01I0h1ZxJYVkFX39CN2kJdfXVIqJTgEXnazUq3tqWQ_e6SnjUM_WD4-tABwAm1Mp2Qdtcd7fPGeDUTPQu-z0Lju9z65K3j6SPLj-E2YH-DdGv_0Pqb98vbk6aP4CZQ6rZg |
CitedBy_id | crossref_primary_10_1111_1759_7714_13580 crossref_primary_10_7759_cureus_52132 crossref_primary_10_1016_j_crad_2023_07_014 crossref_primary_10_1016_j_ijrobp_2018_08_032 crossref_primary_10_1007_s00432_023_05001_9 crossref_primary_10_1039_D0BM01240H crossref_primary_10_1109_ACCESS_2024_3522908 crossref_primary_10_3389_fonc_2021_749114 crossref_primary_10_1016_j_ejrad_2019_01_003 crossref_primary_10_1002_acm2_14547 crossref_primary_10_1016_j_bspc_2023_105762 crossref_primary_10_1016_j_clon_2023_05_006 crossref_primary_10_1186_s40644_024_00786_5 crossref_primary_10_1177_0284185120931683 crossref_primary_10_3389_fonc_2021_812993 crossref_primary_10_3389_fonc_2022_948557 crossref_primary_10_1259_bjr_20201342 crossref_primary_10_5812_iranjradiol_86497 crossref_primary_10_1007_s00761_023_01391_0 crossref_primary_10_3389_fonc_2023_1267598 crossref_primary_10_1007_s11307_019_01383_w crossref_primary_10_2214_AJR_24_31077 crossref_primary_10_1088_2057_1976_ad5207 crossref_primary_10_1186_s41824_022_00129_2 crossref_primary_10_1177_0284185119870157 crossref_primary_10_1016_j_critrevonc_2020_102985 crossref_primary_10_1016_j_jacr_2018_12_017 crossref_primary_10_1007_s00330_019_06124_9 crossref_primary_10_3389_fonc_2022_787489 crossref_primary_10_3389_fonc_2022_852308 crossref_primary_10_3748_wjg_v25_i40_6116 crossref_primary_10_2147_CMAR_S353877 crossref_primary_10_1016_j_ejrad_2020_109111 crossref_primary_10_1016_j_radonc_2022_07_001 crossref_primary_10_3389_fmed_2024_1336640 crossref_primary_10_3390_tomography7030031 crossref_primary_10_1007_s00261_024_04486_3 crossref_primary_10_1007_s00261_021_03287_2 crossref_primary_10_1259_bjr_20210838 crossref_primary_10_3389_fonc_2024_1353780 crossref_primary_10_3390_jcm12216833 crossref_primary_10_1002_jmri_27182 crossref_primary_10_1016_j_ygyno_2022_07_024 crossref_primary_10_1259_bjr_20220952 crossref_primary_10_1007_s00330_021_07690_7 crossref_primary_10_1007_s10143_024_03060_1 crossref_primary_10_1186_s43055_020_00213_2 crossref_primary_10_1259_bjr_20220596 crossref_primary_10_1007_s00330_020_06993_5 crossref_primary_10_1038_s41598_020_76989_0 crossref_primary_10_3389_fonc_2021_687884 crossref_primary_10_1007_s00330_020_06913_7 crossref_primary_10_3892_mmr_2018_9511 crossref_primary_10_3389_fmed_2022_1046551 crossref_primary_10_1016_j_mri_2022_03_002 crossref_primary_10_3390_app132111839 crossref_primary_10_1007_s00330_021_08203_2 crossref_primary_10_1007_s11547_023_01676_9 crossref_primary_10_3348_kjr_2019_0855 crossref_primary_10_4103_jmss_jmss_57_22 crossref_primary_10_1186_s40644_021_00400_y crossref_primary_10_3390_app10228001 crossref_primary_10_1002_jmri_27297 crossref_primary_10_1177_02841851211065142 crossref_primary_10_1016_j_canrad_2024_09_006 crossref_primary_10_7759_cureus_75707 crossref_primary_10_1002_mp_15195 crossref_primary_10_12677_ACM_2023_1371531 crossref_primary_10_1177_0284185120934471 crossref_primary_10_1186_s13244_022_01350_0 crossref_primary_10_3389_fonc_2021_706043 crossref_primary_10_6009_jjrt_2021_JSRT_77_8_866 crossref_primary_10_1259_bjr_20210986 crossref_primary_10_1007_s00330_019_06467_3 crossref_primary_10_1016_j_ejrad_2022_110272 crossref_primary_10_1097_RCT_0000000000001329 crossref_primary_10_1186_s40644_019_0239_z crossref_primary_10_1016_j_joca_2020_05_002 crossref_primary_10_1016_j_crad_2023_03_001 crossref_primary_10_1038_s41598_021_94826_w crossref_primary_10_1093_jrr_rrab104 crossref_primary_10_1007_s00330_020_06692_1 crossref_primary_10_1186_s13244_022_01346_w crossref_primary_10_1259_bjr_20201314 crossref_primary_10_1016_j_acra_2022_02_018 crossref_primary_10_1186_s13244_022_01324_2 |
Cites_doi | 10.2214/AJR.06.1403 10.1007/s00261-015-0438-4 10.1016/j.neuroimage.2006.01.015 10.2214/AJR.14.13350 10.1177/0284185116656492 10.1177/0284185117694509 10.5152/dir.2015.14427 10.3322/caac.21262 10.1371/journal.pone.0181339 10.1016/j.ejrad.2009.04.025 10.1148/radiol.2015151169 10.1016/j.ejrad.2012.10.023 10.1148/radiol.2017161299 10.3348/kjr.2013.14.4.616 10.1002/jmri.25583 10.1016/j.ygyno.2009.09.044 10.1007/s11547-016-0665-y 10.1007/s11307-017-1073-y 10.1118/1.3081408 10.2307/1932409 10.1007/s00330-014-3500-7 10.1177/0284185115602146 10.2214/AJR.12.9545 10.1007/s00330-015-3701-8 10.1097/IGC.0000000000000472 10.1038/ncomms5006 10.1088/1361-6560/aa8a49 10.1007/s00330-011-2220-5 10.1002/jmri.25460 10.1158/1078-0432.CCR-16-2910 10.1007/s00404-014-3221-9 10.1007/s00330-015-4156-7 10.1007/s00330-016-4417-0 10.1102/1470-7330.2013.0015 10.1148/radiol.2016151908 10.1016/j.neuroimage.2009.03.068 10.1097/RCT.0b013e31819e93af 10.1148/radiol.15142698 |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. 2019 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. – notice: 2019 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.26192 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 290 |
ExternalDocumentID | 29761595 10_1002_jmri_26192 JMRI26192 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Scientific Foundation of China funderid: 81501443 – fundername: National Natural Scientific Foundation of China grantid: 81501443 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4592-1ba67dda95a37b4c0283c11a6fd670705128ff208bc9d612dff9280dff8e00d33 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 13:24:18 EDT 2025 Fri Jul 25 10:31:13 EDT 2025 Wed Feb 19 02:30:49 EST 2025 Tue Jul 01 03:56:39 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Wed Jan 22 16:45:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | apparent diffusion coefficient radiomics histopathological grade cervical cancer diffusion-weighted magnetic resonance imaging |
Language | English |
License | 2018 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4592-1ba67dda95a37b4c0283c11a6fd670705128ff208bc9d612dff9280dff8e00d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.26192 |
PMID | 29761595 |
PQID | 2157902576 |
PQPubID | 1006400 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2039296561 proquest_journals_2157902576 pubmed_primary_29761595 crossref_citationtrail_10_1002_jmri_26192 crossref_primary_10_1002_jmri_26192 wiley_primary_10_1002_jmri_26192_JMRI26192 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 62 2009; 47 2006; 31 2015; 204 2017; 27 2013; 23 2007; 188 2017; 46 2017; 45 2017; 23 2013; 200 2014; 290 2016; 121 2016; 57 2009; 33 2009; 36 2015; 25 2014; 5 2013; 14 2017; 58 2013; 13 2015; 40 2010; 116 1945; 26 2015; 275 2015; 65 2015; 21 2017; 12 2016; 278 2013; 82 2017; 282 2011; 21 2017; 19 2017; 284 2016; 26 2010; 74 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 Kuang F (e_1_2_7_40_1) 2013; 23 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 74 start-page: e101 year: 2010 end-page: 106 article-title: The utility of diffusion‐weighted MR imaging in cervical cancer publication-title: Eur J Radiol – volume: 58 start-page: 1400 year: 2017 end-page: 1408 article-title: Histogram analysis of apparent diffusion coefficient for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo‐radiotherapy publication-title: Acta Radiol – volume: 290 start-page: 341 year: 2014 end-page: 348 article-title: Histogram analysis of apparent diffusion coefficient for the assessment of local aggressiveness of cervical cancer publication-title: Arch Gynecol Obstet – volume: 14 start-page: 616 year: 2013 end-page: 625 article-title: Pre‐treatment diffusion‐weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients publication-title: Korean J Radiol – volume: 284 start-page: 432 year: 2017 end-page: 442 article-title: Value of dynamic contrast‐enhanced and diffusion‐weighted MR imaging in the detection of pathologic complete response in cervical cancer after neoadjuvant therapy: a retrospective observational study publication-title: Radiology – volume: 5 start-page: 4006 year: 2014 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 200 start-page: 314 year: 2013 end-page: 320 article-title: Relationship between imaging biomarkers of stage I cervical cancer and poor‐prognosis histologic features: quantitative histogram analysis of diffusion‐weighted MR images publication-title: AJR Am J Roentgenol – volume: 47 start-page: 122 year: 2009 end-page: 135 article-title: Performance measure characterization for evaluating neuroimage segmentation algorithms publication-title: Neuroimage – volume: 26 start-page: 297 year: 1945 end-page: 302 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 282 start-page: 418 year: 2017 end-page: 428 article-title: Quantitative assessment of rectal cancer response to neoadjuvant combined chemotherapy and radiation therapy: comparison of three methods of positioning region of interest for ADC measurements at diffusion‐weighted MR imaging publication-title: Radiology – volume: 19 start-page: 953 year: 2017 end-page: 962 article-title: ADC histogram analysis of cervical cancer aids detecting lymphatic metastases—a preliminary study publication-title: Mol Imaging Biol – volume: 65 start-page: 87 year: 2015 end-page: 108 article-title: Global cancer statistics, 2012 publication-title: Ca A Cancer Journal for Clinicians – volume: 12 start-page: e0181339 year: 2017 article-title: Tumor spatial heterogeneity in myxoid‐containing soft tissue using texture analysis of diffusion‐weighted MRI publication-title: PLoS One – volume: 23 start-page: 1050 year: 2013 end-page: 1058 article-title: The value of apparent diffusion coefficient in the assessment of cervical cancer publication-title: J China Clin Med Imaging – volume: 58 start-page: 481 year: 2017 end-page: 488 article-title: Predicting tumor recurrence in patients with cervical carcinoma treated with definitive chemoradiotherapy: value of quantitative histogram analysis on diffusion‐weighted MR images publication-title: Acta Radiol – volume: 40 start-page: 2331 year: 2015 end-page: 2337 article-title: CT textural analysis of hepatic metastatic colorectal cancer: pre‐treatment tumor heterogeneity correlates with pathology and clinical outcomes publication-title: Abdom Imaging – volume: 57 start-page: 869 year: 2016 end-page: 877 article-title: Value of diffusion‐weighted MRI in diagnosis of uterine cervical cancer: a prospective study evaluating the benefits of DWI compared to conventional MR sequences in a 3T environment publication-title: Acta Radiol – volume: 204 start-page: 1125 year: 2015 end-page: 1131 article-title: Correlation of histogram analysis of apparent diffusion coefficient with uterine cervical pathologic finding publication-title: AJR Am J Roentgenol – volume: 27 start-page: 627 year: 2017 end-page: 636 article-title: Separation of type and grade in cervical tumours using non‐mono‐exponential models of diffusion‐weighted MRI publication-title: Eur Radiol – volume: 62 start-page: 8536 year: 2017 end-page: 8565 article-title: Enhancement of multimodality texture‐based prediction models via optimization of PET and MR image acquisition protocols: a proof of concept publication-title: Phys Med Biol – volume: 13 start-page: 140 year: 2013 end-page: 149 article-title: Quantifying tumour heterogeneity with CT publication-title: Cancer Imaging – volume: 21 start-page: 368 year: 2015 end-page: 375 article-title: Added value of diffusion‐weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast‐enhanced MRI sequences publication-title: Diagn Intervent Radiol – volume: 188 start-page: 1622 year: 2007 end-page: 1635 article-title: Diffusion‐weighted MRI in the body: applications and challenges in oncology publication-title: AJR Am J Roentgenol – volume: 278 start-page: 563 year: 2016 end-page: 577 article-title: Radiomics: Images are more than pictures, they are data publication-title: Radiology – volume: 116 start-page: 246 year: 2010 end-page: 252 article-title: Evaluation of magnetic resonance diffusion and spectroscopy measurements as predictive biomarkers in stage 1 cervical cancer publication-title: Gynecol Oncol – volume: 46 start-page: 483 year: 2017 end-page: 489 article-title: Diffusion radiomics analysis of intratumoral heterogeneity in a murine prostate cancer model following radiotherapy: Pixelwise correlation with histology publication-title: J Magn Reson Imaging – volume: 36 start-page: 1236 year: 2009 end-page: 1243 article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application‐oriented study publication-title: Med Phys – volume: 33 start-page: 858 year: 2009 end-page: 862 article-title: Diffusion‐weighted magnetic resonance imaging of uterine cervical cancer publication-title: J Comput Assist Tomogr – volume: 121 start-page: 838 year: 2016 end-page: 846 article-title: Evaluation of diffusion‐weighted imaging (DWI) and MR spectroscopy (MRS) as early response biomarkers in cervical cancer patients publication-title: Radiol Med – volume: 275 start-page: 384 year: 2015 end-page: 392 article-title: Breast cancer: radiogenomic biomarker reveals associations among dynamic contrast‐enhanced MR imaging, long noncoding RNA, and netastasis publication-title: Radiology – volume: 25 start-page: 2840 year: 2015 end-page: 2850 article-title: Haralick texture analysis of prostate MRI: utility for differentiating non‐cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores publication-title: Eur Radiol – volume: 31 start-page: 1116 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 23 start-page: 4259 year: 2017 end-page: 4269 article-title: Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma publication-title: Clin Cancer Res – volume: 25 start-page: 1073 year: 2015 end-page: 1078 article-title: Clinical application of diffusion‐weighted magnetic resonance imaging in uterine cervical cancer publication-title: Int J Gynecol Cancer – volume: 26 start-page: 3272 year: 2016 end-page: 3279 article-title: Prediction of disease progression following concurrent chemoradiotherapy for uterine cervical cancer: value of post‐treatment diffusion‐weighted imaging publication-title: Eur Radiol – volume: 82 start-page: 342 year: 2013 end-page: 348 article-title: Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross‐sectional area be used as an alternative to whole tumor analysis? publication-title: Eur J Radiol – volume: 45 start-page: 1798 year: 2017 end-page: 1808 article-title: Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer publication-title: J Magn Reson Imaging – volume: 21 start-page: 2567 year: 2011 end-page: 2574 article-title: Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability publication-title: Eur Radiol – volume: 25 start-page: 1087 year: 2015 end-page: 1096 article-title: Role of diffusion‐weighted imaging, apparent diffusion coefficient and correlation with hepatobiliary phase findings in the differentiation of hepatocellular carcinoma from dysplastic nodules in cirrhotic liver publication-title: Eur Radiol – ident: e_1_2_7_7_1 doi: 10.2214/AJR.06.1403 – ident: e_1_2_7_28_1 doi: 10.1007/s00261-015-0438-4 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroimage.2006.01.015 – ident: e_1_2_7_20_1 doi: 10.2214/AJR.14.13350 – ident: e_1_2_7_23_1 doi: 10.1177/0284185116656492 – ident: e_1_2_7_25_1 doi: 10.1177/0284185117694509 – ident: e_1_2_7_12_1 doi: 10.5152/dir.2015.14427 – ident: e_1_2_7_2_1 doi: 10.3322/caac.21262 – ident: e_1_2_7_19_1 doi: 10.1371/journal.pone.0181339 – volume: 23 start-page: 1050 year: 2013 ident: e_1_2_7_40_1 article-title: The value of apparent diffusion coefficient in the assessment of cervical cancer publication-title: J China Clin Med Imaging – ident: e_1_2_7_3_1 doi: 10.1016/j.ejrad.2009.04.025 – ident: e_1_2_7_13_1 doi: 10.1148/radiol.2015151169 – ident: e_1_2_7_27_1 doi: 10.1016/j.ejrad.2012.10.023 – ident: e_1_2_7_4_1 doi: 10.1148/radiol.2017161299 – ident: e_1_2_7_24_1 doi: 10.3348/kjr.2013.14.4.616 – ident: e_1_2_7_39_1 doi: 10.1002/jmri.25583 – ident: e_1_2_7_37_1 doi: 10.1016/j.ygyno.2009.09.044 – ident: e_1_2_7_10_1 doi: 10.1007/s11547-016-0665-y – ident: e_1_2_7_22_1 doi: 10.1007/s11307-017-1073-y – ident: e_1_2_7_32_1 doi: 10.1118/1.3081408 – ident: e_1_2_7_31_1 doi: 10.2307/1932409 – ident: e_1_2_7_5_1 doi: 10.1007/s00330-014-3500-7 – ident: e_1_2_7_8_1 doi: 10.1177/0284185115602146 – ident: e_1_2_7_21_1 doi: 10.2214/AJR.12.9545 – ident: e_1_2_7_16_1 doi: 10.1007/s00330-015-3701-8 – ident: e_1_2_7_38_1 doi: 10.1097/IGC.0000000000000472 – ident: e_1_2_7_14_1 doi: 10.1038/ncomms5006 – ident: e_1_2_7_33_1 doi: 10.1088/1361-6560/aa8a49 – ident: e_1_2_7_35_1 doi: 10.1007/s00330-011-2220-5 – ident: e_1_2_7_18_1 doi: 10.1002/jmri.25460 – ident: e_1_2_7_34_1 doi: 10.1158/1078-0432.CCR-16-2910 – ident: e_1_2_7_26_1 doi: 10.1007/s00404-014-3221-9 – ident: e_1_2_7_11_1 doi: 10.1007/s00330-015-4156-7 – ident: e_1_2_7_9_1 doi: 10.1007/s00330-016-4417-0 – ident: e_1_2_7_17_1 doi: 10.1102/1470-7330.2013.0015 – ident: e_1_2_7_6_1 doi: 10.1148/radiol.2016151908 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2009.03.068 – ident: e_1_2_7_36_1 doi: 10.1097/RCT.0b013e31819e93af – ident: e_1_2_7_15_1 doi: 10.1148/radiol.15142698 |
SSID | ssj0009945 |
Score | 2.550141 |
Snippet | Background
The role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.... The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved. To determine... BackgroundThe role of apparent diffusion coefficient (ADC)‐based radiomics features in evaluating histopathological grade of cervical cancer is... The role of apparent diffusion coefficient (ADC)-based radiomics features in evaluating histopathological grade of cervical cancer is unresolved.BACKGROUNDThe... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 280 |
SubjectTerms | Adult Aged Aged, 80 and over apparent diffusion coefficient Biopsy Cancer Carcinoma, Squamous Cell - diagnostic imaging Cervical cancer Diffusion Diffusion coefficient Diffusion Magnetic Resonance Imaging diffusion‐weighted magnetic resonance imaging Feature extraction Female Field strength histopathological grade Human papillomavirus Humans Image acquisition Image Interpretation, Computer-Assisted - methods Image processing Image Processing, Computer-Assisted - methods Image segmentation Magnetic resonance imaging Mathematical models Medical imaging Middle Aged Neoplasm Grading Parameters Patients Prospective Studies Quality Radiomics Rank tests Regression analysis Reproducibility Reproducibility of Results Squamous cell carcinoma Statistical analysis Statistical tests Three dimensional models Tumors Two dimensional models Uterine Cervical Neoplasms - diagnostic imaging Uterus |
Title | Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26192 https://www.ncbi.nlm.nih.gov/pubmed/29761595 https://www.proquest.com/docview/2157902576 https://www.proquest.com/docview/2039296561 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bS-QwFIcP4sPii7rrrepKRF8UOqb3ZPFFFkWF8WFQ8EVKmrQy7toZOjMvgv-756SdDl4Q9Klpm_SS5Jx-zeUXgP0wDMJYGM8VQmkXg9zNYlO4xosjLyOJK0HznbtX8flNeHkb3c7B8XQuTK0P0Ta4kWVYf00GrrLR0Uw09OGx6ncs_6MDpsFaRES9mXaUlHaFYuSHwPUET1ptUv9olvT11-gdYr4mVvvJOVuCu-nD1iNN_nUm46yjn97oOH73bZZhsWFRdlJXnp8wl5e_4Ee36W1fgeeeMn2atTxiqtEuYYOCqSGNWi_HjBZXmVBrG9OD3EpR0NE-7loHhJfWVKeqP-yEDSt8wEc7-ZdZSVuGyazYceN82X2lTM5m6uOrcHN2ev333G2Wa3B1GEnf9TIVJ8YoGakgyUJN5KI9T8WFiRP0LIgWoih8LjItDYKVKQrpC44bkXNugmAN5stBmW8AI9VDPF7gv5AME25EiNgqMYWvVMSN78DBtNhS3WiZ05Ia_9NahdlPKT9Tm58O7LVxh7WCx4extqelnzZWPEoRhxLqhk1iB3bb02h_1KmiynwwwTicCBOp2HNgva417W18ZD3ExciBQ1v2n9w_vez2Lmxo8yuRt2ABCU7WbULbMD-uJvlvpKRxtmOt4QVlXA7L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkCgXCrRAKC1GcAEpi_O2e0MVaHkshxVI3CLHTtDyyK6yu5dK_e_MOCErWoTUnuI44zixPfbnsf0NwH4YBmEsjOcKobSLQe5msSlc48WRlxHFlaDzzr2ruHsTnt9Gt83eHDoLU_NDtAY30gzbX5OCk0H6aMYaev9UDTp2AvABFsilt51R9WfsUVJaH8WIIALXEzxp2Un9o1na1-PRXyDzNWa1g87pp9qz6thyFdJek4fOdJJ19K8_mBz_-39WYLmBo-y4bj-rMJeXa7DYaxbcP8PvvjIDOrg8ZqqhL2HDgqkRbVwvJ4z8q0zJ4Mb0MLdsFBQ7wFvbB-GrNTWr6gc7ZqMKv_DJnv9lltWWYTLLd9z0v-yuUiZnMwLyL3BzenL9s-s2HhtcHUbSd71MxYkxSkYqSLJQE3jRnqfiwsQJdi6ILkRR-FxkWhrEVqYopC84XkTOuQmCdZgvh2W-CYyIDzG-wOmQDBNuRIjIVWIKX6mIG9-Bg5d6S3VDZ05eNR7TmojZT6k8U1ueDuy1sqOaxONNqe2X6k8bRR6niIgSWolNYgd228eogrSuosp8OEUZTiATgbHnwEbdbNpsfIR7iBgjBw5t5b-Tf3re65_Z0Na_CO_Ax-517zK9PLu6-ApLCOhkbSLahvlJNc2_IWiaZN-tajwDOpoS5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIU28bOPXyBhgBC8gpXMSJ7EnXiZGtQ06oYpJe0GRY8eog6VV1r4g8b9z56SpBggJnuI4duzYd-cvtu8zwEshEpFJG4VSahNikIdlZl1ooyyNSqK4kuTvPDrLjs_F6UV6sQZvlr4wLT9EP-FGmuHtNSn4zLr9FWno5VUzGXj8fwtui4xLkumj8Yo8Sil_RDECiCSMJM97ctJ4f5X35nD0G8a8CVn9mDPcgs_L2rZbTb4OFvNyYL7_QuT4v5-zDZsdGGWHrfTchbWqvgcbo265_T78GGs7Ibfla6Y78hI2dUzPaNt6PWd0usqCptuYmVaei4JiJ3jrLRC-2pBQNQfskM0arOCV9_5lntOWYTbPdtxZX_al0bZiK_rxB3A-fPfp7XHYndcQGpGqOIxKneXWapXqJC-FIehiokhnzmY5mhbEFtK5mMvSKIvIyjqnYsnxIivObZI8hPV6WlePgBHtIcY7_BlSIudWCsStCnPEWqfcxgG8WnZbYToyczpT41vR0jDHBbVn4dszgBd92llL4fHHVHvL3i86Nb4uEA_ltA6bZwE87x-jAtKqiq6r6QLTcIKYCIujAHZaqemLiRHsIV5MA3jt-_4v5Reno_GJD-3-S-JnsPHxaFh8ODl7_xjuIJpT7fzQHqzPm0X1BBHTvHzqFeMnGBkRng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radiomics+analysis+of+apparent+diffusion+coefficient+in+cervical+cancer%3A+A+preliminary+study+on+histological+grade+evaluation&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Liu%2C+Ying&rft.au=Zhang%2C+Yuwei&rft.au=Cheng%2C+Runfen&rft.au=Liu%2C+Shichang&rft.date=2019-01-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=49&rft.issue=1&rft.spage=280&rft.epage=290&rft_id=info:doi/10.1002%2Fjmri.26192&rft.externalDBID=10.1002%252Fjmri.26192&rft.externalDocID=JMRI26192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |