Optimizing Iron Supplement Strategies for Enhanced Surfactin Production with Bacillus subtilis
Supplement of Fe2+ into fermentation medium was utilized as a tool to optimize the iron‐mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L−1 of surfactin was produced using an iron‐enriched minimal salt (MS) medium amended with an optimal Fe2+ dosage of 4...
Saved in:
Published in | Biotechnology progress Vol. 20; no. 3; pp. 979 - 983 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
USA
American Chemical Society
01.05.2004
American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Supplement of Fe2+ into fermentation medium was utilized as a tool to optimize the iron‐mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L−1 of surfactin was produced using an iron‐enriched minimal salt (MS) medium amended with an optimal Fe2+ dosage of 4.0 mM, leading to 8‐fold and 10‐fold increase in cell concentration and surfactin yield, respectively, as compared to those without Fe2+ supplement. In addition to resulting in an optimal production yield of surfactin, a supplement of 4.0 mM of Fe2+ also propelled maximum overall surfactin production rate to a highest value of 24 mg L−1 h−1. Our results also show that production of surfactin followed a growth‐associated kinetic model. The best yield coefficient estimated from the model was ca. 162 mg surfactin (g dry cell)−1. The supernatant of the iron‐enriched culture of B. subtilis ATCC 21332 exhibited the ability to emulsify kerosene and achieved a maximum emulsion index ( E24) of 80% for culture supplemented with 4.0 mM of Fe2+. Comparison of emulsion index and the corresponding surfactin production indicates that the emulsification activity was essentially contributed by surfactin. |
---|---|
AbstractList | Supplement of Fe(2+) into fermentation medium was utilized as a tool to optimize the iron-mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L(-)(1) of surfactin was produced using an iron-enriched minimal salt (MS) medium amended with an optimal Fe(2+) dosage of 4.0 mM, leading to 8-fold and 10-fold increase in cell concentration and surfactin yield, respectively, as compared to those without Fe(2+) supplement. In addition to resulting in an optimal production yield of surfactin, a supplement of 4.0 mM of Fe(2+) also propelled maximum overall surfactin production rate to a highest value of 24 mg L(-)(1) h(-)(1). Our results also show that production of surfactin followed a growth-associated kinetic model. The best yield coefficient estimated from the model was ca. 162 mg surfactin (g dry cell)(-)(1). The supernatant of the iron-enriched culture of B. subtilis ATCC 21332 exhibited the ability to emulsify kerosene and achieved a maximum emulsion index (E(24)) of 80% for culture supplemented with 4.0 mM of Fe(2+). Comparison of emulsion index and the corresponding surfactin production indicates that the emulsification activity was essentially contributed by surfactin. Supplement of Fe2+ into fermentation medium was utilized as a tool to optimize the iron‐mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L−1 of surfactin was produced using an iron‐enriched minimal salt (MS) medium amended with an optimal Fe2+ dosage of 4.0 mM, leading to 8‐fold and 10‐fold increase in cell concentration and surfactin yield, respectively, as compared to those without Fe2+ supplement. In addition to resulting in an optimal production yield of surfactin, a supplement of 4.0 mM of Fe2+ also propelled maximum overall surfactin production rate to a highest value of 24 mg L−1 h−1. Our results also show that production of surfactin followed a growth‐associated kinetic model. The best yield coefficient estimated from the model was ca. 162 mg surfactin (g dry cell)−1. The supernatant of the iron‐enriched culture of B. subtilis ATCC 21332 exhibited the ability to emulsify kerosene and achieved a maximum emulsion index ( E24) of 80% for culture supplemented with 4.0 mM of Fe2+. Comparison of emulsion index and the corresponding surfactin production indicates that the emulsification activity was essentially contributed by surfactin. Supplement of Fe(2+) into fermentation medium was utilized as a tool to optimize the iron-mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L(-)(1) of surfactin was produced using an iron-enriched minimal salt (MS) medium amended with an optimal Fe(2+) dosage of 4.0 mM, leading to 8-fold and 10-fold increase in cell concentration and surfactin yield, respectively, as compared to those without Fe(2+) supplement. In addition to resulting in an optimal production yield of surfactin, a supplement of 4.0 mM of Fe(2+) also propelled maximum overall surfactin production rate to a highest value of 24 mg L(-)(1) h(-)(1). Our results also show that production of surfactin followed a growth-associated kinetic model. The best yield coefficient estimated from the model was ca. 162 mg surfactin (g dry cell)(-)(1). The supernatant of the iron-enriched culture of B. subtilis ATCC 21332 exhibited the ability to emulsify kerosene and achieved a maximum emulsion index (E(24)) of 80% for culture supplemented with 4.0 mM of Fe(2+). Comparison of emulsion index and the corresponding surfactin production indicates that the emulsification activity was essentially contributed by surfactin.Supplement of Fe(2+) into fermentation medium was utilized as a tool to optimize the iron-mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L(-)(1) of surfactin was produced using an iron-enriched minimal salt (MS) medium amended with an optimal Fe(2+) dosage of 4.0 mM, leading to 8-fold and 10-fold increase in cell concentration and surfactin yield, respectively, as compared to those without Fe(2+) supplement. In addition to resulting in an optimal production yield of surfactin, a supplement of 4.0 mM of Fe(2+) also propelled maximum overall surfactin production rate to a highest value of 24 mg L(-)(1) h(-)(1). Our results also show that production of surfactin followed a growth-associated kinetic model. The best yield coefficient estimated from the model was ca. 162 mg surfactin (g dry cell)(-)(1). The supernatant of the iron-enriched culture of B. subtilis ATCC 21332 exhibited the ability to emulsify kerosene and achieved a maximum emulsion index (E(24)) of 80% for culture supplemented with 4.0 mM of Fe(2+). Comparison of emulsion index and the corresponding surfactin production indicates that the emulsification activity was essentially contributed by surfactin. Supplement of Fe super(2+) into fermentation medium was utilized as a tool to optimize the iron-mediated enhancement of surfactin production from Bacillus subtilis ATCC 21332. Up to 3000 mg L super(-1) of surfactin was produced using an iron-enriched minimal salt (MS) medium amended with an optimal Fe super(2+) dosage of 4.0 mM, leading to 8-fold and 10-fold increase in cell concentration and surfactin yield, respectively, as compared to those without Fe super(2+) supplement. In addition to resulting in an optimal production yield of surfactin, a supplement of 4.0 mM of Fe super(2+) also propelled maximum overall surfactin production rate to a highest value of 24 mg L super(-1) h super(-1). Our results also show that production of surfactin followed a growth-associated kinetic model. The best yield coefficient estimated from the model was ca. 162 mg surfactin (g dry cell) super(-1). The supernatant of the iron-enriched culture of B. subtilis ATCC 21332 exhibited the ability to emulsify kerosene and achieved a maximum emulsion index (E sub(24)) of 80% for culture supplemented with 4.0 mM of Fe super(2+). Comparison of emulsion index and the corresponding surfactin production indicates that the emulsification activity was essentially contributed by surfactin. |
Author | Wang, Li-Fen Chang, Jo-Shu Wei, Yu-Hong |
Author_xml | – sequence: 1 givenname: Yu-Hong surname: Wei fullname: Wei, Yu-Hong organization: Graduate School of Biotechnology and Bioinformatics, Yuan Ze University, Taoyuan, Taiwan – sequence: 2 givenname: Li-Fen surname: Wang fullname: Wang, Li-Fen organization: Department of Applied Chemistry, Fooyin University, Kaohsiung, Taiwan – sequence: 3 givenname: Jo-Shu surname: Chang fullname: Chang, Jo-Shu email: changjs@mail.ncku.edu.tw organization: Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15841945$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15176908$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1v1DAQBmALFdFt4cAfQLkA6iF0bK_t5EirtrSq6CeCE9bEcVrTfGE7KuXX42WXFULAyXN43rH0zhbZ6IfeEvKcwhsKjO5WI3AAQfERmVHBIJfA-QaZFUrIXJW82CRbIXwBgAIke0I2qaBKllDMyOezMbrOfXf9TXbshz67msaxtZ3tY3YVPUZ742zImsFnB_0t9sbWifgGTXR9du6HekpTyt27eJvtoXFtO4UsTFV0rQtPyeMG22Cfrd5t8uHw4Hr_XX56dnS8__Y0N3NR0rxWyFWJlDeiUtgYxrAqmQLkpmQGKyhqKUs7lyCRGiaqArkEIVFC3SBUfJu8Xu4d_fB1siHqzgVj2xZ7O0xBq_QNMAEyyVf_lwyAKiUSfLGCU9XZWo_edegf9K_uEni5AhgMto1P7bjwmyvmtJwvFu0unfFDCN422riIi9JSv67VFPTiinp9xZTY-SOxXvoXC0t771r78G-o967PL3-OKZIvIy5E-20dQX-npeJK6I_vj_Sni5OTC37JNOU_AEiEulc |
CODEN | BIPRET |
CitedBy_id | crossref_primary_10_1002_jctb_4790 crossref_primary_10_1016_j_biotechadv_2006_08_001 crossref_primary_10_1021_bp050040c crossref_primary_10_3389_fphar_2017_00761 crossref_primary_10_1007_s11274_010_0533_1 crossref_primary_10_1007_s10295_018_2076_7 crossref_primary_10_1007_s00449_021_02606_7 crossref_primary_10_1186_s12934_019_1176_z crossref_primary_10_1002_jctb_3900 crossref_primary_10_1016_j_biortech_2024_130499 crossref_primary_10_1016_j_procbio_2006_03_027 crossref_primary_10_1016_j_seppur_2022_122278 crossref_primary_10_1080_13102818_2015_1006905 crossref_primary_10_1016_j_bej_2015_07_009 crossref_primary_10_1016_j_bej_2021_108235 crossref_primary_10_1016_j_biortech_2017_05_120 crossref_primary_10_1098_rsfs_2013_0051 crossref_primary_10_1016_j_petrol_2010_11_008 crossref_primary_10_1016_j_fbp_2023_09_002 crossref_primary_10_1002_jctb_6225 crossref_primary_10_1016_j_jbiosc_2015_03_007 crossref_primary_10_1007_s12010_009_8889_0 crossref_primary_10_2174_1389200221666201008143238 crossref_primary_10_1016_j_bej_2008_07_003 crossref_primary_10_1002_bit_24524 crossref_primary_10_1039_C7RA09274A crossref_primary_10_1007_s12010_013_0249_4 crossref_primary_10_3390_molecules23102675 crossref_primary_10_1007_s10295_008_0385_y crossref_primary_10_3390_cryst9070355 crossref_primary_10_1039_C9RA02784J crossref_primary_10_1002_jsde_12626 crossref_primary_10_1038_srep40976 crossref_primary_10_1016_j_jbiotec_2021_06_015 crossref_primary_10_3390_pr8030259 crossref_primary_10_1016_j_colsurfa_2011_09_044 crossref_primary_10_1186_s12934_018_0968_x crossref_primary_10_1016_j_xpro_2022_101462 crossref_primary_10_1002_bab_2665 crossref_primary_10_3390_fermentation10060323 crossref_primary_10_1016_j_ejbt_2017_03_005 crossref_primary_10_1186_s12866_025_03786_y crossref_primary_10_1016_j_chembiol_2021_05_014 crossref_primary_10_1007_s12010_008_8459_x crossref_primary_10_1002_jctb_3814 crossref_primary_10_1128_mBio_01451_18 crossref_primary_10_1080_07388551_2022_2095252 crossref_primary_10_3390_ijms11114526 crossref_primary_10_1080_10916460903393963 crossref_primary_10_2175_106143009X12487095237279 crossref_primary_10_1016_j_bej_2021_108058 crossref_primary_10_1016_j_procbio_2006_07_025 crossref_primary_10_1016_j_fbp_2021_03_012 crossref_primary_10_1016_j_jtice_2017_06_017 crossref_primary_10_1016_j_peptides_2015_07_006 |
ContentType | Journal Article |
Copyright | Copyright © 2004 American Institute of Chemical Engineers (AIChE) 2004 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2004 American Institute of Chemical Engineers (AIChE) – notice: 2004 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1021/bp030051a |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-6033 |
EndPage | 983 |
ExternalDocumentID | 5949407 15176908 15841945 10_1021_bp030051a BTPR30051 ark_67375_WNG_XQJJQ3R2_1 |
Genre | article Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 05W 0R~ 1L6 1OB 1OC 1WB 23N 31~ 33P 3SF 3WU 4.4 52U 52V 53G 55A 5GY 5VS 66C 6J9 8-1 A00 A8Z AABXI AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABHMW ABJNI ABQWH ABTAH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACJ ACMXC ACPOU ACPRK ACS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADMGS ADOZA ADXAS ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGXLV AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BAANH BDRZF BFHJK BHBCM BLYAC BMXJE BNHUX BOGZA BRXPI BSCLL C45 CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EDH EJD EMOBN ESTFP F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HHY HVGLF HZ~ I-F IHE ITG ITH IX1 JG~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI ML0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NDZJH NNB O9- OIG OVD P2P P2W P4E PALCI QRW RIWAO RJQFR ROL RWI SAMSI SUPJJ SV3 TAE TEORI TN5 TUS W99 WBKPD WIH WIJ WIK WOHZO WSB WXSBR WYJ XV2 Y6R ZCA ZY4 ZZTAW ~02 ~KM ~S- AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGHNM AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c4591-d7a379a13f5b7afc22ab9270a3c92cab08d669e4606a1c25b8a36056a60dfa0b3 |
IEDL.DBID | DR2 |
ISSN | 8756-7938 |
IngestDate | Thu Jul 10 16:54:20 EDT 2025 Fri Jul 11 03:52:59 EDT 2025 Wed Feb 19 01:41:20 EST 2025 Mon Jul 21 09:14:43 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Tue Jul 01 02:13:09 EDT 2025 Wed Jan 22 16:20:37 EST 2025 Wed Oct 30 09:56:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Bacteria Iron Bacillales Bacillaceae Bacillus subtilis Production |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4591-d7a379a13f5b7afc22ab9270a3c92cab08d669e4606a1c25b8a36056a60dfa0b3 |
Notes | ark:/67375/WNG-XQJJQ3R2-1 ArticleID:BTPR30051 istex:7E45B94C80D975B48E59D66F932F8E946EEC38A4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 15176908 |
PQID | 72001775 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_745902506 proquest_miscellaneous_72001775 pubmed_primary_15176908 pascalfrancis_primary_15841945 crossref_citationtrail_10_1021_bp030051a crossref_primary_10_1021_bp030051a wiley_primary_10_1021_bp030051a_BTPR30051 istex_primary_ark_67375_WNG_XQJJQ3R2_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-05-01 |
PublicationDateYYYYMMDD | 2004-05-01 |
PublicationDate_xml | – month: 05 year: 2004 text: 2004-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | USA |
PublicationPlace_xml | – name: USA – name: Washington, DC – name: New York, NY – name: United States |
PublicationTitle | Biotechnology progress |
PublicationTitleAlternate | Biotechnol Progress |
PublicationYear | 2004 |
Publisher | American Chemical Society American Institute of Chemical Engineers |
Publisher_xml | – name: American Chemical Society – name: American Institute of Chemical Engineers |
References | Maier, R. M.; Soberon-Chavez, G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 2000, 54, 625-633. Lin, S. C.; Sharma, M. M.; Georgiou, G. Production and deactivation of biosurfactant by Bacillus licheniformis JF-2. Biotechnol. Prog. 1993, 9, 138-145. Cooper, D. G.; Paddock, D. A. Torulopsis petrophilum and surface activity. Appl. Environ. Microbiol. 1983, 46, 1426-1429. McCray, J. E.; Bai, G.; Maier, R. M.; Brusseau, M. L. Biosurfactant-enhanced solubilization of NAPL mixtures. J. Contam. Hydrol. 2001, 48, 45-68. Desai, J. D.; Banat, I. M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Rev. 1997, 61, 47-64. Wei, Y. H.; Wang, L. F.; Chang, J. S.; Kung, S. S. Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. J. Biosci. Bioeng. 2003, 96, 174-178. Cooper, D. G., Goldenberg B. G. Surface-activeagents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224-229. Makkar, R. S.; Cameotra, S. S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 2002, 58, 428-434. Banat, I. M.; Makkar, R. S.; Cameotra, S. S. Potential applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495-508. Grangemard, I.; Wallach, J.; Maget-dana, R.; Peypoux, F. A more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 2001, 90, 199-210. Cameotra, S. S.; Makkar, R. S. Synthesis of biosurfactants in extreme conditions. Appl. Microbiol. Biotechnol. 1998, 50, 520-529. Bharathi, S.; Vasudevan, N. Utilization of hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 2001, 26, 413-416. Wei, Y. H.; Chu, I. M. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol. Lett. 2002, 24, 479-482. Lang, S.; Wullbrandt, D. Rhamnose lipids-biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 1999, 51, 22-32. Bailey, K.; Ollins, N. Biosurfactants for cosmetic applications. Int. J. Cosmet. Sci. 1986, 13, 61-64. Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptide lipid surfactantproducedby Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968, 31, 488-494. Kakinuma, A.; Ouchida, A.; Shima, T.; Sugino, H.; Isono, M.; Tamura, G.; Arima, K. Confirmation of the structure of surfactin by mass spectrometry. Agric.Biol. Chem. 1969, 33, 1669-1671. Thimon, L.; Peypoux, F.; Michel, G. Interaction of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnol. Lett. 1992, 14, 713-718. Sen, R. Response surface optimization of the critical media components for the production of surfactin. J. Chem. Tech. Biotechnol. 1997, 68, 263-270. Banat I. M. Biosurfactantsproduction and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour. Technol. 1995, 51, 1-12. Wei, Y. H.; Chu, I. M. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb. Technol. 1998, 22, 724-728. Guerinot M. L. Microbialiron transport. Annu. Rev. Microbiol. 1994, 48, 743-772. Kim, H. S.; Yoon, B. D.; Choung, D. H., Oh, H. M.; Katsuragi, T.; Tani, Y. Characterization of a biosurfactant, mannosylerythritol lipid, produced from Candida sp. SY 16.Appl. Microbiol. Biotechnol. 1999, 52, 713-721. 1995; 51 2002; 58 1993; 9 1987; 53 1997; 61 2001; 90 2000; 54 2002; 24 1986; 13 1997; 68 2000; 53 1969; 33 2001; 26 2001; 48 1999; 52 1992; 14 1994; 48 1998; 50 1999; 51 2003; 96 1973; 1 1983; 46 1998; 22 1968; 31 |
References_xml | – reference: Cooper, D. G.; Paddock, D. A. Torulopsis petrophilum and surface activity. Appl. Environ. Microbiol. 1983, 46, 1426-1429. – reference: Maier, R. M.; Soberon-Chavez, G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 2000, 54, 625-633. – reference: Wei, Y. H.; Wang, L. F.; Chang, J. S.; Kung, S. S. Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. J. Biosci. Bioeng. 2003, 96, 174-178. – reference: Cooper, D. G., Goldenberg B. G. Surface-activeagents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224-229. – reference: Lang, S.; Wullbrandt, D. Rhamnose lipids-biosynthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 1999, 51, 22-32. – reference: Lin, S. C.; Sharma, M. M.; Georgiou, G. Production and deactivation of biosurfactant by Bacillus licheniformis JF-2. Biotechnol. Prog. 1993, 9, 138-145. – reference: Sen, R. Response surface optimization of the critical media components for the production of surfactin. J. Chem. Tech. Biotechnol. 1997, 68, 263-270. – reference: McCray, J. E.; Bai, G.; Maier, R. M.; Brusseau, M. L. Biosurfactant-enhanced solubilization of NAPL mixtures. J. Contam. Hydrol. 2001, 48, 45-68. – reference: Kim, H. S.; Yoon, B. D.; Choung, D. H., Oh, H. M.; Katsuragi, T.; Tani, Y. Characterization of a biosurfactant, mannosylerythritol lipid, produced from Candida sp. SY 16.Appl. Microbiol. Biotechnol. 1999, 52, 713-721. – reference: Bharathi, S.; Vasudevan, N. Utilization of hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environ. Int. 2001, 26, 413-416. – reference: Makkar, R. S.; Cameotra, S. S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 2002, 58, 428-434. – reference: Kakinuma, A.; Ouchida, A.; Shima, T.; Sugino, H.; Isono, M.; Tamura, G.; Arima, K. Confirmation of the structure of surfactin by mass spectrometry. Agric.Biol. Chem. 1969, 33, 1669-1671. – reference: Banat, I. M.; Makkar, R. S.; Cameotra, S. S. Potential applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495-508. – reference: Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptide lipid surfactantproducedby Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968, 31, 488-494. – reference: Guerinot M. L. Microbialiron transport. Annu. Rev. Microbiol. 1994, 48, 743-772. – reference: Cameotra, S. S.; Makkar, R. S. Synthesis of biosurfactants in extreme conditions. Appl. Microbiol. Biotechnol. 1998, 50, 520-529. – reference: Wei, Y. H.; Chu, I. M. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb. Technol. 1998, 22, 724-728. – reference: Banat I. M. Biosurfactantsproduction and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour. Technol. 1995, 51, 1-12. – reference: Bailey, K.; Ollins, N. Biosurfactants for cosmetic applications. Int. J. Cosmet. Sci. 1986, 13, 61-64. – reference: Grangemard, I.; Wallach, J.; Maget-dana, R.; Peypoux, F. A more efficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 2001, 90, 199-210. – reference: Wei, Y. H.; Chu, I. M. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol. Lett. 2002, 24, 479-482. – reference: Thimon, L.; Peypoux, F.; Michel, G. Interaction of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnol. Lett. 1992, 14, 713-718. – reference: Desai, J. D.; Banat, I. M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Rev. 1997, 61, 47-64. – volume: 68 start-page: 263 year: 1997 end-page: 270 article-title: Response surface optimization of the critical media components for the production of surfactin. . . publication-title: Biotechnol – volume: 1 start-page: 167 year: 1973 end-page: 202 – volume: 24 start-page: 479 year: 2002 end-page: 482 article-title: Mn improves surfactin production by . publication-title: Lett – volume: 58 start-page: 428 year: 2002 end-page: 434 article-title: An update on the use of unconventional substrates for biosurfactant production and their new applications. . publication-title: Biotechnol – volume: 9 start-page: 138 year: 1993 end-page: 145 article-title: Production and deactivation of biosurfactant by JF‐2. publication-title: Prog – volume: 53 start-page: 495 year: 2000 end-page: 508 article-title: Potential applications of microbial surfactants. . publication-title: Biotechnol – volume: 96 start-page: 174 year: 2003 end-page: 178 article-title: Identification of induced acidification in iron‐enriched cultures of during biosurfactant fermentation. . publication-title: Bioeng – volume: 26 start-page: 413 year: 2001 end-page: 416 article-title: Utilization of hydrocarbons by isolated from a petroleum‐contaminated soil. publication-title: Int – volume: 51 start-page: 1 year: 1995 end-page: 12 article-title: Biosurfactantsproduction and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review publication-title: Bioresour. Technol – volume: 52 start-page: 713 year: 1999 end-page: 721 article-title: Characterization of a biosurfactant, mannosylerythritol lipid, produced from . SY 16. . publication-title: Biotechnol – volume: 61 start-page: 47 year: 1997 end-page: 64 article-title: Microbial production of surfactants and their commercial potential. . publication-title: Rev – volume: 13 start-page: 61 year: 1986 end-page: 64 article-title: Biosurfactants for cosmetic applications. . . publication-title: Sci. – volume: 33 start-page: 1669 year: 1969 end-page: 1671 article-title: Confirmation of the structure of surfactin by mass spectrometry. . publication-title: Chem. – volume: 50 start-page: 520 year: 1998 end-page: 529 article-title: Synthesis of biosurfactants in extreme conditions. . publication-title: Biotechnol – volume: 22 start-page: 724 year: 1998 end-page: 728 article-title: Enhancement of surfactin production in iron‐enriched media by ATCC 21332. publication-title: Technol – volume: 31 start-page: 488 year: 1968 end-page: 494 article-title: Surfactin, a crystalline peptide lipid surfactantproducedby : Isolation, characterization and its inhibition of fibrin clot formation publication-title: Biochem. Biophys. Res. Commun. – volume: 48 start-page: 45 year: 2001 end-page: 68 article-title: Biosurfactant‐enhanced solubilization of NAPL mixtures. . publication-title: Hydrol – volume: 90 start-page: 199 year: 2001 end-page: 210 article-title: A more efficient cation chelator than surfactin. . publication-title: Biotechnol – volume: 54 start-page: 625 year: 2000 end-page: 633 article-title: rhamnolipids: biosynthesis and potential applications. . publication-title: Biotechnol – volume: 53 start-page: 224 year: 1987 end-page: 229 article-title: Surface‐activeagents from two species. . publication-title: Microbiol – volume: 48 start-page: 743 year: 1994 end-page: 772 article-title: Microbialiron transport. . publication-title: Microbiol – volume: 51 start-page: 22 year: 1999 end-page: 32 article-title: Rhamnose lipids‐biosynthesis, microbial production and application potential. . publication-title: Biotechnol – volume: 14 start-page: 713 year: 1992 end-page: 718 article-title: Interaction of surfactin, a biosurfactant from , with inorganic cations. publication-title: Lett – volume: 46 start-page: 1426 year: 1983 end-page: 1429 article-title: and surface activity. . publication-title: Microbiol |
SSID | ssj0008062 |
Score | 2.0544236 |
Snippet | Supplement of Fe2+ into fermentation medium was utilized as a tool to optimize the iron‐mediated enhancement of surfactin production from Bacillus subtilis... Supplement of Fe(2+) into fermentation medium was utilized as a tool to optimize the iron-mediated enhancement of surfactin production from Bacillus subtilis... Supplement of Fe super(2+) into fermentation medium was utilized as a tool to optimize the iron-mediated enhancement of surfactin production from Bacillus... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 979 |
SubjectTerms | Bacillus subtilis Bacillus subtilis - drug effects Bacillus subtilis - metabolism Biological and medical sciences Biotechnology Cell Culture Techniques - methods Culture Media - metabolism Dose-Response Relationship, Drug Emulsification Fermentation Fundamental and applied biological sciences. Psychology Iron Iron - pharmacokinetics Iron - pharmacology Lipopeptides Peptides, Cyclic - biosynthesis Q1 Q2 Reproducibility of Results Sensitivity and Specificity Supplements surfactin |
Title | Optimizing Iron Supplement Strategies for Enhanced Surfactin Production with Bacillus subtilis |
URI | https://api.istex.fr/ark:/67375/WNG-XQJJQ3R2-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1021%2Fbp030051a https://www.ncbi.nlm.nih.gov/pubmed/15176908 https://www.proquest.com/docview/72001775 https://www.proquest.com/docview/745902506 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QIHKN9poVgIITikJHZix-JEUUtZidKuWrEHVMt2ErHqNlttNlLVX9-xs0m7qD3ALZEmkWy_sd_Y4zcA77hMDBKRLOQ5xQBF5DyUSW5Cg9SeJaVlha8N-GOf7x0ng1E6WoHP3V2YVh-i33BznuHna-fg2tQLsQHn5OY8clLrsSNHLlfLEaLhtXRUFvliokjHeYgYzDpVIRp_6r9cWovuuW69cLmRusbuKdu6FrcRz2Ue6xei3Ufwu2tCm39yutXMzZa9_Evd8T_buAYPFwSVfGkR9RhWiuoJPLghW_gUTn7iPHM2vsQX8n02rYgvDer3GUmndlvUBOkw2an--BQDNJn5OxQVOWg1ZhEPxG0Ck21tx5NJU5O6MfPxZFw_g-PdnaOve-GiTkNok1TGYS40E1LHrEyN0KWlVBtJRaSZldRqxELOuSwSjJV0bGlqMs0wiuKaR3mpI8Oew2o1rYqXQEom01JSI92FXYbROS6WnEc2sTbKRJkH8KEbMWUXIuaulsZE-cN0Gqu-ywJ425uet8odtxm998PeW-jZqUt1E6n6tf9NjQ4Hg0M2pCoOYHMJF9e_RAYXyyQN4E0HFIUe6o5ddFVMm1oJl7YmBFqQuywSJ6KTRjyAFy3Ebvw-FlxGWQAfPVDuboraPjoY-sf1f7DdgPttLpJL4XwFq_NZU7xGmjU3m96frgAETiEw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE48H6ER2shhOCQksSJHUtcKGrZLu3SrrbqXsCynUSsumSrzUZC_fWMnU3aRe0Bbok0iWT7G_sbe_wNwBsmYo1EJPVZFmGAwjPmizjTvkZqT-PC0NzVBjwcsN5J3B8n4zX42N6FafQhug036xluvrYObjekl2oD1sv1eWC11kNkRxu2orcLqIaX4lFp4MqJIiFnPqIwbXWFovBD9-nKarRhO_a3zY5UFXZQ0VS2uI56rjJZtxTt3YPvbSOaDJSz7Xqht83FX_qO_9vK-3B3yVHJpwZUD2AtLx_CnSvKhY_gxzecan5NLvCF7M9nJXHVQd1WI2kFb_OKICMmu-VPl2WAJnN3jaIkR43MLEKC2H1gsqPMZDqtK1LVejGZTqrHcLK3O_rc85elGnwTJyL0M64oFyqkRaK5KkwUKS0iHihqRGQUwiFjTOQxhksqNFGiU0UxkGKKBVmhAk2fwHo5K_NnQAoqkkJEWtg7uxQDdFwvGQtMbEyQ8iLz4F07ZNIsdcxtOY2pdOfpUSi7LvPgdWd63oh3XGf01o17Z6HmZzbbjSfydPBFjo_7_WM6jGToweYKMC5_iSQuFHHiwVaLFIlOak9eVJnP6kpym7nGOVqQmyxiq6OTBMyDpw3Grvw-5EwEqQfvHVJuborcGR0N3ePzf7Ddglu90eGBPNgffH0Bt5vUJJvR-RLWF_M6f4Wsa6E3nXP9Af9PJUs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLWmTULwML5Z-NgshBA8ZDh2YsfiibGVrUDpqk3rA8KynURUK2nVNBLar-faaboVbQ_wlkjXlmyfax_b1-ci9IrL2AARSUOeUdigiIyHMs5MaIDas7iwLPe5Ab_2-OFp3B0mwzX0vn0L0-hDLA_cnGf4-do5-DQrFmIDzsnNlDip9QjI0UbMSeogvT-41I5Kic8mCnychwDCtJUVotG7ZdGVxWjD9etvFxypK-ifoklscR3zXCWyfiXq3EXf2zY0ASjnu_Xc7NqLv-Qd_7OR99DmgqHiDw2k7qO1vHyA7lzRLXyIfnyDiebX6AJ-8NFsUmKfG9QfNOJW7javMPBhfFD-9DEGYDLzjyhK3G9EZgEQ2J0C4z1tR-NxXeGqNvPReFQ9Qqedg5OPh-EiUUNo40RGYSY0E1JHrEiM0IWlVBtJBdHMSmo1gCHjXOYwSlxHliYm1Qy2UVxzkhWaGPYYrZeTMt9CuGAyKSQ10r3YZbA9h9WSc2Jja0kqiixAb9oRU3ahYu6SaYyVv02nkVp2WYBeLk2njXTHdUav_bAvLfTs3MW6iUSd9T6p4XG3e8wGVEUB2l7BxWWVQOEiGScB2mmBosBF3b2LLvNJXSnh4taEAAt8k0XsVHQSwgP0pIHYleojwSVJA_TWA-Xmpqi9k_7Afz79B9sddKu_31Ffjnqfn6HbTVySC-d8jtbnszp_AZRrbra9a_0BklckAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Iron+Supplement+Strategies+for+Enhanced+Surfactin+Production+with+Bacillus+subtilis&rft.jtitle=Biotechnology+progress&rft.au=Wei%2C+Yu-Hong&rft.au=Wang%2C+Li-Fen&rft.au=Chang%2C+Jo-Shu&rft.date=2004-05-01&rft.pub=American+Chemical+Society&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=20&rft.issue=3&rft.spage=979&rft.epage=983&rft_id=info:doi/10.1021%2Fbp030051a&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XQJJQ3R2_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon |