Direction of dependence in measurement error models
Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true...
Saved in:
Published in | British journal of mathematical & statistical psychology Vol. 71; no. 1; pp. 117 - 145 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
British Psychological Society
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0007-1102 2044-8317 2044-8317 |
DOI | 10.1111/bmsp.12111 |
Cover
Loading…
Abstract | Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM‐based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non‐independence and non‐normality). An empirical example from subjective well‐being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed. |
---|---|
AbstractList | Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g.,
x
→
y
vs.
y
→
x
), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM‐based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non‐independence and non‐normality). An empirical example from subjective well‐being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed. Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM-based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non-independence and non-normality). An empirical example from subjective well-being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed. Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM-based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non-independence and non-normality). An empirical example from subjective well-being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed.Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM-based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non-independence and non-normality). An empirical example from subjective well-being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed. |
Author | Wiedermann, Wolfgang Merkle, Edgar C. Eye, Alexander |
Author_xml | – sequence: 1 givenname: Wolfgang surname: Wiedermann fullname: Wiedermann, Wolfgang email: wiedermannw@missouri.edu organization: University of Missouri – sequence: 2 givenname: Edgar C. surname: Merkle fullname: Merkle, Edgar C. organization: University of Missouri – sequence: 3 givenname: Alexander surname: Eye fullname: Eye, Alexander organization: Michigan State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28872673$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1Lw0AQhhep2Fa9-AMk4EWE1P1IsrtHrZ9QUVDPyyaZQEqyW3cTpP_erWkvRZzLzOF5Z4ZnikbGGkDojOAZCXWdt341IzSMB2hCcZLEghE-QhOMMY8JwXSMpt4vMSY0xdkRGlMhOM04myB2VzsoutqayFZRCSswJZgCotpELWjfO2jBdBE4Z13U2hIaf4IOK914ON32Y_T5cP8xf4oXr4_P85tFXCSpJHEq0iLXkmRS67LCaZZhmeuShy94ojOgOGeCpJzzTHNgoqRVnsmCilyWFUuBHaPLYe_K2a8efKfa2hfQNNqA7b0ikqWCMMKSgF7soUvbOxO-U5RIEY5IyQN1vqX6vIVSrVzdardWOx0BwANQOOu9g0oVdac3djqn60YRrDbG1ca4-jUeIld7kd3WP2EywN91A-t_SHX78v42ZH4AWkmOkg |
CitedBy_id | crossref_primary_10_1080_03610926_2017_1388403 crossref_primary_10_1007_s41237_021_00154_8 crossref_primary_10_3758_s13428_018_1031_x crossref_primary_10_1080_00273171_2019_1687276 crossref_primary_10_1177_08944393211073168 crossref_primary_10_1177_2167702619875410 crossref_primary_10_3758_s13428_019_01230_4 crossref_primary_10_1371_journal_pone_0267271 crossref_primary_10_3758_s13428_023_02253_8 crossref_primary_10_1109_TCYB_2022_3175479 crossref_primary_10_1007_s41237_019_00095_3 crossref_primary_10_1016_j_measurement_2019_01_024 crossref_primary_10_1080_00273171_2018_1528542 crossref_primary_10_1007_s12124_018_9423_0 crossref_primary_10_1080_00273171_2019_1659127 |
Cites_doi | 10.1080/03610926.2012.698785 10.1177/0049124112442138 10.1037/1082-989X.6.4.330 10.1207/s15327752jpa4901_13 10.1177/0013164413505863 10.2307/1907835 10.1027/1614-2241/a000057 10.1007/978-1-4899-4477-1 10.1007/978-90-481-2354-4_12 10.1002/9781118947074.ch7 10.1098/rspa.1931.0209 10.1201/9781420066586 10.1002/sim.6787 10.2307/1401511 10.1177/0165025415582056 10.1080/03610920008832589 10.1002/0471221317 10.2307/2635758 10.1016/0270-0255(86)90088-6 10.1037/0033-2909.105.1.156 10.1080/00273171.2014.958429 10.1177/0049124187015004002 10.1037/met0000027 10.1080/14786440109462720 10.1016/j.ijar.2008.02.006 10.2307/2685035 10.1017/CBO9780511803161 10.1002/9780470316665 10.1037/0033-2909.95.3.542 10.1093/biomet/asu026 10.1111/bmsp.12037 10.1177/0165025415582055 10.1186/s40535-016-0018-x 10.2333/bhmk.41.65 10.1007/978-3-319-20585-4_7 10.1093/aje/kwm074 10.1177/0013164414548576 10.2307/271055 10.1177/0165025412439968 10.1002/9781118947074 10.2307/2025310 10.1007/s00184-009-0273-0 10.1111/j.1467-9574.1987.tb01215.x 10.1214/aos/1176344565 10.1177/0165025412448944 10.1198/000313001300339932 10.1007/BF02293865 10.1016/j.neucom.2008.11.018 |
ContentType | Journal Article |
Copyright | 2017 The British Psychological Society 2017 The British Psychological Society. Copyright © 2018 The British Psychological Society |
Copyright_xml | – notice: 2017 The British Psychological Society – notice: 2017 The British Psychological Society. – notice: Copyright © 2018 The British Psychological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 K9. 7X8 |
DOI | 10.1111/bmsp.12111 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Psychology Mathematics |
EISSN | 2044-8317 |
EndPage | 145 |
ExternalDocumentID | 28872673 10_1111_bmsp_12111 BMSP12111 |
Genre | article Journal Article |
GroupedDBID | --- --Z -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 36B 3V. 4.4 50Y 50Z 52M 52O 52S 52T 52U 52V 52W 53G 5GY 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8AO 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 930 A01 A04 AABNI AAESR AAHHS AAHQN AAIPD AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABIVO ABJCF ABJNI ABQWH ABSOO ABTAH ABUWG ABXGK ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACHQT ACIWK ACKIV ACMXC ACPOU ACRPL ACUHS ACXQS ACYXJ ADBBV ADBTR ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFKFF AFKRA AFPWT AFWVQ AFYRF AFZJQ AHBTC AI. AIACR AIAGR AIFKG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARAPS ASPBG ASTYK AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BMXJE BNVMJ BPHCQ BQESF BROTX BRXPI BVXVI C45 CAG CCPQU COF CS3 D-6 D-7 D-C D-D DCZOG DPXWK DRFUL DRMAN DRSSH DU5 DWQXO EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN EPS EST ESX F00 F01 F5P FEDTE FUBAC FYUFA G-S G.N G50 GNK GNM GNUQQ GODZA GUQSH HAOEW HCIFZ HGLYW HMCUK HVGLF HZ~ H~9 K6V K7- KBYEO L6V L7B LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES M1P M2M M2O M2P M2Q M7S MEWTI MK4 MRFUL MRMAN MRSSH MSFUL MSMAN MSSSH MXFUL MXMAN MXSSH MY~ N04 N06 NF~ NIF O66 O9- OHT OVD P2P P2W P2Y P2Z P4B P4C P62 PADUT PALCI PQQKQ PROAC PSQYO PSYQQ PTHSS Q.N Q2X QB0 R.K RIWAO RJQFR ROL RX1 S0X SAMSI SUPJJ SV3 TEORI TN5 TUS UB1 UKHRP UPT VH1 W8V W99 WBKPD WH7 WHDPE WIH WII WIJ WOHZO WSUWO WXSBR XG1 ZY4 ZZTAW ~A~ ~IA ~WP AAYXX AEYWJ AGHNM AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB JQ2 K9. 7X8 |
ID | FETCH-LOGICAL-c4591-585cba9169aadf056609bad701274a6e20b38157776a7e38d2fb69c28b9df35e3 |
ISSN | 0007-1102 2044-8317 |
IngestDate | Fri Jul 11 10:37:11 EDT 2025 Fri Jul 25 19:38:32 EDT 2025 Mon Jul 21 06:03:47 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Tue Jul 01 03:30:17 EDT 2025 Wed Jan 22 16:21:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | linear regression measurement error method of moments direction dependence non-normality sensitivity analysis |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The British Psychological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4591-585cba9169aadf056609bad701274a6e20b38157776a7e38d2fb69c28b9df35e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bmsp.12111 |
PMID | 28872673 |
PQID | 2198577997 |
PQPubID | 36005 |
PageCount | 29 |
ParticipantIDs | proquest_miscellaneous_1935813134 proquest_journals_2198577997 pubmed_primary_28872673 crossref_citationtrail_10_1111_bmsp_12111 crossref_primary_10_1111_bmsp_12111 wiley_primary_10_1111_bmsp_12111_BMSP12111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Leicester |
PublicationTitle | British journal of mathematical & statistical psychology |
PublicationTitleAlternate | Br J Math Stat Psychol |
PublicationYear | 2018 |
Publisher | British Psychological Society |
Publisher_xml | – name: British Psychological Society |
References | 2015; 39 1878; 5 2015c; 39 2015; 75 2011; 12 2015b; 20 2016; 35 2013; 9 1984; 95 1931; 134 1989; 105 1987; 41 2001 1986; 7 1943 1987 2008; 20 2001; 55 2012; 22 1953; 21 2010; 72 1979; 7 1973; 70 2000; 29 1988; 18 2010 2007; 165 1996; 50 2009 2006; 7 2008 1995 2006 2004 1901; 2 2015a; 50 2012; 36 2014; 41 1985; 49 1987; 15 2014; 43 2015; 68 1950; 18 2016; 3 2001; 6 2009; 72 1978; 43 2008; 49 1963 2017 2016 2015 2013 2014; 74 1953; 89 1968 2012; 41 2014; 101 2009; 39 e_1_2_9_31_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_54_1 Schimmack U. (e_1_2_9_42_1) 2008 Eye A. (e_1_2_9_60_1) 2014; 74 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 Dodge Y. (e_1_2_9_18_1) 2016 e_1_2_9_41_1 e_1_2_9_64_1 Silva R. (e_1_2_9_49_1) 2006; 7 e_1_2_9_62_1 e_1_2_9_22_1 Wiedermann W. (e_1_2_9_66_1) 2016 Nelsen R. B. (e_1_2_9_35_1) 2006 e_1_2_9_43_1 e_1_2_9_8_1 Shimizu S. (e_1_2_9_45_1) 2016 e_1_2_9_6_1 Spirtes P. (e_1_2_9_52_1) 2016; 3 e_1_2_9_4_1 e_1_2_9_2_1 Kendall M. G. (e_1_2_9_30_1) 1963 VanderWeele T. (e_1_2_9_57_1) 2015 e_1_2_9_26_1 e_1_2_9_28_1 Entner D. (e_1_2_9_21_1) 2012; 22 Eye A. (e_1_2_9_58_1) 2008 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 Gretton A. (e_1_2_9_24_1) 2008; 20 R Core Team (e_1_2_9_39_1) 2017 Dunn G. (e_1_2_9_20_1) 2004 Wiedermann W. (e_1_2_9_61_1) 2015 Shimizu S. (e_1_2_9_47_1) 2006; 7 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Alexandrowicz R. W. (e_1_2_9_3_1) 2013 Deming W. E. (e_1_2_9_12_1) 1943 Skitovich W. P. (e_1_2_9_50_1) 1953; 89 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 Shimizu S. (e_1_2_9_48_1) 2011; 12 Lord F. M. (e_1_2_9_33_1) 1968 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 101 start-page: 927 year: 2014 end-page: 942 article-title: Testing independence and goodness‐of‐fit in linear models publication-title: Biometrika – year: 2009 – volume: 75 start-page: 365 year: 2015 end-page: 388 article-title: Descriptive statistics for modern test score distributions: Skewness, kurtosis, discreteness, and ceiling effects publication-title: Educational and Psychological Measurement – volume: 2 start-page: 559 year: 1901 end-page: 572 article-title: On lines and planes of closest fit to systems of points in space publication-title: Philosophical Magazine – volume: 41 start-page: 65 year: 2014 end-page: 98 article-title: LiNGAM: Non‐Gaussian methods for estimating causal structures publication-title: Behaviormetrika – start-page: 149 year: 2015 end-page: 169 – volume: 20 start-page: 221 year: 2015b end-page: 244 article-title: Direction of effects in mediation analysis publication-title: Psychological Methods – year: 2001 – volume: 35 start-page: 214 year: 2016 end-page: 226 article-title: Sample size considerations for the external validation of a multivariable prognostic model: A resampling study publication-title: Statistics in Medicine – volume: 18 start-page: 375 year: 1950 end-page: 389 article-title: Identifiability of a linear relation between variables which are subject to error publication-title: Econometrica – volume: 70 start-page: 556 year: 1973 end-page: 567 article-title: Causation publication-title: Journal of Philosophy – volume: 39 start-page: 560 year: 2015 end-page: 569 article-title: Empirical evaluation of directional‐dependence tests publication-title: International Journal of Behavioral Development – volume: 6 start-page: 330 year: 2001 end-page: 351 article-title: A comparison of inclusive and restrictive strategies in modern missing data procedures publication-title: Psychological Methods – volume: 72 start-page: 2024 year: 2009 end-page: 2027 article-title: Estimation of linear non‐Gaussian acyclic models for latent factors publication-title: Neurocomputing – volume: 50 start-page: 23 year: 2015a end-page: 40 article-title: Direction of effects in multiple linear regression models publication-title: Multivariate Behavioral Research – volume: 29 start-page: 1957 year: 2000 end-page: 1972 article-title: Direction dependence in a regression line publication-title: Communications in Statistics: Theory and Methods – volume: 49 start-page: 362 year: 2008 end-page: 378 article-title: Estimation of causal effects using linear non‐Gaussian causal models with hidden variables publication-title: International Journal of Approximate Reasoning – start-page: 97 year: 2008 end-page: 123 – volume: 41 start-page: 223 year: 1987 end-page: 238 article-title: Regression with errors in variables: Estimators based on third order moments publication-title: Statistica Neerlandica – volume: 36 start-page: 313 year: 2012 end-page: 322 article-title: Determining directional dependency in causal associations publication-title: International Journal of Behavioral Development – volume: 3 start-page: 1 year: 2016 end-page: 28 article-title: Causal discovery and inference: Concepts and recent methodological advances publication-title: Applied Informatics – volume: 50 start-page: 1 year: 1996 end-page: 6 article-title: The use and misuse of orthogonal regression in linear errors‐in‐variables models publication-title: American Statistician – volume: 5 start-page: 53 year: 1878 end-page: 54 article-title: A problem in least squares publication-title: Analyst – volume: 72 start-page: 139 year: 2010 end-page: 150 article-title: On direction of dependence publication-title: Metrika – year: 2004 – volume: 105 start-page: 156 year: 1989 end-page: 166 article-title: The unicorn, the normal curve, and other improbable creatures publication-title: Psychological Bulletin – start-page: 153 year: 2016 end-page: 276 – volume: 7 start-page: 2003 year: 2006 end-page: 2030 article-title: A linear non‐Gaussian acyclic model for causal discovery publication-title: Journal of Machine Learning Research – volume: 12 start-page: 1225 year: 2011 end-page: 1248 article-title: DirectLiNGAM: A direct method for learning a linear non‐Gaussian structural equation model publication-title: Journal of Machine Learning Research – year: 2015 – year: 2008 article-title: Characteristics of measures of directional dependence: Monte Carlo studies publication-title: InterStat – volume: 7 start-page: 191 year: 2006 end-page: 246 article-title: Learning the structure of linear latent variable models publication-title: Journal of Machine Learning Research – volume: 36 start-page: 303 year: 2012 end-page: 312 article-title: Directional dependence in developmental research publication-title: International Journal of Behavioral Development – volume: 20 start-page: 585 year: 2008 end-page: 592 article-title: A kernel statistical test of independence publication-title: Advances in Neural Information Processing Systems – volume: 39 start-page: 570 year: 2015c end-page: 580 article-title: Direction‐dependence analysis: A confirmatory approach for testing directional theories publication-title: International Journal of Behavioral Development – year: 1968 – year: 1987 – volume: 95 start-page: 542 year: 1984 end-page: 575 article-title: Subjective well‐being publication-title: Psychological Bulletin – volume: 21 start-page: 2 year: 1953 end-page: 8 article-title: Analyse générale des liaisons stochastiques [General analysis of stochastic links] publication-title: Review of the International Statistical Institute – volume: 9 start-page: 78 year: 2013 end-page: 84 article-title: Skewness and kurtosis in real data samples publication-title: Methodology – year: 2016 – year: 2010 – volume: 43 start-page: 225 year: 1978 end-page: 243 article-title: On various causes of improper solutions in maximum likelihood factor analysis publication-title: Psychometrika – year: 1963 – volume: 55 start-page: 51 year: 2001 end-page: 54 article-title: On asymmetric properties of the correlation coefficient in the regression setting publication-title: American Statistician – volume: 134 start-page: 486 year: 1931 end-page: 501 article-title: On finite sequences of real numbers publication-title: Proceedings of the Royal Society of London A – volume: 39 start-page: 247 year: 2009 end-page: 266 article-title: New measures of well‐being: Flourishing and positive and negative feelings publication-title: Social Indicators Research – volume: 89 start-page: 217 year: 1953 end-page: 219 article-title: On a property of the normal distribution publication-title: Doklady Akademii Nauk SSSR [Reports of the Academy of Sciences USSR] – volume: 165 start-page: 1110 year: 2007 end-page: 1118 article-title: Performance of propensity score calibration: A simulation study publication-title: American Journal of Epidemiology – volume: 68 start-page: 116 year: 2015 end-page: 141 article-title: Significance tests to determine the direction of effects in linear regression models publication-title: British Journal of Mathematical and Statistical Psychology – volume: 7 start-page: 201 year: 1979 end-page: 206 article-title: On estimating the slope of a straight line when both variables are subject to error publication-title: Annals of Statistics – volume: 15 start-page: 375 year: 1987 end-page: 384 article-title: Outliers and improper solutions: A confirmatory factor analysis example publication-title: Sociological Methods and Research – volume: 18 start-page: 449 year: 1988 end-page: 493 article-title: Causal inference, path analysis, and recursive structural equation models (with discussion) publication-title: Sociological Methodology – volume: 22 start-page: 364 year: 2012 end-page: 372 article-title: Statistical test for consistent estimation of causal effects in linear non‐Gaussian models publication-title: Journal of Machine Learning Research: Workshop and Conference Proceedings – year: 2006 – volume: 43 start-page: 3208 year: 2014 end-page: 3222 article-title: Method of moments estimation in linear regression with errors in both variables publication-title: Communications in Statistics: Theory and Methods – volume: 74 start-page: 5 year: 2014 end-page: 30 article-title: On direction of dependence in latent variable contexts publication-title: Educational and Psychological Measurement – year: 1995 – year: 1943 – volume: 41 start-page: 124 year: 2012 end-page: 167 article-title: Testing negative error variances: Is a Heywood case a symptom of misspecification? publication-title: Sociological Methods & Research – year: 2017 – volume: 49 start-page: 71 year: 1985 end-page: 75 article-title: The Satisfaction With Life Scale publication-title: Journal of Personality Assessment – year: 2013 – volume: 7 start-page: 1393 year: 1986 end-page: 1512 article-title: A new approach to causal inference in mortality studies with sustained exposure periods: Application to control of the healthy worker survivor effect publication-title: Mathematical Modeling – volume-title: Statistics and causality: Methods for applied empirical research year: 2016 ident: e_1_2_9_18_1 – ident: e_1_2_9_23_1 doi: 10.1080/03610926.2012.698785 – volume: 12 start-page: 1225 year: 2011 ident: e_1_2_9_48_1 article-title: DirectLiNGAM: A direct method for learning a linear non‐Gaussian structural equation model publication-title: Journal of Machine Learning Research – ident: e_1_2_9_31_1 doi: 10.1177/0049124112442138 – volume: 7 start-page: 191 year: 2006 ident: e_1_2_9_49_1 article-title: Learning the structure of linear latent variable models publication-title: Journal of Machine Learning Research – year: 2008 ident: e_1_2_9_58_1 article-title: Characteristics of measures of directional dependence: Monte Carlo studies publication-title: InterStat – ident: e_1_2_9_10_1 doi: 10.1037/1082-989X.6.4.330 – ident: e_1_2_9_14_1 doi: 10.1207/s15327752jpa4901_13 – volume-title: R in 10 Schritten: Einführung in die statistische Programmierumgebung [R in 10 steps: An introduction into the statistical programming environment] year: 2013 ident: e_1_2_9_3_1 – volume: 74 start-page: 5 year: 2014 ident: e_1_2_9_60_1 article-title: On direction of dependence in latent variable contexts publication-title: Educational and Psychological Measurement doi: 10.1177/0013164413505863 – ident: e_1_2_9_40_1 doi: 10.2307/1907835 – ident: e_1_2_9_4_1 doi: 10.1027/1614-2241/a000057 – ident: e_1_2_9_8_1 doi: 10.1007/978-1-4899-4477-1 – start-page: 97 volume-title: The science of subjective well‐being year: 2008 ident: e_1_2_9_42_1 – ident: e_1_2_9_15_1 doi: 10.1007/978-90-481-2354-4_12 – volume-title: Statistical theories of mental test scores year: 1968 ident: e_1_2_9_33_1 – start-page: 153 volume-title: Statistics and causality: Methods for applied empirical research year: 2016 ident: e_1_2_9_45_1 doi: 10.1002/9781118947074.ch7 – ident: e_1_2_9_25_1 doi: 10.1098/rspa.1931.0209 – ident: e_1_2_9_6_1 doi: 10.1201/9781420066586 – ident: e_1_2_9_9_1 doi: 10.1002/sim.6787 – ident: e_1_2_9_11_1 doi: 10.2307/1401511 – ident: e_1_2_9_65_1 doi: 10.1177/0165025415582056 – ident: e_1_2_9_16_1 doi: 10.1080/03610920008832589 – volume-title: R: A language and environment for statistical computing year: 2017 ident: e_1_2_9_39_1 – ident: e_1_2_9_29_1 doi: 10.1002/0471221317 – ident: e_1_2_9_2_1 doi: 10.2307/2635758 – ident: e_1_2_9_41_1 doi: 10.1016/0270-0255(86)90088-6 – ident: e_1_2_9_34_1 doi: 10.1037/0033-2909.105.1.156 – volume-title: Statistical evaluation of measurement errors: Design and analysis of reliability studies year: 2004 ident: e_1_2_9_20_1 – ident: e_1_2_9_63_1 doi: 10.1080/00273171.2014.958429 – ident: e_1_2_9_5_1 doi: 10.1177/0049124187015004002 – ident: e_1_2_9_64_1 doi: 10.1037/met0000027 – ident: e_1_2_9_37_1 doi: 10.1080/14786440109462720 – ident: e_1_2_9_28_1 doi: 10.1016/j.ijar.2008.02.006 – ident: e_1_2_9_7_1 doi: 10.2307/2685035 – ident: e_1_2_9_36_1 doi: 10.1017/CBO9780511803161 – ident: e_1_2_9_22_1 doi: 10.1002/9780470316665 – volume-title: Explanation in causal inference: Methods for mediation and interaction year: 2015 ident: e_1_2_9_57_1 – ident: e_1_2_9_13_1 doi: 10.1037/0033-2909.95.3.542 – ident: e_1_2_9_43_1 doi: 10.1093/biomet/asu026 – ident: e_1_2_9_62_1 doi: 10.1111/bmsp.12037 – ident: e_1_2_9_54_1 doi: 10.1177/0165025415582055 – volume: 3 start-page: 1 year: 2016 ident: e_1_2_9_52_1 article-title: Causal discovery and inference: Concepts and recent methodological advances publication-title: Applied Informatics doi: 10.1186/s40535-016-0018-x – ident: e_1_2_9_44_1 doi: 10.2333/bhmk.41.65 – start-page: 149 volume-title: Dependent data in social sciences research: Forms, issues, and methods of analysis year: 2015 ident: e_1_2_9_61_1 doi: 10.1007/978-3-319-20585-4_7 – ident: e_1_2_9_53_1 doi: 10.1093/aje/kwm074 – volume-title: An introduction to copulas year: 2006 ident: e_1_2_9_35_1 – ident: e_1_2_9_26_1 doi: 10.1177/0013164414548576 – ident: e_1_2_9_27_1 doi: 10.2307/271055 – ident: e_1_2_9_59_1 doi: 10.1177/0165025412439968 – volume-title: Statistics and causality: Methods for applied empirical research year: 2016 ident: e_1_2_9_66_1 doi: 10.1002/9781118947074 – ident: e_1_2_9_32_1 doi: 10.2307/2025310 – ident: e_1_2_9_19_1 doi: 10.1007/s00184-009-0273-0 – ident: e_1_2_9_56_1 doi: 10.1111/j.1467-9574.1987.tb01215.x – ident: e_1_2_9_51_1 doi: 10.1214/aos/1176344565 – volume: 7 start-page: 2003 year: 2006 ident: e_1_2_9_47_1 article-title: A linear non‐Gaussian acyclic model for causal discovery publication-title: Journal of Machine Learning Research – volume-title: Statistical adjustment of data year: 1943 ident: e_1_2_9_12_1 – volume: 22 start-page: 364 year: 2012 ident: e_1_2_9_21_1 article-title: Statistical test for consistent estimation of causal effects in linear non‐Gaussian models publication-title: Journal of Machine Learning Research: Workshop and Conference Proceedings – volume: 20 start-page: 585 year: 2008 ident: e_1_2_9_24_1 article-title: A kernel statistical test of independence publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_9_38_1 doi: 10.1177/0165025412448944 – ident: e_1_2_9_17_1 doi: 10.1198/000313001300339932 – ident: e_1_2_9_55_1 doi: 10.1007/BF02293865 – volume-title: Advanced theory of statistics year: 1963 ident: e_1_2_9_30_1 – volume: 89 start-page: 217 year: 1953 ident: e_1_2_9_50_1 article-title: On a property of the normal distribution publication-title: Doklady Akademii Nauk SSSR [Reports of the Academy of Sciences USSR] – ident: e_1_2_9_46_1 doi: 10.1016/j.neucom.2008.11.018 |
SSID | ssj0012506 |
Score | 2.232448 |
Snippet | Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y... Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x → y... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117 |
SubjectTerms | Attenuation Computer Simulation Decision analysis Decisions Dependence direction dependence Economic models Empirical analysis Error analysis Error detection Kurtosis Linear Models linear regression measurement error Measurement methods Method of moments Models, Statistical Monte Carlo Method non‐normality Normality R&D Regression analysis Regression models Reproducibility of Results Research & development Robustness Sensitivity analysis Well being |
Title | Direction of dependence in measurement error models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbmsp.12111 https://www.ncbi.nlm.nih.gov/pubmed/28872673 https://www.proquest.com/docview/2198577997 https://www.proquest.com/docview/1935813134 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvZQDKuUVWlAQXKAK2jgPx8dduqvl0arStqK3yI6dqqKbVMkWqfx6xo84G1Eq4BIljhVbM5PxjD3zDUJvcSLUeR4OikiAg4IJC0BuyoCpvGVaEFjCdJTvUTo_jT-fJWf9cYHOLlnxD8XPW_NK_oer0AZ8VVmy_8BZ91FogHvgL1yBw3D9Kx5bfWVMvq6cbaFhQJb93t--bJq6MTVv2sEhrgU0WkOPWDoUV3hWUqESjjSWs8vYGmzDXygsiqUttPytvizPmV0KNahv891EK0_FOWv6DVmXVbP_A-Y-vZHrew9h1oUrdxtsdppDXW3DTQdalwRgZhitK3UbHsUxSIXJ2-w0sSnGMpA4o1ZD28-s0KEBoPyD8ufL9kphZlgdPkDYno8X-fHBLP_66ejLfbSJwbUAZb45nhxMZu7sCYzC1DhNZtYW1FbFf_XfHpoxv_kmQ1dH2yon2-ihdTL8sZGYR-ierHbQg0PH23YHbTlq3sDDouNy-xhFTqr8uvR7qfIvKn9NqnwtVb6RqifodDY9-TgPbGmNoIgTGgbgJBacgWtAGRMlGMHpiHImiApEiFkq8YiDKZcQQlJGZJQJXPKUFjjjVJRRIqOnaKOqK_kc-QwXCcNlJgTlMSnhqzTBPBXgF8dAXuqhdx2l8sLizqvyJ5d5538qquaaqh564_peGbSVW3vtdQTP7R_S5jBSBvOllHjotXsNulIdgLFK1tdtHmq0vyiMYg89M4xyw2BYbXFKIg-915y7Y_x8crg41ncv7p7JLtrq_5o9tLFqruVLsGFX_JUVul8mNJ3R |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direction+of+dependence+in+measurement+error+models&rft.jtitle=British+journal+of+mathematical+%26+statistical+psychology&rft.au=Wiedermann%2C+Wolfgang&rft.au=Merkle%2C+Edgar+C&rft.au=Alexander+von+Eye&rft.date=2018-02-01&rft.pub=British+Psychological+Society&rft.issn=0007-1102&rft.eissn=2044-8317&rft.volume=71&rft.issue=1&rft.spage=117&rft.epage=145&rft_id=info:doi/10.1111%2Fbmsp.12111&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1102&client=summon |