Direction of dependence in measurement error models

Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of mathematical & statistical psychology Vol. 71; no. 1; pp. 117 - 145
Main Authors Wiedermann, Wolfgang, Merkle, Edgar C., Eye, Alexander
Format Journal Article
LanguageEnglish
Published England British Psychological Society 01.02.2018
Subjects
Online AccessGet full text
ISSN0007-1102
2044-8317
2044-8317
DOI10.1111/bmsp.12111

Cover

Loading…
Abstract Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM‐based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non‐independence and non‐normality). An empirical example from subjective well‐being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed.
AbstractList Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x → y vs. y → x ), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM‐based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non‐independence and non‐normality). An empirical example from subjective well‐being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed.
Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM-based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non-independence and non-normality). An empirical example from subjective well-being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed.
Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM-based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non-independence and non-normality). An empirical example from subjective well-being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed.Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y vs. y→x), have experienced rapid development within the last decade. However, previous research largely rested on the assumption that the true predictor is measured without measurement error. The present paper extends the direction dependence principle to measurement error models. First, we discuss asymmetric representations of the reliability coefficient in terms of higher moments of variables and the attenuation of skewness and excess kurtosis due to measurement error. Second, we identify conditions where direction dependence decisions are biased due to measurement error and suggest method of moments (MOM) estimation as a remedy. Third, we address data situations in which the true outcome exhibits both regression and measurement error, and propose a sensitivity analysis approach to determining the robustness of direction dependence decisions against unreliably measured outcomes. Monte Carlo simulations were performed to assess the performance of MOM-based direction dependence measures and their robustness to violated measurement error assumptions (i.e., non-independence and non-normality). An empirical example from subjective well-being research is presented. The plausibility of model assumptions and links to modern causal inference methods for observational data are discussed.
Author Wiedermann, Wolfgang
Merkle, Edgar C.
Eye, Alexander
Author_xml – sequence: 1
  givenname: Wolfgang
  surname: Wiedermann
  fullname: Wiedermann, Wolfgang
  email: wiedermannw@missouri.edu
  organization: University of Missouri
– sequence: 2
  givenname: Edgar C.
  surname: Merkle
  fullname: Merkle, Edgar C.
  organization: University of Missouri
– sequence: 3
  givenname: Alexander
  surname: Eye
  fullname: Eye, Alexander
  organization: Michigan State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28872673$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhep2Fa9-AMk4EWE1P1IsrtHrZ9QUVDPyyaZQEqyW3cTpP_erWkvRZzLzOF5Z4ZnikbGGkDojOAZCXWdt341IzSMB2hCcZLEghE-QhOMMY8JwXSMpt4vMSY0xdkRGlMhOM04myB2VzsoutqayFZRCSswJZgCotpELWjfO2jBdBE4Z13U2hIaf4IOK914ON32Y_T5cP8xf4oXr4_P85tFXCSpJHEq0iLXkmRS67LCaZZhmeuShy94ojOgOGeCpJzzTHNgoqRVnsmCilyWFUuBHaPLYe_K2a8efKfa2hfQNNqA7b0ikqWCMMKSgF7soUvbOxO-U5RIEY5IyQN1vqX6vIVSrVzdardWOx0BwANQOOu9g0oVdac3djqn60YRrDbG1ca4-jUeIld7kd3WP2EywN91A-t_SHX78v42ZH4AWkmOkg
CitedBy_id crossref_primary_10_1080_03610926_2017_1388403
crossref_primary_10_1007_s41237_021_00154_8
crossref_primary_10_3758_s13428_018_1031_x
crossref_primary_10_1080_00273171_2019_1687276
crossref_primary_10_1177_08944393211073168
crossref_primary_10_1177_2167702619875410
crossref_primary_10_3758_s13428_019_01230_4
crossref_primary_10_1371_journal_pone_0267271
crossref_primary_10_3758_s13428_023_02253_8
crossref_primary_10_1109_TCYB_2022_3175479
crossref_primary_10_1007_s41237_019_00095_3
crossref_primary_10_1016_j_measurement_2019_01_024
crossref_primary_10_1080_00273171_2018_1528542
crossref_primary_10_1007_s12124_018_9423_0
crossref_primary_10_1080_00273171_2019_1659127
Cites_doi 10.1080/03610926.2012.698785
10.1177/0049124112442138
10.1037/1082-989X.6.4.330
10.1207/s15327752jpa4901_13
10.1177/0013164413505863
10.2307/1907835
10.1027/1614-2241/a000057
10.1007/978-1-4899-4477-1
10.1007/978-90-481-2354-4_12
10.1002/9781118947074.ch7
10.1098/rspa.1931.0209
10.1201/9781420066586
10.1002/sim.6787
10.2307/1401511
10.1177/0165025415582056
10.1080/03610920008832589
10.1002/0471221317
10.2307/2635758
10.1016/0270-0255(86)90088-6
10.1037/0033-2909.105.1.156
10.1080/00273171.2014.958429
10.1177/0049124187015004002
10.1037/met0000027
10.1080/14786440109462720
10.1016/j.ijar.2008.02.006
10.2307/2685035
10.1017/CBO9780511803161
10.1002/9780470316665
10.1037/0033-2909.95.3.542
10.1093/biomet/asu026
10.1111/bmsp.12037
10.1177/0165025415582055
10.1186/s40535-016-0018-x
10.2333/bhmk.41.65
10.1007/978-3-319-20585-4_7
10.1093/aje/kwm074
10.1177/0013164414548576
10.2307/271055
10.1177/0165025412439968
10.1002/9781118947074
10.2307/2025310
10.1007/s00184-009-0273-0
10.1111/j.1467-9574.1987.tb01215.x
10.1214/aos/1176344565
10.1177/0165025412448944
10.1198/000313001300339932
10.1007/BF02293865
10.1016/j.neucom.2008.11.018
ContentType Journal Article
Copyright 2017 The British Psychological Society
2017 The British Psychological Society.
Copyright © 2018 The British Psychological Society
Copyright_xml – notice: 2017 The British Psychological Society
– notice: 2017 The British Psychological Society.
– notice: Copyright © 2018 The British Psychological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
K9.
7X8
DOI 10.1111/bmsp.12111
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Psychology
Mathematics
EISSN 2044-8317
EndPage 145
ExternalDocumentID 28872673
10_1111_bmsp_12111
BMSP12111
Genre article
Journal Article
GroupedDBID ---
--Z
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
36B
3V.
4.4
50Y
50Z
52M
52O
52S
52T
52U
52V
52W
53G
5GY
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
930
A01
A04
AABNI
AAESR
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIVO
ABJCF
ABJNI
ABQWH
ABSOO
ABTAH
ABUWG
ABXGK
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACGOF
ACHQT
ACIWK
ACKIV
ACMXC
ACPOU
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADBTR
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKFF
AFKRA
AFPWT
AFWVQ
AFYRF
AFZJQ
AHBTC
AI.
AIACR
AIAGR
AIFKG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARAPS
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BMXJE
BNVMJ
BPHCQ
BQESF
BROTX
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-C
D-D
DCZOG
DPXWK
DRFUL
DRMAN
DRSSH
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
EST
ESX
F00
F01
F5P
FEDTE
FUBAC
FYUFA
G-S
G.N
G50
GNK
GNM
GNUQQ
GODZA
GUQSH
HAOEW
HCIFZ
HGLYW
HMCUK
HVGLF
HZ~
H~9
K6V
K7-
KBYEO
L6V
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
M1P
M2M
M2O
M2P
M2Q
M7S
MEWTI
MK4
MRFUL
MRMAN
MRSSH
MSFUL
MSMAN
MSSSH
MXFUL
MXMAN
MXSSH
MY~
N04
N06
NF~
NIF
O66
O9-
OHT
OVD
P2P
P2W
P2Y
P2Z
P4B
P4C
P62
PADUT
PALCI
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q.N
Q2X
QB0
R.K
RIWAO
RJQFR
ROL
RX1
S0X
SAMSI
SUPJJ
SV3
TEORI
TN5
TUS
UB1
UKHRP
UPT
VH1
W8V
W99
WBKPD
WH7
WHDPE
WIH
WII
WIJ
WOHZO
WSUWO
WXSBR
XG1
ZY4
ZZTAW
~A~
~IA
~WP
AAYXX
AEYWJ
AGHNM
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
JQ2
K9.
7X8
ID FETCH-LOGICAL-c4591-585cba9169aadf056609bad701274a6e20b38157776a7e38d2fb69c28b9df35e3
ISSN 0007-1102
2044-8317
IngestDate Fri Jul 11 10:37:11 EDT 2025
Fri Jul 25 19:38:32 EDT 2025
Mon Jul 21 06:03:47 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Tue Jul 01 03:30:17 EDT 2025
Wed Jan 22 16:21:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords linear regression
measurement error
method of moments
direction dependence
non-normality
sensitivity analysis
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 The British Psychological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4591-585cba9169aadf056609bad701274a6e20b38157776a7e38d2fb69c28b9df35e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bmsp.12111
PMID 28872673
PQID 2198577997
PQPubID 36005
PageCount 29
ParticipantIDs proquest_miscellaneous_1935813134
proquest_journals_2198577997
pubmed_primary_28872673
crossref_citationtrail_10_1111_bmsp_12111
crossref_primary_10_1111_bmsp_12111
wiley_primary_10_1111_bmsp_12111_BMSP12111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Leicester
PublicationTitle British journal of mathematical & statistical psychology
PublicationTitleAlternate Br J Math Stat Psychol
PublicationYear 2018
Publisher British Psychological Society
Publisher_xml – name: British Psychological Society
References 2015; 39
1878; 5
2015c; 39
2015; 75
2011; 12
2015b; 20
2016; 35
2013; 9
1984; 95
1931; 134
1989; 105
1987; 41
2001
1986; 7
1943
1987
2008; 20
2001; 55
2012; 22
1953; 21
2010; 72
1979; 7
1973; 70
2000; 29
1988; 18
2010
2007; 165
1996; 50
2009
2006; 7
2008
1995
2006
2004
1901; 2
2015a; 50
2012; 36
2014; 41
1985; 49
1987; 15
2014; 43
2015; 68
1950; 18
2016; 3
2001; 6
2009; 72
1978; 43
2008; 49
1963
2017
2016
2015
2013
2014; 74
1953; 89
1968
2012; 41
2014; 101
2009; 39
e_1_2_9_31_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_54_1
Schimmack U. (e_1_2_9_42_1) 2008
Eye A. (e_1_2_9_60_1) 2014; 74
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
Dodge Y. (e_1_2_9_18_1) 2016
e_1_2_9_41_1
e_1_2_9_64_1
Silva R. (e_1_2_9_49_1) 2006; 7
e_1_2_9_62_1
e_1_2_9_22_1
Wiedermann W. (e_1_2_9_66_1) 2016
Nelsen R. B. (e_1_2_9_35_1) 2006
e_1_2_9_43_1
e_1_2_9_8_1
Shimizu S. (e_1_2_9_45_1) 2016
e_1_2_9_6_1
Spirtes P. (e_1_2_9_52_1) 2016; 3
e_1_2_9_4_1
e_1_2_9_2_1
Kendall M. G. (e_1_2_9_30_1) 1963
VanderWeele T. (e_1_2_9_57_1) 2015
e_1_2_9_26_1
e_1_2_9_28_1
Entner D. (e_1_2_9_21_1) 2012; 22
Eye A. (e_1_2_9_58_1) 2008
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Gretton A. (e_1_2_9_24_1) 2008; 20
R Core Team (e_1_2_9_39_1) 2017
Dunn G. (e_1_2_9_20_1) 2004
Wiedermann W. (e_1_2_9_61_1) 2015
Shimizu S. (e_1_2_9_47_1) 2006; 7
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Alexandrowicz R. W. (e_1_2_9_3_1) 2013
Deming W. E. (e_1_2_9_12_1) 1943
Skitovich W. P. (e_1_2_9_50_1) 1953; 89
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Shimizu S. (e_1_2_9_48_1) 2011; 12
Lord F. M. (e_1_2_9_33_1) 1968
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 101
  start-page: 927
  year: 2014
  end-page: 942
  article-title: Testing independence and goodness‐of‐fit in linear models
  publication-title: Biometrika
– year: 2009
– volume: 75
  start-page: 365
  year: 2015
  end-page: 388
  article-title: Descriptive statistics for modern test score distributions: Skewness, kurtosis, discreteness, and ceiling effects
  publication-title: Educational and Psychological Measurement
– volume: 2
  start-page: 559
  year: 1901
  end-page: 572
  article-title: On lines and planes of closest fit to systems of points in space
  publication-title: Philosophical Magazine
– volume: 41
  start-page: 65
  year: 2014
  end-page: 98
  article-title: LiNGAM: Non‐Gaussian methods for estimating causal structures
  publication-title: Behaviormetrika
– start-page: 149
  year: 2015
  end-page: 169
– volume: 20
  start-page: 221
  year: 2015b
  end-page: 244
  article-title: Direction of effects in mediation analysis
  publication-title: Psychological Methods
– year: 2001
– volume: 35
  start-page: 214
  year: 2016
  end-page: 226
  article-title: Sample size considerations for the external validation of a multivariable prognostic model: A resampling study
  publication-title: Statistics in Medicine
– volume: 18
  start-page: 375
  year: 1950
  end-page: 389
  article-title: Identifiability of a linear relation between variables which are subject to error
  publication-title: Econometrica
– volume: 70
  start-page: 556
  year: 1973
  end-page: 567
  article-title: Causation
  publication-title: Journal of Philosophy
– volume: 39
  start-page: 560
  year: 2015
  end-page: 569
  article-title: Empirical evaluation of directional‐dependence tests
  publication-title: International Journal of Behavioral Development
– volume: 6
  start-page: 330
  year: 2001
  end-page: 351
  article-title: A comparison of inclusive and restrictive strategies in modern missing data procedures
  publication-title: Psychological Methods
– volume: 72
  start-page: 2024
  year: 2009
  end-page: 2027
  article-title: Estimation of linear non‐Gaussian acyclic models for latent factors
  publication-title: Neurocomputing
– volume: 50
  start-page: 23
  year: 2015a
  end-page: 40
  article-title: Direction of effects in multiple linear regression models
  publication-title: Multivariate Behavioral Research
– volume: 29
  start-page: 1957
  year: 2000
  end-page: 1972
  article-title: Direction dependence in a regression line
  publication-title: Communications in Statistics: Theory and Methods
– volume: 49
  start-page: 362
  year: 2008
  end-page: 378
  article-title: Estimation of causal effects using linear non‐Gaussian causal models with hidden variables
  publication-title: International Journal of Approximate Reasoning
– start-page: 97
  year: 2008
  end-page: 123
– volume: 41
  start-page: 223
  year: 1987
  end-page: 238
  article-title: Regression with errors in variables: Estimators based on third order moments
  publication-title: Statistica Neerlandica
– volume: 36
  start-page: 313
  year: 2012
  end-page: 322
  article-title: Determining directional dependency in causal associations
  publication-title: International Journal of Behavioral Development
– volume: 3
  start-page: 1
  year: 2016
  end-page: 28
  article-title: Causal discovery and inference: Concepts and recent methodological advances
  publication-title: Applied Informatics
– volume: 50
  start-page: 1
  year: 1996
  end-page: 6
  article-title: The use and misuse of orthogonal regression in linear errors‐in‐variables models
  publication-title: American Statistician
– volume: 5
  start-page: 53
  year: 1878
  end-page: 54
  article-title: A problem in least squares
  publication-title: Analyst
– volume: 72
  start-page: 139
  year: 2010
  end-page: 150
  article-title: On direction of dependence
  publication-title: Metrika
– year: 2004
– volume: 105
  start-page: 156
  year: 1989
  end-page: 166
  article-title: The unicorn, the normal curve, and other improbable creatures
  publication-title: Psychological Bulletin
– start-page: 153
  year: 2016
  end-page: 276
– volume: 7
  start-page: 2003
  year: 2006
  end-page: 2030
  article-title: A linear non‐Gaussian acyclic model for causal discovery
  publication-title: Journal of Machine Learning Research
– volume: 12
  start-page: 1225
  year: 2011
  end-page: 1248
  article-title: DirectLiNGAM: A direct method for learning a linear non‐Gaussian structural equation model
  publication-title: Journal of Machine Learning Research
– year: 2015
– year: 2008
  article-title: Characteristics of measures of directional dependence: Monte Carlo studies
  publication-title: InterStat
– volume: 7
  start-page: 191
  year: 2006
  end-page: 246
  article-title: Learning the structure of linear latent variable models
  publication-title: Journal of Machine Learning Research
– volume: 36
  start-page: 303
  year: 2012
  end-page: 312
  article-title: Directional dependence in developmental research
  publication-title: International Journal of Behavioral Development
– volume: 20
  start-page: 585
  year: 2008
  end-page: 592
  article-title: A kernel statistical test of independence
  publication-title: Advances in Neural Information Processing Systems
– volume: 39
  start-page: 570
  year: 2015c
  end-page: 580
  article-title: Direction‐dependence analysis: A confirmatory approach for testing directional theories
  publication-title: International Journal of Behavioral Development
– year: 1968
– year: 1987
– volume: 95
  start-page: 542
  year: 1984
  end-page: 575
  article-title: Subjective well‐being
  publication-title: Psychological Bulletin
– volume: 21
  start-page: 2
  year: 1953
  end-page: 8
  article-title: Analyse générale des liaisons stochastiques [General analysis of stochastic links]
  publication-title: Review of the International Statistical Institute
– volume: 9
  start-page: 78
  year: 2013
  end-page: 84
  article-title: Skewness and kurtosis in real data samples
  publication-title: Methodology
– year: 2016
– year: 2010
– volume: 43
  start-page: 225
  year: 1978
  end-page: 243
  article-title: On various causes of improper solutions in maximum likelihood factor analysis
  publication-title: Psychometrika
– year: 1963
– volume: 55
  start-page: 51
  year: 2001
  end-page: 54
  article-title: On asymmetric properties of the correlation coefficient in the regression setting
  publication-title: American Statistician
– volume: 134
  start-page: 486
  year: 1931
  end-page: 501
  article-title: On finite sequences of real numbers
  publication-title: Proceedings of the Royal Society of London A
– volume: 39
  start-page: 247
  year: 2009
  end-page: 266
  article-title: New measures of well‐being: Flourishing and positive and negative feelings
  publication-title: Social Indicators Research
– volume: 89
  start-page: 217
  year: 1953
  end-page: 219
  article-title: On a property of the normal distribution
  publication-title: Doklady Akademii Nauk SSSR [Reports of the Academy of Sciences USSR]
– volume: 165
  start-page: 1110
  year: 2007
  end-page: 1118
  article-title: Performance of propensity score calibration: A simulation study
  publication-title: American Journal of Epidemiology
– volume: 68
  start-page: 116
  year: 2015
  end-page: 141
  article-title: Significance tests to determine the direction of effects in linear regression models
  publication-title: British Journal of Mathematical and Statistical Psychology
– volume: 7
  start-page: 201
  year: 1979
  end-page: 206
  article-title: On estimating the slope of a straight line when both variables are subject to error
  publication-title: Annals of Statistics
– volume: 15
  start-page: 375
  year: 1987
  end-page: 384
  article-title: Outliers and improper solutions: A confirmatory factor analysis example
  publication-title: Sociological Methods and Research
– volume: 18
  start-page: 449
  year: 1988
  end-page: 493
  article-title: Causal inference, path analysis, and recursive structural equation models (with discussion)
  publication-title: Sociological Methodology
– volume: 22
  start-page: 364
  year: 2012
  end-page: 372
  article-title: Statistical test for consistent estimation of causal effects in linear non‐Gaussian models
  publication-title: Journal of Machine Learning Research: Workshop and Conference Proceedings
– year: 2006
– volume: 43
  start-page: 3208
  year: 2014
  end-page: 3222
  article-title: Method of moments estimation in linear regression with errors in both variables
  publication-title: Communications in Statistics: Theory and Methods
– volume: 74
  start-page: 5
  year: 2014
  end-page: 30
  article-title: On direction of dependence in latent variable contexts
  publication-title: Educational and Psychological Measurement
– year: 1995
– year: 1943
– volume: 41
  start-page: 124
  year: 2012
  end-page: 167
  article-title: Testing negative error variances: Is a Heywood case a symptom of misspecification?
  publication-title: Sociological Methods & Research
– year: 2017
– volume: 49
  start-page: 71
  year: 1985
  end-page: 75
  article-title: The Satisfaction With Life Scale
  publication-title: Journal of Personality Assessment
– year: 2013
– volume: 7
  start-page: 1393
  year: 1986
  end-page: 1512
  article-title: A new approach to causal inference in mortality studies with sustained exposure periods: Application to control of the healthy worker survivor effect
  publication-title: Mathematical Modeling
– volume-title: Statistics and causality: Methods for applied empirical research
  year: 2016
  ident: e_1_2_9_18_1
– ident: e_1_2_9_23_1
  doi: 10.1080/03610926.2012.698785
– volume: 12
  start-page: 1225
  year: 2011
  ident: e_1_2_9_48_1
  article-title: DirectLiNGAM: A direct method for learning a linear non‐Gaussian structural equation model
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_31_1
  doi: 10.1177/0049124112442138
– volume: 7
  start-page: 191
  year: 2006
  ident: e_1_2_9_49_1
  article-title: Learning the structure of linear latent variable models
  publication-title: Journal of Machine Learning Research
– year: 2008
  ident: e_1_2_9_58_1
  article-title: Characteristics of measures of directional dependence: Monte Carlo studies
  publication-title: InterStat
– ident: e_1_2_9_10_1
  doi: 10.1037/1082-989X.6.4.330
– ident: e_1_2_9_14_1
  doi: 10.1207/s15327752jpa4901_13
– volume-title: R in 10 Schritten: Einführung in die statistische Programmierumgebung [R in 10 steps: An introduction into the statistical programming environment]
  year: 2013
  ident: e_1_2_9_3_1
– volume: 74
  start-page: 5
  year: 2014
  ident: e_1_2_9_60_1
  article-title: On direction of dependence in latent variable contexts
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/0013164413505863
– ident: e_1_2_9_40_1
  doi: 10.2307/1907835
– ident: e_1_2_9_4_1
  doi: 10.1027/1614-2241/a000057
– ident: e_1_2_9_8_1
  doi: 10.1007/978-1-4899-4477-1
– start-page: 97
  volume-title: The science of subjective well‐being
  year: 2008
  ident: e_1_2_9_42_1
– ident: e_1_2_9_15_1
  doi: 10.1007/978-90-481-2354-4_12
– volume-title: Statistical theories of mental test scores
  year: 1968
  ident: e_1_2_9_33_1
– start-page: 153
  volume-title: Statistics and causality: Methods for applied empirical research
  year: 2016
  ident: e_1_2_9_45_1
  doi: 10.1002/9781118947074.ch7
– ident: e_1_2_9_25_1
  doi: 10.1098/rspa.1931.0209
– ident: e_1_2_9_6_1
  doi: 10.1201/9781420066586
– ident: e_1_2_9_9_1
  doi: 10.1002/sim.6787
– ident: e_1_2_9_11_1
  doi: 10.2307/1401511
– ident: e_1_2_9_65_1
  doi: 10.1177/0165025415582056
– ident: e_1_2_9_16_1
  doi: 10.1080/03610920008832589
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: e_1_2_9_39_1
– ident: e_1_2_9_29_1
  doi: 10.1002/0471221317
– ident: e_1_2_9_2_1
  doi: 10.2307/2635758
– ident: e_1_2_9_41_1
  doi: 10.1016/0270-0255(86)90088-6
– ident: e_1_2_9_34_1
  doi: 10.1037/0033-2909.105.1.156
– volume-title: Statistical evaluation of measurement errors: Design and analysis of reliability studies
  year: 2004
  ident: e_1_2_9_20_1
– ident: e_1_2_9_63_1
  doi: 10.1080/00273171.2014.958429
– ident: e_1_2_9_5_1
  doi: 10.1177/0049124187015004002
– ident: e_1_2_9_64_1
  doi: 10.1037/met0000027
– ident: e_1_2_9_37_1
  doi: 10.1080/14786440109462720
– ident: e_1_2_9_28_1
  doi: 10.1016/j.ijar.2008.02.006
– ident: e_1_2_9_7_1
  doi: 10.2307/2685035
– ident: e_1_2_9_36_1
  doi: 10.1017/CBO9780511803161
– ident: e_1_2_9_22_1
  doi: 10.1002/9780470316665
– volume-title: Explanation in causal inference: Methods for mediation and interaction
  year: 2015
  ident: e_1_2_9_57_1
– ident: e_1_2_9_13_1
  doi: 10.1037/0033-2909.95.3.542
– ident: e_1_2_9_43_1
  doi: 10.1093/biomet/asu026
– ident: e_1_2_9_62_1
  doi: 10.1111/bmsp.12037
– ident: e_1_2_9_54_1
  doi: 10.1177/0165025415582055
– volume: 3
  start-page: 1
  year: 2016
  ident: e_1_2_9_52_1
  article-title: Causal discovery and inference: Concepts and recent methodological advances
  publication-title: Applied Informatics
  doi: 10.1186/s40535-016-0018-x
– ident: e_1_2_9_44_1
  doi: 10.2333/bhmk.41.65
– start-page: 149
  volume-title: Dependent data in social sciences research: Forms, issues, and methods of analysis
  year: 2015
  ident: e_1_2_9_61_1
  doi: 10.1007/978-3-319-20585-4_7
– ident: e_1_2_9_53_1
  doi: 10.1093/aje/kwm074
– volume-title: An introduction to copulas
  year: 2006
  ident: e_1_2_9_35_1
– ident: e_1_2_9_26_1
  doi: 10.1177/0013164414548576
– ident: e_1_2_9_27_1
  doi: 10.2307/271055
– ident: e_1_2_9_59_1
  doi: 10.1177/0165025412439968
– volume-title: Statistics and causality: Methods for applied empirical research
  year: 2016
  ident: e_1_2_9_66_1
  doi: 10.1002/9781118947074
– ident: e_1_2_9_32_1
  doi: 10.2307/2025310
– ident: e_1_2_9_19_1
  doi: 10.1007/s00184-009-0273-0
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1467-9574.1987.tb01215.x
– ident: e_1_2_9_51_1
  doi: 10.1214/aos/1176344565
– volume: 7
  start-page: 2003
  year: 2006
  ident: e_1_2_9_47_1
  article-title: A linear non‐Gaussian acyclic model for causal discovery
  publication-title: Journal of Machine Learning Research
– volume-title: Statistical adjustment of data
  year: 1943
  ident: e_1_2_9_12_1
– volume: 22
  start-page: 364
  year: 2012
  ident: e_1_2_9_21_1
  article-title: Statistical test for consistent estimation of causal effects in linear non‐Gaussian models
  publication-title: Journal of Machine Learning Research: Workshop and Conference Proceedings
– volume: 20
  start-page: 585
  year: 2008
  ident: e_1_2_9_24_1
  article-title: A kernel statistical test of independence
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_9_38_1
  doi: 10.1177/0165025412448944
– ident: e_1_2_9_17_1
  doi: 10.1198/000313001300339932
– ident: e_1_2_9_55_1
  doi: 10.1007/BF02293865
– volume-title: Advanced theory of statistics
  year: 1963
  ident: e_1_2_9_30_1
– volume: 89
  start-page: 217
  year: 1953
  ident: e_1_2_9_50_1
  article-title: On a property of the normal distribution
  publication-title: Doklady Akademii Nauk SSSR [Reports of the Academy of Sciences USSR]
– ident: e_1_2_9_46_1
  doi: 10.1016/j.neucom.2008.11.018
SSID ssj0012506
Score 2.232448
Snippet Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x→y...
Methods to determine the direction of a regression line, that is, to determine the direction of dependence in reversible linear regression models (e.g., x → y...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms Attenuation
Computer Simulation
Decision analysis
Decisions
Dependence
direction dependence
Economic models
Empirical analysis
Error analysis
Error detection
Kurtosis
Linear Models
linear regression
measurement error
Measurement methods
Method of moments
Models, Statistical
Monte Carlo Method
non‐normality
Normality
R&D
Regression analysis
Regression models
Reproducibility of Results
Research & development
Robustness
Sensitivity analysis
Well being
Title Direction of dependence in measurement error models
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbmsp.12111
https://www.ncbi.nlm.nih.gov/pubmed/28872673
https://www.proquest.com/docview/2198577997
https://www.proquest.com/docview/1935813134
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagvZQDKuUVWlAQXKAK2jgPx8dduqvl0arStqK3yI6dqqKbVMkWqfx6xo84G1Eq4BIljhVbM5PxjD3zDUJvcSLUeR4OikiAg4IJC0BuyoCpvGVaEFjCdJTvUTo_jT-fJWf9cYHOLlnxD8XPW_NK_oer0AZ8VVmy_8BZ91FogHvgL1yBw3D9Kx5bfWVMvq6cbaFhQJb93t--bJq6MTVv2sEhrgU0WkOPWDoUV3hWUqESjjSWs8vYGmzDXygsiqUttPytvizPmV0KNahv891EK0_FOWv6DVmXVbP_A-Y-vZHrew9h1oUrdxtsdppDXW3DTQdalwRgZhitK3UbHsUxSIXJ2-w0sSnGMpA4o1ZD28-s0KEBoPyD8ufL9kphZlgdPkDYno8X-fHBLP_66ejLfbSJwbUAZb45nhxMZu7sCYzC1DhNZtYW1FbFf_XfHpoxv_kmQ1dH2yon2-ihdTL8sZGYR-ierHbQg0PH23YHbTlq3sDDouNy-xhFTqr8uvR7qfIvKn9NqnwtVb6RqifodDY9-TgPbGmNoIgTGgbgJBacgWtAGRMlGMHpiHImiApEiFkq8YiDKZcQQlJGZJQJXPKUFjjjVJRRIqOnaKOqK_kc-QwXCcNlJgTlMSnhqzTBPBXgF8dAXuqhdx2l8sLizqvyJ5d5538qquaaqh564_peGbSVW3vtdQTP7R_S5jBSBvOllHjotXsNulIdgLFK1tdtHmq0vyiMYg89M4xyw2BYbXFKIg-915y7Y_x8crg41ncv7p7JLtrq_5o9tLFqruVLsGFX_JUVul8mNJ3R
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direction+of+dependence+in+measurement+error+models&rft.jtitle=British+journal+of+mathematical+%26+statistical+psychology&rft.au=Wiedermann%2C+Wolfgang&rft.au=Merkle%2C+Edgar+C&rft.au=Alexander+von+Eye&rft.date=2018-02-01&rft.pub=British+Psychological+Society&rft.issn=0007-1102&rft.eissn=2044-8317&rft.volume=71&rft.issue=1&rft.spage=117&rft.epage=145&rft_id=info:doi/10.1111%2Fbmsp.12111&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1102&client=summon