Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation

•FMT from young mice restored lymphoid differentiative potential and improved the number and engraftment ability of aged HSCs.•Lachnospiraceae and tryptophan-associated metabolites could improve both the phenotype and the reconstitution capacity of HSCs in aged mice. [Display omitted] Hematopoietic...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 141; no. 14; pp. 1691 - 1707
Main Authors Zeng, Xiangjun, Li, Xiaoqing, Li, Xia, Wei, Cong, Shi, Ce, Hu, Kejia, Kong, Delin, Luo, Qian, Xu, Yulin, Shan, Wei, Zhang, Meng, Shi, Jimin, Feng, Jingjing, Han, Yingli, Huang, He, Qian, Pengxu
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •FMT from young mice restored lymphoid differentiative potential and improved the number and engraftment ability of aged HSCs.•Lachnospiraceae and tryptophan-associated metabolites could improve both the phenotype and the reconstitution capacity of HSCs in aged mice. [Display omitted] Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders. Current models view “inflamm-aging” as a driver of hematopoietic dysfunction in older individuals, and methods to rejuvenate hematopoiesis are highly sought. Zeng and colleagues investigated the effect of replacement of the aged intestinal microbiome with juvenile microbiota in murine models, remarkably demonstrating that fecal microbiota transplants reduce inflammation, restoring lymphoid differentiation and engraftment capacity of aged hematopoietic stem cells (HSCs). Further, the authors showed that metabolites of specific microbiota species improved the reconstitution capacity of HSCs in aged mice, challenging the field to explore ways to translate these insights into a clinically feasible therapy.
AbstractList Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders.
Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders.Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders.
•FMT from young mice restored lymphoid differentiative potential and improved the number and engraftment ability of aged HSCs.•Lachnospiraceae and tryptophan-associated metabolites could improve both the phenotype and the reconstitution capacity of HSCs in aged mice. [Display omitted] Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders. Current models view “inflamm-aging” as a driver of hematopoietic dysfunction in older individuals, and methods to rejuvenate hematopoiesis are highly sought. Zeng and colleagues investigated the effect of replacement of the aged intestinal microbiome with juvenile microbiota in murine models, remarkably demonstrating that fecal microbiota transplants reduce inflammation, restoring lymphoid differentiation and engraftment capacity of aged hematopoietic stem cells (HSCs). Further, the authors showed that metabolites of specific microbiota species improved the reconstitution capacity of HSCs in aged mice, challenging the field to explore ways to translate these insights into a clinically feasible therapy.
Author Hu, Kejia
Shi, Jimin
Huang, He
Li, Xiaoqing
Feng, Jingjing
Wei, Cong
Kong, Delin
Han, Yingli
Shan, Wei
Shi, Ce
Luo, Qian
Zeng, Xiangjun
Zhang, Meng
Qian, Pengxu
Li, Xia
Xu, Yulin
Author_xml – sequence: 1
  givenname: Xiangjun
  surname: Zeng
  fullname: Zeng, Xiangjun
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Xiaoqing
  surname: Li
  fullname: Li, Xiaoqing
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Xia
  surname: Li
  fullname: Li, Xia
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Cong
  surname: Wei
  fullname: Wei, Cong
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Ce
  surname: Shi
  fullname: Shi, Ce
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Kejia
  surname: Hu
  fullname: Hu, Kejia
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 7
  givenname: Delin
  surname: Kong
  fullname: Kong, Delin
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 8
  givenname: Qian
  surname: Luo
  fullname: Luo, Qian
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 9
  givenname: Yulin
  surname: Xu
  fullname: Xu, Yulin
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 10
  givenname: Wei
  surname: Shan
  fullname: Shan, Wei
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 11
  givenname: Meng
  orcidid: 0000-0002-6534-1039
  surname: Zhang
  fullname: Zhang, Meng
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 12
  givenname: Jimin
  surname: Shi
  fullname: Shi, Jimin
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 13
  givenname: Jingjing
  orcidid: 0000-0002-1607-4499
  surname: Feng
  fullname: Feng, Jingjing
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 14
  givenname: Yingli
  surname: Han
  fullname: Han, Yingli
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 15
  givenname: He
  orcidid: 0000-0002-2723-1621
  surname: Huang
  fullname: Huang, He
  email: huanghe@zju.edu.cn
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
– sequence: 16
  givenname: Pengxu
  orcidid: 0000-0001-5636-6704
  surname: Qian
  fullname: Qian, Pengxu
  email: axu@zju.edu.cn
  organization: Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36638348$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1v1TAURy1URF8LOxPyyJJy_RHHYUMVBaRKLDBbjnNdXCV2sJ0nvf--eX0FJCSYvJxzZZ3fBTmLKSIhrxlcMab5u2FKabziwDmwrmXyGdmxlusGgMMZ2QGAamTfsXNyUco9AJOCty_IuVBKaCH1juxv0NmJzsHlNIRULa3ZxrJMNlZbQ4rU5zTTQ1rj3ZFCmvF-3WO0FQu1dzjSHzjbmpYUsAZHS8WZOpymQocDLeuyZCwlbHaIfrLz_Hj1JXnu7VTw1dN7Sb7ffPx2_bm5_frpy_WH28bJVtcGcVTtaNXAeyW10k6jgIGPzupWtr2GfugcOKnAC82tk2A9eu57xoX0gxWX5O3p7pLTzxVLNXMox9_ZiGkthneq7bpe9GpD3zyh6zDjaJYcZpsP5lerDYATsKUqJaP_jTAwxznM4xzmzxybov5SXDhl3SqH6X_i-5OIW5x9wGyKCxgdjiGjq2ZM4d_yA3dopnQ
CitedBy_id crossref_primary_10_1093_bfgp_elae019
crossref_primary_10_1002_hem3_70038
crossref_primary_10_1182_bloodadvances_2022008793
crossref_primary_10_1038_s41421_024_00665_0
crossref_primary_10_1038_s43587_024_00669_1
crossref_primary_10_1182_blood_2024024275
crossref_primary_10_1097_BS9_0000000000000200
crossref_primary_10_1016_j_gde_2024_102306
crossref_primary_10_1016_j_exphem_2023_08_008
crossref_primary_10_1111_imr_13359
crossref_primary_10_1016_j_tem_2024_07_009
crossref_primary_10_1016_j_arr_2024_102653
crossref_primary_10_1002_advs_202309255
crossref_primary_10_1016_j_gene_2024_148573
crossref_primary_10_1248_bpbreports_6_6_217
crossref_primary_10_3390_ijms241310818
crossref_primary_10_1182_blood_2023019638
crossref_primary_10_1038_s41392_023_01502_8
crossref_primary_10_1038_s41413_024_00346_4
crossref_primary_10_1016_j_exphem_2023_09_006
crossref_primary_10_3389_fimmu_2024_1338178
crossref_primary_10_1182_blood_2023023105
crossref_primary_10_1016_j_jad_2025_02_099
crossref_primary_10_1182_blood_2023023788
crossref_primary_10_1016_j_stem_2023_09_013
crossref_primary_10_3389_fmicb_2024_1396932
crossref_primary_10_1016_j_scitotenv_2023_165678
crossref_primary_10_20517_mrr_2023_68
crossref_primary_10_1093_lifemedi_lnae043
crossref_primary_10_1111_eci_14072
crossref_primary_10_1016_j_isci_2024_110888
crossref_primary_10_1073_pnas_2412317122
crossref_primary_10_1016_j_cdev_2023_203844
crossref_primary_10_1038_s41522_025_00677_y
crossref_primary_10_1182_blood_2023021174
crossref_primary_10_1016_j_fbio_2024_105498
crossref_primary_10_1080_19490976_2024_2350784
crossref_primary_10_3390_nu16193305
crossref_primary_10_1016_j_molmet_2023_101755
crossref_primary_10_3390_nu16152433
crossref_primary_10_1101_gad_351728_124
crossref_primary_10_1096_fj_202401020R
crossref_primary_10_3389_fcimb_2024_1414196
crossref_primary_10_3390_ijms25147837
crossref_primary_10_3389_fimmu_2024_1439510
crossref_primary_10_1016_j_exphem_2025_104711
crossref_primary_10_1016_j_arr_2024_102196
crossref_primary_10_3233_JAD_231323
crossref_primary_10_1007_s12015_024_10754_y
crossref_primary_10_1016_j_heliyon_2023_e18024
crossref_primary_10_1016_j_carpta_2024_100567
crossref_primary_10_3390_ijms25179287
crossref_primary_10_1002_imt2_261
crossref_primary_10_1093_procel_pwad044
crossref_primary_10_2147_DDDT_S443462
crossref_primary_10_3390_cells13080712
crossref_primary_10_1002_smsc_202400474
crossref_primary_10_1016_j_mucimm_2025_01_006
crossref_primary_10_1007_s00277_024_05753_5
crossref_primary_10_1182_blood_2022017933
crossref_primary_10_1007_s11894_024_00932_w
crossref_primary_10_1515_mr_2023_0040
crossref_primary_10_1007_s11154_023_09843_z
crossref_primary_10_1016_j_arr_2024_102585
crossref_primary_10_1080_19490976_2024_2437247
crossref_primary_10_1182_blood_2023021380
crossref_primary_10_1186_s40035_024_00404_1
Cites_doi 10.1080/19490976.2020.1814107
10.1161/CIRCRESAHA.119.316448
10.1016/j.stem.2019.05.019
10.1371/journal.pone.0003710
10.1182/blood-2004-11-4282
10.1371/journal.pone.0134311
10.1186/s12974-019-1494-4
10.1126/science.aay9097
10.1073/pnas.1116110108
10.1097/MIB.0000000000000750
10.1182/blood.2020009729
10.1371/journal.pone.0158369
10.1038/nm.4185
10.1182/blood.2021011570
10.1126/scitranslmed.aau4760
10.1038/nrendo.2013.240
10.1016/j.stem.2021.12.009
10.1016/j.ebiom.2020.103048
10.1038/s41467-021-21246-9
10.1002/ana.25250
10.1182/blood-2016-03-708594
10.1016/j.stemcr.2016.07.007
10.1016/j.stem.2007.07.017
10.1038/s41467-019-10430-7
10.1038/ncomms13674
10.1074/jbc.M116.769455
10.1182/blood.2021014134
10.1016/j.chom.2014.02.006
10.1038/s41586-018-0125-z
10.1038/nature05862
10.1016/j.intimp.2018.08.012
10.1084/jem.20111490
10.1016/j.bbmt.2015.04.016
10.1016/j.cell.2007.01.003
10.1182/blood.2019003910
10.3390/microorganisms8040573
10.1016/j.cell.2014.09.035
10.1016/j.stem.2014.03.002
10.1038/s41564-018-0272-x
10.1016/j.lfs.2019.02.044
10.1016/j.cell.2018.02.001
10.1016/j.bbi.2015.03.016
10.1038/nature11228
10.3390/ijms22095005
10.1038/nri.2016.42
10.3389/fimmu.2016.00502
10.1016/j.cell.2019.05.004
10.1155/2016/5797521
10.1007/s11882-015-0524-2
10.3389/fimmu.2020.02054
10.1016/j.celrep.2018.11.056
10.3390/nu11092062
10.1182/blood-2016-06-723742
10.1371/journal.pone.0046231
10.1186/s13045-020-00864-8
ContentType Journal Article
Copyright 2023 The American Society of Hematology
2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
Copyright_xml – notice: 2023 The American Society of Hematology
– notice: 2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1182/blood.2022017514
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
Anatomy & Physiology
EISSN 1528-0020
EndPage 1707
ExternalDocumentID 36638348
10_1182_blood_2022017514
S0006497123001118
Genre Journal Article
GroupedDBID ---
-~X
.55
1CY
23N
2WC
34G
39C
4.4
53G
5GY
5RE
6I.
6J9
AAEDW
AAFTH
AAXUO
ABOCM
ACGFO
ADBBV
AENEX
AFOSN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
EX3
F5P
FDB
FRP
GS5
GX1
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
OK1
P2P
R.V
RHF
RHI
ROL
SJN
THE
TR2
TWZ
W2D
WH7
WOQ
WOW
X7M
YHG
YKV
ZA5
0R~
5VS
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFETI
AFPUW
AGCQF
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
W8F
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c458t-eed65da6b2964868c8e30b2dca85459809b7c0c460f382ac40afef2f91234fba3
ISSN 0006-4971
1528-0020
IngestDate Fri Jul 11 16:44:51 EDT 2025
Wed Feb 19 02:24:34 EST 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 04:30:04 EDT 2025
Fri Feb 23 02:37:10 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License This is an open access article under the CC BY-NC-ND license.
2023 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-eed65da6b2964868c8e30b2dca85459809b7c0c460f382ac40afef2f91234fba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6534-1039
0000-0002-1607-4499
0000-0001-5636-6704
0000-0002-2723-1621
OpenAccessLink https://dx.doi.org/10.1182/blood.2022017514
PMID 36638348
PQID 2765779396
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2765779396
pubmed_primary_36638348
crossref_primary_10_1182_blood_2022017514
crossref_citationtrail_10_1182_blood_2022017514
elsevier_sciencedirect_doi_10_1182_blood_2022017514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-06
20230406
PublicationDateYYYYMMDD 2023-04-06
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Blood
PublicationTitleAlternate Blood
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yamashita, Passegué (bib30) 2019; 25
Lee, d'Aigle, Atadja (bib40) 2020; 127
Jenq, Taur, Devlin (bib47) 2015; 21
Jiang, Ling, Zhang (bib50) 2015; 48
Almousa, Meurens, Krol, Alcorn (bib54) 2018; 64
Khosravi, Yáñez, Price (bib20) 2014; 15
de Graaf, Choi, Baldwin (bib23) 2016; 7
Nygren, Bryder (bib42) 2008; 3
Choudry, Frontini (bib10) 2016; 2016
Jung, Kim, Byun (bib7) 2016; 7
Cani (bib12) 2014; 10
Yusufu, Ding, Smith (bib52) 2021; 22
Berk, Drygalski, Harasim-Symbor (bib53) 2019; 221
Matteini, Florian (bib56) 2022; 139
Rundberg Nilsson, Soneji, Adolfsson, Bryder, Pronk (bib3) 2016; 11
Meisel, Hinterleitner, Pacis (bib34) 2018; 557
Bigarella, Li, Rimmelé, Liang, Sobol, Ghaffari (bib27) 2017; 292
Spychala, Venna, Jandzinski (bib41) 2018; 84
DeGruttola, Low, Mizoguchi, Mizoguchi (bib14) 2016; 22
Pang, Price, Sahoo (bib4) 2011; 108
Kovtonyuk, Fritsch, Feng, Manz, Takizawa (bib43) 2016; 7
Yore, Syed, Moraes-Vieira (bib55) 2014; 159
Sharon, Cruz, Kang (bib15) 2019; 177
Tothova, Kollipara, Huntly (bib26) 2007; 128
Grondin, Kwon, Far, Haq, Khan (bib33) 2020; 11
Han, Wang, Zhou (bib24) 2018; 172
Arnao, Sanchez-Bravo, Acosta (bib36) 1996; 39
Ji, Gao, Chen, Yin, Zhang (bib35) 2019; 11
Liang, Van Zant, Szilvassy (bib1) 2005; 106
Kasahara, Krautkramer, Org (bib46) 2018; 3
Steinmeyer, Lee, Jayaraman, Alaniz (bib45) 2015; 15
Josefsdottir, Baldridge, Kadmon, King (bib16) 2017; 129
Rossi, Bryder, Seita, Nussenzweig, Hoeijmakers, Weissman (bib6) 2007; 447
Li, Zeng, Xu (bib5) 2020; 13
Schroeder, Bäckhed (bib11) 2016; 22
Zhang, Gao, Li (bib19) 2022; 29
Sun, Luo, Jeong (bib8) 2014; 14
Mann, Mehta, de Boer (bib9) 2018; 25
Rooks, Garrett (bib21) 2016; 16
Angelucci, Cechova, Amlerova, Hort (bib13) 2019; 16
Kovtonyuk, Caiado, Garcia-Martin (bib18) 2022; 139
He, Xu, Zhang (bib29) 2020; 136
Dykstra, Olthof, Schreuder, Ritsema, de Haan (bib2) 2011; 208
Barrios, Beaumont, Pallister (bib48) 2015; 10
Li, Lin, Li (bib22) 2020; 61
Jin, Guerrero-Juarez, Zhang (bib31) 2021; 12
Tothova, Gilliland (bib28) 2007; 1
Guo, Chou, Lai (bib44) 2020; 370
Flohr Svendsen, Yang, Kim (bib25) 2021; 138
Kundu, Lee, Garcia-Perez (bib32) 2019; 11
Stebegg, Silva-Cayetano, Innocentin (bib38) 2019; 10
Lee, Venna, Durgan (bib39) 2020; 12
Hashimoto, Perlot, Rehman (bib51) 2012; 487
Iwamura, Bouladoux, Belkaid, Sher, Jankovic (bib17) 2017; 129
Bangsgaard Bendtsen, Krych, Sørensen (bib49) 2012; 7
Vacca, Celano, Calabrese, Portincasa, Gobbetti, De Angelis (bib37) 2020; 8
Kasahara (2023110319214697200_bib46) 2018; 3
Kovtonyuk (2023110319214697200_bib43) 2016; 7
Berk (2023110319214697200_bib53) 2019; 221
Jung (2023110319214697200_bib7) 2016; 7
Zhang (2023110319214697200_bib19) 2022; 29
Stebegg (2023110319214697200_bib38) 2019; 10
Kovtonyuk (2023110319214697200_bib18) 2022; 139
Jenq (2023110319214697200_bib47) 2015; 21
Yamashita (2023110319214697200_bib30) 2019; 25
Li (2023110319214697200_bib22) 2020; 61
Kundu (2023110319214697200_bib32) 2019; 11
Tothova (2023110319214697200_bib28) 2007; 1
Lee (2023110319214697200_bib39) 2020; 12
Angelucci (2023110319214697200_bib13) 2019; 16
Khosravi (2023110319214697200_bib20) 2014; 15
Sharon (2023110319214697200_bib15) 2019; 177
Yore (2023110319214697200_bib55) 2014; 159
Li (2023110319214697200_bib5) 2020; 13
Dykstra (2023110319214697200_bib2) 2011; 208
Hashimoto (2023110319214697200_bib51) 2012; 487
Tothova (2023110319214697200_bib26) 2007; 128
Bangsgaard Bendtsen (2023110319214697200_bib49) 2012; 7
Rundberg Nilsson (2023110319214697200_bib3) 2016; 11
Pang (2023110319214697200_bib4) 2011; 108
Jin (2023110319214697200_bib31) 2021; 12
Meisel (2023110319214697200_bib34) 2018; 557
Vacca (2023110319214697200_bib37) 2020; 8
Schroeder (2023110319214697200_bib11) 2016; 22
Choudry (2023110319214697200_bib10) 2016; 2016
Han (2023110319214697200_bib24) 2018; 172
Matteini (2023110319214697200_bib56) 2022; 139
Josefsdottir (2023110319214697200_bib16) 2017; 129
He (2023110319214697200_bib29) 2020; 136
DeGruttola (2023110319214697200_bib14) 2016; 22
Steinmeyer (2023110319214697200_bib45) 2015; 15
Liang (2023110319214697200_bib1) 2005; 106
Grondin (2023110319214697200_bib33) 2020; 11
Sun (2023110319214697200_bib8) 2014; 14
Bigarella (2023110319214697200_bib27) 2017; 292
Cani (2023110319214697200_bib12) 2014; 10
de Graaf (2023110319214697200_bib23) 2016; 7
Arnao (2023110319214697200_bib36) 1996; 39
Flohr Svendsen (2023110319214697200_bib25) 2021; 138
Guo (2023110319214697200_bib44) 2020; 370
Yusufu (2023110319214697200_bib52) 2021; 22
Jiang (2023110319214697200_bib50) 2015; 48
Rooks (2023110319214697200_bib21) 2016; 16
Ji (2023110319214697200_bib35) 2019; 11
Barrios (2023110319214697200_bib48) 2015; 10
Lee (2023110319214697200_bib40) 2020; 127
Almousa (2023110319214697200_bib54) 2018; 64
Iwamura (2023110319214697200_bib17) 2017; 129
Nygren (2023110319214697200_bib42) 2008; 3
Spychala (2023110319214697200_bib41) 2018; 84
Mann (2023110319214697200_bib9) 2018; 25
Rossi (2023110319214697200_bib6) 2007; 447
37022735 - Blood. 2023 Apr 6;141(14):1650-1652
References_xml – volume: 11
  start-page: eaau4760
  year: 2019
  ident: bib32
  article-title: Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice
  publication-title: Sci Transl Med
– volume: 16
  start-page: 341
  year: 2016
  end-page: 352
  ident: bib21
  article-title: Gut microbiota, metabolites and host immunity
  publication-title: Nat Rev Immunol
– volume: 138
  start-page: 439
  year: 2021
  end-page: 451
  ident: bib25
  article-title: A comprehensive transcriptome signature of murine hematopoietic stem cell aging
  publication-title: Blood
– volume: 1
  start-page: 140
  year: 2007
  end-page: 152
  ident: bib28
  article-title: FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system
  publication-title: Cell Stem Cell
– volume: 15
  start-page: 24
  year: 2015
  end-page: 33
  ident: bib45
  article-title: Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link
  publication-title: Curr Allergy Asthma Rep
– volume: 557
  start-page: 580
  year: 2018
  end-page: 584
  ident: bib34
  article-title: Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host
  publication-title: Nature
– volume: 14
  start-page: 673
  year: 2014
  end-page: 688
  ident: bib8
  article-title: Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal
  publication-title: Cell Stem Cell
– volume: 64
  start-page: 42
  year: 2018
  end-page: 51
  ident: bib54
  article-title: Linoorbitides and enterolactone mitigate inflammation-induced oxidative stress and loss of intestinal epithelial barrier integrity
  publication-title: Int Immunopharm
– volume: 10
  start-page: e0134311
  year: 2015
  ident: bib48
  article-title: Gut-microbiota-metabolite axis in early renal function decline
  publication-title: PLoS One
– volume: 487
  start-page: 477
  year: 2012
  end-page: 481
  ident: bib51
  article-title: ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation
  publication-title: Nature
– volume: 22
  start-page: 5005
  year: 2021
  ident: bib52
  article-title: A tryptophan-deficient diet induces gut microbiota dysbiosis and increases systemic inflammation in aged mice
  publication-title: Int J Mol Sci
– volume: 84
  start-page: 23
  year: 2018
  end-page: 36
  ident: bib41
  article-title: Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome
  publication-title: Ann Neurol
– volume: 11
  start-page: 2062
  year: 2019
  end-page: 2064
  ident: bib35
  article-title: Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress
  publication-title: Nutrients
– volume: 12
  start-page: 1088
  year: 2021
  ident: bib31
  article-title: Inference and analysis of cell-cell communication using CellChat
  publication-title: Nat Commun
– volume: 108
  start-page: 20012
  year: 2011
  end-page: 20017
  ident: bib4
  article-title: Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age
  publication-title: Proc Natl Acad Sci U S A
– volume: 11
  start-page: e0158369
  year: 2016
  ident: bib3
  article-title: Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias
  publication-title: PLoS One
– volume: 10
  start-page: 74
  year: 2014
  end-page: 76
  ident: bib12
  article-title: Metabolism in 2013: the gut microbiota manages host metabolism
  publication-title: Nat Rev Endocrinol
– volume: 136
  start-page: 183
  year: 2020
  end-page: 198
  ident: bib29
  article-title: Aging-induced IL27Ra signaling impairs hematopoietic stem cells
  publication-title: Blood
– volume: 39
  start-page: 1125
  year: 1996
  end-page: 1134
  ident: bib36
  article-title: Indole-3-carbinol as a scavenger of free radicals
  publication-title: Biochem Mol Biol Int
– volume: 177
  start-page: 1600
  year: 2019
  end-page: 1618.e17
  ident: bib15
  article-title: Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice
  publication-title: Cell
– volume: 29
  start-page: 232
  year: 2022
  end-page: 247.e7
  ident: bib19
  article-title: The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow
  publication-title: Cell Stem Cell
– volume: 292
  start-page: 3005
  year: 2017
  end-page: 3015
  ident: bib27
  article-title: FOXO3 transcription factor is essential for protecting hematopoietic stem and progenitor cells from oxidative DNA damage
  publication-title: J Biol Chem
– volume: 7
  start-page: 571
  year: 2016
  end-page: 582
  ident: bib23
  article-title: Haemopedia: an expression atlas of murine hematopoietic cells
  publication-title: Stem Cell Rep
– volume: 13
  start-page: 31
  year: 2020
  end-page: 46
  ident: bib5
  article-title: Mechanisms and rejuvenation strategies for aged hematopoietic stem cells
  publication-title: J Hematol Oncol
– volume: 48
  start-page: 186
  year: 2015
  end-page: 194
  ident: bib50
  article-title: Altered fecal microbiota composition in patients with major depressive disorder
  publication-title: Brain Behav Immun
– volume: 159
  start-page: 318
  year: 2014
  end-page: 332
  ident: bib55
  article-title: Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects
  publication-title: Cell
– volume: 447
  start-page: 725
  year: 2007
  end-page: 729
  ident: bib6
  article-title: Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
  publication-title: Nature
– volume: 128
  start-page: 325
  year: 2007
  end-page: 339
  ident: bib26
  article-title: FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
  publication-title: Cell
– volume: 7
  start-page: 502
  year: 2016
  ident: bib43
  article-title: Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment
  publication-title: Front Immunol
– volume: 129
  start-page: 171
  year: 2017
  end-page: 176
  ident: bib17
  article-title: Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis
  publication-title: Blood
– volume: 208
  start-page: 2691
  year: 2011
  end-page: 2703
  ident: bib2
  article-title: Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells
  publication-title: J Exp Med
– volume: 2016
  start-page: 5797521
  year: 2016
  ident: bib10
  article-title: Epigenetic control of haematopoietic stem cell aging and its clinical implications
  publication-title: Stem Cell Int
– volume: 129
  start-page: 729
  year: 2017
  end-page: 739
  ident: bib16
  article-title: Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota
  publication-title: Blood
– volume: 15
  start-page: 374
  year: 2014
  end-page: 381
  ident: bib20
  article-title: Gut microbiota promote hematopoiesis to control bacterial infection
  publication-title: Cell Host Microbe
– volume: 61
  start-page: 103048
  year: 2020
  ident: bib22
  article-title: Tyrosine supplement ameliorates murine aGVHD by modulation of gut microbiome and metabolome
  publication-title: EBioMedicine
– volume: 25
  start-page: 2992
  year: 2018
  end-page: 3005.e5
  ident: bib9
  article-title: Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age
  publication-title: Cell Rep
– volume: 7
  start-page: e46231
  year: 2012
  ident: bib49
  article-title: Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse
  publication-title: PLoS One
– volume: 3
  start-page: 1461
  year: 2018
  end-page: 1471
  ident: bib46
  article-title: Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model
  publication-title: Nat Microbiol
– volume: 7
  start-page: 13674
  year: 2016
  ident: bib7
  article-title: Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity
  publication-title: Nat Commun
– volume: 3
  start-page: e3710
  year: 2008
  ident: bib42
  article-title: A novel assay to trace proliferation history in vivo reveals that enhanced divisional kinetics accompany loss of hematopoietic stem cell self-renewal
  publication-title: PLoS One
– volume: 10
  start-page: 2443
  year: 2019
  ident: bib38
  article-title: Heterochronic faecal transplantation boosts gut germinal centres in aged mice
  publication-title: Nat Commun
– volume: 221
  start-page: 341
  year: 2019
  end-page: 347
  ident: bib53
  article-title: The effect of enterolactone on liver lipid precursors of inflammation
  publication-title: Life Sci
– volume: 172
  start-page: 1091
  year: 2018
  end-page: 1107.e17
  ident: bib24
  article-title: Mapping the mouse cell atlas by microwell-seq
  publication-title: Cell
– volume: 127
  start-page: 453
  year: 2020
  end-page: 465
  ident: bib40
  article-title: Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice
  publication-title: Circ Res
– volume: 22
  start-page: 1079
  year: 2016
  end-page: 1089
  ident: bib11
  article-title: Signals from the gut microbiota to distant organs in physiology and disease
  publication-title: Nat Med
– volume: 25
  start-page: 357
  year: 2019
  end-page: 372.e7
  ident: bib30
  article-title: TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration
  publication-title: Cell Stem Cell
– volume: 139
  start-page: 44
  year: 2022
  end-page: 58
  ident: bib18
  article-title: IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice
  publication-title: Blood
– volume: 8
  start-page: 573
  year: 2020
  end-page: 597
  ident: bib37
  article-title: The controversial role of human gut Lachnospiraceae
  publication-title: Microorganisms
– volume: 11
  start-page: 2054
  year: 2020
  ident: bib33
  article-title: Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies
  publication-title: Front Immunol
– volume: 21
  start-page: 1373
  year: 2015
  end-page: 1383
  ident: bib47
  article-title: Intestinal blautia is associated with reduced death from graft-versus-host disease
  publication-title: Biol Blood Marrow Transplant
– volume: 16
  start-page: 108
  year: 2019
  end-page: 117
  ident: bib13
  article-title: Antibiotics, gut microbiota, and Alzheimer’s disease
  publication-title: J Neuroinflammation
– volume: 139
  start-page: 3
  year: 2022
  end-page: 4
  ident: bib56
  article-title: The gut-bone marrow axis: a novel player in HSC aging
  publication-title: Blood
– volume: 12
  start-page: 1
  year: 2020
  end-page: 14
  ident: bib39
  article-title: Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance
  publication-title: Gut Microb
– volume: 370
  start-page: eaay9097
  year: 2020
  ident: bib44
  article-title: Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites
  publication-title: Science
– volume: 106
  start-page: 1479
  year: 2005
  end-page: 1487
  ident: bib1
  article-title: Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells
  publication-title: Blood
– volume: 22
  start-page: 1137
  year: 2016
  end-page: 1150
  ident: bib14
  article-title: Current understanding of dysbiosis in disease in human and animal models
  publication-title: Inflamm Bowel Dis
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2023110319214697200_bib39
  article-title: Young versus aged microbiota transplants to germ-free mice: increased short-chain fatty acids and improved cognitive performance
  publication-title: Gut Microb
  doi: 10.1080/19490976.2020.1814107
– volume: 127
  start-page: 453
  issue: 4
  year: 2020
  ident: 2023110319214697200_bib40
  article-title: Gut microbiota-derived short-chain fatty acids promote poststroke recovery in aged mice
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.119.316448
– volume: 25
  start-page: 357
  issue: 3
  year: 2019
  ident: 2023110319214697200_bib30
  article-title: TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.05.019
– volume: 3
  start-page: e3710
  issue: 11
  year: 2008
  ident: 2023110319214697200_bib42
  article-title: A novel assay to trace proliferation history in vivo reveals that enhanced divisional kinetics accompany loss of hematopoietic stem cell self-renewal
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003710
– volume: 106
  start-page: 1479
  issue: 4
  year: 2005
  ident: 2023110319214697200_bib1
  article-title: Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells
  publication-title: Blood
  doi: 10.1182/blood-2004-11-4282
– volume: 10
  start-page: e0134311
  issue: 8
  year: 2015
  ident: 2023110319214697200_bib48
  article-title: Gut-microbiota-metabolite axis in early renal function decline
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0134311
– volume: 16
  start-page: 108
  issue: 1
  year: 2019
  ident: 2023110319214697200_bib13
  article-title: Antibiotics, gut microbiota, and Alzheimer’s disease
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-019-1494-4
– volume: 370
  start-page: eaay9097
  issue: 6516
  year: 2020
  ident: 2023110319214697200_bib44
  article-title: Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites
  publication-title: Science
  doi: 10.1126/science.aay9097
– volume: 108
  start-page: 20012
  issue: 50
  year: 2011
  ident: 2023110319214697200_bib4
  article-title: Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1116110108
– volume: 22
  start-page: 1137
  issue: 5
  year: 2016
  ident: 2023110319214697200_bib14
  article-title: Current understanding of dysbiosis in disease in human and animal models
  publication-title: Inflamm Bowel Dis
  doi: 10.1097/MIB.0000000000000750
– volume: 138
  start-page: 439
  issue: 6
  year: 2021
  ident: 2023110319214697200_bib25
  article-title: A comprehensive transcriptome signature of murine hematopoietic stem cell aging
  publication-title: Blood
  doi: 10.1182/blood.2020009729
– volume: 11
  start-page: e0158369
  issue: 7
  year: 2016
  ident: 2023110319214697200_bib3
  article-title: Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158369
– volume: 22
  start-page: 1079
  issue: 10
  year: 2016
  ident: 2023110319214697200_bib11
  article-title: Signals from the gut microbiota to distant organs in physiology and disease
  publication-title: Nat Med
  doi: 10.1038/nm.4185
– volume: 139
  start-page: 44
  issue: 1
  year: 2022
  ident: 2023110319214697200_bib18
  article-title: IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice
  publication-title: Blood
  doi: 10.1182/blood.2021011570
– volume: 11
  start-page: eaau4760
  issue: 518
  year: 2019
  ident: 2023110319214697200_bib32
  article-title: Neurogenesis and prolongevity signaling in young germ-free mice transplanted with the gut microbiota of old mice
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aau4760
– volume: 10
  start-page: 74
  issue: 2
  year: 2014
  ident: 2023110319214697200_bib12
  article-title: Metabolism in 2013: the gut microbiota manages host metabolism
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2013.240
– volume: 29
  start-page: 232
  issue: 2
  year: 2022
  ident: 2023110319214697200_bib19
  article-title: The microbiota regulates hematopoietic stem cell fate decisions by controlling iron availability in bone marrow
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2021.12.009
– volume: 61
  start-page: 103048
  year: 2020
  ident: 2023110319214697200_bib22
  article-title: Tyrosine supplement ameliorates murine aGVHD by modulation of gut microbiome and metabolome
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.103048
– volume: 12
  start-page: 1088
  issue: 1
  year: 2021
  ident: 2023110319214697200_bib31
  article-title: Inference and analysis of cell-cell communication using CellChat
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21246-9
– volume: 84
  start-page: 23
  issue: 1
  year: 2018
  ident: 2023110319214697200_bib41
  article-title: Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome
  publication-title: Ann Neurol
  doi: 10.1002/ana.25250
– volume: 129
  start-page: 729
  issue: 6
  year: 2017
  ident: 2023110319214697200_bib16
  article-title: Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota
  publication-title: Blood
  doi: 10.1182/blood-2016-03-708594
– volume: 7
  start-page: 571
  issue: 3
  year: 2016
  ident: 2023110319214697200_bib23
  article-title: Haemopedia: an expression atlas of murine hematopoietic cells
  publication-title: Stem Cell Rep
  doi: 10.1016/j.stemcr.2016.07.007
– volume: 1
  start-page: 140
  issue: 2
  year: 2007
  ident: 2023110319214697200_bib28
  article-title: FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.07.017
– volume: 10
  start-page: 2443
  issue: 1
  year: 2019
  ident: 2023110319214697200_bib38
  article-title: Heterochronic faecal transplantation boosts gut germinal centres in aged mice
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10430-7
– volume: 39
  start-page: 1125
  issue: 6
  year: 1996
  ident: 2023110319214697200_bib36
  article-title: Indole-3-carbinol as a scavenger of free radicals
  publication-title: Biochem Mol Biol Int
– volume: 7
  start-page: 13674
  year: 2016
  ident: 2023110319214697200_bib7
  article-title: Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity
  publication-title: Nat Commun
  doi: 10.1038/ncomms13674
– volume: 292
  start-page: 3005
  issue: 7
  year: 2017
  ident: 2023110319214697200_bib27
  article-title: FOXO3 transcription factor is essential for protecting hematopoietic stem and progenitor cells from oxidative DNA damage
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.769455
– volume: 139
  start-page: 3
  issue: 1
  year: 2022
  ident: 2023110319214697200_bib56
  article-title: The gut-bone marrow axis: a novel player in HSC aging
  publication-title: Blood
  doi: 10.1182/blood.2021014134
– volume: 15
  start-page: 374
  issue: 3
  year: 2014
  ident: 2023110319214697200_bib20
  article-title: Gut microbiota promote hematopoiesis to control bacterial infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.02.006
– volume: 557
  start-page: 580
  issue: 7706
  year: 2018
  ident: 2023110319214697200_bib34
  article-title: Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host
  publication-title: Nature
  doi: 10.1038/s41586-018-0125-z
– volume: 447
  start-page: 725
  issue: 7145
  year: 2007
  ident: 2023110319214697200_bib6
  article-title: Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
  publication-title: Nature
  doi: 10.1038/nature05862
– volume: 64
  start-page: 42
  issue: 1
  year: 2018
  ident: 2023110319214697200_bib54
  article-title: Linoorbitides and enterolactone mitigate inflammation-induced oxidative stress and loss of intestinal epithelial barrier integrity
  publication-title: Int Immunopharm
  doi: 10.1016/j.intimp.2018.08.012
– volume: 208
  start-page: 2691
  issue: 13
  year: 2011
  ident: 2023110319214697200_bib2
  article-title: Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20111490
– volume: 21
  start-page: 1373
  issue: 8
  year: 2015
  ident: 2023110319214697200_bib47
  article-title: Intestinal blautia is associated with reduced death from graft-versus-host disease
  publication-title: Biol Blood Marrow Transplant
  doi: 10.1016/j.bbmt.2015.04.016
– volume: 128
  start-page: 325
  issue: 2
  year: 2007
  ident: 2023110319214697200_bib26
  article-title: FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.003
– volume: 136
  start-page: 183
  issue: 2
  year: 2020
  ident: 2023110319214697200_bib29
  article-title: Aging-induced IL27Ra signaling impairs hematopoietic stem cells
  publication-title: Blood
  doi: 10.1182/blood.2019003910
– volume: 8
  start-page: 573
  issue: 4
  year: 2020
  ident: 2023110319214697200_bib37
  article-title: The controversial role of human gut Lachnospiraceae
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8040573
– volume: 159
  start-page: 318
  issue: 2
  year: 2014
  ident: 2023110319214697200_bib55
  article-title: Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.035
– volume: 14
  start-page: 673
  issue: 5
  year: 2014
  ident: 2023110319214697200_bib8
  article-title: Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.03.002
– volume: 3
  start-page: 1461
  issue: 12
  year: 2018
  ident: 2023110319214697200_bib46
  article-title: Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0272-x
– volume: 221
  start-page: 341
  issue: 1
  year: 2019
  ident: 2023110319214697200_bib53
  article-title: The effect of enterolactone on liver lipid precursors of inflammation
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2019.02.044
– volume: 172
  start-page: 1091
  issue: 5
  year: 2018
  ident: 2023110319214697200_bib24
  article-title: Mapping the mouse cell atlas by microwell-seq
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.001
– volume: 48
  start-page: 186
  issue: 1
  year: 2015
  ident: 2023110319214697200_bib50
  article-title: Altered fecal microbiota composition in patients with major depressive disorder
  publication-title: Brain Behav Immun
  doi: 10.1016/j.bbi.2015.03.016
– volume: 487
  start-page: 477
  issue: 7408
  year: 2012
  ident: 2023110319214697200_bib51
  article-title: ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation
  publication-title: Nature
  doi: 10.1038/nature11228
– volume: 22
  start-page: 5005
  issue: 9
  year: 2021
  ident: 2023110319214697200_bib52
  article-title: A tryptophan-deficient diet induces gut microbiota dysbiosis and increases systemic inflammation in aged mice
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22095005
– volume: 16
  start-page: 341
  issue: 6
  year: 2016
  ident: 2023110319214697200_bib21
  article-title: Gut microbiota, metabolites and host immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.42
– volume: 7
  start-page: 502
  year: 2016
  ident: 2023110319214697200_bib43
  article-title: Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00502
– volume: 177
  start-page: 1600
  issue: 6
  year: 2019
  ident: 2023110319214697200_bib15
  article-title: Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.004
– volume: 2016
  start-page: 5797521
  year: 2016
  ident: 2023110319214697200_bib10
  article-title: Epigenetic control of haematopoietic stem cell aging and its clinical implications
  publication-title: Stem Cell Int
  doi: 10.1155/2016/5797521
– volume: 15
  start-page: 24
  issue: 5
  year: 2015
  ident: 2023110319214697200_bib45
  article-title: Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link
  publication-title: Curr Allergy Asthma Rep
  doi: 10.1007/s11882-015-0524-2
– volume: 11
  start-page: 2054
  year: 2020
  ident: 2023110319214697200_bib33
  article-title: Mucins in intestinal mucosal defense and inflammation: learning from clinical and experimental studies
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.02054
– volume: 25
  start-page: 2992
  issue: 11
  year: 2018
  ident: 2023110319214697200_bib9
  article-title: Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.11.056
– volume: 11
  start-page: 2062
  issue: 9
  year: 2019
  ident: 2023110319214697200_bib35
  article-title: Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress
  publication-title: Nutrients
  doi: 10.3390/nu11092062
– volume: 129
  start-page: 171
  issue: 2
  year: 2017
  ident: 2023110319214697200_bib17
  article-title: Sensing of the microbiota by NOD1 in mesenchymal stromal cells regulates murine hematopoiesis
  publication-title: Blood
  doi: 10.1182/blood-2016-06-723742
– volume: 7
  start-page: e46231
  issue: 10
  year: 2012
  ident: 2023110319214697200_bib49
  article-title: Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046231
– volume: 13
  start-page: 31
  issue: 1
  year: 2020
  ident: 2023110319214697200_bib5
  article-title: Mechanisms and rejuvenation strategies for aged hematopoietic stem cells
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-020-00864-8
– reference: 37022735 - Blood. 2023 Apr 6;141(14):1650-1652
SSID ssj0014325
Score 2.642711
Snippet •FMT from young mice restored lymphoid differentiative potential and improved the number and engraftment ability of aged HSCs.•Lachnospiraceae and...
Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1691
SubjectTerms Animals
Cell Differentiation
Fecal Microbiota Transplantation
Hematopoiesis
Hematopoietic Stem Cells - metabolism
Inflammation - metabolism
Inflammation - therapy
Mice
Title Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation
URI https://dx.doi.org/10.1182/blood.2022017514
https://www.ncbi.nlm.nih.gov/pubmed/36638348
https://www.proquest.com/docview/2765779396
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbxy4vY0t3yW5oMAYjpLUlX-THLjSUre0YJJA3I9nySEnsbLEH2a_fObIVuyUt3V6MEZIx-j4dHencCPnApZsKEHO40vDqxhdDqVg4dLmnXF-wVJvybWfnwcnU-zLzZ216AhNdUqqD5M_OuJL_QRXaAFeMkv0HZLcfhQZ4B3zhCQjD81YYjzXO8HJeJ1MqJRZ8yNerhcytDyEGj2xwQWMvrJByUYF0Q_1yAIIkHZiUrcWqmGMs4wCTOg_wKn-NWum6WtVesibqJQPqLFsYrR140RSbN5fPuhYcM6Dcj4uqdfaZN63FT7tRdltb45BpGRVNn-YugnHjwhJ0xSfmu3ZYbWnRO9qszK2zXVlyeR0Ritl7dst2gblijT8_nOsZaC6h34y8lEb7_Fs8np6expPj2eQuucfg_IAC8Ov31rzkcVONd_tr1n4t2OHV71-nr1x3HjF6yeQJedwcKOhRzY6n5I7Oe2T_CDAulhv6kRoXX2M76ZH7n-3bw5Et9NcjD84a_4p98tswiraMolcYRZFR1DAKe2naYRRFRtFLjKLIKGoYRdWGdhhFu4x6Rqbj48noZNhU5hgmni_KIShWgZ_KQKHRXgQiEZo7iqWJFKCRR8KJVJg4iRc4GRdMJp4jM52xLAI9ycuU5M_JXl7k-iWh0mWZYlkawcHZCziDTU8oPwtkKF1MjNQnh3b-46RJW4_VUxaxOb4KFhvE4haxPvm0HbGqU7bc0JdbSONG5axVyRhYd8Oo9xb9GLDCWZS5Lqp1zMLAD2HLi4I-eVHTYvsPHJR7wT3x6hajX5NH7fp6Q_bKX5V-C9pvqd4ZJv8Fy5uyhQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fecal+microbiota+transplantation+from+young+mice+rejuvenates+aged+hematopoietic+stem+cells+by+suppressing+inflammation&rft.jtitle=Blood&rft.au=Zeng%2C+Xiangjun&rft.au=Li%2C+Xiaoqing&rft.au=Li%2C+Xia&rft.au=Wei%2C+Cong&rft.date=2023-04-06&rft.issn=1528-0020&rft.eissn=1528-0020&rft.volume=141&rft.issue=14&rft.spage=1691&rft_id=info:doi/10.1182%2Fblood.2022017514&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon