Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering
1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerev...
Saved in:
Published in | Metabolic engineering Vol. 56; pp. 17 - 27 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Belgium
Elsevier Inc
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.
[Display omitted]
•2-Ketoacid decarboxylase is a key enzyme for 1,2,4-butanetriol bio-production by S. cerevisiae.•Combination of BOL2 deletion and truncated TYW1 overexpression greatly improved iron-sulfur protein XylD activity in yeast.•An engineered yeast strain efficiently produced 1.1 g/L of 1,2,4-butanetriol from xylose enriched lignocellulosic hydrolysate. |
---|---|
AbstractList | 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.
[Display omitted]
•2-Ketoacid decarboxylase is a key enzyme for 1,2,4-butanetriol bio-production by S. cerevisiae.•Combination of BOL2 deletion and truncated TYW1 overexpression greatly improved iron-sulfur protein XylD activity in yeast.•An engineered yeast strain efficiently produced 1.1 g/L of 1,2,4-butanetriol from xylose enriched lignocellulosic hydrolysate. 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate. 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate. |
Author | Sasaki, Kengo Kondo, Akihiko Bamba, Takahiro Guirimand, Gregory Hasunuma, Tomohisa Yukawa, Takahiro Inokuma, Kentaro |
Author_xml | – sequence: 1 givenname: Takahiro surname: Bamba fullname: Bamba, Takahiro email: t.bamba@bear.kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 2 givenname: Takahiro surname: Yukawa fullname: Yukawa, Takahiro email: 188p016p@stu.kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 3 givenname: Gregory surname: Guirimand fullname: Guirimand, Gregory email: gregory.guirimand@univ-tours.fr organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 4 givenname: Kentaro surname: Inokuma fullname: Inokuma, Kentaro email: kinokuma@port.kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 5 givenname: Kengo surname: Sasaki fullname: Sasaki, Kengo email: sikengo@people.kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 6 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa email: hasunuma@port.kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan – sequence: 7 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko email: akondo@kobe-u.ac.jp organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31434008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gFyAhHzk0qSd2ss6BA6ooIFUqUsvZciaTXa-SuNhO1fx7Erb0wIGeZjR6n5FmnlN2NPqRGHsPIgcB1cU-n4eGxrwQUOdC5wKKV-wERF1lG9Dq6LnfVMfsNMa9EABlDW_YsQQllRD6hO1-BN9OmJwfue84nBfnKmumZEdKwfmed8EP_HHufSTezPzWIu7sMpuRIkcK9OCis8TTLvhpu-NXxAdKtvG9Q07j1o1EwY3bt-x1Z_tI757qGft59eXu8lt2ffP1--Xn6wxVqVNGiJ3UaoNFacFaKjuESte1xq4uiFSnbFuVVbVOEJRqSikbaysqtJK10PKMfTzsvQ_-10QxmcFFpL5fLvJTNIUUJWgpavVytNAAoiyrdeuHp-jUDNSa--AGG2bz95FLQB4CGHyMgbrnCAiz6jJ780eXWXUZoc2ia6Hqfyh0ya4yUrCuf4H9dGBp-eaDo2AiOhqRWhcIk2m9-y__G8NisdY |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_128303 crossref_primary_10_1080_07388551_2020_1856770 crossref_primary_10_1016_j_biortech_2023_130144 crossref_primary_10_1186_s12934_024_02317_0 crossref_primary_10_35534_sbe_2023_10007 crossref_primary_10_1039_D2GC02909J crossref_primary_10_1016_j_ijbiomac_2024_135512 crossref_primary_10_1186_s12934_022_01828_y crossref_primary_10_1016_j_tibtech_2020_11_005 crossref_primary_10_1016_j_ymben_2023_06_002 crossref_primary_10_1016_j_bbrc_2024_149876 crossref_primary_10_1016_j_synbio_2022_02_007 crossref_primary_10_1080_07388551_2023_2270702 crossref_primary_10_1016_j_apsb_2024_05_019 crossref_primary_10_1186_s13068_023_02266_7 crossref_primary_10_1002_biot_202000142 crossref_primary_10_1007_s11274_024_03885_4 crossref_primary_10_1002_cssc_202401651 crossref_primary_10_1002_bit_28278 crossref_primary_10_1007_s00253_021_11410_y crossref_primary_10_1002_bit_27560 crossref_primary_10_1021_acssuschemeng_2c07418 crossref_primary_10_2139_ssrn_4090251 crossref_primary_10_1007_s00253_025_13417_1 crossref_primary_10_3389_finmi_2023_1319774 crossref_primary_10_1016_j_copbio_2020_10_012 crossref_primary_10_1016_j_fuel_2021_122773 crossref_primary_10_1016_j_bej_2023_108936 crossref_primary_10_1021_acssuschemeng_1c02511 crossref_primary_10_1080_07388551_2020_1785386 crossref_primary_10_1038_s41467_020_14830_y crossref_primary_10_3389_fbioe_2022_844517 crossref_primary_10_1016_j_checat_2022_11_006 crossref_primary_10_1186_s13068_020_01744_6 crossref_primary_10_1039_D2GC02177C crossref_primary_10_1016_j_tibtech_2020_08_010 |
Cites_doi | 10.1038/nature08301 10.1074/jbc.M801160200 10.1021/ja036391+ 10.1016/0032-9592(93)80041-E 10.1371/journal.pone.0052498 10.1007/s00018-012-0945-1 10.1021/cr9001676 10.1021/bp9500627 10.1111/1567-1364.12138 10.1016/j.jbiotec.2011.06.025 10.1016/j.biortech.2017.11.062 10.1007/s11274-017-2215-8 10.1042/BJ20041053 10.1128/AEM.00955-07 10.1007/BF00318659 10.1128/MCB.25.15.6760-6771.2005 10.1038/nprot.2008.73 10.1186/s12934-018-0899-6 10.1074/jbc.M705570200 10.1039/C8GC03864C 10.1111/j.1742-4658.2011.08103.x 10.1016/j.cbpa.2015.06.004 10.1186/s13568-015-0175-7 10.1006/meth.2001.1262 10.1016/j.biortech.2018.04.013 10.1007/s00253-013-4877-y 10.1074/jbc.M111.328914 10.1016/j.ymben.2012.03.002 10.1186/s13068-015-0374-0 10.1007/s00253-009-2198-y 10.1007/s00253-017-8547-3 10.1021/acs.biochem.7b00072 10.1016/0092-8674(88)90110-9 10.1007/s00253-015-7179-8 10.1016/j.procbio.2013.10.002 10.1016/j.ymben.2013.10.003 10.1038/srep18149 10.1074/jbc.M111.286666 10.1016/j.jbiosc.2018.05.019 10.1007/s10295-015-1693-7 10.1371/journal.pgen.1005106 10.1074/jbc.M113.486878 10.1007/s00253-016-7530-8 10.1016/j.jbiotec.2013.11.025 10.1128/MCB.01219-07 10.1038/nchembio.2020 10.1186/1754-6834-7-8 10.1093/jb/mvp028 10.1007/s11274-016-2085-5 |
ContentType | Journal Article |
Copyright | 2019 International Metabolic Engineering Society Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 International Metabolic Engineering Society – notice: Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ymben.2019.08.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1096-7184 |
EndPage | 27 |
ExternalDocumentID | 31434008 10_1016_j_ymben_2019_08_012 S1096717619301843 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADFGL ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LG5 LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K UHS XPP ZMT ZU3 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c458t-eccf3847c25a1aae5fc168998cf92ee4f4ad6566998cc144b533baa6e28439083 |
IEDL.DBID | .~1 |
ISSN | 1096-7176 1096-7184 |
IngestDate | Fri Jul 11 11:16:37 EDT 2025 Mon Jul 21 11:56:18 EDT 2025 Thu Apr 03 07:07:13 EDT 2025 Tue Jul 01 00:51:26 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Fri Feb 23 02:37:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metabolic engineering 2-Ketoacid decarboxylase Fe–S cluster xylonate dehydratase Yeast cell factory Biomass utilization |
Language | English |
License | Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-eccf3847c25a1aae5fc168998cf92ee4f4ad6566998cc144b533baa6e28439083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31434008 |
PQID | 2281105568 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2305183094 proquest_miscellaneous_2281105568 pubmed_primary_31434008 crossref_primary_10_1016_j_ymben_2019_08_012 crossref_citationtrail_10_1016_j_ymben_2019_08_012 elsevier_sciencedirect_doi_10_1016_j_ymben_2019_08_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationPlace | Belgium |
PublicationPlace_xml | – name: Belgium |
PublicationTitle | Metabolic engineering |
PublicationTitleAlternate | Metab Eng |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hong, Nielsen (bib16) 2012; 69 Guirimand, Sasaki, Inokuma, Bamba (bib12) 2016; 100 Sun, Yang, Sun, Zhu, Li, Li, Xu, Zhang (bib46) 2016; 43 Ishii, Izawa, Matsumura, Wakamura, Tanino, Tanaka, Ogino, Fukuda, Kondo (bib18) 2009; 145 Sluiter, Hames, Ruiz, Scarlata, Sluiter, Templeton, Crocker (bib45) 2012 Netz, Pierik, Stümpfig, Bill, Sharma, Pallesen, Walden, Lill (bib35) 2012; 287 Abdel-Ghany, Day, Heuberger, Broeckling, Reddy (bib1) 2013; 20 De La Plaza, Fernández De Palencia, Peláez, Requena (bib8) 2004; 238 Sakamoto, Hasunuma, Hori, Yamada, Kondo (bib41) 2012; 158 Eichinger, Boeke (bib10) 1988; 54 Olsson, Hahn-Hägerdal (bib37) 1993; 28 Carlsen, Ajikumar, Formenti, Zhou, Phon, Nielsen, Lantz, Kielland-Brandt, Stephanopoulos (bib6) 2013; 97 Skoza, Mohos (bib44) 1976; 159 Niu, Molefe, Frost (bib36) 2003; 125 Cao, Niu, Guo, Xian, Liu (bib5) 2015; 5 Bamba, Hasunuma, Kondo (bib3) 2016; 6 Lu, Jeffries (bib30) 2007; 73 Schmittgen, Livak (bib43) 2008; 3 Courel, Lallet, Camadro, Blaiseau (bib7) 2005; 25 Yamada, Tanaka, Ogino, Fukuda, Kondo (bib53) 2010; 85 Milne, van Maris, Pronk, Daran (bib33) 2015; 8 Pallesen, Solodovnikova, Sharma, Walden (bib38) 2013; 288 Parekh, Shaw, Wittrup (bib39) 1996; 12 Wang, Xu, Hu, Yang, Gao, Xu, Chen, Ouyang (bib51) 2018; 250 Livak, Schmittgen (bib29) 2001; 25 Lane, Dong, Jin (bib25) 2018; 260 Guirimand, Inokuma, Bamba, Matsuda, Morita, Sasaki, Ogino, Berrin, Hasunuma, Kondo (bib13) 2019 Tai, Xiong, Jambunathan, Wang, Wang, Stapleton, Zhang (bib47) 2016; 12 Partow, Siewers, Daviet, Schalk, Nielsen (bib40) 2012; 7 Valdehuesa, Liu, Ramos (bib49) 2014; 49 Li, Bagley, Ward, Kaplan (bib27) 2008; 28 Hausmann, Samans, Lill, Mühlenhoff (bib15) 2008; 283 Lill (bib28) 2009; 460 Xiong, Zeng, Tang, Alper, Bai, Zhao (bib52) 2018; 17 Salusjärvi, Toivari, Vehkomäki, Koivistoinen, Mojzita, Niemelä, Penttilä, Ruohonen (bib42) 2017; 101 Inokuma, Hasunuma, Kondo (bib17) 2014; 7 Chen, Yang, Kuo (bib54) 1992; 21 Kumánovics, Chen, Li, Bagley, Adkins, Lin, Dingra, Outten, Keller, Winge, Ward, Kaplan (bib24) 2008; 283 Kaplan, Kaplan (bib21) 2009; 109 Ishii, Kondo, Makino, Ogura, Matsuda, Kondo (bib19) 2014; 14 Kneen, Stan, Yep, Tyler, Saehuan, McLeish (bib23) 2011; 278 Li, Jia, Ward, Kaplan (bib26) 2011; 286 Encinar del Dedo, Gabrielli, Carmona, Ayte, Hidalgo (bib9) 2015; 11 Gouranlou, Kohsary (bib11) 2010; 22 Toivari, Nygård, Kumpula, Vehkomäki, Benčina, Valkonen, Maaheimo, Andberg, Koivula, Ruohonen, Penttilä, Wiebe (bib48) 2012; 14 Monteith, Schoefield, Bailey (bib34) 1998 Martínez-Pastor, Perea-García, Puig (bib32) 2017; 33 Lu, He, Zong, Song, Chen, Zhuge (bib31) 2016; 32 Kim, Lee (bib22) 2005; 387 Vo, Fleischman, Froehlich, Lee, Cosman, Glynn, Hassan, Perlstein (bib50) 2018; 57 Jing, Cao, Lu, Zong, Zhuge (bib20) 2018; 126 Andberg, Aro-Kärkkäinen, Carlson, Oja, Bozonnet, Toivari, Hakulinen, O'Donohue, Penttilä, Koivula (bib2) 2016; 100 Hasunuma, Ishii, Kondo (bib14) 2015; 29 Benisch, Boles (bib4) 2014; 171 Schmittgen (10.1016/j.ymben.2019.08.012_bib43) 2008; 3 Andberg (10.1016/j.ymben.2019.08.012_bib2) 2016; 100 Hausmann (10.1016/j.ymben.2019.08.012_bib15) 2008; 283 Kaplan (10.1016/j.ymben.2019.08.012_bib21) 2009; 109 Sluiter (10.1016/j.ymben.2019.08.012_bib45) 2012 Valdehuesa (10.1016/j.ymben.2019.08.012_bib49) 2014; 49 Benisch (10.1016/j.ymben.2019.08.012_bib4) 2014; 171 Abdel-Ghany (10.1016/j.ymben.2019.08.012_bib1) 2013; 20 Li (10.1016/j.ymben.2019.08.012_bib26) 2011; 286 Niu (10.1016/j.ymben.2019.08.012_bib36) 2003; 125 Wang (10.1016/j.ymben.2019.08.012_bib51) 2018; 250 Li (10.1016/j.ymben.2019.08.012_bib27) 2008; 28 Ishii (10.1016/j.ymben.2019.08.012_bib18) 2009; 145 Lu (10.1016/j.ymben.2019.08.012_bib31) 2016; 32 Parekh (10.1016/j.ymben.2019.08.012_bib39) 1996; 12 Tai (10.1016/j.ymben.2019.08.012_bib47) 2016; 12 Gouranlou (10.1016/j.ymben.2019.08.012_bib11) 2010; 22 De La Plaza (10.1016/j.ymben.2019.08.012_bib8) 2004; 238 Partow (10.1016/j.ymben.2019.08.012_bib40) 2012; 7 Toivari (10.1016/j.ymben.2019.08.012_bib48) 2012; 14 Lu (10.1016/j.ymben.2019.08.012_bib30) 2007; 73 Xiong (10.1016/j.ymben.2019.08.012_bib52) 2018; 17 Jing (10.1016/j.ymben.2019.08.012_bib20) 2018; 126 Vo (10.1016/j.ymben.2019.08.012_bib50) 2018; 57 Martínez-Pastor (10.1016/j.ymben.2019.08.012_bib32) 2017; 33 Carlsen (10.1016/j.ymben.2019.08.012_bib6) 2013; 97 Skoza (10.1016/j.ymben.2019.08.012_bib44) 1976; 159 Chen (10.1016/j.ymben.2019.08.012_bib54) 1992; 21 Encinar del Dedo (10.1016/j.ymben.2019.08.012_bib9) 2015; 11 Livak (10.1016/j.ymben.2019.08.012_bib29) 2001; 25 Inokuma (10.1016/j.ymben.2019.08.012_bib17) 2014; 7 Guirimand (10.1016/j.ymben.2019.08.012_bib13) 2019 Kim (10.1016/j.ymben.2019.08.012_bib22) 2005; 387 Lane (10.1016/j.ymben.2019.08.012_bib25) 2018; 260 Lill (10.1016/j.ymben.2019.08.012_bib28) 2009; 460 Ishii (10.1016/j.ymben.2019.08.012_bib19) 2014; 14 Bamba (10.1016/j.ymben.2019.08.012_bib3) 2016; 6 Pallesen (10.1016/j.ymben.2019.08.012_bib38) 2013; 288 Salusjärvi (10.1016/j.ymben.2019.08.012_bib42) 2017; 101 Yamada (10.1016/j.ymben.2019.08.012_bib53) 2010; 85 Kumánovics (10.1016/j.ymben.2019.08.012_bib24) 2008; 283 Hong (10.1016/j.ymben.2019.08.012_bib16) 2012; 69 Sun (10.1016/j.ymben.2019.08.012_bib46) 2016; 43 Sakamoto (10.1016/j.ymben.2019.08.012_bib41) 2012; 158 Kneen (10.1016/j.ymben.2019.08.012_bib23) 2011; 278 Eichinger (10.1016/j.ymben.2019.08.012_bib10) 1988; 54 Olsson (10.1016/j.ymben.2019.08.012_bib37) 1993; 28 Milne (10.1016/j.ymben.2019.08.012_bib33) 2015; 8 Courel (10.1016/j.ymben.2019.08.012_bib7) 2005; 25 Netz (10.1016/j.ymben.2019.08.012_bib35) 2012; 287 Cao (10.1016/j.ymben.2019.08.012_bib5) 2015; 5 Monteith (10.1016/j.ymben.2019.08.012_bib34) 1998 Hasunuma (10.1016/j.ymben.2019.08.012_bib14) 2015; 29 Guirimand (10.1016/j.ymben.2019.08.012_bib12) 2016; 100 |
References_xml | – volume: 14 start-page: 399 year: 2014 end-page: 411 ident: bib19 article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae publication-title: FEMS Yeast Res. – volume: 100 start-page: 7549 year: 2016 end-page: 7563 ident: bib2 article-title: Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases publication-title: Appl. Microbiol. Biotechnol. – volume: 287 start-page: 12365 year: 2012 end-page: 12378 ident: bib35 article-title: A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation publication-title: J. Biol. Chem. – volume: 260 start-page: 380 year: 2018 end-page: 394 ident: bib25 article-title: Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae publication-title: Bioresour. Technol. – year: 2012 ident: bib45 article-title: Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory – volume: 278 start-page: 1842 year: 2011 end-page: 1853 ident: bib23 article-title: Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from publication-title: FEBS J. – volume: 11 year: 2015 ident: bib9 article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast publication-title: PLoS Genet. – start-page: 1795 year: 2019 end-page: 1808 ident: bib13 article-title: Cell-surface display technology and metabolic engineering of publication-title: Green Chem. – volume: 6 start-page: 4 year: 2016 ident: bib3 article-title: Disruption of publication-title: Amb. Express – volume: 14 start-page: 427 year: 2012 end-page: 436 ident: bib48 article-title: Metabolic engineering of publication-title: Metab. Eng. – volume: 33 start-page: 75 year: 2017 ident: bib32 article-title: Mechanisms of iron sensing and regulation in the yeast publication-title: World J. Microbiol. Biotechnol. – volume: 5 start-page: 18149 year: 2015 ident: bib5 article-title: Biotechnological production of 1,2,4-butanetriol: an efficient process to synthesize energetic material precursor from renewable biomass publication-title: Sci. Rep. – volume: 12 start-page: 16 year: 1996 end-page: 21 ident: bib39 article-title: An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae publication-title: Biotechnol. Prog. – volume: 100 start-page: 3477 year: 2016 end-page: 3487 ident: bib12 article-title: Cell-surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate publication-title: Appl. Microbiol. Biotechnol. – volume: 69 start-page: 2671 year: 2012 end-page: 2690 ident: bib16 article-title: Metabolic engineering of publication-title: Cell. Mol. Life Sci. – volume: 8 start-page: 1 year: 2015 end-page: 15 ident: bib33 article-title: Comparative assessment of native and heterologous 2‑oxo acid decarboxylases for application in isobutanol production by publication-title: Biotechnol. Biofuels – volume: 49 start-page: 25 year: 2014 end-page: 32 ident: bib49 article-title: Direct bioconversion of d-xylose to 1, 2, 4-butanetriol in an engineered publication-title: Process Biochem. – volume: 28 start-page: 1326 year: 2008 end-page: 1337 ident: bib27 article-title: Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast publication-title: Mol. Cell. Biol. – volume: 250 start-page: 406 year: 2018 end-page: 412 ident: bib51 article-title: D-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered publication-title: Bioresour. Technol. – volume: 7 start-page: 1 year: 2012 end-page: 12 ident: bib40 article-title: Reconstruction and evaluation of the synthetic bacterial MEP pathway in publication-title: PLoS One – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib29 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 publication-title: Methods – volume: 283 start-page: 10276 year: 2008 end-page: 10286 ident: bib24 article-title: Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis publication-title: J. Biol. Chem. – volume: 97 start-page: 5753 year: 2013 end-page: 5769 ident: bib6 article-title: Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in publication-title: Appl. Microbiol. Biotechnol. – volume: 85 start-page: 1491 year: 2010 end-page: 1498 ident: bib53 article-title: Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch publication-title: Appl. Microbiol. Biotechnol. – volume: 125 start-page: 12998 year: 2003 end-page: 12999 ident: bib36 article-title: Microbial synthesis of the energetic material precursor 1,2,4-butanetriol publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 2349 year: 2018 end-page: 2358 ident: bib50 article-title: Identifying the protein interactions of the cytosolic iron-sulfur cluster targeting complex essential for its assembly and recognition of apo-targets publication-title: Biochemistry – volume: 3 start-page: 1101 year: 2008 end-page: 1108 ident: bib43 article-title: Analyzing real-time PCR data by the comparative C publication-title: Nat. Protoc. – volume: 28 start-page: 249 year: 1993 end-page: 257 ident: bib37 article-title: Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates publication-title: Process Biochem. – volume: 238 start-page: 367 year: 2004 end-page: 374 ident: bib8 article-title: Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by publication-title: FEMS Microbiol. Lett. – volume: 21 start-page: 83 year: 1992 end-page: 84 ident: bib54 article-title: One-step transformation of yeast in stationary phase publication-title: Curr. Genet. – volume: 25 start-page: 6760 year: 2005 end-page: 6771 ident: bib7 article-title: Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1 publication-title: Mol. Cell. Biol. – volume: 17 start-page: 1 year: 2018 end-page: 15 ident: bib52 article-title: Condition-specific promoter activities in publication-title: Microb. Cell Factories – volume: 288 start-page: 23358 year: 2013 end-page: 23367 ident: bib38 article-title: Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold publication-title: J. Biol. Chem. – volume: 126 start-page: 547 year: 2018 end-page: 552 ident: bib20 article-title: Modification of an engineered publication-title: J. Biosci. Bioeng. – volume: 7 start-page: 8 year: 2014 ident: bib17 article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the publication-title: Biotechnol. Biofuels – year: 1998 ident: bib34 article-title: Process for the Preparation of Butanetriols – volume: 109 start-page: 4536 year: 2009 end-page: 4552 ident: bib21 article-title: Iron acquisition and transcriptional regulation publication-title: Chem. Rev. – volume: 159 start-page: 457 year: 1976 end-page: 462 ident: bib44 article-title: Stable thiobarbituric acid chromophore with dimethyl sulphoxide publication-title: J. Biol. Chem. – volume: 283 start-page: 8318 year: 2008 end-page: 8330 ident: bib15 article-title: Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis publication-title: J. Biol. Chem. – volume: 158 start-page: 203 year: 2012 end-page: 210 ident: bib41 article-title: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing publication-title: J. Biotechnol. – volume: 43 start-page: 67 year: 2016 end-page: 78 ident: bib46 article-title: Synthetic pathway optimization for improved 1,2,4-butanetriol production publication-title: J. Ind. Microbiol. Biotechnol. – volume: 22 start-page: 4221 year: 2010 end-page: 4228 ident: bib11 article-title: Synthesis and characterization of 1,2,4-butanetrioltrinitrate publication-title: Asian J. Chem. – volume: 145 start-page: 701 year: 2009 end-page: 708 ident: bib18 article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast publication-title: J. Biochem. – volume: 32 start-page: 1 year: 2016 end-page: 9 ident: bib31 article-title: Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins publication-title: World J. Microbiol. Biotechnol. – volume: 101 start-page: 8151 year: 2017 end-page: 8163 ident: bib42 article-title: Production of ethylene glycol or glycolic acid from D-xylose in publication-title: Appl. Microbiol. Biotechnol. – volume: 387 start-page: 271 year: 2005 end-page: 280 ident: bib22 article-title: Identification and characterization of publication-title: Biochem. J. – volume: 20 start-page: 109 year: 2013 end-page: 120 ident: bib1 article-title: Metabolic engineering of publication-title: Metab. Eng. – volume: 12 start-page: 247 year: 2016 end-page: 253 ident: bib47 article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products publication-title: Nat. Chem. Biol. – volume: 54 start-page: 955 year: 1988 end-page: 966 ident: bib10 article-title: The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition publication-title: Cell – volume: 171 start-page: 45 year: 2014 end-page: 55 ident: bib4 article-title: The bacterial Entner-Doudoroff pathway does not replace glycolysis in publication-title: J. Biotechnol. – volume: 29 start-page: 1 year: 2015 end-page: 9 ident: bib14 article-title: Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown publication-title: Curr. Opin. Chem. Biol. – volume: 460 start-page: 831 year: 2009 end-page: 838 ident: bib28 article-title: Function and biogenesis of iron–sulphur proteins publication-title: Nature – volume: 73 start-page: 6072 year: 2007 end-page: 6077 ident: bib30 article-title: Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered publication-title: Appl. Environ. Microbiol. – volume: 286 start-page: 38488 year: 2011 end-page: 38497 ident: bib26 article-title: Yap5 protein-regulated transcription of the publication-title: J. Biol. Chem. – volume: 460 start-page: 831 year: 2009 ident: 10.1016/j.ymben.2019.08.012_bib28 article-title: Function and biogenesis of iron–sulphur proteins publication-title: Nature doi: 10.1038/nature08301 – volume: 283 start-page: 10276 year: 2008 ident: 10.1016/j.ymben.2019.08.012_bib24 article-title: Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801160200 – volume: 125 start-page: 12998 year: 2003 ident: 10.1016/j.ymben.2019.08.012_bib36 article-title: Microbial synthesis of the energetic material precursor 1,2,4-butanetriol publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036391+ – volume: 28 start-page: 249 year: 1993 ident: 10.1016/j.ymben.2019.08.012_bib37 article-title: Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates publication-title: Process Biochem. doi: 10.1016/0032-9592(93)80041-E – volume: 7 start-page: 1 year: 2012 ident: 10.1016/j.ymben.2019.08.012_bib40 article-title: Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae publication-title: PLoS One doi: 10.1371/journal.pone.0052498 – volume: 69 start-page: 2671 year: 2012 ident: 10.1016/j.ymben.2019.08.012_bib16 article-title: Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-012-0945-1 – year: 1998 ident: 10.1016/j.ymben.2019.08.012_bib34 – volume: 109 start-page: 4536 year: 2009 ident: 10.1016/j.ymben.2019.08.012_bib21 article-title: Iron acquisition and transcriptional regulation publication-title: Chem. Rev. doi: 10.1021/cr9001676 – volume: 12 start-page: 16 year: 1996 ident: 10.1016/j.ymben.2019.08.012_bib39 article-title: An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae publication-title: Biotechnol. Prog. doi: 10.1021/bp9500627 – volume: 14 start-page: 399 year: 2014 ident: 10.1016/j.ymben.2019.08.012_bib19 article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae publication-title: FEMS Yeast Res. doi: 10.1111/1567-1364.12138 – volume: 158 start-page: 203 year: 2012 ident: 10.1016/j.ymben.2019.08.012_bib41 article-title: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2011.06.025 – volume: 250 start-page: 406 year: 2018 ident: 10.1016/j.ymben.2019.08.012_bib51 article-title: D-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.11.062 – volume: 33 start-page: 75 year: 2017 ident: 10.1016/j.ymben.2019.08.012_bib32 article-title: Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-017-2215-8 – volume: 387 start-page: 271 year: 2005 ident: 10.1016/j.ymben.2019.08.012_bib22 article-title: Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway publication-title: Biochem. J. doi: 10.1042/BJ20041053 – volume: 73 start-page: 6072 year: 2007 ident: 10.1016/j.ymben.2019.08.012_bib30 article-title: Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00955-07 – volume: 238 start-page: 367 year: 2004 ident: 10.1016/j.ymben.2019.08.012_bib8 article-title: Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis publication-title: FEMS Microbiol. Lett. – volume: 21 start-page: 83 year: 1992 ident: 10.1016/j.ymben.2019.08.012_bib54 article-title: One-step transformation of yeast in stationary phase publication-title: Curr. Genet. doi: 10.1007/BF00318659 – volume: 25 start-page: 6760 year: 2005 ident: 10.1016/j.ymben.2019.08.012_bib7 article-title: Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.15.6760-6771.2005 – volume: 22 start-page: 4221 year: 2010 ident: 10.1016/j.ymben.2019.08.012_bib11 article-title: Synthesis and characterization of 1,2,4-butanetrioltrinitrate publication-title: Asian J. Chem. – volume: 3 start-page: 1101 year: 2008 ident: 10.1016/j.ymben.2019.08.012_bib43 article-title: Analyzing real-time PCR data by the comparative CT method publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.73 – volume: 17 start-page: 1 year: 2018 ident: 10.1016/j.ymben.2019.08.012_bib52 article-title: Condition-specific promoter activities in Saccharomyces cerevisiae publication-title: Microb. Cell Factories doi: 10.1186/s12934-018-0899-6 – volume: 283 start-page: 8318 year: 2008 ident: 10.1016/j.ymben.2019.08.012_bib15 article-title: Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M705570200 – start-page: 1795 year: 2019 ident: 10.1016/j.ymben.2019.08.012_bib13 article-title: Cell-surface display technology and metabolic engineering of Saccharomyces cerevisiae for enhancing xylitol production from woody biomass publication-title: Green Chem. doi: 10.1039/C8GC03864C – volume: 278 start-page: 1842 year: 2011 ident: 10.1016/j.ymben.2019.08.012_bib23 article-title: Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae publication-title: FEBS J. doi: 10.1111/j.1742-4658.2011.08103.x – volume: 29 start-page: 1 year: 2015 ident: 10.1016/j.ymben.2019.08.012_bib14 article-title: Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2015.06.004 – volume: 6 start-page: 4 year: 2016 ident: 10.1016/j.ymben.2019.08.012_bib3 article-title: Disruption of PHO13 improves ethanol production via the xylose isomerase pathway publication-title: Amb. Express doi: 10.1186/s13568-015-0175-7 – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.ymben.2019.08.012_bib29 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 260 start-page: 380 year: 2018 ident: 10.1016/j.ymben.2019.08.012_bib25 article-title: Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.04.013 – volume: 97 start-page: 5753 year: 2013 ident: 10.1016/j.ymben.2019.08.012_bib6 article-title: Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in Saccharomyces cerevisiae publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-4877-y – volume: 287 start-page: 12365 year: 2012 ident: 10.1016/j.ymben.2019.08.012_bib35 article-title: A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.328914 – volume: 14 start-page: 427 year: 2012 ident: 10.1016/j.ymben.2019.08.012_bib48 article-title: Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.03.002 – volume: 8 start-page: 1 year: 2015 ident: 10.1016/j.ymben.2019.08.012_bib33 article-title: Comparative assessment of native and heterologous 2‑oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-015-0374-0 – volume: 159 start-page: 457 year: 1976 ident: 10.1016/j.ymben.2019.08.012_bib44 article-title: Stable thiobarbituric acid chromophore with dimethyl sulphoxide publication-title: J. Biol. Chem. – volume: 85 start-page: 1491 year: 2010 ident: 10.1016/j.ymben.2019.08.012_bib53 article-title: Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2198-y – volume: 101 start-page: 8151 year: 2017 ident: 10.1016/j.ymben.2019.08.012_bib42 article-title: Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8547-3 – volume: 57 start-page: 2349 year: 2018 ident: 10.1016/j.ymben.2019.08.012_bib50 article-title: Identifying the protein interactions of the cytosolic iron-sulfur cluster targeting complex essential for its assembly and recognition of apo-targets publication-title: Biochemistry doi: 10.1021/acs.biochem.7b00072 – volume: 54 start-page: 955 year: 1988 ident: 10.1016/j.ymben.2019.08.012_bib10 article-title: The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition publication-title: Cell doi: 10.1016/0092-8674(88)90110-9 – year: 2012 ident: 10.1016/j.ymben.2019.08.012_bib45 – volume: 100 start-page: 3477 issue: 8 year: 2016 ident: 10.1016/j.ymben.2019.08.012_bib12 article-title: Cell-surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-7179-8 – volume: 49 start-page: 25 year: 2014 ident: 10.1016/j.ymben.2019.08.012_bib49 article-title: Direct bioconversion of d-xylose to 1, 2, 4-butanetriol in an engineered Escherichia coli publication-title: Process Biochem. doi: 10.1016/j.procbio.2013.10.002 – volume: 20 start-page: 109 year: 2013 ident: 10.1016/j.ymben.2019.08.012_bib1 article-title: Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes publication-title: Metab. Eng. doi: 10.1016/j.ymben.2013.10.003 – volume: 5 start-page: 18149 year: 2015 ident: 10.1016/j.ymben.2019.08.012_bib5 article-title: Biotechnological production of 1,2,4-butanetriol: an efficient process to synthesize energetic material precursor from renewable biomass publication-title: Sci. Rep. doi: 10.1038/srep18149 – volume: 286 start-page: 38488 year: 2011 ident: 10.1016/j.ymben.2019.08.012_bib26 article-title: Yap5 protein-regulated transcription of the TYW1 gene protects yeast from high iron toxicity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.286666 – volume: 126 start-page: 547 year: 2018 ident: 10.1016/j.ymben.2019.08.012_bib20 article-title: Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2018.05.019 – volume: 43 start-page: 67 year: 2016 ident: 10.1016/j.ymben.2019.08.012_bib46 article-title: Synthetic pathway optimization for improved 1,2,4-butanetriol production publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-015-1693-7 – volume: 11 year: 2015 ident: 10.1016/j.ymben.2019.08.012_bib9 article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005106 – volume: 288 start-page: 23358 year: 2013 ident: 10.1016/j.ymben.2019.08.012_bib38 article-title: Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.486878 – volume: 100 start-page: 7549 year: 2016 ident: 10.1016/j.ymben.2019.08.012_bib2 article-title: Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7530-8 – volume: 171 start-page: 45 year: 2014 ident: 10.1016/j.ymben.2019.08.012_bib4 article-title: The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2013.11.025 – volume: 28 start-page: 1326 year: 2008 ident: 10.1016/j.ymben.2019.08.012_bib27 article-title: Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01219-07 – volume: 12 start-page: 247 year: 2016 ident: 10.1016/j.ymben.2019.08.012_bib47 article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2020 – volume: 7 start-page: 8 year: 2014 ident: 10.1016/j.ymben.2019.08.012_bib17 article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter publication-title: Biotechnol. Biofuels doi: 10.1186/1754-6834-7-8 – volume: 145 start-page: 701 year: 2009 ident: 10.1016/j.ymben.2019.08.012_bib18 article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast publication-title: J. Biochem. doi: 10.1093/jb/mvp028 – volume: 32 start-page: 1 year: 2016 ident: 10.1016/j.ymben.2019.08.012_bib31 article-title: Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-016-2085-5 |
SSID | ssj0011591 |
Score | 2.4269385 |
Snippet | 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17 |
SubjectTerms | 2-Ketoacid decarboxylase biochemical pathways Biomass utilization Butanols - metabolism drugs enzyme activity fermentation Fe–S cluster hydrolysates iron Iron - metabolism Metabolic Engineering Microorganisms, Genetically-Modified - genetics Microorganisms, Genetically-Modified - metabolism plasticizers rice straw Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism screening xylonate dehydratase xylose Xylose - metabolism xylose isomerase Yeast cell factory |
Title | Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering |
URI | https://dx.doi.org/10.1016/j.ymben.2019.08.012 https://www.ncbi.nlm.nih.gov/pubmed/31434008 https://www.proquest.com/docview/2281105568 https://www.proquest.com/docview/2305183094 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5Ky2B7GGv3K1tbNNhjtESy7NiPpTRkLSuDrtA3IclnlpHEZUlgednfvjvZztaH5mGPFicsdOe77_DdfQAfQxEoRcuV5GguTUAtPQFXORxhkvps6MqU-52_XGeTW3N5l97twXnXC8Nlla3vb3x69NbtyqC9zcH9dDq4UYS-KRmhDICMNDc88dOYEVv5p9_bMg8CPJE1j4UlS3eTh2KN12bukYegqiLO8VT6sej0GPqMUWj8Ap638FGcNSc8hD1cHMGThlBycwTP_hkv-BK-f23GudLVi7oSqq_7Rvo1wUGm0apngntLxC9K2Zco_EbcuMBNWPV8Q85DhFgBvJw6FC2ZjxijmOOKzGY2DQL_vuoV3I4vvp1PZMusIINJ85UkvVUJxaWgU6ecw7QKKuPMK1SFRjSVcSUDPV4JlHJ5AoXeuQwpmCUFobbXsL-oF_gWxCgrA6ESNElSGueMN6nBqtRF7jHRbtgD3d2oDe3YcWa_mNmuvuyHjWqwrAbLnJhK96C_3XTfTN3YLZ51qrIPjMdSXNi98UOnWEufFf8rIRXU66XVOleROzTfIUO-kjwiJcg9eNNYxfa0CeFQco_5u_892nt4yk9N5cwx7K9-rvGE8M_Kn0YDP4WDs89Xk-s_ZPoE3g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBwQLC8ytNIcKtp4zjZ5MABAVWXfQhpd6W9GduZiKK2WdFWkAt_ij_IjJMUOGwPSHt1nGTkmXz-RhnPB_DS555StCySvJtL7VFJR8RVDncxTlw6tEXC550Pj9Lxqf54lpxtwa_uLAyXVbbY32B6QOt2ZNCu5uB8MhkcR8S-KRmhDICCNNOdgvU-1t8pb1u82XtPTn6l1OjDybuxbKUFpNdJtpRkeBkTMHuV2MhaTEofpZx6-DJXiLrUtmCmwyOecg5HrMhZmyKheZwTbaHnXoGrmuCCZRNe_1zXlRDDCjJ9bJ1k87pWR6GorJ455K6rUR4ah0bqou3wIrobtr3RbbjV8lXxtlmSO7CF8x241ihY1jtw869-hnfhy6emfyz5WlSliPqqr6VbEf9k3a5qKvgwi_hRT6sFCleLY-v51Fc1qwmthA8lx4uJRdGqB4kRihkuKU6nEy_wz6vuwemlrPd92J5Xc3wIYjctPNEg1HFcaGu104nGslB55jBWdtgD1a2o8W2fc5bbmJquoO2rCW4w7AbDIpyR6kF_fdN50-Zj8_S0c5X5J1oNbUSbb3zROdbQd8w_Z8gF1WphlMqiIFaabZhD4EwQTBl5Dx40UbG2NibiS3icPfpf057D9fHJ4YE52Dvafww3-EpTtvMEtpffVviUyNfSPQvBLuDzZX9dvwH1oEDk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+1%2C2%2C4-butanetriol+from+xylose+by+Saccharomyces+cerevisiae+through+Fe+metabolic+engineering&rft.jtitle=Metabolic+engineering&rft.au=Bamba%2C+Takahiro&rft.au=Yukawa%2C+Takahiro&rft.au=Guirimand%2C+Gregory&rft.au=Inokuma%2C+Kentaro&rft.date=2019-12-01&rft.issn=1096-7184&rft.eissn=1096-7184&rft.volume=56&rft.spage=17&rft_id=info:doi/10.1016%2Fj.ymben.2019.08.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon |