Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering

1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerev...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering Vol. 56; pp. 17 - 27
Main Authors Bamba, Takahiro, Yukawa, Takahiro, Guirimand, Gregory, Inokuma, Kentaro, Sasaki, Kengo, Hasunuma, Tomohisa, Kondo, Akihiko
Format Journal Article
LanguageEnglish
Published Belgium Elsevier Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate. [Display omitted] •2-Ketoacid decarboxylase is a key enzyme for 1,2,4-butanetriol bio-production by S. cerevisiae.•Combination of BOL2 deletion and truncated TYW1 overexpression greatly improved iron-sulfur protein XylD activity in yeast.•An engineered yeast strain efficiently produced 1.1 g/L of 1,2,4-butanetriol from xylose enriched lignocellulosic hydrolysate.
AbstractList 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate. [Display omitted] •2-Ketoacid decarboxylase is a key enzyme for 1,2,4-butanetriol bio-production by S. cerevisiae.•Combination of BOL2 deletion and truncated TYW1 overexpression greatly improved iron-sulfur protein XylD activity in yeast.•An engineered yeast strain efficiently produced 1.1 g/L of 1,2,4-butanetriol from xylose enriched lignocellulosic hydrolysate.
1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.
1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.
Author Sasaki, Kengo
Kondo, Akihiko
Bamba, Takahiro
Guirimand, Gregory
Hasunuma, Tomohisa
Yukawa, Takahiro
Inokuma, Kentaro
Author_xml – sequence: 1
  givenname: Takahiro
  surname: Bamba
  fullname: Bamba, Takahiro
  email: t.bamba@bear.kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 2
  givenname: Takahiro
  surname: Yukawa
  fullname: Yukawa, Takahiro
  email: 188p016p@stu.kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 3
  givenname: Gregory
  surname: Guirimand
  fullname: Guirimand, Gregory
  email: gregory.guirimand@univ-tours.fr
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 4
  givenname: Kentaro
  surname: Inokuma
  fullname: Inokuma, Kentaro
  email: kinokuma@port.kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 5
  givenname: Kengo
  surname: Sasaki
  fullname: Sasaki, Kengo
  email: sikengo@people.kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 6
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  email: hasunuma@port.kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
– sequence: 7
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
  email: akondo@kobe-u.ac.jp
  organization: Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31434008$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gFyAhHzk0qSd2ss6BA6ooIFUqUsvZciaTXa-SuNhO1fx7Erb0wIGeZjR6n5FmnlN2NPqRGHsPIgcB1cU-n4eGxrwQUOdC5wKKV-wERF1lG9Dq6LnfVMfsNMa9EABlDW_YsQQllRD6hO1-BN9OmJwfue84nBfnKmumZEdKwfmed8EP_HHufSTezPzWIu7sMpuRIkcK9OCis8TTLvhpu-NXxAdKtvG9Q07j1o1EwY3bt-x1Z_tI757qGft59eXu8lt2ffP1--Xn6wxVqVNGiJ3UaoNFacFaKjuESte1xq4uiFSnbFuVVbVOEJRqSikbaysqtJK10PKMfTzsvQ_-10QxmcFFpL5fLvJTNIUUJWgpavVytNAAoiyrdeuHp-jUDNSa--AGG2bz95FLQB4CGHyMgbrnCAiz6jJ780eXWXUZoc2ia6Hqfyh0ya4yUrCuf4H9dGBp-eaDo2AiOhqRWhcIk2m9-y__G8NisdY
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2023_128303
crossref_primary_10_1080_07388551_2020_1856770
crossref_primary_10_1016_j_biortech_2023_130144
crossref_primary_10_1186_s12934_024_02317_0
crossref_primary_10_35534_sbe_2023_10007
crossref_primary_10_1039_D2GC02909J
crossref_primary_10_1016_j_ijbiomac_2024_135512
crossref_primary_10_1186_s12934_022_01828_y
crossref_primary_10_1016_j_tibtech_2020_11_005
crossref_primary_10_1016_j_ymben_2023_06_002
crossref_primary_10_1016_j_bbrc_2024_149876
crossref_primary_10_1016_j_synbio_2022_02_007
crossref_primary_10_1080_07388551_2023_2270702
crossref_primary_10_1016_j_apsb_2024_05_019
crossref_primary_10_1186_s13068_023_02266_7
crossref_primary_10_1002_biot_202000142
crossref_primary_10_1007_s11274_024_03885_4
crossref_primary_10_1002_cssc_202401651
crossref_primary_10_1002_bit_28278
crossref_primary_10_1007_s00253_021_11410_y
crossref_primary_10_1002_bit_27560
crossref_primary_10_1021_acssuschemeng_2c07418
crossref_primary_10_2139_ssrn_4090251
crossref_primary_10_1007_s00253_025_13417_1
crossref_primary_10_3389_finmi_2023_1319774
crossref_primary_10_1016_j_copbio_2020_10_012
crossref_primary_10_1016_j_fuel_2021_122773
crossref_primary_10_1016_j_bej_2023_108936
crossref_primary_10_1021_acssuschemeng_1c02511
crossref_primary_10_1080_07388551_2020_1785386
crossref_primary_10_1038_s41467_020_14830_y
crossref_primary_10_3389_fbioe_2022_844517
crossref_primary_10_1016_j_checat_2022_11_006
crossref_primary_10_1186_s13068_020_01744_6
crossref_primary_10_1039_D2GC02177C
crossref_primary_10_1016_j_tibtech_2020_08_010
Cites_doi 10.1038/nature08301
10.1074/jbc.M801160200
10.1021/ja036391+
10.1016/0032-9592(93)80041-E
10.1371/journal.pone.0052498
10.1007/s00018-012-0945-1
10.1021/cr9001676
10.1021/bp9500627
10.1111/1567-1364.12138
10.1016/j.jbiotec.2011.06.025
10.1016/j.biortech.2017.11.062
10.1007/s11274-017-2215-8
10.1042/BJ20041053
10.1128/AEM.00955-07
10.1007/BF00318659
10.1128/MCB.25.15.6760-6771.2005
10.1038/nprot.2008.73
10.1186/s12934-018-0899-6
10.1074/jbc.M705570200
10.1039/C8GC03864C
10.1111/j.1742-4658.2011.08103.x
10.1016/j.cbpa.2015.06.004
10.1186/s13568-015-0175-7
10.1006/meth.2001.1262
10.1016/j.biortech.2018.04.013
10.1007/s00253-013-4877-y
10.1074/jbc.M111.328914
10.1016/j.ymben.2012.03.002
10.1186/s13068-015-0374-0
10.1007/s00253-009-2198-y
10.1007/s00253-017-8547-3
10.1021/acs.biochem.7b00072
10.1016/0092-8674(88)90110-9
10.1007/s00253-015-7179-8
10.1016/j.procbio.2013.10.002
10.1016/j.ymben.2013.10.003
10.1038/srep18149
10.1074/jbc.M111.286666
10.1016/j.jbiosc.2018.05.019
10.1007/s10295-015-1693-7
10.1371/journal.pgen.1005106
10.1074/jbc.M113.486878
10.1007/s00253-016-7530-8
10.1016/j.jbiotec.2013.11.025
10.1128/MCB.01219-07
10.1038/nchembio.2020
10.1186/1754-6834-7-8
10.1093/jb/mvp028
10.1007/s11274-016-2085-5
ContentType Journal Article
Copyright 2019 International Metabolic Engineering Society
Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 International Metabolic Engineering Society
– notice: Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ymben.2019.08.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1096-7184
EndPage 27
ExternalDocumentID 31434008
10_1016_j_ymben_2019_08_012
S1096717619301843
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LG5
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
UHS
XPP
ZMT
ZU3
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c458t-eccf3847c25a1aae5fc168998cf92ee4f4ad6566998cc144b533baa6e28439083
IEDL.DBID .~1
ISSN 1096-7176
1096-7184
IngestDate Fri Jul 11 11:16:37 EDT 2025
Mon Jul 21 11:56:18 EDT 2025
Thu Apr 03 07:07:13 EDT 2025
Tue Jul 01 00:51:26 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Fri Feb 23 02:37:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metabolic engineering
2-Ketoacid decarboxylase
Fe–S cluster
xylonate dehydratase
Yeast cell factory
Biomass utilization
Language English
License Copyright © 2019 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-eccf3847c25a1aae5fc168998cf92ee4f4ad6566998cc144b533baa6e28439083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31434008
PQID 2281105568
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2305183094
proquest_miscellaneous_2281105568
pubmed_primary_31434008
crossref_primary_10_1016_j_ymben_2019_08_012
crossref_citationtrail_10_1016_j_ymben_2019_08_012
elsevier_sciencedirect_doi_10_1016_j_ymben_2019_08_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Belgium
PublicationPlace_xml – name: Belgium
PublicationTitle Metabolic engineering
PublicationTitleAlternate Metab Eng
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hong, Nielsen (bib16) 2012; 69
Guirimand, Sasaki, Inokuma, Bamba (bib12) 2016; 100
Sun, Yang, Sun, Zhu, Li, Li, Xu, Zhang (bib46) 2016; 43
Ishii, Izawa, Matsumura, Wakamura, Tanino, Tanaka, Ogino, Fukuda, Kondo (bib18) 2009; 145
Sluiter, Hames, Ruiz, Scarlata, Sluiter, Templeton, Crocker (bib45) 2012
Netz, Pierik, Stümpfig, Bill, Sharma, Pallesen, Walden, Lill (bib35) 2012; 287
Abdel-Ghany, Day, Heuberger, Broeckling, Reddy (bib1) 2013; 20
De La Plaza, Fernández De Palencia, Peláez, Requena (bib8) 2004; 238
Sakamoto, Hasunuma, Hori, Yamada, Kondo (bib41) 2012; 158
Eichinger, Boeke (bib10) 1988; 54
Olsson, Hahn-Hägerdal (bib37) 1993; 28
Carlsen, Ajikumar, Formenti, Zhou, Phon, Nielsen, Lantz, Kielland-Brandt, Stephanopoulos (bib6) 2013; 97
Skoza, Mohos (bib44) 1976; 159
Niu, Molefe, Frost (bib36) 2003; 125
Cao, Niu, Guo, Xian, Liu (bib5) 2015; 5
Bamba, Hasunuma, Kondo (bib3) 2016; 6
Lu, Jeffries (bib30) 2007; 73
Schmittgen, Livak (bib43) 2008; 3
Courel, Lallet, Camadro, Blaiseau (bib7) 2005; 25
Yamada, Tanaka, Ogino, Fukuda, Kondo (bib53) 2010; 85
Milne, van Maris, Pronk, Daran (bib33) 2015; 8
Pallesen, Solodovnikova, Sharma, Walden (bib38) 2013; 288
Parekh, Shaw, Wittrup (bib39) 1996; 12
Wang, Xu, Hu, Yang, Gao, Xu, Chen, Ouyang (bib51) 2018; 250
Livak, Schmittgen (bib29) 2001; 25
Lane, Dong, Jin (bib25) 2018; 260
Guirimand, Inokuma, Bamba, Matsuda, Morita, Sasaki, Ogino, Berrin, Hasunuma, Kondo (bib13) 2019
Tai, Xiong, Jambunathan, Wang, Wang, Stapleton, Zhang (bib47) 2016; 12
Partow, Siewers, Daviet, Schalk, Nielsen (bib40) 2012; 7
Valdehuesa, Liu, Ramos (bib49) 2014; 49
Li, Bagley, Ward, Kaplan (bib27) 2008; 28
Hausmann, Samans, Lill, Mühlenhoff (bib15) 2008; 283
Lill (bib28) 2009; 460
Xiong, Zeng, Tang, Alper, Bai, Zhao (bib52) 2018; 17
Salusjärvi, Toivari, Vehkomäki, Koivistoinen, Mojzita, Niemelä, Penttilä, Ruohonen (bib42) 2017; 101
Inokuma, Hasunuma, Kondo (bib17) 2014; 7
Chen, Yang, Kuo (bib54) 1992; 21
Kumánovics, Chen, Li, Bagley, Adkins, Lin, Dingra, Outten, Keller, Winge, Ward, Kaplan (bib24) 2008; 283
Kaplan, Kaplan (bib21) 2009; 109
Ishii, Kondo, Makino, Ogura, Matsuda, Kondo (bib19) 2014; 14
Kneen, Stan, Yep, Tyler, Saehuan, McLeish (bib23) 2011; 278
Li, Jia, Ward, Kaplan (bib26) 2011; 286
Encinar del Dedo, Gabrielli, Carmona, Ayte, Hidalgo (bib9) 2015; 11
Gouranlou, Kohsary (bib11) 2010; 22
Toivari, Nygård, Kumpula, Vehkomäki, Benčina, Valkonen, Maaheimo, Andberg, Koivula, Ruohonen, Penttilä, Wiebe (bib48) 2012; 14
Monteith, Schoefield, Bailey (bib34) 1998
Martínez-Pastor, Perea-García, Puig (bib32) 2017; 33
Lu, He, Zong, Song, Chen, Zhuge (bib31) 2016; 32
Kim, Lee (bib22) 2005; 387
Vo, Fleischman, Froehlich, Lee, Cosman, Glynn, Hassan, Perlstein (bib50) 2018; 57
Jing, Cao, Lu, Zong, Zhuge (bib20) 2018; 126
Andberg, Aro-Kärkkäinen, Carlson, Oja, Bozonnet, Toivari, Hakulinen, O'Donohue, Penttilä, Koivula (bib2) 2016; 100
Hasunuma, Ishii, Kondo (bib14) 2015; 29
Benisch, Boles (bib4) 2014; 171
Schmittgen (10.1016/j.ymben.2019.08.012_bib43) 2008; 3
Andberg (10.1016/j.ymben.2019.08.012_bib2) 2016; 100
Hausmann (10.1016/j.ymben.2019.08.012_bib15) 2008; 283
Kaplan (10.1016/j.ymben.2019.08.012_bib21) 2009; 109
Sluiter (10.1016/j.ymben.2019.08.012_bib45) 2012
Valdehuesa (10.1016/j.ymben.2019.08.012_bib49) 2014; 49
Benisch (10.1016/j.ymben.2019.08.012_bib4) 2014; 171
Abdel-Ghany (10.1016/j.ymben.2019.08.012_bib1) 2013; 20
Li (10.1016/j.ymben.2019.08.012_bib26) 2011; 286
Niu (10.1016/j.ymben.2019.08.012_bib36) 2003; 125
Wang (10.1016/j.ymben.2019.08.012_bib51) 2018; 250
Li (10.1016/j.ymben.2019.08.012_bib27) 2008; 28
Ishii (10.1016/j.ymben.2019.08.012_bib18) 2009; 145
Lu (10.1016/j.ymben.2019.08.012_bib31) 2016; 32
Parekh (10.1016/j.ymben.2019.08.012_bib39) 1996; 12
Tai (10.1016/j.ymben.2019.08.012_bib47) 2016; 12
Gouranlou (10.1016/j.ymben.2019.08.012_bib11) 2010; 22
De La Plaza (10.1016/j.ymben.2019.08.012_bib8) 2004; 238
Partow (10.1016/j.ymben.2019.08.012_bib40) 2012; 7
Toivari (10.1016/j.ymben.2019.08.012_bib48) 2012; 14
Lu (10.1016/j.ymben.2019.08.012_bib30) 2007; 73
Xiong (10.1016/j.ymben.2019.08.012_bib52) 2018; 17
Jing (10.1016/j.ymben.2019.08.012_bib20) 2018; 126
Vo (10.1016/j.ymben.2019.08.012_bib50) 2018; 57
Martínez-Pastor (10.1016/j.ymben.2019.08.012_bib32) 2017; 33
Carlsen (10.1016/j.ymben.2019.08.012_bib6) 2013; 97
Skoza (10.1016/j.ymben.2019.08.012_bib44) 1976; 159
Chen (10.1016/j.ymben.2019.08.012_bib54) 1992; 21
Encinar del Dedo (10.1016/j.ymben.2019.08.012_bib9) 2015; 11
Livak (10.1016/j.ymben.2019.08.012_bib29) 2001; 25
Inokuma (10.1016/j.ymben.2019.08.012_bib17) 2014; 7
Guirimand (10.1016/j.ymben.2019.08.012_bib13) 2019
Kim (10.1016/j.ymben.2019.08.012_bib22) 2005; 387
Lane (10.1016/j.ymben.2019.08.012_bib25) 2018; 260
Lill (10.1016/j.ymben.2019.08.012_bib28) 2009; 460
Ishii (10.1016/j.ymben.2019.08.012_bib19) 2014; 14
Bamba (10.1016/j.ymben.2019.08.012_bib3) 2016; 6
Pallesen (10.1016/j.ymben.2019.08.012_bib38) 2013; 288
Salusjärvi (10.1016/j.ymben.2019.08.012_bib42) 2017; 101
Yamada (10.1016/j.ymben.2019.08.012_bib53) 2010; 85
Kumánovics (10.1016/j.ymben.2019.08.012_bib24) 2008; 283
Hong (10.1016/j.ymben.2019.08.012_bib16) 2012; 69
Sun (10.1016/j.ymben.2019.08.012_bib46) 2016; 43
Sakamoto (10.1016/j.ymben.2019.08.012_bib41) 2012; 158
Kneen (10.1016/j.ymben.2019.08.012_bib23) 2011; 278
Eichinger (10.1016/j.ymben.2019.08.012_bib10) 1988; 54
Olsson (10.1016/j.ymben.2019.08.012_bib37) 1993; 28
Milne (10.1016/j.ymben.2019.08.012_bib33) 2015; 8
Courel (10.1016/j.ymben.2019.08.012_bib7) 2005; 25
Netz (10.1016/j.ymben.2019.08.012_bib35) 2012; 287
Cao (10.1016/j.ymben.2019.08.012_bib5) 2015; 5
Monteith (10.1016/j.ymben.2019.08.012_bib34) 1998
Hasunuma (10.1016/j.ymben.2019.08.012_bib14) 2015; 29
Guirimand (10.1016/j.ymben.2019.08.012_bib12) 2016; 100
References_xml – volume: 14
  start-page: 399
  year: 2014
  end-page: 411
  ident: bib19
  article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae
  publication-title: FEMS Yeast Res.
– volume: 100
  start-page: 7549
  year: 2016
  end-page: 7563
  ident: bib2
  article-title: Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 287
  start-page: 12365
  year: 2012
  end-page: 12378
  ident: bib35
  article-title: A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation
  publication-title: J. Biol. Chem.
– volume: 260
  start-page: 380
  year: 2018
  end-page: 394
  ident: bib25
  article-title: Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae
  publication-title: Bioresour. Technol.
– year: 2012
  ident: bib45
  article-title: Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory
– volume: 278
  start-page: 1842
  year: 2011
  end-page: 1853
  ident: bib23
  article-title: Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from
  publication-title: FEBS J.
– volume: 11
  year: 2015
  ident: bib9
  article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast
  publication-title: PLoS Genet.
– start-page: 1795
  year: 2019
  end-page: 1808
  ident: bib13
  article-title: Cell-surface display technology and metabolic engineering of
  publication-title: Green Chem.
– volume: 6
  start-page: 4
  year: 2016
  ident: bib3
  article-title: Disruption of
  publication-title: Amb. Express
– volume: 14
  start-page: 427
  year: 2012
  end-page: 436
  ident: bib48
  article-title: Metabolic engineering of
  publication-title: Metab. Eng.
– volume: 33
  start-page: 75
  year: 2017
  ident: bib32
  article-title: Mechanisms of iron sensing and regulation in the yeast
  publication-title: World J. Microbiol. Biotechnol.
– volume: 5
  start-page: 18149
  year: 2015
  ident: bib5
  article-title: Biotechnological production of 1,2,4-butanetriol: an efficient process to synthesize energetic material precursor from renewable biomass
  publication-title: Sci. Rep.
– volume: 12
  start-page: 16
  year: 1996
  end-page: 21
  ident: bib39
  article-title: An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae
  publication-title: Biotechnol. Prog.
– volume: 100
  start-page: 3477
  year: 2016
  end-page: 3487
  ident: bib12
  article-title: Cell-surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 69
  start-page: 2671
  year: 2012
  end-page: 2690
  ident: bib16
  article-title: Metabolic engineering of
  publication-title: Cell. Mol. Life Sci.
– volume: 8
  start-page: 1
  year: 2015
  end-page: 15
  ident: bib33
  article-title: Comparative assessment of native and heterologous 2‑oxo acid decarboxylases for application in isobutanol production by
  publication-title: Biotechnol. Biofuels
– volume: 49
  start-page: 25
  year: 2014
  end-page: 32
  ident: bib49
  article-title: Direct bioconversion of d-xylose to 1, 2, 4-butanetriol in an engineered
  publication-title: Process Biochem.
– volume: 28
  start-page: 1326
  year: 2008
  end-page: 1337
  ident: bib27
  article-title: Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast
  publication-title: Mol. Cell. Biol.
– volume: 250
  start-page: 406
  year: 2018
  end-page: 412
  ident: bib51
  article-title: D-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered
  publication-title: Bioresour. Technol.
– volume: 7
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib40
  article-title: Reconstruction and evaluation of the synthetic bacterial MEP pathway in
  publication-title: PLoS One
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: bib29
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2
  publication-title: Methods
– volume: 283
  start-page: 10276
  year: 2008
  end-page: 10286
  ident: bib24
  article-title: Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis
  publication-title: J. Biol. Chem.
– volume: 97
  start-page: 5753
  year: 2013
  end-page: 5769
  ident: bib6
  article-title: Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 85
  start-page: 1491
  year: 2010
  end-page: 1498
  ident: bib53
  article-title: Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 125
  start-page: 12998
  year: 2003
  end-page: 12999
  ident: bib36
  article-title: Microbial synthesis of the energetic material precursor 1,2,4-butanetriol
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 2349
  year: 2018
  end-page: 2358
  ident: bib50
  article-title: Identifying the protein interactions of the cytosolic iron-sulfur cluster targeting complex essential for its assembly and recognition of apo-targets
  publication-title: Biochemistry
– volume: 3
  start-page: 1101
  year: 2008
  end-page: 1108
  ident: bib43
  article-title: Analyzing real-time PCR data by the comparative C
  publication-title: Nat. Protoc.
– volume: 28
  start-page: 249
  year: 1993
  end-page: 257
  ident: bib37
  article-title: Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates
  publication-title: Process Biochem.
– volume: 238
  start-page: 367
  year: 2004
  end-page: 374
  ident: bib8
  article-title: Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by
  publication-title: FEMS Microbiol. Lett.
– volume: 21
  start-page: 83
  year: 1992
  end-page: 84
  ident: bib54
  article-title: One-step transformation of yeast in stationary phase
  publication-title: Curr. Genet.
– volume: 25
  start-page: 6760
  year: 2005
  end-page: 6771
  ident: bib7
  article-title: Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1
  publication-title: Mol. Cell. Biol.
– volume: 17
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib52
  article-title: Condition-specific promoter activities in
  publication-title: Microb. Cell Factories
– volume: 288
  start-page: 23358
  year: 2013
  end-page: 23367
  ident: bib38
  article-title: Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold
  publication-title: J. Biol. Chem.
– volume: 126
  start-page: 547
  year: 2018
  end-page: 552
  ident: bib20
  article-title: Modification of an engineered
  publication-title: J. Biosci. Bioeng.
– volume: 7
  start-page: 8
  year: 2014
  ident: bib17
  article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the
  publication-title: Biotechnol. Biofuels
– year: 1998
  ident: bib34
  article-title: Process for the Preparation of Butanetriols
– volume: 109
  start-page: 4536
  year: 2009
  end-page: 4552
  ident: bib21
  article-title: Iron acquisition and transcriptional regulation
  publication-title: Chem. Rev.
– volume: 159
  start-page: 457
  year: 1976
  end-page: 462
  ident: bib44
  article-title: Stable thiobarbituric acid chromophore with dimethyl sulphoxide
  publication-title: J. Biol. Chem.
– volume: 283
  start-page: 8318
  year: 2008
  end-page: 8330
  ident: bib15
  article-title: Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis
  publication-title: J. Biol. Chem.
– volume: 158
  start-page: 203
  year: 2012
  end-page: 210
  ident: bib41
  article-title: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing
  publication-title: J. Biotechnol.
– volume: 43
  start-page: 67
  year: 2016
  end-page: 78
  ident: bib46
  article-title: Synthetic pathway optimization for improved 1,2,4-butanetriol production
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 22
  start-page: 4221
  year: 2010
  end-page: 4228
  ident: bib11
  article-title: Synthesis and characterization of 1,2,4-butanetrioltrinitrate
  publication-title: Asian J. Chem.
– volume: 145
  start-page: 701
  year: 2009
  end-page: 708
  ident: bib18
  article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast
  publication-title: J. Biochem.
– volume: 32
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib31
  article-title: Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins
  publication-title: World J. Microbiol. Biotechnol.
– volume: 101
  start-page: 8151
  year: 2017
  end-page: 8163
  ident: bib42
  article-title: Production of ethylene glycol or glycolic acid from D-xylose in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 387
  start-page: 271
  year: 2005
  end-page: 280
  ident: bib22
  article-title: Identification and characterization of
  publication-title: Biochem. J.
– volume: 20
  start-page: 109
  year: 2013
  end-page: 120
  ident: bib1
  article-title: Metabolic engineering of
  publication-title: Metab. Eng.
– volume: 12
  start-page: 247
  year: 2016
  end-page: 253
  ident: bib47
  article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products
  publication-title: Nat. Chem. Biol.
– volume: 54
  start-page: 955
  year: 1988
  end-page: 966
  ident: bib10
  article-title: The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition
  publication-title: Cell
– volume: 171
  start-page: 45
  year: 2014
  end-page: 55
  ident: bib4
  article-title: The bacterial Entner-Doudoroff pathway does not replace glycolysis in
  publication-title: J. Biotechnol.
– volume: 29
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib14
  article-title: Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown
  publication-title: Curr. Opin. Chem. Biol.
– volume: 460
  start-page: 831
  year: 2009
  end-page: 838
  ident: bib28
  article-title: Function and biogenesis of iron–sulphur proteins
  publication-title: Nature
– volume: 73
  start-page: 6072
  year: 2007
  end-page: 6077
  ident: bib30
  article-title: Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered
  publication-title: Appl. Environ. Microbiol.
– volume: 286
  start-page: 38488
  year: 2011
  end-page: 38497
  ident: bib26
  article-title: Yap5 protein-regulated transcription of the
  publication-title: J. Biol. Chem.
– volume: 460
  start-page: 831
  year: 2009
  ident: 10.1016/j.ymben.2019.08.012_bib28
  article-title: Function and biogenesis of iron–sulphur proteins
  publication-title: Nature
  doi: 10.1038/nature08301
– volume: 283
  start-page: 10276
  year: 2008
  ident: 10.1016/j.ymben.2019.08.012_bib24
  article-title: Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801160200
– volume: 125
  start-page: 12998
  year: 2003
  ident: 10.1016/j.ymben.2019.08.012_bib36
  article-title: Microbial synthesis of the energetic material precursor 1,2,4-butanetriol
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036391+
– volume: 28
  start-page: 249
  year: 1993
  ident: 10.1016/j.ymben.2019.08.012_bib37
  article-title: Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates
  publication-title: Process Biochem.
  doi: 10.1016/0032-9592(93)80041-E
– volume: 7
  start-page: 1
  year: 2012
  ident: 10.1016/j.ymben.2019.08.012_bib40
  article-title: Reconstruction and evaluation of the synthetic bacterial MEP pathway in Saccharomyces cerevisiae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052498
– volume: 69
  start-page: 2671
  year: 2012
  ident: 10.1016/j.ymben.2019.08.012_bib16
  article-title: Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-012-0945-1
– year: 1998
  ident: 10.1016/j.ymben.2019.08.012_bib34
– volume: 109
  start-page: 4536
  year: 2009
  ident: 10.1016/j.ymben.2019.08.012_bib21
  article-title: Iron acquisition and transcriptional regulation
  publication-title: Chem. Rev.
  doi: 10.1021/cr9001676
– volume: 12
  start-page: 16
  year: 1996
  ident: 10.1016/j.ymben.2019.08.012_bib39
  article-title: An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp9500627
– volume: 14
  start-page: 399
  year: 2014
  ident: 10.1016/j.ymben.2019.08.012_bib19
  article-title: Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae
  publication-title: FEMS Yeast Res.
  doi: 10.1111/1567-1364.12138
– volume: 158
  start-page: 203
  year: 2012
  ident: 10.1016/j.ymben.2019.08.012_bib41
  article-title: Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2011.06.025
– volume: 250
  start-page: 406
  year: 2018
  ident: 10.1016/j.ymben.2019.08.012_bib51
  article-title: D-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.11.062
– volume: 33
  start-page: 75
  year: 2017
  ident: 10.1016/j.ymben.2019.08.012_bib32
  article-title: Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-017-2215-8
– volume: 387
  start-page: 271
  year: 2005
  ident: 10.1016/j.ymben.2019.08.012_bib22
  article-title: Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041053
– volume: 73
  start-page: 6072
  year: 2007
  ident: 10.1016/j.ymben.2019.08.012_bib30
  article-title: Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00955-07
– volume: 238
  start-page: 367
  year: 2004
  ident: 10.1016/j.ymben.2019.08.012_bib8
  article-title: Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis
  publication-title: FEMS Microbiol. Lett.
– volume: 21
  start-page: 83
  year: 1992
  ident: 10.1016/j.ymben.2019.08.012_bib54
  article-title: One-step transformation of yeast in stationary phase
  publication-title: Curr. Genet.
  doi: 10.1007/BF00318659
– volume: 25
  start-page: 6760
  year: 2005
  ident: 10.1016/j.ymben.2019.08.012_bib7
  article-title: Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.15.6760-6771.2005
– volume: 22
  start-page: 4221
  year: 2010
  ident: 10.1016/j.ymben.2019.08.012_bib11
  article-title: Synthesis and characterization of 1,2,4-butanetrioltrinitrate
  publication-title: Asian J. Chem.
– volume: 3
  start-page: 1101
  year: 2008
  ident: 10.1016/j.ymben.2019.08.012_bib43
  article-title: Analyzing real-time PCR data by the comparative CT method
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 17
  start-page: 1
  year: 2018
  ident: 10.1016/j.ymben.2019.08.012_bib52
  article-title: Condition-specific promoter activities in Saccharomyces cerevisiae
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-018-0899-6
– volume: 283
  start-page: 8318
  year: 2008
  ident: 10.1016/j.ymben.2019.08.012_bib15
  article-title: Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M705570200
– start-page: 1795
  year: 2019
  ident: 10.1016/j.ymben.2019.08.012_bib13
  article-title: Cell-surface display technology and metabolic engineering of Saccharomyces cerevisiae for enhancing xylitol production from woody biomass
  publication-title: Green Chem.
  doi: 10.1039/C8GC03864C
– volume: 278
  start-page: 1842
  year: 2011
  ident: 10.1016/j.ymben.2019.08.012_bib23
  article-title: Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2011.08103.x
– volume: 29
  start-page: 1
  year: 2015
  ident: 10.1016/j.ymben.2019.08.012_bib14
  article-title: Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2015.06.004
– volume: 6
  start-page: 4
  year: 2016
  ident: 10.1016/j.ymben.2019.08.012_bib3
  article-title: Disruption of PHO13 improves ethanol production via the xylose isomerase pathway
  publication-title: Amb. Express
  doi: 10.1186/s13568-015-0175-7
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.1016/j.ymben.2019.08.012_bib29
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 260
  start-page: 380
  year: 2018
  ident: 10.1016/j.ymben.2019.08.012_bib25
  article-title: Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.04.013
– volume: 97
  start-page: 5753
  year: 2013
  ident: 10.1016/j.ymben.2019.08.012_bib6
  article-title: Heterologous expression and characterization of bacterial 2-C-methyl-d-erythritol-4-phosphate pathway in Saccharomyces cerevisiae
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-4877-y
– volume: 287
  start-page: 12365
  year: 2012
  ident: 10.1016/j.ymben.2019.08.012_bib35
  article-title: A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.328914
– volume: 14
  start-page: 427
  year: 2012
  ident: 10.1016/j.ymben.2019.08.012_bib48
  article-title: Metabolic engineering of Saccharomyces cerevisiae for bioconversion of D-xylose to D-xylonate
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.03.002
– volume: 8
  start-page: 1
  year: 2015
  ident: 10.1016/j.ymben.2019.08.012_bib33
  article-title: Comparative assessment of native and heterologous 2‑oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-015-0374-0
– volume: 159
  start-page: 457
  year: 1976
  ident: 10.1016/j.ymben.2019.08.012_bib44
  article-title: Stable thiobarbituric acid chromophore with dimethyl sulphoxide
  publication-title: J. Biol. Chem.
– volume: 85
  start-page: 1491
  year: 2010
  ident: 10.1016/j.ymben.2019.08.012_bib53
  article-title: Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2198-y
– volume: 101
  start-page: 8151
  year: 2017
  ident: 10.1016/j.ymben.2019.08.012_bib42
  article-title: Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-017-8547-3
– volume: 57
  start-page: 2349
  year: 2018
  ident: 10.1016/j.ymben.2019.08.012_bib50
  article-title: Identifying the protein interactions of the cytosolic iron-sulfur cluster targeting complex essential for its assembly and recognition of apo-targets
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00072
– volume: 54
  start-page: 955
  year: 1988
  ident: 10.1016/j.ymben.2019.08.012_bib10
  article-title: The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90110-9
– year: 2012
  ident: 10.1016/j.ymben.2019.08.012_bib45
– volume: 100
  start-page: 3477
  issue: 8
  year: 2016
  ident: 10.1016/j.ymben.2019.08.012_bib12
  article-title: Cell-surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-7179-8
– volume: 49
  start-page: 25
  year: 2014
  ident: 10.1016/j.ymben.2019.08.012_bib49
  article-title: Direct bioconversion of d-xylose to 1, 2, 4-butanetriol in an engineered Escherichia coli
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2013.10.002
– volume: 20
  start-page: 109
  year: 2013
  ident: 10.1016/j.ymben.2019.08.012_bib1
  article-title: Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2013.10.003
– volume: 5
  start-page: 18149
  year: 2015
  ident: 10.1016/j.ymben.2019.08.012_bib5
  article-title: Biotechnological production of 1,2,4-butanetriol: an efficient process to synthesize energetic material precursor from renewable biomass
  publication-title: Sci. Rep.
  doi: 10.1038/srep18149
– volume: 286
  start-page: 38488
  year: 2011
  ident: 10.1016/j.ymben.2019.08.012_bib26
  article-title: Yap5 protein-regulated transcription of the TYW1 gene protects yeast from high iron toxicity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.286666
– volume: 126
  start-page: 547
  year: 2018
  ident: 10.1016/j.ymben.2019.08.012_bib20
  article-title: Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2018.05.019
– volume: 43
  start-page: 67
  year: 2016
  ident: 10.1016/j.ymben.2019.08.012_bib46
  article-title: Synthetic pathway optimization for improved 1,2,4-butanetriol production
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-015-1693-7
– volume: 11
  year: 2015
  ident: 10.1016/j.ymben.2019.08.012_bib9
  article-title: A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005106
– volume: 288
  start-page: 23358
  year: 2013
  ident: 10.1016/j.ymben.2019.08.012_bib38
  article-title: Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.486878
– volume: 100
  start-page: 7549
  year: 2016
  ident: 10.1016/j.ymben.2019.08.012_bib2
  article-title: Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7530-8
– volume: 171
  start-page: 45
  year: 2014
  ident: 10.1016/j.ymben.2019.08.012_bib4
  article-title: The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2013.11.025
– volume: 28
  start-page: 1326
  year: 2008
  ident: 10.1016/j.ymben.2019.08.012_bib27
  article-title: Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01219-07
– volume: 12
  start-page: 247
  year: 2016
  ident: 10.1016/j.ymben.2019.08.012_bib47
  article-title: Engineering nonphosphorylative metabolism to generate lignocellulose-derived products
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2020
– volume: 7
  start-page: 8
  year: 2014
  ident: 10.1016/j.ymben.2019.08.012_bib17
  article-title: Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/1754-6834-7-8
– volume: 145
  start-page: 701
  year: 2009
  ident: 10.1016/j.ymben.2019.08.012_bib18
  article-title: A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvp028
– volume: 32
  start-page: 1
  year: 2016
  ident: 10.1016/j.ymben.2019.08.012_bib31
  article-title: Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-016-2085-5
SSID ssj0011591
Score 2.4269385
Snippet 1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17
SubjectTerms 2-Ketoacid decarboxylase
biochemical pathways
Biomass utilization
Butanols - metabolism
drugs
enzyme activity
fermentation
Fe–S cluster
hydrolysates
iron
Iron - metabolism
Metabolic Engineering
Microorganisms, Genetically-Modified - genetics
Microorganisms, Genetically-Modified - metabolism
plasticizers
rice straw
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
screening
xylonate dehydratase
xylose
Xylose - metabolism
xylose isomerase
Yeast cell factory
Title Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering
URI https://dx.doi.org/10.1016/j.ymben.2019.08.012
https://www.ncbi.nlm.nih.gov/pubmed/31434008
https://www.proquest.com/docview/2281105568
https://www.proquest.com/docview/2305183094
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5Ky2B7GGv3K1tbNNhjtESy7NiPpTRkLSuDrtA3IclnlpHEZUlgednfvjvZztaH5mGPFicsdOe77_DdfQAfQxEoRcuV5GguTUAtPQFXORxhkvps6MqU-52_XGeTW3N5l97twXnXC8Nlla3vb3x69NbtyqC9zcH9dDq4UYS-KRmhDICMNDc88dOYEVv5p9_bMg8CPJE1j4UlS3eTh2KN12bukYegqiLO8VT6sej0GPqMUWj8Ap638FGcNSc8hD1cHMGThlBycwTP_hkv-BK-f23GudLVi7oSqq_7Rvo1wUGm0apngntLxC9K2Zco_EbcuMBNWPV8Q85DhFgBvJw6FC2ZjxijmOOKzGY2DQL_vuoV3I4vvp1PZMusIINJ85UkvVUJxaWgU6ecw7QKKuPMK1SFRjSVcSUDPV4JlHJ5AoXeuQwpmCUFobbXsL-oF_gWxCgrA6ESNElSGueMN6nBqtRF7jHRbtgD3d2oDe3YcWa_mNmuvuyHjWqwrAbLnJhK96C_3XTfTN3YLZ51qrIPjMdSXNi98UOnWEufFf8rIRXU66XVOleROzTfIUO-kjwiJcg9eNNYxfa0CeFQco_5u_892nt4yk9N5cwx7K9-rvGE8M_Kn0YDP4WDs89Xk-s_ZPoE3g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBwQLC8ytNIcKtp4zjZ5MABAVWXfQhpd6W9GduZiKK2WdFWkAt_ij_IjJMUOGwPSHt1nGTkmXz-RhnPB_DS555StCySvJtL7VFJR8RVDncxTlw6tEXC550Pj9Lxqf54lpxtwa_uLAyXVbbY32B6QOt2ZNCu5uB8MhkcR8S-KRmhDICCNNOdgvU-1t8pb1u82XtPTn6l1OjDybuxbKUFpNdJtpRkeBkTMHuV2MhaTEofpZx6-DJXiLrUtmCmwyOecg5HrMhZmyKheZwTbaHnXoGrmuCCZRNe_1zXlRDDCjJ9bJ1k87pWR6GorJ455K6rUR4ah0bqou3wIrobtr3RbbjV8lXxtlmSO7CF8x241ihY1jtw869-hnfhy6emfyz5WlSliPqqr6VbEf9k3a5qKvgwi_hRT6sFCleLY-v51Fc1qwmthA8lx4uJRdGqB4kRihkuKU6nEy_wz6vuwemlrPd92J5Xc3wIYjctPNEg1HFcaGu104nGslB55jBWdtgD1a2o8W2fc5bbmJquoO2rCW4w7AbDIpyR6kF_fdN50-Zj8_S0c5X5J1oNbUSbb3zROdbQd8w_Z8gF1WphlMqiIFaabZhD4EwQTBl5Dx40UbG2NibiS3icPfpf057D9fHJ4YE52Dvafww3-EpTtvMEtpffVviUyNfSPQvBLuDzZX9dvwH1oEDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+1%2C2%2C4-butanetriol+from+xylose+by+Saccharomyces+cerevisiae+through+Fe+metabolic+engineering&rft.jtitle=Metabolic+engineering&rft.au=Bamba%2C+Takahiro&rft.au=Yukawa%2C+Takahiro&rft.au=Guirimand%2C+Gregory&rft.au=Inokuma%2C+Kentaro&rft.date=2019-12-01&rft.issn=1096-7184&rft.eissn=1096-7184&rft.volume=56&rft.spage=17&rft_id=info:doi/10.1016%2Fj.ymben.2019.08.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon