Electrocardiogram-Based Biometric Identification Using Mixed Feature Extraction and Sparse Representation

(1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, thi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 22; p. 9179
Main Authors Zhang, Xu, Liu, Qifeng, He, Dong, Suo, Hui, Zhao, Chun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s23229179

Cover

Loading…
Abstract (1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector–matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals.
AbstractList (1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector–matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals.
(1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector-matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals.(1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector-matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals.
Audience Academic
Author Zhao, Chun
Liu, Qifeng
Suo, Hui
Zhang, Xu
He, Dong
Author_xml – sequence: 1
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
– sequence: 2
  givenname: Qifeng
  surname: Liu
  fullname: Liu, Qifeng
– sequence: 3
  givenname: Dong
  orcidid: 0000-0002-2464-6290
  surname: He
  fullname: He, Dong
– sequence: 4
  givenname: Hui
  surname: Suo
  fullname: Suo, Hui
– sequence: 5
  givenname: Chun
  surname: Zhao
  fullname: Zhao, Chun
BookMark eNptkktr3DAUhU1JoEnaRf-BoZt24URPS14mYdIOpBTyWItr6WrQYFtTyQPJv69mps-0aCFx9Z1z0dE9rY6mOGFVvaPknPOOXGTGGeuo6l5VJ1Qw0WjGyNEf59fVac5rQhjnXJ9UYTGgnVO0kFyIqwRjcwUZXX0V4ohzCrZeOpzm4IOFOcSpfsxhWtVfwlOBbhDmbcJ68TQnsPtrmFx9v4GUsb7DTcJcxHvhm-rYw5Dx7Y_9rHq8WTxcf25uv35aXl_eNlZIPTfYWyk8p94i7alEJh1VolNaqK6j0CpBiKRKSte1qHgvegnOM5BaK9oKxc-q5cHXRVibTQojpGcTIZh9IaaVgTQHO6CRXAgP3gMSLTS0ujRsO0c0KiTQu-L14eC1SfHbFvNsxpAtDgNMGLfZMN1xLaRioqDvX6DruE1Teeme4pLzVv2mVlD6h8nHXXA7U3OplOCsJZwU6vw_VFkOx2DLh_tQ6n8JLg4Cm2LOCb2x4ZB6EYbBUGJ202F-TUdRfHyh-JnUv-x3jya5eg
CitedBy_id crossref_primary_10_3390_s25061864
crossref_primary_10_3390_s24175784
Cites_doi 10.1109/ICPR.2010.940
10.1109/ACCESS.2019.2954576
10.1109/ACCESS.2015.2430359
10.1109/19.930458
10.1016/j.bspc.2018.03.003
10.1109/ACCESS.2023.3244651
10.1007/978-0-85729-868-3
10.1016/j.eswa.2023.119609
10.1109/ICACEA.2015.7164783
10.1016/j.isatra.2020.12.029
10.1109/ICITCS.2015.7292977
10.3390/s20113069
10.1016/j.atmosres.2012.11.003
10.1016/S0092-8674(03)00203-4
10.1080/13102818.2018.1428500
10.1049/iet-spr.2014.0005
10.1016/j.eswa.2015.02.012
10.1109/ICEEOT.2016.7754902
10.1016/j.bspc.2020.102226
10.1109/ACCESS.2019.2902870
10.1016/j.bspc.2021.102741
10.5505/pajes.2019.32966
10.1109/CNSR.2008.38
10.3390/s19102350
10.25103/jestr.106.01
10.3390/s18041005
10.1109/ACCT.2015.87
10.1155/2019/6751932
10.1109/ICIP.2014.7025320
10.1109/ICDCSyst.2014.6926190
10.1109/TIM.2022.3199260
10.22489/CinC.2017.350-114
10.1109/LSP.2013.2267593
10.1109/ACCESS.2021.3095248
10.1016/j.dsp.2005.12.003
10.1109/TIP.2006.887733
10.1109/BCC.2006.4341628
10.1109/MAMI.2015.7456595
10.1093/oxfordjournals.eurheartj.a060332
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s23229179
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_5344faffae0848a68b1569d08e7e0abd
A774326030
10_3390_s23229179
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c458t-ebc54f31fce1b15e25d17497847991a6740051755d96e73b4b5adf2a588716473
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:30 EDT 2025
Fri Jul 11 01:49:48 EDT 2025
Fri Jul 25 05:53:35 EDT 2025
Tue Jun 17 22:24:22 EDT 2025
Tue Jun 10 21:15:30 EDT 2025
Tue Jul 01 03:50:36 EDT 2025
Thu Apr 24 23:00:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-ebc54f31fce1b15e25d17497847991a6740051755d96e73b4b5adf2a588716473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2464-6290
OpenAccessLink https://www.proquest.com/docview/2893353367?pq-origsite=%requestingapplication%
PQID 2893353367
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_5344faffae0848a68b1569d08e7e0abd
proquest_miscellaneous_2893845724
proquest_journals_2893353367
gale_infotracmisc_A774326030
gale_infotracacademiconefile_A774326030
crossref_citationtrail_10_3390_s23229179
crossref_primary_10_3390_s23229179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Choi (ref_12) 2019; 7
Phukpattaranont (ref_7) 2015; 42
Walsh (ref_32) 2003; 113
ref_14
ref_36
ref_13
ref_34
Kim (ref_20) 2019; 7
ref_33
ref_31
Gurkan (ref_11) 2020; 26
Alotaiby (ref_16) 2019; 2019
Singh (ref_25) 2006; 16
Fatimah (ref_42) 2022; 71
ref_18
ref_17
ref_39
ref_38
ref_15
Dong (ref_37) 2018; 32
Zhang (ref_30) 2015; 3
Taddei (ref_24) 1992; 13
Uwaechia (ref_3) 2021; 9
Starck (ref_27) 2007; 16
ref_22
ref_21
ref_41
Biel (ref_2) 2001; 50
Kumar (ref_19) 2021; 114
ref_1
Melzi (ref_5) 2023; 11
ref_29
ref_28
Yadav (ref_26) 2015; 9
Wang (ref_35) 2013; 20
Berkaya (ref_4) 2018; 43
ref_9
Sang (ref_23) 2013; 122
ref_8
Patro (ref_10) 2017; 10
Meltzer (ref_40) 2023; 219
ref_6
References_xml – ident: ref_15
  doi: 10.1109/ICPR.2010.940
– volume: 7
  start-page: 123069
  year: 2019
  ident: ref_20
  article-title: An enhanced electrocardiogram biometric authentication system using machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954576
– ident: ref_9
– volume: 3
  start-page: 490
  year: 2015
  ident: ref_30
  article-title: A Survey of Sparse Representation: Algorithms and Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2430359
– volume: 50
  start-page: 808
  year: 2001
  ident: ref_2
  article-title: ECG analysis: A new approach in human identification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.930458
– volume: 43
  start-page: 216
  year: 2018
  ident: ref_4
  article-title: A survey on ECG analysis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.03.003
– volume: 11
  start-page: 15555
  year: 2023
  ident: ref_5
  article-title: ECG Biometric Recognition: Review, System Proposal, and Benchmark Evaluation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3244651
– ident: ref_34
  doi: 10.1007/978-0-85729-868-3
– volume: 219
  start-page: 119609
  year: 2023
  ident: ref_40
  article-title: Efficient Clustering-Based electrocardiographic biometric identification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119609
– ident: ref_28
  doi: 10.1109/ICACEA.2015.7164783
– volume: 114
  start-page: 251
  year: 2021
  ident: ref_19
  article-title: Stationary wavelet transform based ECG signal denoising method
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.12.029
– ident: ref_39
  doi: 10.1109/ICITCS.2015.7292977
– ident: ref_41
  doi: 10.3390/s20113069
– volume: 122
  start-page: 8
  year: 2013
  ident: ref_23
  article-title: A review on the applications of wavelet transform in hydrology time series analysis
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2012.11.003
– volume: 113
  start-page: 61
  year: 2003
  ident: ref_32
  article-title: OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00203-4
– volume: 32
  start-page: 769
  year: 2018
  ident: ref_37
  article-title: ECG-based identity recognition via deterministic learning
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2018.1428500
– volume: 9
  start-page: 88
  year: 2015
  ident: ref_26
  article-title: Electrocardiogram signal denoising using non-local wavelet transform domain filtering
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2014.0005
– volume: 42
  start-page: 4867
  year: 2015
  ident: ref_7
  article-title: QRS detection algorithm based on the quadratic filter
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.012
– ident: ref_6
  doi: 10.1109/ICEEOT.2016.7754902
– ident: ref_8
– ident: ref_1
  doi: 10.1016/j.bspc.2020.102226
– ident: ref_33
– volume: 7
  start-page: 34862
  year: 2019
  ident: ref_12
  article-title: User identification system using 2D resized spectrogram features of ECG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902870
– ident: ref_21
  doi: 10.1016/j.bspc.2021.102741
– volume: 26
  start-page: 318
  year: 2020
  ident: ref_11
  article-title: ECG based biometric identification method using QRS images and convolutional neural network
  publication-title: Pamukkale Univ. J. Eng. Sci.
  doi: 10.5505/pajes.2019.32966
– ident: ref_13
  doi: 10.1109/CNSR.2008.38
– ident: ref_38
  doi: 10.3390/s19102350
– volume: 10
  start-page: 1
  year: 2017
  ident: ref_10
  article-title: AMachine Learning Classification Approaches for Biometric Recognition System using ECG Signals
  publication-title: J. Eng. Sci. Technol. Rev.
  doi: 10.25103/jestr.106.01
– ident: ref_36
  doi: 10.3390/s18041005
– ident: ref_22
  doi: 10.1109/ACCT.2015.87
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_16
  article-title: ECG-Based Subject Identification Using Statistical Features and Random Forest
  publication-title: J. Sens.
  doi: 10.1155/2019/6751932
– ident: ref_31
  doi: 10.1109/ICIP.2014.7025320
– ident: ref_17
  doi: 10.1109/ICDCSyst.2014.6926190
– volume: 71
  start-page: 1
  year: 2022
  ident: ref_42
  article-title: Biometric Identification from ECG Signals Using Fourier Decomposition and Machine Learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3199260
– ident: ref_29
  doi: 10.22489/CinC.2017.350-114
– volume: 20
  start-page: 937
  year: 2013
  ident: ref_35
  article-title: Human Identification from ECG Signals Via Sparse Representation of Local Segments
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2267593
– volume: 9
  start-page: 97760
  year: 2021
  ident: ref_3
  article-title: A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095248
– volume: 16
  start-page: 275
  year: 2006
  ident: ref_25
  article-title: Optimal selection of wavelet basis function applied to ECG signal denoising
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2005.12.003
– volume: 16
  start-page: 297
  year: 2007
  ident: ref_27
  article-title: The undecimated wavelet decomposition and its reconstruction
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.887733
– ident: ref_14
  doi: 10.1109/BCC.2006.4341628
– ident: ref_18
  doi: 10.1109/MAMI.2015.7456595
– volume: 13
  start-page: 1164
  year: 1992
  ident: ref_24
  article-title: The European ST-T database: Standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography
  publication-title: Eur. Heart J.
  doi: 10.1093/oxfordjournals.eurheartj.a060332
SSID ssj0023338
Score 2.4247634
Snippet (1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9179
SubjectTerms Accuracy
Algorithms
biometric
Biometric identification
Biometrics
Biometry
Data compression
Decomposition
dictionary learning
Electrocardiogram
electrocardiogram (ECG)
Electrocardiography
Methods
Noise
Signal processing
sparse coding
wavelet
Wavelet transforms
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG7Ekx5kfSyb9UErwu4lOJN-JUdHRkTQgw_w1nQn1SAsUeYB_nyrunsGB5S9eE0qkFRXd31fqPqKsVMfwJvgmjLoypeYIZqy8UqXetA4wIQVtKd-55tbffUor5_U04dRX1QTluSBk-POlJAyuBAckPK707VHxtF0gxoMDJzv6PTFnLcgU5lqCWReSUdIIKk_myJuqJCYNCvZJ4r0f3UUx_xy-YNtZWDIz9MLbbM16HfY5ge5wF32PE4za9pYQ0plVeUIk1DHR9RDT1L7PPXdhvwjjseCAH7z_IZGBPbmE-Djt9kkdTNw13f8_hWpLfC7WBGbG5H6PfZ4OX64uCrzqISylaqeleBbJQO6toUhOggq1SHVQIYoDQJAp42MYlxKdY0GI7z0ynWhcqqOhMmIn2y9f-nhF-NDCEYb54fQVhLJiBfkbjFUvoYOLQv2d-FC22YdcRpn8c8inyBv26W3C3ayNH1N4hmfGY1oHZYGpHcdL2AU2BwF9n9RULA_tIqWdiU50eXmAvwk0rey54hyEajiiVawgxVL3E3t6u1FHNi8m6cWSakQiIu1Kdjx8jY9SRVqPbzMk00tlank7-_4oH22QYPtU9fjAVufTeZwiPBn5o9ipL8D7xEDlw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQUR4iUCqDkOBitUn8SE6oW-1SIZUDUKk3y47HqFKVXfYh9ed3xvEGVoJek9lVMn7MfM7M9zH2wUfwJrpWRF15gRGiFa1XWuiT1gEGrKg99TtffNPnl_LrlbrKB26rXFa53RPTRh3mHZ2RH1ekC4-5iTafF78FqUbR19UsofGQPSox0tAMb2ZfRsBVI_4a2IRqhPbHK8weKoQn7U4MSlT9_9uQU5SZPWX7OT3kp8N4HrAH0D9jT_4iDXzOrqeDck2XKkmpuEpMMBQFPqFOeiLc50P3bczHcTyVBfCL61s0opRvswQ-vV0vh54G7vrAfywQ4AL_nupicztS_4JdzqY_z85FFkwQnVTNWoDvlIzo4A5KXyqoVEDAgThRGkwDnTYyUXIpFVoNpvbSKxdi5VSTYJOpX7K9ft7DK8ZLiEYb50voKomQxNe6DaQI4RsIaFmwT1sX2i6ziZOoxY1FVEHetqO3C_Z-NF0MFBr_MprQOIwGxHqdLsyXv2xeRFbVUkYXowNSAXD4VIg-8bEaMHDifCjYRxpFS2uTnOhyiwG-ErFc2VPMdTFdxX2tYIc7lrimut3b23lg85pe2T8zsGDvxtv0S6pT62G-GWwaqUwlX9__F2_YYxKuH7oaD9neermBt5jerP1RmsN3ES_6Mg
  priority: 102
  providerName: ProQuest
Title Electrocardiogram-Based Biometric Identification Using Mixed Feature Extraction and Sparse Representation
URI https://www.proquest.com/docview/2893353367
https://www.proquest.com/docview/2893845724
https://doaj.org/article/5344faffae0848a68b1569d08e7e0abd
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7yuLSH0idVm5pNKbSXbW1pH9KhlDjYDQWHktbg27Ir7YZAkFPFBvffd2YlixoSyEUHaQTS7K5mvtXM9wF8cME7HWzBg0odxwhR8MJJxdWwsB4DVlCO-p1n5-psLn4s5GIPthqbnQNv74R2pCc1b64_b_78_YYL_ishToTsX24xK0gRdhT7cIgBSZOCw0z0PxPSLIuC1tTTxTEeDluCod1bd8JSZO-_7xsdA8_0KTzpMkZ20g7xM9jz9XN4_B-P4Au4mrRiNmUsLqV6Kz7G6FSxMTXXEwc_axtyQ7dDx2KlAJtdbdCIssB149lks2raNgdm64r9ukHHeHYRS2W7DqX6Jcynk9-nZ7zTUOClkPmKe1dKEdDnpR-5kfSprBCDIHQUGjNDq7SILF1SVoXyOnPCSVuF1Mo8IimdvYKDeln718BGPmilrRv5MhWIUlymiopEIlzuK7RM4NPWhabsCMZJ5-LaINAgb5ve2wm8701vWlaNu4zGNA69ARFhxxPL5tJ068rITIhgQ7CehAEsPhUCUnys3Gs_tK5K4CONoqEJRE60XdcBvhIRX5kTTH8xg8VPXQJHO5a4zMrdy9t5YLaz1CBazTJMmJVO4Li_THdS6Vrtl-vWJhdSp-LNQ976LTwiRfu23fEIDlbN2r_DvGflBrCvFxqP-fT7AA7Hk_OfF4O4hzCI8_0fYUwDTA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcwFFgQCC5Wk_U-7ANCDaRKadMDtFJu2117F1VCTshDlD_Fb2RmbadEAm69xhNrPTs7M589Mx_AKxe808EWaVDcpRghirRwUqWqV1iPASsoR_3O42M1OhWfJnKyBb-6Xhgqq-x8YnTU1bSkd-S7nHjhMTdR-v3se0qsUfR1taPQaMzi0P_8gZBt8e7gI-7va873hycfRmnLKpCWQubL1LtSioCrKH3f9aXnssKsHMGU0JgrWaVFnFslZVUorzMnnLRV4FbmEVvoDO97Da7jc_SohFBPLgFehnivmV6UZUVvd4HZCkc4VGzEvEgN8K8AEKPa_h243aajbK-xn7uw5et7cOuPIYX34XzYMOWUsXKVirnSAYa-ig2oc58G_LOm2ze0r_9YLENg4_MLFKIUczX3bHixnDc9FMzWFfsyQ0Dt2edYh9u2P9UP4PRKVPkQtutp7R8B6_uglbau70suEAK5TBUVMVC43FcomcDbToWmbKeXE4nGN4MohrRt1tpO4OVadNaM7Pib0ID2YS1AU7bjD9P5V9MeWiMzIYINwXpiHbC4KkS7uKzca9-zrkrgDe2iIV9ASrRtSwM-Ek3VMnuYW2N6jH40gZ0NSTzD5eblzg5M60MW5tLiE3ixvkz_pLq42k9XjUwupObi8f9v8RxujE7GR-bo4PjwCdzkaKxNR-UObC_nK_8UU6ulexbtmcHZVR-g3-VtNTg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4iUMAgEFyi3XX8SA4IdemuWkorBFTam2snNqqEsss-RPlr_DpmnGTLSsCt12QSOeN5fc48AF644J0OtkiD4i5FD1GkhZMqVf3CenRYQTmqdz46Vvsn4v1ETrbgV1cLQ2mVnU2MhrqalnRG3uM0Fx5jE6V7oU2L-Lg3fjv7ntIEKfrT2o3TaETk0P_8gfBt8eZgD_f6Jefj0Zd3-2k7YSAthcyXqXelFAFXVPqBG0jPZYUROgIroTFuskqL2MNKyqpQXmdOOGmrwK3MI87QGb73ClzVGbpN1CU9uQB7GWK_ppNRlhX93gIjF47QqNjwf3FMwL-cQfRw41twsw1N2W4jS7dhy9d34MYfDQvvwtmomZpTxixWSuxKh-gGKzakKn5q9s-ayt_QHgWymJLAjs7OkYjCzdXcs9H5ct7UUzBbV-zzDMG1Z59iTm5bClXfg5NLYeV92K6ntX8AbOCDVtq6gS-5QDjkMlVUNI3C5b5CygRedyw0ZdvJnAZqfDOIaIjbZs3tBJ6vSWdN-46_EQ1pH9YE1HE7XpjOv5pWgY3MhAg2BOtpAoHFVSHyxWXlXvu-dVUCr2gXDdkFYqJtyxvwk6jDltnFOBtDZbSpCexsUKI-l5u3OzkwrT1ZmAvpT-DZ-jY9STlytZ-uGppcSM3Fw_-_4ilcQ9UxHw6ODx_BdY6y2hRX7sD2cr7yjzHKWronUZwZnF62_vwGQyk5bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram-Based+Biometric+Identification+Using+Mixed+Feature+Extraction+and+Sparse+Representation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Xu&rft.au=Liu%2C+Qifeng&rft.au=He%2C+Dong&rft.au=Suo%2C+Hui&rft.date=2023-11-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=22&rft.spage=9179&rft_id=info:doi/10.3390%2Fs23229179&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23229179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon