Electrocardiogram-Based Biometric Identification Using Mixed Feature Extraction and Sparse Representation
(1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, thi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 22; p. 9179 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s23229179 |
Cover
Loading…
Abstract | (1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector–matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals. |
---|---|
AbstractList | (1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector–matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals. (1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector-matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals.(1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector-matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals. |
Audience | Academic |
Author | Zhao, Chun Liu, Qifeng Suo, Hui Zhang, Xu He, Dong |
Author_xml | – sequence: 1 givenname: Xu surname: Zhang fullname: Zhang, Xu – sequence: 2 givenname: Qifeng surname: Liu fullname: Liu, Qifeng – sequence: 3 givenname: Dong orcidid: 0000-0002-2464-6290 surname: He fullname: He, Dong – sequence: 4 givenname: Hui surname: Suo fullname: Suo, Hui – sequence: 5 givenname: Chun surname: Zhao fullname: Zhao, Chun |
BookMark | eNptkktr3DAUhU1JoEnaRf-BoZt24URPS14mYdIOpBTyWItr6WrQYFtTyQPJv69mps-0aCFx9Z1z0dE9rY6mOGFVvaPknPOOXGTGGeuo6l5VJ1Qw0WjGyNEf59fVac5rQhjnXJ9UYTGgnVO0kFyIqwRjcwUZXX0V4ohzCrZeOpzm4IOFOcSpfsxhWtVfwlOBbhDmbcJ68TQnsPtrmFx9v4GUsb7DTcJcxHvhm-rYw5Dx7Y_9rHq8WTxcf25uv35aXl_eNlZIPTfYWyk8p94i7alEJh1VolNaqK6j0CpBiKRKSte1qHgvegnOM5BaK9oKxc-q5cHXRVibTQojpGcTIZh9IaaVgTQHO6CRXAgP3gMSLTS0ujRsO0c0KiTQu-L14eC1SfHbFvNsxpAtDgNMGLfZMN1xLaRioqDvX6DruE1Teeme4pLzVv2mVlD6h8nHXXA7U3OplOCsJZwU6vw_VFkOx2DLh_tQ6n8JLg4Cm2LOCb2x4ZB6EYbBUGJ202F-TUdRfHyh-JnUv-x3jya5eg |
CitedBy_id | crossref_primary_10_3390_s25061864 crossref_primary_10_3390_s24175784 |
Cites_doi | 10.1109/ICPR.2010.940 10.1109/ACCESS.2019.2954576 10.1109/ACCESS.2015.2430359 10.1109/19.930458 10.1016/j.bspc.2018.03.003 10.1109/ACCESS.2023.3244651 10.1007/978-0-85729-868-3 10.1016/j.eswa.2023.119609 10.1109/ICACEA.2015.7164783 10.1016/j.isatra.2020.12.029 10.1109/ICITCS.2015.7292977 10.3390/s20113069 10.1016/j.atmosres.2012.11.003 10.1016/S0092-8674(03)00203-4 10.1080/13102818.2018.1428500 10.1049/iet-spr.2014.0005 10.1016/j.eswa.2015.02.012 10.1109/ICEEOT.2016.7754902 10.1016/j.bspc.2020.102226 10.1109/ACCESS.2019.2902870 10.1016/j.bspc.2021.102741 10.5505/pajes.2019.32966 10.1109/CNSR.2008.38 10.3390/s19102350 10.25103/jestr.106.01 10.3390/s18041005 10.1109/ACCT.2015.87 10.1155/2019/6751932 10.1109/ICIP.2014.7025320 10.1109/ICDCSyst.2014.6926190 10.1109/TIM.2022.3199260 10.22489/CinC.2017.350-114 10.1109/LSP.2013.2267593 10.1109/ACCESS.2021.3095248 10.1016/j.dsp.2005.12.003 10.1109/TIP.2006.887733 10.1109/BCC.2006.4341628 10.1109/MAMI.2015.7456595 10.1093/oxfordjournals.eurheartj.a060332 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s23229179 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (ProQuest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_5344faffae0848a68b1569d08e7e0abd A774326030 10_3390_s23229179 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c458t-ebc54f31fce1b15e25d17497847991a6740051755d96e73b4b5adf2a588716473 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:30 EDT 2025 Fri Jul 11 01:49:48 EDT 2025 Fri Jul 25 05:53:35 EDT 2025 Tue Jun 17 22:24:22 EDT 2025 Tue Jun 10 21:15:30 EDT 2025 Tue Jul 01 03:50:36 EDT 2025 Thu Apr 24 23:00:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-ebc54f31fce1b15e25d17497847991a6740051755d96e73b4b5adf2a588716473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2464-6290 |
OpenAccessLink | https://www.proquest.com/docview/2893353367?pq-origsite=%requestingapplication% |
PQID | 2893353367 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5344faffae0848a68b1569d08e7e0abd proquest_miscellaneous_2893845724 proquest_journals_2893353367 gale_infotracmisc_A774326030 gale_infotracacademiconefile_A774326030 crossref_citationtrail_10_3390_s23229179 crossref_primary_10_3390_s23229179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Choi (ref_12) 2019; 7 Phukpattaranont (ref_7) 2015; 42 Walsh (ref_32) 2003; 113 ref_14 ref_36 ref_13 ref_34 Kim (ref_20) 2019; 7 ref_33 ref_31 Gurkan (ref_11) 2020; 26 Alotaiby (ref_16) 2019; 2019 Singh (ref_25) 2006; 16 Fatimah (ref_42) 2022; 71 ref_18 ref_17 ref_39 ref_38 ref_15 Dong (ref_37) 2018; 32 Zhang (ref_30) 2015; 3 Taddei (ref_24) 1992; 13 Uwaechia (ref_3) 2021; 9 Starck (ref_27) 2007; 16 ref_22 ref_21 ref_41 Biel (ref_2) 2001; 50 Kumar (ref_19) 2021; 114 ref_1 Melzi (ref_5) 2023; 11 ref_29 ref_28 Yadav (ref_26) 2015; 9 Wang (ref_35) 2013; 20 Berkaya (ref_4) 2018; 43 ref_9 Sang (ref_23) 2013; 122 ref_8 Patro (ref_10) 2017; 10 Meltzer (ref_40) 2023; 219 ref_6 |
References_xml | – ident: ref_15 doi: 10.1109/ICPR.2010.940 – volume: 7 start-page: 123069 year: 2019 ident: ref_20 article-title: An enhanced electrocardiogram biometric authentication system using machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954576 – ident: ref_9 – volume: 3 start-page: 490 year: 2015 ident: ref_30 article-title: A Survey of Sparse Representation: Algorithms and Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2430359 – volume: 50 start-page: 808 year: 2001 ident: ref_2 article-title: ECG analysis: A new approach in human identification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.930458 – volume: 43 start-page: 216 year: 2018 ident: ref_4 article-title: A survey on ECG analysis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.03.003 – volume: 11 start-page: 15555 year: 2023 ident: ref_5 article-title: ECG Biometric Recognition: Review, System Proposal, and Benchmark Evaluation publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3244651 – ident: ref_34 doi: 10.1007/978-0-85729-868-3 – volume: 219 start-page: 119609 year: 2023 ident: ref_40 article-title: Efficient Clustering-Based electrocardiographic biometric identification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119609 – ident: ref_28 doi: 10.1109/ICACEA.2015.7164783 – volume: 114 start-page: 251 year: 2021 ident: ref_19 article-title: Stationary wavelet transform based ECG signal denoising method publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.12.029 – ident: ref_39 doi: 10.1109/ICITCS.2015.7292977 – ident: ref_41 doi: 10.3390/s20113069 – volume: 122 start-page: 8 year: 2013 ident: ref_23 article-title: A review on the applications of wavelet transform in hydrology time series analysis publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2012.11.003 – volume: 113 start-page: 61 year: 2003 ident: ref_32 article-title: OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain publication-title: Cell doi: 10.1016/S0092-8674(03)00203-4 – volume: 32 start-page: 769 year: 2018 ident: ref_37 article-title: ECG-based identity recognition via deterministic learning publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2018.1428500 – volume: 9 start-page: 88 year: 2015 ident: ref_26 article-title: Electrocardiogram signal denoising using non-local wavelet transform domain filtering publication-title: IET Signal Process. doi: 10.1049/iet-spr.2014.0005 – volume: 42 start-page: 4867 year: 2015 ident: ref_7 article-title: QRS detection algorithm based on the quadratic filter publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.02.012 – ident: ref_6 doi: 10.1109/ICEEOT.2016.7754902 – ident: ref_8 – ident: ref_1 doi: 10.1016/j.bspc.2020.102226 – ident: ref_33 – volume: 7 start-page: 34862 year: 2019 ident: ref_12 article-title: User identification system using 2D resized spectrogram features of ECG publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902870 – ident: ref_21 doi: 10.1016/j.bspc.2021.102741 – volume: 26 start-page: 318 year: 2020 ident: ref_11 article-title: ECG based biometric identification method using QRS images and convolutional neural network publication-title: Pamukkale Univ. J. Eng. Sci. doi: 10.5505/pajes.2019.32966 – ident: ref_13 doi: 10.1109/CNSR.2008.38 – ident: ref_38 doi: 10.3390/s19102350 – volume: 10 start-page: 1 year: 2017 ident: ref_10 article-title: AMachine Learning Classification Approaches for Biometric Recognition System using ECG Signals publication-title: J. Eng. Sci. Technol. Rev. doi: 10.25103/jestr.106.01 – ident: ref_36 doi: 10.3390/s18041005 – ident: ref_22 doi: 10.1109/ACCT.2015.87 – volume: 2019 start-page: 1 year: 2019 ident: ref_16 article-title: ECG-Based Subject Identification Using Statistical Features and Random Forest publication-title: J. Sens. doi: 10.1155/2019/6751932 – ident: ref_31 doi: 10.1109/ICIP.2014.7025320 – ident: ref_17 doi: 10.1109/ICDCSyst.2014.6926190 – volume: 71 start-page: 1 year: 2022 ident: ref_42 article-title: Biometric Identification from ECG Signals Using Fourier Decomposition and Machine Learning publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3199260 – ident: ref_29 doi: 10.22489/CinC.2017.350-114 – volume: 20 start-page: 937 year: 2013 ident: ref_35 article-title: Human Identification from ECG Signals Via Sparse Representation of Local Segments publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2013.2267593 – volume: 9 start-page: 97760 year: 2021 ident: ref_3 article-title: A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3095248 – volume: 16 start-page: 275 year: 2006 ident: ref_25 article-title: Optimal selection of wavelet basis function applied to ECG signal denoising publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2005.12.003 – volume: 16 start-page: 297 year: 2007 ident: ref_27 article-title: The undecimated wavelet decomposition and its reconstruction publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.887733 – ident: ref_14 doi: 10.1109/BCC.2006.4341628 – ident: ref_18 doi: 10.1109/MAMI.2015.7456595 – volume: 13 start-page: 1164 year: 1992 ident: ref_24 article-title: The European ST-T database: Standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography publication-title: Eur. Heart J. doi: 10.1093/oxfordjournals.eurheartj.a060332 |
SSID | ssj0023338 |
Score | 2.4247634 |
Snippet | (1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 9179 |
SubjectTerms | Accuracy Algorithms biometric Biometric identification Biometrics Biometry Data compression Decomposition dictionary learning Electrocardiogram electrocardiogram (ECG) Electrocardiography Methods Noise Signal processing sparse coding wavelet Wavelet transforms |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG7Ekx5kfSyb9UErwu4lOJN-JUdHRkTQgw_w1nQn1SAsUeYB_nyrunsGB5S9eE0qkFRXd31fqPqKsVMfwJvgmjLoypeYIZqy8UqXetA4wIQVtKd-55tbffUor5_U04dRX1QTluSBk-POlJAyuBAckPK707VHxtF0gxoMDJzv6PTFnLcgU5lqCWReSUdIIKk_myJuqJCYNCvZJ4r0f3UUx_xy-YNtZWDIz9MLbbM16HfY5ge5wF32PE4za9pYQ0plVeUIk1DHR9RDT1L7PPXdhvwjjseCAH7z_IZGBPbmE-Djt9kkdTNw13f8_hWpLfC7WBGbG5H6PfZ4OX64uCrzqISylaqeleBbJQO6toUhOggq1SHVQIYoDQJAp42MYlxKdY0GI7z0ynWhcqqOhMmIn2y9f-nhF-NDCEYb54fQVhLJiBfkbjFUvoYOLQv2d-FC22YdcRpn8c8inyBv26W3C3ayNH1N4hmfGY1oHZYGpHcdL2AU2BwF9n9RULA_tIqWdiU50eXmAvwk0rey54hyEajiiVawgxVL3E3t6u1FHNi8m6cWSakQiIu1Kdjx8jY9SRVqPbzMk00tlank7-_4oH22QYPtU9fjAVufTeZwiPBn5o9ipL8D7xEDlw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQUR4iUCqDkOBitUn8SE6oW-1SIZUDUKk3y47HqFKVXfYh9ed3xvEGVoJek9lVMn7MfM7M9zH2wUfwJrpWRF15gRGiFa1XWuiT1gEGrKg99TtffNPnl_LrlbrKB26rXFa53RPTRh3mHZ2RH1ekC4-5iTafF78FqUbR19UsofGQPSox0tAMb2ZfRsBVI_4a2IRqhPbHK8weKoQn7U4MSlT9_9uQU5SZPWX7OT3kp8N4HrAH0D9jT_4iDXzOrqeDck2XKkmpuEpMMBQFPqFOeiLc50P3bczHcTyVBfCL61s0opRvswQ-vV0vh54G7vrAfywQ4AL_nupicztS_4JdzqY_z85FFkwQnVTNWoDvlIzo4A5KXyqoVEDAgThRGkwDnTYyUXIpFVoNpvbSKxdi5VSTYJOpX7K9ft7DK8ZLiEYb50voKomQxNe6DaQI4RsIaFmwT1sX2i6ziZOoxY1FVEHetqO3C_Z-NF0MFBr_MprQOIwGxHqdLsyXv2xeRFbVUkYXowNSAXD4VIg-8bEaMHDifCjYRxpFS2uTnOhyiwG-ErFc2VPMdTFdxX2tYIc7lrimut3b23lg85pe2T8zsGDvxtv0S6pT62G-GWwaqUwlX9__F2_YYxKuH7oaD9neermBt5jerP1RmsN3ES_6Mg priority: 102 providerName: ProQuest |
Title | Electrocardiogram-Based Biometric Identification Using Mixed Feature Extraction and Sparse Representation |
URI | https://www.proquest.com/docview/2893353367 https://www.proquest.com/docview/2893845724 https://doaj.org/article/5344faffae0848a68b1569d08e7e0abd |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEB7yuLSH0idVm5pNKbSXbW1pH9KhlDjYDQWHktbg27Ir7YZAkFPFBvffd2YlixoSyEUHaQTS7K5mvtXM9wF8cME7HWzBg0odxwhR8MJJxdWwsB4DVlCO-p1n5-psLn4s5GIPthqbnQNv74R2pCc1b64_b_78_YYL_ishToTsX24xK0gRdhT7cIgBSZOCw0z0PxPSLIuC1tTTxTEeDluCod1bd8JSZO-_7xsdA8_0KTzpMkZ20g7xM9jz9XN4_B-P4Au4mrRiNmUsLqV6Kz7G6FSxMTXXEwc_axtyQ7dDx2KlAJtdbdCIssB149lks2raNgdm64r9ukHHeHYRS2W7DqX6Jcynk9-nZ7zTUOClkPmKe1dKEdDnpR-5kfSprBCDIHQUGjNDq7SILF1SVoXyOnPCSVuF1Mo8IimdvYKDeln718BGPmilrRv5MhWIUlymiopEIlzuK7RM4NPWhabsCMZJ5-LaINAgb5ve2wm8701vWlaNu4zGNA69ARFhxxPL5tJ068rITIhgQ7CehAEsPhUCUnys3Gs_tK5K4CONoqEJRE60XdcBvhIRX5kTTH8xg8VPXQJHO5a4zMrdy9t5YLaz1CBazTJMmJVO4Li_THdS6Vrtl-vWJhdSp-LNQ976LTwiRfu23fEIDlbN2r_DvGflBrCvFxqP-fT7AA7Hk_OfF4O4hzCI8_0fYUwDTA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcgAOiKcwFFgQCC5Wk_U-7ANCDaRKadMDtFJu2117F1VCTshDlD_Fb2RmbadEAm69xhNrPTs7M589Mx_AKxe808EWaVDcpRghirRwUqWqV1iPASsoR_3O42M1OhWfJnKyBb-6Xhgqq-x8YnTU1bSkd-S7nHjhMTdR-v3se0qsUfR1taPQaMzi0P_8gZBt8e7gI-7va873hycfRmnLKpCWQubL1LtSioCrKH3f9aXnssKsHMGU0JgrWaVFnFslZVUorzMnnLRV4FbmEVvoDO97Da7jc_SohFBPLgFehnivmV6UZUVvd4HZCkc4VGzEvEgN8K8AEKPa_h243aajbK-xn7uw5et7cOuPIYX34XzYMOWUsXKVirnSAYa-ig2oc58G_LOm2ze0r_9YLENg4_MLFKIUczX3bHixnDc9FMzWFfsyQ0Dt2edYh9u2P9UP4PRKVPkQtutp7R8B6_uglbau70suEAK5TBUVMVC43FcomcDbToWmbKeXE4nGN4MohrRt1tpO4OVadNaM7Pib0ID2YS1AU7bjD9P5V9MeWiMzIYINwXpiHbC4KkS7uKzca9-zrkrgDe2iIV9ASrRtSwM-Ek3VMnuYW2N6jH40gZ0NSTzD5eblzg5M60MW5tLiE3ixvkz_pLq42k9XjUwupObi8f9v8RxujE7GR-bo4PjwCdzkaKxNR-UObC_nK_8UU6ulexbtmcHZVR-g3-VtNTg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4iUMAgEFyi3XX8SA4IdemuWkorBFTam2snNqqEsss-RPlr_DpmnGTLSsCt12QSOeN5fc48AF644J0OtkiD4i5FD1GkhZMqVf3CenRYQTmqdz46Vvsn4v1ETrbgV1cLQ2mVnU2MhrqalnRG3uM0Fx5jE6V7oU2L-Lg3fjv7ntIEKfrT2o3TaETk0P_8gfBt8eZgD_f6Jefj0Zd3-2k7YSAthcyXqXelFAFXVPqBG0jPZYUROgIroTFuskqL2MNKyqpQXmdOOGmrwK3MI87QGb73ClzVGbpN1CU9uQB7GWK_ppNRlhX93gIjF47QqNjwf3FMwL-cQfRw41twsw1N2W4jS7dhy9d34MYfDQvvwtmomZpTxixWSuxKh-gGKzakKn5q9s-ayt_QHgWymJLAjs7OkYjCzdXcs9H5ct7UUzBbV-zzDMG1Z59iTm5bClXfg5NLYeV92K6ntX8AbOCDVtq6gS-5QDjkMlVUNI3C5b5CygRedyw0ZdvJnAZqfDOIaIjbZs3tBJ6vSWdN-46_EQ1pH9YE1HE7XpjOv5pWgY3MhAg2BOtpAoHFVSHyxWXlXvu-dVUCr2gXDdkFYqJtyxvwk6jDltnFOBtDZbSpCexsUKI-l5u3OzkwrT1ZmAvpT-DZ-jY9STlytZ-uGppcSM3Fw_-_4ilcQ9UxHw6ODx_BdY6y2hRX7sD2cr7yjzHKWronUZwZnF62_vwGQyk5bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram-Based+Biometric+Identification+Using+Mixed+Feature+Extraction+and+Sparse+Representation&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Xu&rft.au=Liu%2C+Qifeng&rft.au=He%2C+Dong&rft.au=Suo%2C+Hui&rft.date=2023-11-01&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=22&rft.spage=9179&rft_id=info:doi/10.3390%2Fs23229179&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23229179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |