Butyrate in Energy Metabolism: There Is Still More to Learn
Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects...
Saved in:
Published in | Trends in endocrinology and metabolism Vol. 32; no. 3; pp. 159 - 169 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases.
Butyrate is a vital mediator between gut microbiota and host metabolic health.Butyrate has regulatory effects on body weight, body composition, and glucose homeostasis.Butyrate is absorbed and metabolized by tissues and cells beyond the colon and has regulatory effects on their metabolic functions.The metabolic effects of butyrate are subject to multiple regulatory mechanisms. |
---|---|
AbstractList | Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases.Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases. Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases. Butyrate is a vital mediator between gut microbiota and host metabolic health.Butyrate has regulatory effects on body weight, body composition, and glucose homeostasis.Butyrate is absorbed and metabolized by tissues and cells beyond the colon and has regulatory effects on their metabolic functions.The metabolic effects of butyrate are subject to multiple regulatory mechanisms. Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases. |
Author | Jiang, Qingyan Zhang, Lin Yin, Yulong Liu, Chudan |
Author_xml | – sequence: 1 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China – sequence: 2 givenname: Chudan surname: Liu fullname: Liu, Chudan organization: Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China – sequence: 3 givenname: Qingyan surname: Jiang fullname: Jiang, Qingyan email: qyjiang@scau.edu.cn organization: Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China – sequence: 4 givenname: Yulong surname: Yin fullname: Yin, Yulong email: yinyulong@isa.ac.cn organization: Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33461886$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v3CAQhlGVqvnqD-il8rEXbxhgsd1IldIoTSJtlEP2jjCebdliSAFX2n9frE0ukZKeYMT7DJpnjsmBDx4J-QR0ARTk2XaRcVwwykrNFpTyd-QI2qarOZVwUO5U8Jo1kh6S45S2lIJoYfmBHHIuJLStPCLn36e8izpjZX115TH-3FV3mHUfnE3j12r9CyNWt6l6yNa56i6UKodqhTr6U_J-o13Cj0_nCVn_uFpf3tSr--vby4tVbcSyzfXAjBmE1AwYZx0I2VBsAblste4EbDhSYWCQfav7HoANfNPw8iJ6g83Q8BPyZd_2MYY_E6asRpsMOqc9hikpJpqOCsoplOjnp-jUjziox2hHHXfqed4SaPYBE0NKETfK2KyzDT5HbZ0CqmazaquKWTWbVcBUMVtIeEE-N3-LOd8zWOz8tRhVMha9wcFGNFkNwb5Jf3tBG2e9Ndr9xh2mbZiiL9oVqFQA9TBve142KyrYks3Ddq83-M_n_wA9zLYQ |
CitedBy_id | crossref_primary_10_1186_s10020_024_01046_9 crossref_primary_10_3389_fmicb_2024_1337368 crossref_primary_10_1016_j_foodres_2024_115123 crossref_primary_10_1038_s41387_024_00276_4 crossref_primary_10_3390_biology12121471 crossref_primary_10_1016_j_metabol_2023_155640 crossref_primary_10_1016_j_jafr_2024_101100 crossref_primary_10_1038_s41598_023_27907_7 crossref_primary_10_1007_s00253_023_12485_5 crossref_primary_10_1016_j_ijbiomac_2025_139970 crossref_primary_10_3390_ijms241310672 crossref_primary_10_1016_j_anifeedsci_2025_116220 crossref_primary_10_1039_D1FO04354D crossref_primary_10_1080_15548627_2024_2323785 crossref_primary_10_1016_j_foodchem_2024_140137 crossref_primary_10_1111_febs_17334 crossref_primary_10_3390_ijms25137379 crossref_primary_10_1016_j_bbadis_2025_167756 crossref_primary_10_1128_spectrum_00394_23 crossref_primary_10_3390_molecules28052148 crossref_primary_10_3389_fmicb_2023_1140440 crossref_primary_10_1016_j_ijbiomac_2024_133681 crossref_primary_10_1039_D1FO02077C crossref_primary_10_3390_antibiotics10101175 crossref_primary_10_1016_j_aninu_2021_10_012 crossref_primary_10_1128_spectrum_00502_22 crossref_primary_10_3390_fishes7060368 crossref_primary_10_1016_j_fbio_2023_102931 crossref_primary_10_1016_j_fbio_2024_103867 crossref_primary_10_1002_mbo3_1430 crossref_primary_10_1016_j_copbio_2024_103073 crossref_primary_10_1590_1678_7757_2024_0031 crossref_primary_10_1186_s40104_021_00663_2 crossref_primary_10_1186_s40168_022_01230_1 crossref_primary_10_3389_fimmu_2023_1175384 crossref_primary_10_3390_ijms241814191 crossref_primary_10_1016_j_molmet_2021_101427 crossref_primary_10_1038_s41467_023_41042_x crossref_primary_10_1016_j_microc_2024_111822 crossref_primary_10_1038_s41522_024_00534_4 crossref_primary_10_3390_ijms251910397 crossref_primary_10_12677_jcpm_2024_34278 crossref_primary_10_1016_j_scitotenv_2023_166468 crossref_primary_10_1039_D2FO02063G crossref_primary_10_1016_j_livsci_2022_105066 crossref_primary_10_3389_fneur_2023_1275460 crossref_primary_10_3389_fendo_2024_1360989 crossref_primary_10_1038_s41569_023_00887_x crossref_primary_10_1038_s41366_022_01183_3 crossref_primary_10_1186_s12887_024_04944_3 crossref_primary_10_3389_fendo_2023_1265175 crossref_primary_10_3389_fmicb_2024_1508217 crossref_primary_10_1128_spectrum_01442_21 crossref_primary_10_3389_fendo_2023_1098881 crossref_primary_10_1002_advs_202403991 crossref_primary_10_3389_fimmu_2022_926765 crossref_primary_10_1186_s12964_023_01219_9 crossref_primary_10_3390_nu15204339 crossref_primary_10_1016_j_foodhyd_2023_108501 crossref_primary_10_1016_j_freeradbiomed_2024_11_021 crossref_primary_10_3389_fvets_2021_708512 crossref_primary_10_3390_nu14081669 crossref_primary_10_1016_j_pharmthera_2022_108256 crossref_primary_10_1038_s42255_024_01167_9 crossref_primary_10_1080_00218839_2024_2367299 crossref_primary_10_54097_hset_v30i_4941 crossref_primary_10_1016_j_ijbiomac_2023_128633 crossref_primary_10_3390_ani15010066 crossref_primary_10_1017_gmb_2023_9 crossref_primary_10_3390_nu13113887 crossref_primary_10_2217_fmb_2023_0148 crossref_primary_10_3389_fnut_2022_1037696 crossref_primary_10_1016_j_psyneuen_2022_105959 crossref_primary_10_3389_fvets_2024_1360939 crossref_primary_10_1111_raq_12759 crossref_primary_10_1177_11786361231162720 crossref_primary_10_1016_j_carbpol_2024_121825 crossref_primary_10_3390_nu15081989 crossref_primary_10_1016_j_heliyon_2024_e33601 crossref_primary_10_1080_19490976_2025_2455506 crossref_primary_10_1016_j_jff_2025_106675 crossref_primary_10_1016_j_neuint_2025_105952 crossref_primary_10_1038_s41531_024_00711_4 crossref_primary_10_3389_fmicb_2022_846336 crossref_primary_10_1111_febs_17005 crossref_primary_10_1016_j_ijbiomac_2021_06_016 crossref_primary_10_3389_fnut_2021_675445 crossref_primary_10_1128_JB_00311_21 crossref_primary_10_3389_fendo_2023_1218880 crossref_primary_10_1038_s41467_022_33656_4 crossref_primary_10_1016_j_foodres_2024_115420 crossref_primary_10_1016_j_micres_2024_127739 crossref_primary_10_1039_D4NR02480J crossref_primary_10_1111_jog_15844 crossref_primary_10_3390_ijms25063514 crossref_primary_10_3390_molecules29122747 crossref_primary_10_3390_nu15071723 crossref_primary_10_3389_fnagi_2024_1451968 crossref_primary_10_3389_fimmu_2024_1456030 crossref_primary_10_3390_ani15060861 crossref_primary_10_1016_j_psj_2025_104936 crossref_primary_10_3390_app15062940 crossref_primary_10_1016_j_jhazmat_2023_132839 crossref_primary_10_3389_fcimb_2023_1304858 crossref_primary_10_3389_fvets_2022_948074 crossref_primary_10_1016_j_foodchem_2021_131792 crossref_primary_10_1002_efd2_70007 crossref_primary_10_1016_j_neuropharm_2024_110139 crossref_primary_10_3390_foods10092040 crossref_primary_10_1016_j_cmet_2023_06_010 crossref_primary_10_3390_nu17030388 crossref_primary_10_1245_s10434_024_16125_8 crossref_primary_10_1016_j_foodres_2022_112010 crossref_primary_10_1016_j_ijbiomac_2023_124175 crossref_primary_10_1053_j_gastro_2024_05_014 crossref_primary_10_3389_fphar_2022_911356 crossref_primary_10_1128_spectrum_00813_24 crossref_primary_10_1039_D1FO03019A crossref_primary_10_12677_acm_2025_151229 crossref_primary_10_1007_s40519_023_01593_w crossref_primary_10_1016_j_foodres_2022_111619 crossref_primary_10_1016_j_psj_2024_103774 crossref_primary_10_1080_19490976_2024_2359501 crossref_primary_10_3389_fimmu_2021_787797 crossref_primary_10_1016_j_jid_2023_11_006 crossref_primary_10_1016_j_heliyon_2024_e39865 crossref_primary_10_7554_eLife_98714_4 crossref_primary_10_1002_advs_202207366 crossref_primary_10_1002_mnfr_202200703 crossref_primary_10_1002_smll_202412195 crossref_primary_10_3390_metabo11050298 crossref_primary_10_1097_SHK_0000000000002441 crossref_primary_10_1016_j_ecoenv_2023_115607 crossref_primary_10_3390_foods12203752 crossref_primary_10_1021_acs_jafc_3c08926 crossref_primary_10_1007_s00394_024_03401_2 crossref_primary_10_3389_fcimb_2023_1038472 crossref_primary_10_3390_nu15020272 crossref_primary_10_1016_j_carbpol_2022_119766 crossref_primary_10_1080_21678421_2022_2045323 crossref_primary_10_3390_microorganisms11102452 crossref_primary_10_1016_j_aninu_2023_03_006 crossref_primary_10_1007_s40487_024_00300_8 crossref_primary_10_1016_j_intimp_2022_109083 crossref_primary_10_2147_DMSO_S456173 crossref_primary_10_1016_j_carbpol_2022_120197 crossref_primary_10_1186_s40104_024_00995_9 crossref_primary_10_1016_j_psj_2022_102467 crossref_primary_10_3390_metabo14040194 crossref_primary_10_3390_w16162267 crossref_primary_10_1016_j_pestbp_2024_106035 crossref_primary_10_1016_j_ejphar_2024_176905 crossref_primary_10_1038_s41551_024_01190_x crossref_primary_10_1038_s41598_021_98820_0 crossref_primary_10_3389_fcimb_2022_1037279 crossref_primary_10_1016_j_foodchem_2024_141049 crossref_primary_10_1016_j_ijbiomac_2023_128100 crossref_primary_10_5650_jos_ess24099 crossref_primary_10_1007_s40200_023_01368_1 crossref_primary_10_1016_j_aquaculture_2024_740607 crossref_primary_10_1021_acs_jafc_2c04888 crossref_primary_10_31548_veterinary3_2023_46 crossref_primary_10_3390_ijms222010937 crossref_primary_10_1186_s40104_025_01183_z crossref_primary_10_1016_j_envint_2024_108458 crossref_primary_10_1002_mnfr_202200164 crossref_primary_10_1016_j_tifs_2024_104779 crossref_primary_10_3390_diabetology5050034 crossref_primary_10_1039_D4FO03826F crossref_primary_10_1016_j_jep_2023_116811 crossref_primary_10_1177_00220345231187824 crossref_primary_10_59118_HUGX5553 crossref_primary_10_3389_fendo_2021_761834 crossref_primary_10_3389_fendo_2022_890200 crossref_primary_10_3748_wjg_v31_i2_100589 crossref_primary_10_7554_eLife_98714 crossref_primary_10_3390_nu15010206 crossref_primary_10_3389_fendo_2023_1149751 crossref_primary_10_1016_j_fbio_2024_105218 crossref_primary_10_1016_j_bcdf_2024_100447 crossref_primary_10_1016_j_jff_2024_106434 crossref_primary_10_1039_D2FO00940D crossref_primary_10_3389_fnut_2021_722557 crossref_primary_10_3390_biomedicines10020483 crossref_primary_10_1093_jas_skac088 crossref_primary_10_1039_D1FO03337A crossref_primary_10_1038_s42003_024_06815_0 crossref_primary_10_1016_j_ymben_2023_09_008 crossref_primary_10_1016_j_foodres_2024_115141 crossref_primary_10_3390_nu16081100 crossref_primary_10_2147_DMSO_S451129 crossref_primary_10_1016_j_jbc_2022_102312 crossref_primary_10_3389_fmicb_2024_1361945 crossref_primary_10_3390_fermentation9040352 crossref_primary_10_3390_molecules28031418 crossref_primary_10_1007_s00580_025_03633_6 crossref_primary_10_1021_acs_jafc_3c06015 crossref_primary_10_3389_fcimb_2024_1453286 crossref_primary_10_1142_S0192415X21500567 crossref_primary_10_3389_fnut_2021_778424 crossref_primary_10_1186_s12864_021_07944_0 crossref_primary_10_3389_fmicb_2025_1515865 crossref_primary_10_3390_nu13093249 crossref_primary_10_3389_fcimb_2022_855075 |
Cites_doi | 10.1101/gad.285312.116 10.2337/db12-0526 10.1016/j.cmet.2016.06.013 10.1136/gutjnl-2019-319745 10.1038/s41598-017-02546-x 10.2527/jas.53817 10.1016/j.mce.2019.110700 10.1016/j.cmet.2005.09.010 10.1016/j.cmet.2008.08.008 10.1038/s41575-019-0157-3 10.1136/gut.28.10.1221 10.1016/j.celrep.2019.02.015 10.1152/physrev.1990.70.2.567 10.4142/jvs.2011.12.4.319 10.2337/db16-0924 10.1530/JOE-19-0122 10.1016/j.celrep.2016.09.053 10.1074/jbc.M211609200 10.2527/jas.2006-378 10.1111/j.1471-4159.2005.03168.x 10.2337/diabetes.47.6.882 10.1210/me.2014-1108 10.1038/ijo.2014.46 10.3390/nu10091220 10.1152/ajplegacy.1973.224.6.1450 10.1113/jphysiol.2009.174136 10.1016/j.nucmedbio.2013.06.007 10.1016/j.cbi.2014.02.001 10.2337/db14-1213 10.3389/fphar.2019.01040 10.1038/srep37589 10.1152/ajpgi.00346.2017 10.1093/jn/116.1.77 10.3389/fendo.2018.00630 10.18632/oncotarget.14375 10.1038/oby.2009.167 10.1152/ajpendo.00229.2010 10.1073/pnas.2637002100 10.1038/nature05485 10.1126/science.aao5774 10.2337/diabetes.49.7.1165 10.1002/jcb.25902 10.1016/S0092-8674(00)81410-5 10.1111/bph.13058 10.1136/gutjnl-2017-314050 10.1038/nature11450 10.1016/j.cmet.2011.02.018 10.1038/nature07540 10.1111/1462-2920.13589 10.1152/ajpregu.00128.2015 10.2337/db11-1019 10.1007/s002800050922 10.18632/oncotarget.11267 10.1093/femsle/fnz153 10.1093/jn/nxy324 10.1016/j.cell.2013.12.016 10.1016/j.celrep.2016.05.019 10.1016/j.chembiol.2012.05.010 10.1016/j.clnu.2009.05.011 10.1111/obr.12068 10.1007/s10555-015-9578-9 10.1530/JOE-18-0137 10.5551/jat.15065 10.3390/biomedicines7040074 10.1038/nature05414 10.1016/j.celrep.2017.10.056 10.4183/aeb.2018.287 10.1073/pnas.1016088108 10.1007/s00109-013-1078-1 10.1038/nature18309 10.1073/pnas.0808567105 10.1038/377530a0 10.1016/j.cbi.2016.06.007 10.1073/pnas.1322269111 10.3168/jds.2019-17309 10.1126/science.1241165 10.1186/s40168-018-0473-9 10.1016/0009-8981(79)90109-8 10.1016/j.nut.2017.10.007 10.1016/j.molcel.2016.10.025 10.3390/nu7115440 10.2527/jas.2007-0499 10.2337/db08-1637 10.1152/ajpgi.00265.2013 10.1016/j.febslet.2010.04.027 10.1371/journal.pone.0068626 10.1021/acs.jafc.9b02083 10.1038/nature15766 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.tem.2020.12.003 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-3061 |
EndPage | 169 |
ExternalDocumentID | 33461886 10_1016_j_tem_2020_12_003 S1043276020302526 1_s2_0_S1043276020302526 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LZ1 M29 M41 MO0 MVM N9A O-L O9- OAUVE OB0 ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K WUQ XFW Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RCE RIG AAIAV ABLVK ABYKQ AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c458t-d2ccd46a21232914670e81e368aa941f3e04c1d6b8abb112d3f73a944bce7d73 |
IEDL.DBID | .~1 |
ISSN | 1043-2760 1879-3061 |
IngestDate | Fri Jul 11 16:50:22 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Tue Jul 01 04:29:32 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Fri Feb 23 02:45:16 EST 2024 Tue Feb 25 19:56:48 EST 2025 Tue Aug 26 16:37:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | butyrate energy homeostasis diabetes gut microbiota obesity |
Language | English |
License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-d2ccd46a21232914670e81e368aa941f3e04c1d6b8abb112d3f73a944bce7d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33461886 |
PQID | 2479040301 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2479040301 pubmed_primary_33461886 crossref_citationtrail_10_1016_j_tem_2020_12_003 crossref_primary_10_1016_j_tem_2020_12_003 elsevier_sciencedirect_doi_10_1016_j_tem_2020_12_003 elsevier_clinicalkeyesjournals_1_s2_0_S1043276020302526 elsevier_clinicalkey_doi_10_1016_j_tem_2020_12_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Trends in endocrinology and metabolism |
PublicationTitleAlternate | Trends Endocrinol Metab |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nakatani (bb0155) 2018; 10 Li (bb0070) 2018; 67 Turnbaugh (bb0035) 2009; 457 Zhang (bb0140) 2018; 6 Sambeat (bb0280) 2016; 15 Pierre, Pellerin (bb0365) 2005; 94 Larasati (bb0415) 2019; 7 Rajas (bb0445) 2000; 49 Weber, Kerr (bb0255) 2008; 86 Kim (bb0175) 2013; 40 De Vadder (bb0435) 2016; 24 Zhao (bb0015) 2018; 359 Bloemen (bb0160) 2009; 28 Puigserver (bb0270) 1998; 92 Bachmann (bb0375) 1979; 92 Lu (bb0245) 2012; 90 De Vadder (bb0050) 2014; 156 Naraoka (bb0355) 2018; 14 Aguilar (bb0235) 2018; 47 Canfora (bb0165) 2017; 7 Ohira (bb0420) 2013; 20 Tolhurst (bb0325) 2012; 61 Hotamisligil (bb0385) 2006; 444 Turnbaugh, Gordon (bb0130) 2009; 587 Gao (bb0225) 2019; 10 Smith (bb0395) 2013; 341 Turnbaugh (bb0025) 2006; 444 Dalile (bb0145) 2019; 16 Louis, Flint (bb0110) 2017; 19 Chang (bb0390) 2014; 111 Yu (bb0090) 2019; 243 Duteil (bb0275) 2016; 17 Brahe (bb0100) 2013; 14 Hong (bb0220) 2016; 7 Khan, Jena (bb0230) 2016; 254 Hasan (bb0465) 2020 den Besten (bb0055) 2015; 64 Clarke (bb0360) 2014; 28 Lin (bb0205) 2012; 7 Biagi (bb0250) 2007; 85 Stephens (bb0335) 1995; 377 Mattace Raso (bb0410) 2013; 8 Cummings (bb0150) 1987; 28 Huang (bb0240) 2017; 8 Samuel (bb0185) 2008; 105 Donohoe (bb0020) 2011; 13 Chou (bb0295) 2012; 19 Zeng (bb0285) 2016; 30 Khan, Jena (bb0290) 2014; 213 Troy (bb0430) 2008; 8 Henagan (bb0060) 2015; 172 Fang (bb0085) 2019; 149 Chatelain (bb0440) 1998; 47 Boets (bb0120) 2015; 7 den Besten (bb0210) 2013; 305 Demigne (bb0215) 1986; 116 Schwiertz (bb0030) 2010; 18 Kimura (bb0190) 2011; 108 Xu (bb0400) 2018; 238 Li (bb0075) 2019; 26 Mitchell (bb0380) 2011; 117 Mithieux (bb0425) 2005; 2 Perry (bb0040) 2016; 534 Hara (bb0300) 2014; 92 Zhan (bb0460) 2020; 103 Bjursell (bb0200) 2011; 300 Xiong (bb0340) 2004; 101 Vily-Petit (bb0450) 2020; 69 Brown (bb0180) 2003; 278 Krautkramer (bb0135) 2016; 64 Elgamal (bb0305) 2020; 503 Zaibi (bb0345) 2010; 584 Egorin (bb0170) 1999; 43 Soliman (bb0350) 2011; 12 Wang (bb0080) 2019; 102 Bergman (bb0095) 1990; 70 Li (bb0315) 2013; 6 Zhang (bb0265) 2019; 67 de Goffau (bb0310) 2013; 62 Rahat-Rozenbloom (bb0115) 2014; 38 Gao (bb0045) 2009; 58 Zhai (bb0405) 2019; 366 Patel (bb0455) 2015; 309 Lu (bb0195) 2016; 6 Forslund (bb0010) 2015; 528 Guo (bb0320) 2018; 9 Christiansen (bb0330) 2018; 315 Encarnacao (bb0105) 2015; 34 Mollica (bb0065) 2017; 66 Dalby (bb0125) 2017; 21 Qin (bb0005) 2012; 490 Zhang (bb0260) 2017; 118 Oldendorf (bb0370) 1973; 224 Bjursell (10.1016/j.tem.2020.12.003_bb0200) 2011; 300 Demigne (10.1016/j.tem.2020.12.003_bb0215) 1986; 116 de Goffau (10.1016/j.tem.2020.12.003_bb0310) 2013; 62 Zeng (10.1016/j.tem.2020.12.003_bb0285) 2016; 30 Rajas (10.1016/j.tem.2020.12.003_bb0445) 2000; 49 Wang (10.1016/j.tem.2020.12.003_bb0080) 2019; 102 Li (10.1016/j.tem.2020.12.003_bb0075) 2019; 26 Zhang (10.1016/j.tem.2020.12.003_bb0260) 2017; 118 Zaibi (10.1016/j.tem.2020.12.003_bb0345) 2010; 584 Nakatani (10.1016/j.tem.2020.12.003_bb0155) 2018; 10 Fang (10.1016/j.tem.2020.12.003_bb0085) 2019; 149 Vily-Petit (10.1016/j.tem.2020.12.003_bb0450) 2020; 69 Gao (10.1016/j.tem.2020.12.003_bb0045) 2009; 58 Louis (10.1016/j.tem.2020.12.003_bb0110) 2017; 19 Duteil (10.1016/j.tem.2020.12.003_bb0275) 2016; 17 Pierre (10.1016/j.tem.2020.12.003_bb0365) 2005; 94 Chang (10.1016/j.tem.2020.12.003_bb0390) 2014; 111 Bachmann (10.1016/j.tem.2020.12.003_bb0375) 1979; 92 Hara (10.1016/j.tem.2020.12.003_bb0300) 2014; 92 Xu (10.1016/j.tem.2020.12.003_bb0400) 2018; 238 Hasan (10.1016/j.tem.2020.12.003_bb0465) 2020 Gao (10.1016/j.tem.2020.12.003_bb0225) 2019; 10 Ohira (10.1016/j.tem.2020.12.003_bb0420) 2013; 20 Weber (10.1016/j.tem.2020.12.003_bb0255) 2008; 86 Troy (10.1016/j.tem.2020.12.003_bb0430) 2008; 8 Zhang (10.1016/j.tem.2020.12.003_bb0140) 2018; 6 Lu (10.1016/j.tem.2020.12.003_bb0245) 2012; 90 Tolhurst (10.1016/j.tem.2020.12.003_bb0325) 2012; 61 Turnbaugh (10.1016/j.tem.2020.12.003_bb0130) 2009; 587 Mitchell (10.1016/j.tem.2020.12.003_bb0380) 2011; 117 Schwiertz (10.1016/j.tem.2020.12.003_bb0030) 2010; 18 Puigserver (10.1016/j.tem.2020.12.003_bb0270) 1998; 92 De Vadder (10.1016/j.tem.2020.12.003_bb0050) 2014; 156 Khan (10.1016/j.tem.2020.12.003_bb0230) 2016; 254 Krautkramer (10.1016/j.tem.2020.12.003_bb0135) 2016; 64 Zhang (10.1016/j.tem.2020.12.003_bb0265) 2019; 67 Zhan (10.1016/j.tem.2020.12.003_bb0460) 2020; 103 Rahat-Rozenbloom (10.1016/j.tem.2020.12.003_bb0115) 2014; 38 Clarke (10.1016/j.tem.2020.12.003_bb0360) 2014; 28 Patel (10.1016/j.tem.2020.12.003_bb0455) 2015; 309 Dalby (10.1016/j.tem.2020.12.003_bb0125) 2017; 21 Bloemen (10.1016/j.tem.2020.12.003_bb0160) 2009; 28 Elgamal (10.1016/j.tem.2020.12.003_bb0305) 2020; 503 Boets (10.1016/j.tem.2020.12.003_bb0120) 2015; 7 Christiansen (10.1016/j.tem.2020.12.003_bb0330) 2018; 315 Chou (10.1016/j.tem.2020.12.003_bb0295) 2012; 19 Xiong (10.1016/j.tem.2020.12.003_bb0340) 2004; 101 Donohoe (10.1016/j.tem.2020.12.003_bb0020) 2011; 13 Smith (10.1016/j.tem.2020.12.003_bb0395) 2013; 341 Li (10.1016/j.tem.2020.12.003_bb0070) 2018; 67 Kimura (10.1016/j.tem.2020.12.003_bb0190) 2011; 108 Samuel (10.1016/j.tem.2020.12.003_bb0185) 2008; 105 Egorin (10.1016/j.tem.2020.12.003_bb0170) 1999; 43 Mithieux (10.1016/j.tem.2020.12.003_bb0425) 2005; 2 Zhao (10.1016/j.tem.2020.12.003_bb0015) 2018; 359 Larasati (10.1016/j.tem.2020.12.003_bb0415) 2019; 7 den Besten (10.1016/j.tem.2020.12.003_bb0055) 2015; 64 Sambeat (10.1016/j.tem.2020.12.003_bb0280) 2016; 15 Turnbaugh (10.1016/j.tem.2020.12.003_bb0025) 2006; 444 Khan (10.1016/j.tem.2020.12.003_bb0290) 2014; 213 Yu (10.1016/j.tem.2020.12.003_bb0090) 2019; 243 den Besten (10.1016/j.tem.2020.12.003_bb0210) 2013; 305 Naraoka (10.1016/j.tem.2020.12.003_bb0355) 2018; 14 Kim (10.1016/j.tem.2020.12.003_bb0175) 2013; 40 Bergman (10.1016/j.tem.2020.12.003_bb0095) 1990; 70 Encarnacao (10.1016/j.tem.2020.12.003_bb0105) 2015; 34 Lu (10.1016/j.tem.2020.12.003_bb0195) 2016; 6 Hong (10.1016/j.tem.2020.12.003_bb0220) 2016; 7 Qin (10.1016/j.tem.2020.12.003_bb0005) 2012; 490 Henagan (10.1016/j.tem.2020.12.003_bb0060) 2015; 172 Stephens (10.1016/j.tem.2020.12.003_bb0335) 1995; 377 Forslund (10.1016/j.tem.2020.12.003_bb0010) 2015; 528 Dalile (10.1016/j.tem.2020.12.003_bb0145) 2019; 16 Hotamisligil (10.1016/j.tem.2020.12.003_bb0385) 2006; 444 Guo (10.1016/j.tem.2020.12.003_bb0320) 2018; 9 De Vadder (10.1016/j.tem.2020.12.003_bb0435) 2016; 24 Lin (10.1016/j.tem.2020.12.003_bb0205) 2012; 7 Zhai (10.1016/j.tem.2020.12.003_bb0405) 2019; 366 Turnbaugh (10.1016/j.tem.2020.12.003_bb0035) 2009; 457 Biagi (10.1016/j.tem.2020.12.003_bb0250) 2007; 85 Aguilar (10.1016/j.tem.2020.12.003_bb0235) 2018; 47 Oldendorf (10.1016/j.tem.2020.12.003_bb0370) 1973; 224 Chatelain (10.1016/j.tem.2020.12.003_bb0440) 1998; 47 Perry (10.1016/j.tem.2020.12.003_bb0040) 2016; 534 Mattace Raso (10.1016/j.tem.2020.12.003_bb0410) 2013; 8 Brown (10.1016/j.tem.2020.12.003_bb0180) 2003; 278 Li (10.1016/j.tem.2020.12.003_bb0315) 2013; 6 Soliman (10.1016/j.tem.2020.12.003_bb0350) 2011; 12 Cummings (10.1016/j.tem.2020.12.003_bb0150) 1987; 28 Brahe (10.1016/j.tem.2020.12.003_bb0100) 2013; 14 Huang (10.1016/j.tem.2020.12.003_bb0240) 2017; 8 Mollica (10.1016/j.tem.2020.12.003_bb0065) 2017; 66 Canfora (10.1016/j.tem.2020.12.003_bb0165) 2017; 7 |
References_xml | – volume: 12 start-page: 319 year: 2011 end-page: 323 ident: bb0350 article-title: Butyrate regulates leptin expression through different signaling pathways in adipocytes publication-title: J. Vet. Sci. – volume: 28 start-page: 1221 year: 2014 end-page: 1238 ident: bb0360 article-title: Minireview: gut microbiota: the neglected endocrine organ publication-title: Mol. Endocrinol. – volume: 13 start-page: 517 year: 2011 end-page: 526 ident: bb0020 article-title: The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon publication-title: Cell Metab. – volume: 24 start-page: 151 year: 2016 end-page: 157 ident: bb0435 article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis publication-title: Cell Metab. – volume: 278 start-page: 11312 year: 2003 end-page: 11319 ident: bb0180 article-title: The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids publication-title: J. Biol. Chem. – volume: 309 start-page: R499 year: 2015 end-page: R509 ident: bb0455 article-title: Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 70 start-page: 567 year: 1990 end-page: 590 ident: bb0095 article-title: Energy contributions of volatile fatty acids from the gastrointestinal tract in various species publication-title: Physiol. Rev. – volume: 67 start-page: 7694 year: 2019 end-page: 7705 ident: bb0265 article-title: Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus publication-title: J. Agric. Food Chem. – volume: 6 start-page: 103 year: 2018 ident: bb0140 article-title: Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure publication-title: Microbiome – volume: 67 start-page: 1269 year: 2018 end-page: 1279 ident: bb0070 article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit publication-title: Gut – volume: 94 start-page: 1 year: 2005 end-page: 14 ident: bb0365 article-title: Monocarboxylate transporters in the central nervous system: distribution, regulation and function publication-title: J. Neurochem. – volume: 21 start-page: 1521 year: 2017 end-page: 1533 ident: bb0125 article-title: Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice publication-title: Cell Rep. – volume: 19 start-page: 669 year: 2012 end-page: 673 ident: bb0295 article-title: Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis publication-title: Chem. Biol. – volume: 9 start-page: 630 year: 2018 ident: bb0320 article-title: Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression publication-title: Front Endocrinol. (Lausanne) – volume: 444 start-page: 1027 year: 2006 end-page: 1031 ident: bb0025 article-title: An obesity-associated gut microbiome with increased capacity for energy harvest publication-title: Nature – volume: 86 start-page: 442 year: 2008 end-page: 450 ident: bb0255 article-title: Effect of sodium butyrate on growth performance and response to lipopolysaccharide in weanling pigs publication-title: J. Anim. Sci. – volume: 7 start-page: 8916 year: 2015 end-page: 8929 ident: bb0120 article-title: Quantification of in vivo colonic short chain fatty acid production from inulin publication-title: Nutrients – volume: 43 start-page: 445 year: 1999 end-page: 453 ident: bb0170 article-title: Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats publication-title: Cancer Chemother. Pharmacol. – volume: 444 start-page: 860 year: 2006 end-page: 867 ident: bb0385 article-title: Inflammation and metabolic disorders publication-title: Nature – volume: 92 start-page: 93 year: 2014 end-page: 102 ident: bb0300 article-title: Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes publication-title: J. Mol. Med. (Berl) – volume: 8 start-page: 13073 year: 2017 end-page: 13084 ident: bb0240 article-title: Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring publication-title: Oncotarget – volume: 28 start-page: 657 year: 2009 end-page: 661 ident: bb0160 article-title: Short chain fatty acids exchange across the gut and liver in humans measured at surgery publication-title: Clin. Nutr. – volume: 584 start-page: 2381 year: 2010 end-page: 2386 ident: bb0345 article-title: Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids publication-title: FEBS Lett. – volume: 7 year: 2012 ident: bb0205 article-title: Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms publication-title: PLoS One – volume: 111 start-page: 2247 year: 2014 end-page: 2252 ident: bb0390 article-title: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 108 start-page: 8030 year: 2011 end-page: 8035 ident: bb0190 article-title: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41) publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 66 start-page: 1405 year: 2017 end-page: 1418 ident: bb0065 article-title: Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice publication-title: Diabetes – volume: 377 start-page: 530 year: 1995 ident: bb0335 article-title: The role of neuropeptide Y in the antiobesity action of the obese gene product publication-title: Nature – volume: 15 start-page: 2536 year: 2016 end-page: 2549 ident: bb0280 article-title: LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program publication-title: Cell Rep. – volume: 49 start-page: 1165 year: 2000 end-page: 1168 ident: bb0445 article-title: Induction of PEPCK gene expression in insulinopenia in rat small intestine publication-title: Diabetes – volume: 243 start-page: 125 year: 2019 end-page: 135 ident: bb0090 article-title: Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism publication-title: J. Endocrinol. – volume: 116 start-page: 77 year: 1986 end-page: 86 ident: bb0215 article-title: Effects of absorption of large amounts of volatile fatty acids on rat liver metabolism publication-title: J. Nutr. – volume: 7 start-page: 56071 year: 2016 end-page: 56082 ident: bb0220 article-title: Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice publication-title: Oncotarget – volume: 85 start-page: 1184 year: 2007 end-page: 1191 ident: bb0250 article-title: Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate publication-title: J. Anim. Sci. – volume: 117 start-page: 735 year: 2011 end-page: 746 ident: bb0380 article-title: Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells publication-title: J. Neurochem. – volume: 92 start-page: 153 year: 1979 end-page: 159 ident: bb0375 article-title: Short chain fatty acids in plasma and brain: quantitative determination by gas chromatography publication-title: Clin. Chim. Acta – volume: 149 start-page: 747 year: 2019 end-page: 754 ident: bb0085 article-title: Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice publication-title: J. Nutr. – volume: 305 start-page: G900 year: 2013 end-page: G910 ident: bb0210 article-title: Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 341 start-page: 569 year: 2013 end-page: 573 ident: bb0395 article-title: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis publication-title: Science – volume: 8 start-page: 201 year: 2008 end-page: 211 ident: bb0430 article-title: Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice publication-title: Cell Metab. – volume: 490 start-page: 55 year: 2012 end-page: 60 ident: bb0005 article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes publication-title: Nature – volume: 8 year: 2013 ident: bb0410 article-title: Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet publication-title: PLoS One – volume: 92 start-page: 829 year: 1998 end-page: 839 ident: bb0270 article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis publication-title: Cell – volume: 20 start-page: 425 year: 2013 end-page: 442 ident: bb0420 article-title: Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages publication-title: J. Atheroscler. Thromb. – volume: 118 start-page: 2395 year: 2017 end-page: 2408 ident: bb0260 article-title: Sodium butyrate protects against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice publication-title: J. Cell. Biochem. – volume: 103 start-page: 5514 year: 2020 end-page: 5524 ident: bb0460 article-title: Propionate enhances the expression of key genes involved in the gluconeogenic pathway in bovine intestinal epithelial cells publication-title: J. Dairy Sci. – volume: 30 start-page: 1822 year: 2016 end-page: 1836 ident: bb0285 article-title: Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation publication-title: Genes Dev. – volume: 17 start-page: 1008 year: 2016 end-page: 1021 ident: bb0275 article-title: Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue publication-title: Cell Rep. – volume: 26 start-page: 2720 year: 2019 end-page: 2737 ident: bb0075 article-title: Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue publication-title: Cell Rep. – volume: 14 start-page: 287 year: 2018 end-page: 293 ident: bb0355 article-title: Short chain fatty acids upregulate adipokine production in type 2 diabetes-derived human adipocytes publication-title: Acta Endocrinol. (Buchar) – year: 2020 ident: bb0465 article-title: Intestinal stem cell derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis publication-title: Mol. Metab. – volume: 64 start-page: 2398 year: 2015 end-page: 2408 ident: bb0055 article-title: Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-dependent switch from lipogenesis to fat oxidation publication-title: Diabetes – volume: 102 year: 2019 ident: bb0080 article-title: LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue publication-title: Metabolism – volume: 34 start-page: 465 year: 2015 end-page: 478 ident: bb0105 article-title: Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment publication-title: Cancer Metastasis Rev. – volume: 213 start-page: 1 year: 2014 end-page: 12 ident: bb0290 article-title: Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat publication-title: Chem. Biol. Interact. – volume: 238 start-page: 231 year: 2018 end-page: 244 ident: bb0400 article-title: Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice publication-title: J. Endocrinol. – volume: 64 start-page: 982 year: 2016 end-page: 992 ident: bb0135 article-title: Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues publication-title: Mol. Cell – volume: 47 start-page: 75 year: 2018 end-page: 82 ident: bb0235 article-title: Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice publication-title: Nutrition – volume: 156 start-page: 84 year: 2014 end-page: 96 ident: bb0050 article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits publication-title: Cell – volume: 224 start-page: 1450 year: 1973 end-page: 1453 ident: bb0370 article-title: Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids publication-title: Am. J. Phys. – volume: 14 start-page: 950 year: 2013 end-page: 959 ident: bb0100 article-title: Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? publication-title: Obes. Rev. – volume: 28 start-page: 1221 year: 1987 end-page: 1227 ident: bb0150 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut – volume: 16 start-page: 461 year: 2019 end-page: 478 ident: bb0145 article-title: The role of short-chain fatty acids in microbiota-gut-brain communication publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 10 start-page: 1220 year: 2018 ident: bb0155 article-title: Production, absorption, and blood flow dynamics of short-chain fatty acids produced by fermentation in piglet hindgut during the suckling(-)weaning period publication-title: Nutrients – volume: 105 start-page: 16767 year: 2008 end-page: 16772 ident: bb0185 article-title: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 534 start-page: 213 year: 2016 end-page: 217 ident: bb0040 article-title: Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome publication-title: Nature – volume: 254 start-page: 124 year: 2016 end-page: 134 ident: bb0230 article-title: Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin publication-title: Chem. Biol. Interact. – volume: 19 start-page: 29 year: 2017 end-page: 41 ident: bb0110 article-title: Formation of propionate and butyrate by the human colonic microbiota publication-title: Environ. Microbiol. – volume: 503 year: 2020 ident: bb0305 article-title: Ultrastructure characterization of pancreatic beta-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats publication-title: Mol. Cell. Endocrinol. – volume: 40 start-page: 912 year: 2013 end-page: 918 ident: bb0175 article-title: Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET publication-title: Nucl. Med. Biol. – volume: 587 start-page: 4153 year: 2009 end-page: 4158 ident: bb0130 article-title: The core gut microbiome, energy balance and obesity publication-title: J. Physiol. (Lond.) – volume: 62 start-page: 1238 year: 2013 end-page: 1244 ident: bb0310 article-title: Fecal microbiota composition differs between children with beta-cell autoimmunity and those without publication-title: Diabetes – volume: 315 start-page: G53 year: 2018 end-page: G65 ident: bb0330 article-title: The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 6 start-page: 1574 year: 2013 end-page: 1584 ident: bb0315 article-title: Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity publication-title: Int. J. Clin. Exp. Pathol. – volume: 101 start-page: 1045 year: 2004 end-page: 1050 ident: bb0340 article-title: Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 58 start-page: 1509 year: 2009 end-page: 1517 ident: bb0045 article-title: Butyrate improves insulin sensitivity and increases energy expenditure in mice publication-title: Diabetes – volume: 38 start-page: 1525 year: 2014 end-page: 1531 ident: bb0115 article-title: Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans publication-title: Int. J. Obes. – volume: 7 start-page: 74 year: 2019 ident: bb0415 article-title: The role of butyrate on monocyte migration and inflammation response in patient with type 2 diabetes mellitus publication-title: Biomedicines – volume: 7 start-page: 2360 year: 2017 ident: bb0165 article-title: Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial publication-title: Sci. Rep. – volume: 69 start-page: 2193 year: 2020 end-page: 2202 ident: bb0450 article-title: Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease publication-title: Gut – volume: 61 start-page: 364 year: 2012 end-page: 371 ident: bb0325 article-title: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2 publication-title: Diabetes – volume: 2 start-page: 321 year: 2005 end-page: 329 ident: bb0425 article-title: Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein publication-title: Cell Metab. – volume: 47 start-page: 882 year: 1998 end-page: 889 ident: bb0440 article-title: Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes publication-title: Diabetes – volume: 6 year: 2016 ident: bb0195 article-title: Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota publication-title: Sci. Rep. – volume: 457 start-page: 480 year: 2009 end-page: 487 ident: bb0035 article-title: A core gut microbiome in obese and lean twins publication-title: Nature – volume: 528 start-page: 262 year: 2015 end-page: 266 ident: bb0010 article-title: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota publication-title: Nature – volume: 359 start-page: 1151 year: 2018 end-page: 1156 ident: bb0015 article-title: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes publication-title: Science – volume: 18 start-page: 190 year: 2010 end-page: 195 ident: bb0030 article-title: Microbiota and SCFA in lean and overweight healthy subjects publication-title: Obesity – volume: 172 start-page: 2782 year: 2015 end-page: 2798 ident: bb0060 article-title: Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning publication-title: Br. J. Pharmacol. – volume: 300 start-page: E211 year: 2011 end-page: E220 ident: bb0200 article-title: Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 10 start-page: 1040 year: 2019 ident: bb0225 article-title: Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet publication-title: Front. Pharmacol. – volume: 366 year: 2019 ident: bb0405 article-title: Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice publication-title: FEMS Microbiol. Lett. – volume: 90 start-page: 430 year: 2012 end-page: 432 ident: bb0245 article-title: Butyrate supplementation to gestating sows and piglets induces muscle and adipose tissue oxidative genes and improves growth performance publication-title: J. Anim. Sci. – volume: 30 start-page: 1822 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0285 article-title: Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation publication-title: Genes Dev. doi: 10.1101/gad.285312.116 – volume: 62 start-page: 1238 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0310 article-title: Fecal microbiota composition differs between children with beta-cell autoimmunity and those without publication-title: Diabetes doi: 10.2337/db12-0526 – volume: 24 start-page: 151 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0435 article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.013 – volume: 69 start-page: 2193 year: 2020 ident: 10.1016/j.tem.2020.12.003_bb0450 article-title: Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease publication-title: Gut doi: 10.1136/gutjnl-2019-319745 – volume: 7 start-page: 2360 year: 2017 ident: 10.1016/j.tem.2020.12.003_bb0165 article-title: Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial publication-title: Sci. Rep. doi: 10.1038/s41598-017-02546-x – volume: 90 start-page: 430 year: 2012 ident: 10.1016/j.tem.2020.12.003_bb0245 article-title: Butyrate supplementation to gestating sows and piglets induces muscle and adipose tissue oxidative genes and improves growth performance publication-title: J. Anim. Sci. doi: 10.2527/jas.53817 – volume: 503 year: 2020 ident: 10.1016/j.tem.2020.12.003_bb0305 article-title: Ultrastructure characterization of pancreatic beta-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2019.110700 – volume: 2 start-page: 321 year: 2005 ident: 10.1016/j.tem.2020.12.003_bb0425 article-title: Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.09.010 – volume: 8 start-page: 201 year: 2008 ident: 10.1016/j.tem.2020.12.003_bb0430 article-title: Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.08.008 – volume: 16 start-page: 461 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0145 article-title: The role of short-chain fatty acids in microbiota-gut-brain communication publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-019-0157-3 – volume: 28 start-page: 1221 year: 1987 ident: 10.1016/j.tem.2020.12.003_bb0150 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut doi: 10.1136/gut.28.10.1221 – volume: 26 start-page: 2720 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0075 article-title: Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.02.015 – volume: 70 start-page: 567 year: 1990 ident: 10.1016/j.tem.2020.12.003_bb0095 article-title: Energy contributions of volatile fatty acids from the gastrointestinal tract in various species publication-title: Physiol. Rev. doi: 10.1152/physrev.1990.70.2.567 – volume: 12 start-page: 319 year: 2011 ident: 10.1016/j.tem.2020.12.003_bb0350 article-title: Butyrate regulates leptin expression through different signaling pathways in adipocytes publication-title: J. Vet. Sci. doi: 10.4142/jvs.2011.12.4.319 – volume: 66 start-page: 1405 year: 2017 ident: 10.1016/j.tem.2020.12.003_bb0065 article-title: Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice publication-title: Diabetes doi: 10.2337/db16-0924 – volume: 243 start-page: 125 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0090 article-title: Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism publication-title: J. Endocrinol. doi: 10.1530/JOE-19-0122 – volume: 17 start-page: 1008 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0275 article-title: Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.053 – volume: 278 start-page: 11312 year: 2003 ident: 10.1016/j.tem.2020.12.003_bb0180 article-title: The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids publication-title: J. Biol. Chem. doi: 10.1074/jbc.M211609200 – volume: 85 start-page: 1184 year: 2007 ident: 10.1016/j.tem.2020.12.003_bb0250 article-title: Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate publication-title: J. Anim. Sci. doi: 10.2527/jas.2006-378 – volume: 94 start-page: 1 year: 2005 ident: 10.1016/j.tem.2020.12.003_bb0365 article-title: Monocarboxylate transporters in the central nervous system: distribution, regulation and function publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2005.03168.x – volume: 47 start-page: 882 year: 1998 ident: 10.1016/j.tem.2020.12.003_bb0440 article-title: Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes publication-title: Diabetes doi: 10.2337/diabetes.47.6.882 – volume: 28 start-page: 1221 year: 2014 ident: 10.1016/j.tem.2020.12.003_bb0360 article-title: Minireview: gut microbiota: the neglected endocrine organ publication-title: Mol. Endocrinol. doi: 10.1210/me.2014-1108 – volume: 117 start-page: 735 year: 2011 ident: 10.1016/j.tem.2020.12.003_bb0380 article-title: Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells publication-title: J. Neurochem. – volume: 38 start-page: 1525 year: 2014 ident: 10.1016/j.tem.2020.12.003_bb0115 article-title: Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans publication-title: Int. J. Obes. doi: 10.1038/ijo.2014.46 – volume: 10 start-page: 1220 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0155 article-title: Production, absorption, and blood flow dynamics of short-chain fatty acids produced by fermentation in piglet hindgut during the suckling(-)weaning period publication-title: Nutrients doi: 10.3390/nu10091220 – volume: 224 start-page: 1450 year: 1973 ident: 10.1016/j.tem.2020.12.003_bb0370 article-title: Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids publication-title: Am. J. Phys. doi: 10.1152/ajplegacy.1973.224.6.1450 – volume: 587 start-page: 4153 year: 2009 ident: 10.1016/j.tem.2020.12.003_bb0130 article-title: The core gut microbiome, energy balance and obesity publication-title: J. Physiol. (Lond.) doi: 10.1113/jphysiol.2009.174136 – volume: 40 start-page: 912 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0175 article-title: Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET publication-title: Nucl. Med. Biol. doi: 10.1016/j.nucmedbio.2013.06.007 – volume: 213 start-page: 1 year: 2014 ident: 10.1016/j.tem.2020.12.003_bb0290 article-title: Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2014.02.001 – volume: 64 start-page: 2398 year: 2015 ident: 10.1016/j.tem.2020.12.003_bb0055 article-title: Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-dependent switch from lipogenesis to fat oxidation publication-title: Diabetes doi: 10.2337/db14-1213 – volume: 10 start-page: 1040 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0225 article-title: Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01040 – volume: 6 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0195 article-title: Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota publication-title: Sci. Rep. doi: 10.1038/srep37589 – volume: 315 start-page: G53 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0330 article-title: The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00346.2017 – volume: 116 start-page: 77 year: 1986 ident: 10.1016/j.tem.2020.12.003_bb0215 article-title: Effects of absorption of large amounts of volatile fatty acids on rat liver metabolism publication-title: J. Nutr. doi: 10.1093/jn/116.1.77 – volume: 9 start-page: 630 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0320 article-title: Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression publication-title: Front Endocrinol. (Lausanne) doi: 10.3389/fendo.2018.00630 – volume: 8 start-page: 13073 year: 2017 ident: 10.1016/j.tem.2020.12.003_bb0240 article-title: Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring publication-title: Oncotarget doi: 10.18632/oncotarget.14375 – volume: 18 start-page: 190 year: 2010 ident: 10.1016/j.tem.2020.12.003_bb0030 article-title: Microbiota and SCFA in lean and overweight healthy subjects publication-title: Obesity doi: 10.1038/oby.2009.167 – volume: 300 start-page: E211 year: 2011 ident: 10.1016/j.tem.2020.12.003_bb0200 article-title: Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00229.2010 – volume: 101 start-page: 1045 year: 2004 ident: 10.1016/j.tem.2020.12.003_bb0340 article-title: Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2637002100 – volume: 444 start-page: 860 year: 2006 ident: 10.1016/j.tem.2020.12.003_bb0385 article-title: Inflammation and metabolic disorders publication-title: Nature doi: 10.1038/nature05485 – volume: 359 start-page: 1151 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0015 article-title: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes publication-title: Science doi: 10.1126/science.aao5774 – volume: 49 start-page: 1165 year: 2000 ident: 10.1016/j.tem.2020.12.003_bb0445 article-title: Induction of PEPCK gene expression in insulinopenia in rat small intestine publication-title: Diabetes doi: 10.2337/diabetes.49.7.1165 – volume: 118 start-page: 2395 year: 2017 ident: 10.1016/j.tem.2020.12.003_bb0260 article-title: Sodium butyrate protects against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice publication-title: J. Cell. Biochem. doi: 10.1002/jcb.25902 – volume: 92 start-page: 829 year: 1998 ident: 10.1016/j.tem.2020.12.003_bb0270 article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis publication-title: Cell doi: 10.1016/S0092-8674(00)81410-5 – volume: 172 start-page: 2782 year: 2015 ident: 10.1016/j.tem.2020.12.003_bb0060 article-title: Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning publication-title: Br. J. Pharmacol. doi: 10.1111/bph.13058 – volume: 67 start-page: 1269 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0070 article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit publication-title: Gut doi: 10.1136/gutjnl-2017-314050 – volume: 490 start-page: 55 year: 2012 ident: 10.1016/j.tem.2020.12.003_bb0005 article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes publication-title: Nature doi: 10.1038/nature11450 – volume: 13 start-page: 517 year: 2011 ident: 10.1016/j.tem.2020.12.003_bb0020 article-title: The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.02.018 – volume: 457 start-page: 480 year: 2009 ident: 10.1016/j.tem.2020.12.003_bb0035 article-title: A core gut microbiome in obese and lean twins publication-title: Nature doi: 10.1038/nature07540 – volume: 19 start-page: 29 year: 2017 ident: 10.1016/j.tem.2020.12.003_bb0110 article-title: Formation of propionate and butyrate by the human colonic microbiota publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13589 – volume: 7 year: 2012 ident: 10.1016/j.tem.2020.12.003_bb0205 article-title: Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms publication-title: PLoS One – volume: 309 start-page: R499 year: 2015 ident: 10.1016/j.tem.2020.12.003_bb0455 article-title: Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00128.2015 – volume: 61 start-page: 364 year: 2012 ident: 10.1016/j.tem.2020.12.003_bb0325 article-title: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2 publication-title: Diabetes doi: 10.2337/db11-1019 – volume: 43 start-page: 445 year: 1999 ident: 10.1016/j.tem.2020.12.003_bb0170 article-title: Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s002800050922 – volume: 7 start-page: 56071 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0220 article-title: Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice publication-title: Oncotarget doi: 10.18632/oncotarget.11267 – volume: 366 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0405 article-title: Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnz153 – volume: 149 start-page: 747 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0085 article-title: Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice publication-title: J. Nutr. doi: 10.1093/jn/nxy324 – volume: 156 start-page: 84 year: 2014 ident: 10.1016/j.tem.2020.12.003_bb0050 article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits publication-title: Cell doi: 10.1016/j.cell.2013.12.016 – volume: 15 start-page: 2536 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0280 article-title: LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.05.019 – volume: 19 start-page: 669 year: 2012 ident: 10.1016/j.tem.2020.12.003_bb0295 article-title: Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2012.05.010 – volume: 28 start-page: 657 year: 2009 ident: 10.1016/j.tem.2020.12.003_bb0160 article-title: Short chain fatty acids exchange across the gut and liver in humans measured at surgery publication-title: Clin. Nutr. doi: 10.1016/j.clnu.2009.05.011 – volume: 14 start-page: 950 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0100 article-title: Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? publication-title: Obes. Rev. doi: 10.1111/obr.12068 – volume: 34 start-page: 465 year: 2015 ident: 10.1016/j.tem.2020.12.003_bb0105 article-title: Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-015-9578-9 – volume: 238 start-page: 231 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0400 article-title: Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice publication-title: J. Endocrinol. doi: 10.1530/JOE-18-0137 – volume: 20 start-page: 425 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0420 article-title: Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages publication-title: J. Atheroscler. Thromb. doi: 10.5551/jat.15065 – year: 2020 ident: 10.1016/j.tem.2020.12.003_bb0465 article-title: Intestinal stem cell derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis publication-title: Mol. Metab. – volume: 7 start-page: 74 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0415 article-title: The role of butyrate on monocyte migration and inflammation response in patient with type 2 diabetes mellitus publication-title: Biomedicines doi: 10.3390/biomedicines7040074 – volume: 444 start-page: 1027 year: 2006 ident: 10.1016/j.tem.2020.12.003_bb0025 article-title: An obesity-associated gut microbiome with increased capacity for energy harvest publication-title: Nature doi: 10.1038/nature05414 – volume: 21 start-page: 1521 year: 2017 ident: 10.1016/j.tem.2020.12.003_bb0125 article-title: Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.10.056 – volume: 14 start-page: 287 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0355 article-title: Short chain fatty acids upregulate adipokine production in type 2 diabetes-derived human adipocytes publication-title: Acta Endocrinol. (Buchar) doi: 10.4183/aeb.2018.287 – volume: 108 start-page: 8030 year: 2011 ident: 10.1016/j.tem.2020.12.003_bb0190 article-title: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41) publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1016088108 – volume: 92 start-page: 93 year: 2014 ident: 10.1016/j.tem.2020.12.003_bb0300 article-title: Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes publication-title: J. Mol. Med. (Berl) doi: 10.1007/s00109-013-1078-1 – volume: 534 start-page: 213 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0040 article-title: Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome publication-title: Nature doi: 10.1038/nature18309 – volume: 105 start-page: 16767 year: 2008 ident: 10.1016/j.tem.2020.12.003_bb0185 article-title: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0808567105 – volume: 377 start-page: 530 year: 1995 ident: 10.1016/j.tem.2020.12.003_bb0335 article-title: The role of neuropeptide Y in the antiobesity action of the obese gene product publication-title: Nature doi: 10.1038/377530a0 – volume: 254 start-page: 124 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0230 article-title: Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2016.06.007 – volume: 111 start-page: 2247 year: 2014 ident: 10.1016/j.tem.2020.12.003_bb0390 article-title: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1322269111 – volume: 6 start-page: 1574 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0315 article-title: Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity publication-title: Int. J. Clin. Exp. Pathol. – volume: 103 start-page: 5514 year: 2020 ident: 10.1016/j.tem.2020.12.003_bb0460 article-title: Propionate enhances the expression of key genes involved in the gluconeogenic pathway in bovine intestinal epithelial cells publication-title: J. Dairy Sci. doi: 10.3168/jds.2019-17309 – volume: 341 start-page: 569 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0395 article-title: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis publication-title: Science doi: 10.1126/science.1241165 – volume: 6 start-page: 103 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0140 article-title: Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure publication-title: Microbiome doi: 10.1186/s40168-018-0473-9 – volume: 102 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0080 article-title: LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue publication-title: Metabolism – volume: 92 start-page: 153 year: 1979 ident: 10.1016/j.tem.2020.12.003_bb0375 article-title: Short chain fatty acids in plasma and brain: quantitative determination by gas chromatography publication-title: Clin. Chim. Acta doi: 10.1016/0009-8981(79)90109-8 – volume: 47 start-page: 75 year: 2018 ident: 10.1016/j.tem.2020.12.003_bb0235 article-title: Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice publication-title: Nutrition doi: 10.1016/j.nut.2017.10.007 – volume: 64 start-page: 982 year: 2016 ident: 10.1016/j.tem.2020.12.003_bb0135 article-title: Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.10.025 – volume: 7 start-page: 8916 year: 2015 ident: 10.1016/j.tem.2020.12.003_bb0120 article-title: Quantification of in vivo colonic short chain fatty acid production from inulin publication-title: Nutrients doi: 10.3390/nu7115440 – volume: 86 start-page: 442 year: 2008 ident: 10.1016/j.tem.2020.12.003_bb0255 article-title: Effect of sodium butyrate on growth performance and response to lipopolysaccharide in weanling pigs publication-title: J. Anim. Sci. doi: 10.2527/jas.2007-0499 – volume: 58 start-page: 1509 year: 2009 ident: 10.1016/j.tem.2020.12.003_bb0045 article-title: Butyrate improves insulin sensitivity and increases energy expenditure in mice publication-title: Diabetes doi: 10.2337/db08-1637 – volume: 305 start-page: G900 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0210 article-title: Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00265.2013 – volume: 584 start-page: 2381 year: 2010 ident: 10.1016/j.tem.2020.12.003_bb0345 article-title: Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.04.027 – volume: 8 year: 2013 ident: 10.1016/j.tem.2020.12.003_bb0410 article-title: Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet publication-title: PLoS One doi: 10.1371/journal.pone.0068626 – volume: 67 start-page: 7694 year: 2019 ident: 10.1016/j.tem.2020.12.003_bb0265 article-title: Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b02083 – volume: 528 start-page: 262 year: 2015 ident: 10.1016/j.tem.2020.12.003_bb0010 article-title: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota publication-title: Nature doi: 10.1038/nature15766 |
SSID | ssj0014815 |
Score | 2.6709316 |
SecondaryResourceType | review_article |
Snippet | Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 159 |
SubjectTerms | butyrate diabetes Endocrinology and Metabolism energy homeostasis gut microbiota obesity |
Title | Butyrate in Energy Metabolism: There Is Still More to Learn |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1043276020302526 https://www.clinicalkey.es/playcontent/1-s2.0-S1043276020302526 https://dx.doi.org/10.1016/j.tem.2020.12.003 https://www.ncbi.nlm.nih.gov/pubmed/33461886 https://www.proquest.com/docview/2479040301 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5KBmMvY2v3I1sbVNjTwEssXSSnfepKS7qRvrSDvgnbksEjc0rtPOxlf_vuZDswsmawR9s6bJ9P3518d58APtCSI3UoXSSnTkVIHi7KptwIrNEVWTLDNGRMF9d6_g2_3E3v9uC874XhssoO-1tMD2jdnRl32hzfl-X4JmY2OaM5lUaOWzLtNqJhK__0a1PmETMZSctIoCIe3Wc2Q41X47kZXU7CH8F-36xt3_RY7Bl80OULeN4Fj-Ksfb6XsOerfXi66NLjB3D6ed38ZO4HUVbiInT1iYVv6Dsvy_rHiSCbePDiqhY3TblcisWKjpqVCByrr-D28uL2fB51uyNEOU6TJnIyzx3qlH2PnDHgTXwSe6WTNJ1hXCg_wTx2OkvSLKOoyqnCKLqCWe6NM-o1DKpV5d-CyBUFFYV2htYW6HyeIS-CvFYFxUfSuCFMerXYvGMO5w0slrYvEftuSZOWNWljyXSjQ_i4EblvaTN2DZa9rm3fD0oIZgnUdwmZvwn5upuDtY1tTSPtlp0MATeSf5jav2543JuBpSnIeZW08qt1bSWaGWEhQeUQ3rT2sXlppVDHSaLf_d9N38MzyUU0oejtEAbNw9ofURTUZKNg5iN4cnb1dX79G_HlARk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xIm28ILbxUT42T9rTpKiN7TgpPAECtYP0hU7izUpiRwoqKSLpA_89d4lTCbGBtMckPiW5nH93zt39DPATlxyJkdx4PDDCk-jhvDSgRmAlTZ5GI5k0GdN4qsZ_5O_b4HYNzrteGCqrdNjfYnqD1u7MwGlz8FAUgxuf2ORCRak0dNxcfYB1YqcKerB-OrkaT1fJBOIjaUkJhEcCXXKzKfOqLfWj82HzU7DbOuu1e_pX-Nm4ocst2HTxIzttH_EzrNnyC3yMXYb8K5ycLesnon9gRckumsY-FtsaP_W8qO6PGZrFo2WTit3UxXzO4gUe1QvW0Kxuw-zyYnY-9twGCV4mg6j2DM8yI1VC7oePCPOGNvKtUFGSjKSfCzuUmW9UGiVpioGVEXko8IpMMxuaUOxAr1yUdg9YJjCuyJUJcXkhjc1SSesgq0SOIRIPTR-GnVp05sjDaQ-Lue6qxO40alKTJrXPiXG0D79WIg8tc8Zbg3mna921hCKIacT1t4TCvwnZyk3DSvu6wpH6lan0Qa4kX1jbezf80ZmBxllIqZWktItlpbkMRwiHiJZ92G3tY_XSQkjlR5Ha_7-bfodP41l8ra8n06sD2OBUU9PUwB1Cr35c2iMMiur0mzP6Z8ciA8o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Butyrate+in+Energy+Metabolism%3A+There+Is+Still+More+to+Learn&rft.jtitle=Trends+in+endocrinology+and+metabolism&rft.au=Zhang%2C+Lin&rft.au=Liu%2C+Chudan&rft.au=Jiang%2C+Qingyan&rft.au=Yin%2C+Yulong&rft.date=2021-03-01&rft.eissn=1879-3061&rft.volume=32&rft.issue=3&rft.spage=159&rft_id=info:doi/10.1016%2Fj.tem.2020.12.003&rft_id=info%3Apmid%2F33461886&rft.externalDocID=33461886 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-2760&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-2760&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-2760&client=summon |