Butyrate in Energy Metabolism: There Is Still More to Learn

Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects...

Full description

Saved in:
Bibliographic Details
Published inTrends in endocrinology and metabolism Vol. 32; no. 3; pp. 159 - 169
Main Authors Zhang, Lin, Liu, Chudan, Jiang, Qingyan, Yin, Yulong
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases. Butyrate is a vital mediator between gut microbiota and host metabolic health.Butyrate has regulatory effects on body weight, body composition, and glucose homeostasis.Butyrate is absorbed and metabolized by tissues and cells beyond the colon and has regulatory effects on their metabolic functions.The metabolic effects of butyrate are subject to multiple regulatory mechanisms.
AbstractList Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases.Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases.
Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases. Butyrate is a vital mediator between gut microbiota and host metabolic health.Butyrate has regulatory effects on body weight, body composition, and glucose homeostasis.Butyrate is absorbed and metabolized by tissues and cells beyond the colon and has regulatory effects on their metabolic functions.The metabolic effects of butyrate are subject to multiple regulatory mechanisms.
Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy homeostasis. However, the mechanisms of butyrate metabolic control remain unclear. This review summarizes studies that directly examined the effects of butyrate on metabolic health. The effects of butyrate on metabolic functions, including thermogenesis, lipid and glucose metabolism, appetite, inflammation, and influence on gut microbiota, are described. The effects of butyrate on cellular systems via G protein-coupled receptors (GPRs), as a histone deacetylase inhibitor, and as a substrate that is metabolized intercellularly, are also discussed. Hopefully, a better understanding of butyrate metabolic regulation may provide new perspectives for the nutritional prevention and treatment of metabolic diseases.
Author Jiang, Qingyan
Zhang, Lin
Yin, Yulong
Liu, Chudan
Author_xml – sequence: 1
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
– sequence: 2
  givenname: Chudan
  surname: Liu
  fullname: Liu, Chudan
  organization: Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
– sequence: 3
  givenname: Qingyan
  surname: Jiang
  fullname: Jiang, Qingyan
  email: qyjiang@scau.edu.cn
  organization: Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
– sequence: 4
  givenname: Yulong
  surname: Yin
  fullname: Yin, Yulong
  email: yinyulong@isa.ac.cn
  organization: Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33461886$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v3CAQhlGVqvnqD-il8rEXbxhgsd1IldIoTSJtlEP2jjCebdliSAFX2n9frE0ukZKeYMT7DJpnjsmBDx4J-QR0ARTk2XaRcVwwykrNFpTyd-QI2qarOZVwUO5U8Jo1kh6S45S2lIJoYfmBHHIuJLStPCLn36e8izpjZX115TH-3FV3mHUfnE3j12r9CyNWt6l6yNa56i6UKodqhTr6U_J-o13Cj0_nCVn_uFpf3tSr--vby4tVbcSyzfXAjBmE1AwYZx0I2VBsAblste4EbDhSYWCQfav7HoANfNPw8iJ6g83Q8BPyZd_2MYY_E6asRpsMOqc9hikpJpqOCsoplOjnp-jUjziox2hHHXfqed4SaPYBE0NKETfK2KyzDT5HbZ0CqmazaquKWTWbVcBUMVtIeEE-N3-LOd8zWOz8tRhVMha9wcFGNFkNwb5Jf3tBG2e9Ndr9xh2mbZiiL9oVqFQA9TBve142KyrYks3Ddq83-M_n_wA9zLYQ
CitedBy_id crossref_primary_10_1186_s10020_024_01046_9
crossref_primary_10_3389_fmicb_2024_1337368
crossref_primary_10_1016_j_foodres_2024_115123
crossref_primary_10_1038_s41387_024_00276_4
crossref_primary_10_3390_biology12121471
crossref_primary_10_1016_j_metabol_2023_155640
crossref_primary_10_1016_j_jafr_2024_101100
crossref_primary_10_1038_s41598_023_27907_7
crossref_primary_10_1007_s00253_023_12485_5
crossref_primary_10_1016_j_ijbiomac_2025_139970
crossref_primary_10_3390_ijms241310672
crossref_primary_10_1016_j_anifeedsci_2025_116220
crossref_primary_10_1039_D1FO04354D
crossref_primary_10_1080_15548627_2024_2323785
crossref_primary_10_1016_j_foodchem_2024_140137
crossref_primary_10_1111_febs_17334
crossref_primary_10_3390_ijms25137379
crossref_primary_10_1016_j_bbadis_2025_167756
crossref_primary_10_1128_spectrum_00394_23
crossref_primary_10_3390_molecules28052148
crossref_primary_10_3389_fmicb_2023_1140440
crossref_primary_10_1016_j_ijbiomac_2024_133681
crossref_primary_10_1039_D1FO02077C
crossref_primary_10_3390_antibiotics10101175
crossref_primary_10_1016_j_aninu_2021_10_012
crossref_primary_10_1128_spectrum_00502_22
crossref_primary_10_3390_fishes7060368
crossref_primary_10_1016_j_fbio_2023_102931
crossref_primary_10_1016_j_fbio_2024_103867
crossref_primary_10_1002_mbo3_1430
crossref_primary_10_1016_j_copbio_2024_103073
crossref_primary_10_1590_1678_7757_2024_0031
crossref_primary_10_1186_s40104_021_00663_2
crossref_primary_10_1186_s40168_022_01230_1
crossref_primary_10_3389_fimmu_2023_1175384
crossref_primary_10_3390_ijms241814191
crossref_primary_10_1016_j_molmet_2021_101427
crossref_primary_10_1038_s41467_023_41042_x
crossref_primary_10_1016_j_microc_2024_111822
crossref_primary_10_1038_s41522_024_00534_4
crossref_primary_10_3390_ijms251910397
crossref_primary_10_12677_jcpm_2024_34278
crossref_primary_10_1016_j_scitotenv_2023_166468
crossref_primary_10_1039_D2FO02063G
crossref_primary_10_1016_j_livsci_2022_105066
crossref_primary_10_3389_fneur_2023_1275460
crossref_primary_10_3389_fendo_2024_1360989
crossref_primary_10_1038_s41569_023_00887_x
crossref_primary_10_1038_s41366_022_01183_3
crossref_primary_10_1186_s12887_024_04944_3
crossref_primary_10_3389_fendo_2023_1265175
crossref_primary_10_3389_fmicb_2024_1508217
crossref_primary_10_1128_spectrum_01442_21
crossref_primary_10_3389_fendo_2023_1098881
crossref_primary_10_1002_advs_202403991
crossref_primary_10_3389_fimmu_2022_926765
crossref_primary_10_1186_s12964_023_01219_9
crossref_primary_10_3390_nu15204339
crossref_primary_10_1016_j_foodhyd_2023_108501
crossref_primary_10_1016_j_freeradbiomed_2024_11_021
crossref_primary_10_3389_fvets_2021_708512
crossref_primary_10_3390_nu14081669
crossref_primary_10_1016_j_pharmthera_2022_108256
crossref_primary_10_1038_s42255_024_01167_9
crossref_primary_10_1080_00218839_2024_2367299
crossref_primary_10_54097_hset_v30i_4941
crossref_primary_10_1016_j_ijbiomac_2023_128633
crossref_primary_10_3390_ani15010066
crossref_primary_10_1017_gmb_2023_9
crossref_primary_10_3390_nu13113887
crossref_primary_10_2217_fmb_2023_0148
crossref_primary_10_3389_fnut_2022_1037696
crossref_primary_10_1016_j_psyneuen_2022_105959
crossref_primary_10_3389_fvets_2024_1360939
crossref_primary_10_1111_raq_12759
crossref_primary_10_1177_11786361231162720
crossref_primary_10_1016_j_carbpol_2024_121825
crossref_primary_10_3390_nu15081989
crossref_primary_10_1016_j_heliyon_2024_e33601
crossref_primary_10_1080_19490976_2025_2455506
crossref_primary_10_1016_j_jff_2025_106675
crossref_primary_10_1016_j_neuint_2025_105952
crossref_primary_10_1038_s41531_024_00711_4
crossref_primary_10_3389_fmicb_2022_846336
crossref_primary_10_1111_febs_17005
crossref_primary_10_1016_j_ijbiomac_2021_06_016
crossref_primary_10_3389_fnut_2021_675445
crossref_primary_10_1128_JB_00311_21
crossref_primary_10_3389_fendo_2023_1218880
crossref_primary_10_1038_s41467_022_33656_4
crossref_primary_10_1016_j_foodres_2024_115420
crossref_primary_10_1016_j_micres_2024_127739
crossref_primary_10_1039_D4NR02480J
crossref_primary_10_1111_jog_15844
crossref_primary_10_3390_ijms25063514
crossref_primary_10_3390_molecules29122747
crossref_primary_10_3390_nu15071723
crossref_primary_10_3389_fnagi_2024_1451968
crossref_primary_10_3389_fimmu_2024_1456030
crossref_primary_10_3390_ani15060861
crossref_primary_10_1016_j_psj_2025_104936
crossref_primary_10_3390_app15062940
crossref_primary_10_1016_j_jhazmat_2023_132839
crossref_primary_10_3389_fcimb_2023_1304858
crossref_primary_10_3389_fvets_2022_948074
crossref_primary_10_1016_j_foodchem_2021_131792
crossref_primary_10_1002_efd2_70007
crossref_primary_10_1016_j_neuropharm_2024_110139
crossref_primary_10_3390_foods10092040
crossref_primary_10_1016_j_cmet_2023_06_010
crossref_primary_10_3390_nu17030388
crossref_primary_10_1245_s10434_024_16125_8
crossref_primary_10_1016_j_foodres_2022_112010
crossref_primary_10_1016_j_ijbiomac_2023_124175
crossref_primary_10_1053_j_gastro_2024_05_014
crossref_primary_10_3389_fphar_2022_911356
crossref_primary_10_1128_spectrum_00813_24
crossref_primary_10_1039_D1FO03019A
crossref_primary_10_12677_acm_2025_151229
crossref_primary_10_1007_s40519_023_01593_w
crossref_primary_10_1016_j_foodres_2022_111619
crossref_primary_10_1016_j_psj_2024_103774
crossref_primary_10_1080_19490976_2024_2359501
crossref_primary_10_3389_fimmu_2021_787797
crossref_primary_10_1016_j_jid_2023_11_006
crossref_primary_10_1016_j_heliyon_2024_e39865
crossref_primary_10_7554_eLife_98714_4
crossref_primary_10_1002_advs_202207366
crossref_primary_10_1002_mnfr_202200703
crossref_primary_10_1002_smll_202412195
crossref_primary_10_3390_metabo11050298
crossref_primary_10_1097_SHK_0000000000002441
crossref_primary_10_1016_j_ecoenv_2023_115607
crossref_primary_10_3390_foods12203752
crossref_primary_10_1021_acs_jafc_3c08926
crossref_primary_10_1007_s00394_024_03401_2
crossref_primary_10_3389_fcimb_2023_1038472
crossref_primary_10_3390_nu15020272
crossref_primary_10_1016_j_carbpol_2022_119766
crossref_primary_10_1080_21678421_2022_2045323
crossref_primary_10_3390_microorganisms11102452
crossref_primary_10_1016_j_aninu_2023_03_006
crossref_primary_10_1007_s40487_024_00300_8
crossref_primary_10_1016_j_intimp_2022_109083
crossref_primary_10_2147_DMSO_S456173
crossref_primary_10_1016_j_carbpol_2022_120197
crossref_primary_10_1186_s40104_024_00995_9
crossref_primary_10_1016_j_psj_2022_102467
crossref_primary_10_3390_metabo14040194
crossref_primary_10_3390_w16162267
crossref_primary_10_1016_j_pestbp_2024_106035
crossref_primary_10_1016_j_ejphar_2024_176905
crossref_primary_10_1038_s41551_024_01190_x
crossref_primary_10_1038_s41598_021_98820_0
crossref_primary_10_3389_fcimb_2022_1037279
crossref_primary_10_1016_j_foodchem_2024_141049
crossref_primary_10_1016_j_ijbiomac_2023_128100
crossref_primary_10_5650_jos_ess24099
crossref_primary_10_1007_s40200_023_01368_1
crossref_primary_10_1016_j_aquaculture_2024_740607
crossref_primary_10_1021_acs_jafc_2c04888
crossref_primary_10_31548_veterinary3_2023_46
crossref_primary_10_3390_ijms222010937
crossref_primary_10_1186_s40104_025_01183_z
crossref_primary_10_1016_j_envint_2024_108458
crossref_primary_10_1002_mnfr_202200164
crossref_primary_10_1016_j_tifs_2024_104779
crossref_primary_10_3390_diabetology5050034
crossref_primary_10_1039_D4FO03826F
crossref_primary_10_1016_j_jep_2023_116811
crossref_primary_10_1177_00220345231187824
crossref_primary_10_59118_HUGX5553
crossref_primary_10_3389_fendo_2021_761834
crossref_primary_10_3389_fendo_2022_890200
crossref_primary_10_3748_wjg_v31_i2_100589
crossref_primary_10_7554_eLife_98714
crossref_primary_10_3390_nu15010206
crossref_primary_10_3389_fendo_2023_1149751
crossref_primary_10_1016_j_fbio_2024_105218
crossref_primary_10_1016_j_bcdf_2024_100447
crossref_primary_10_1016_j_jff_2024_106434
crossref_primary_10_1039_D2FO00940D
crossref_primary_10_3389_fnut_2021_722557
crossref_primary_10_3390_biomedicines10020483
crossref_primary_10_1093_jas_skac088
crossref_primary_10_1039_D1FO03337A
crossref_primary_10_1038_s42003_024_06815_0
crossref_primary_10_1016_j_ymben_2023_09_008
crossref_primary_10_1016_j_foodres_2024_115141
crossref_primary_10_3390_nu16081100
crossref_primary_10_2147_DMSO_S451129
crossref_primary_10_1016_j_jbc_2022_102312
crossref_primary_10_3389_fmicb_2024_1361945
crossref_primary_10_3390_fermentation9040352
crossref_primary_10_3390_molecules28031418
crossref_primary_10_1007_s00580_025_03633_6
crossref_primary_10_1021_acs_jafc_3c06015
crossref_primary_10_3389_fcimb_2024_1453286
crossref_primary_10_1142_S0192415X21500567
crossref_primary_10_3389_fnut_2021_778424
crossref_primary_10_1186_s12864_021_07944_0
crossref_primary_10_3389_fmicb_2025_1515865
crossref_primary_10_3390_nu13093249
crossref_primary_10_3389_fcimb_2022_855075
Cites_doi 10.1101/gad.285312.116
10.2337/db12-0526
10.1016/j.cmet.2016.06.013
10.1136/gutjnl-2019-319745
10.1038/s41598-017-02546-x
10.2527/jas.53817
10.1016/j.mce.2019.110700
10.1016/j.cmet.2005.09.010
10.1016/j.cmet.2008.08.008
10.1038/s41575-019-0157-3
10.1136/gut.28.10.1221
10.1016/j.celrep.2019.02.015
10.1152/physrev.1990.70.2.567
10.4142/jvs.2011.12.4.319
10.2337/db16-0924
10.1530/JOE-19-0122
10.1016/j.celrep.2016.09.053
10.1074/jbc.M211609200
10.2527/jas.2006-378
10.1111/j.1471-4159.2005.03168.x
10.2337/diabetes.47.6.882
10.1210/me.2014-1108
10.1038/ijo.2014.46
10.3390/nu10091220
10.1152/ajplegacy.1973.224.6.1450
10.1113/jphysiol.2009.174136
10.1016/j.nucmedbio.2013.06.007
10.1016/j.cbi.2014.02.001
10.2337/db14-1213
10.3389/fphar.2019.01040
10.1038/srep37589
10.1152/ajpgi.00346.2017
10.1093/jn/116.1.77
10.3389/fendo.2018.00630
10.18632/oncotarget.14375
10.1038/oby.2009.167
10.1152/ajpendo.00229.2010
10.1073/pnas.2637002100
10.1038/nature05485
10.1126/science.aao5774
10.2337/diabetes.49.7.1165
10.1002/jcb.25902
10.1016/S0092-8674(00)81410-5
10.1111/bph.13058
10.1136/gutjnl-2017-314050
10.1038/nature11450
10.1016/j.cmet.2011.02.018
10.1038/nature07540
10.1111/1462-2920.13589
10.1152/ajpregu.00128.2015
10.2337/db11-1019
10.1007/s002800050922
10.18632/oncotarget.11267
10.1093/femsle/fnz153
10.1093/jn/nxy324
10.1016/j.cell.2013.12.016
10.1016/j.celrep.2016.05.019
10.1016/j.chembiol.2012.05.010
10.1016/j.clnu.2009.05.011
10.1111/obr.12068
10.1007/s10555-015-9578-9
10.1530/JOE-18-0137
10.5551/jat.15065
10.3390/biomedicines7040074
10.1038/nature05414
10.1016/j.celrep.2017.10.056
10.4183/aeb.2018.287
10.1073/pnas.1016088108
10.1007/s00109-013-1078-1
10.1038/nature18309
10.1073/pnas.0808567105
10.1038/377530a0
10.1016/j.cbi.2016.06.007
10.1073/pnas.1322269111
10.3168/jds.2019-17309
10.1126/science.1241165
10.1186/s40168-018-0473-9
10.1016/0009-8981(79)90109-8
10.1016/j.nut.2017.10.007
10.1016/j.molcel.2016.10.025
10.3390/nu7115440
10.2527/jas.2007-0499
10.2337/db08-1637
10.1152/ajpgi.00265.2013
10.1016/j.febslet.2010.04.027
10.1371/journal.pone.0068626
10.1021/acs.jafc.9b02083
10.1038/nature15766
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.tem.2020.12.003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-3061
EndPage 169
ExternalDocumentID 33461886
10_1016_j_tem_2020_12_003
S1043276020302526
1_s2_0_S1043276020302526
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OB0
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
XFW
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RCE
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c458t-d2ccd46a21232914670e81e368aa941f3e04c1d6b8abb112d3f73a944bce7d73
IEDL.DBID .~1
ISSN 1043-2760
1879-3061
IngestDate Fri Jul 11 16:50:22 EDT 2025
Mon Jul 21 06:05:46 EDT 2025
Tue Jul 01 04:29:32 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Fri Feb 23 02:45:16 EST 2024
Tue Feb 25 19:56:48 EST 2025
Tue Aug 26 16:37:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords butyrate
energy homeostasis
diabetes
gut microbiota
obesity
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-d2ccd46a21232914670e81e368aa941f3e04c1d6b8abb112d3f73a944bce7d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 33461886
PQID 2479040301
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2479040301
pubmed_primary_33461886
crossref_citationtrail_10_1016_j_tem_2020_12_003
crossref_primary_10_1016_j_tem_2020_12_003
elsevier_sciencedirect_doi_10_1016_j_tem_2020_12_003
elsevier_clinicalkeyesjournals_1_s2_0_S1043276020302526
elsevier_clinicalkey_doi_10_1016_j_tem_2020_12_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Trends in endocrinology and metabolism
PublicationTitleAlternate Trends Endocrinol Metab
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nakatani (bb0155) 2018; 10
Li (bb0070) 2018; 67
Turnbaugh (bb0035) 2009; 457
Zhang (bb0140) 2018; 6
Sambeat (bb0280) 2016; 15
Pierre, Pellerin (bb0365) 2005; 94
Larasati (bb0415) 2019; 7
Rajas (bb0445) 2000; 49
Weber, Kerr (bb0255) 2008; 86
Kim (bb0175) 2013; 40
De Vadder (bb0435) 2016; 24
Zhao (bb0015) 2018; 359
Bloemen (bb0160) 2009; 28
Puigserver (bb0270) 1998; 92
Bachmann (bb0375) 1979; 92
Lu (bb0245) 2012; 90
De Vadder (bb0050) 2014; 156
Naraoka (bb0355) 2018; 14
Aguilar (bb0235) 2018; 47
Canfora (bb0165) 2017; 7
Ohira (bb0420) 2013; 20
Tolhurst (bb0325) 2012; 61
Hotamisligil (bb0385) 2006; 444
Turnbaugh, Gordon (bb0130) 2009; 587
Gao (bb0225) 2019; 10
Smith (bb0395) 2013; 341
Turnbaugh (bb0025) 2006; 444
Dalile (bb0145) 2019; 16
Louis, Flint (bb0110) 2017; 19
Chang (bb0390) 2014; 111
Yu (bb0090) 2019; 243
Duteil (bb0275) 2016; 17
Brahe (bb0100) 2013; 14
Hong (bb0220) 2016; 7
Khan, Jena (bb0230) 2016; 254
Hasan (bb0465) 2020
den Besten (bb0055) 2015; 64
Clarke (bb0360) 2014; 28
Lin (bb0205) 2012; 7
Biagi (bb0250) 2007; 85
Stephens (bb0335) 1995; 377
Mattace Raso (bb0410) 2013; 8
Cummings (bb0150) 1987; 28
Huang (bb0240) 2017; 8
Samuel (bb0185) 2008; 105
Donohoe (bb0020) 2011; 13
Chou (bb0295) 2012; 19
Zeng (bb0285) 2016; 30
Khan, Jena (bb0290) 2014; 213
Troy (bb0430) 2008; 8
Henagan (bb0060) 2015; 172
Fang (bb0085) 2019; 149
Chatelain (bb0440) 1998; 47
Boets (bb0120) 2015; 7
den Besten (bb0210) 2013; 305
Demigne (bb0215) 1986; 116
Schwiertz (bb0030) 2010; 18
Kimura (bb0190) 2011; 108
Xu (bb0400) 2018; 238
Li (bb0075) 2019; 26
Mitchell (bb0380) 2011; 117
Mithieux (bb0425) 2005; 2
Perry (bb0040) 2016; 534
Hara (bb0300) 2014; 92
Zhan (bb0460) 2020; 103
Bjursell (bb0200) 2011; 300
Xiong (bb0340) 2004; 101
Vily-Petit (bb0450) 2020; 69
Brown (bb0180) 2003; 278
Krautkramer (bb0135) 2016; 64
Elgamal (bb0305) 2020; 503
Zaibi (bb0345) 2010; 584
Egorin (bb0170) 1999; 43
Soliman (bb0350) 2011; 12
Wang (bb0080) 2019; 102
Bergman (bb0095) 1990; 70
Li (bb0315) 2013; 6
Zhang (bb0265) 2019; 67
de Goffau (bb0310) 2013; 62
Rahat-Rozenbloom (bb0115) 2014; 38
Gao (bb0045) 2009; 58
Zhai (bb0405) 2019; 366
Patel (bb0455) 2015; 309
Lu (bb0195) 2016; 6
Forslund (bb0010) 2015; 528
Guo (bb0320) 2018; 9
Christiansen (bb0330) 2018; 315
Encarnacao (bb0105) 2015; 34
Mollica (bb0065) 2017; 66
Dalby (bb0125) 2017; 21
Qin (bb0005) 2012; 490
Zhang (bb0260) 2017; 118
Oldendorf (bb0370) 1973; 224
Bjursell (10.1016/j.tem.2020.12.003_bb0200) 2011; 300
Demigne (10.1016/j.tem.2020.12.003_bb0215) 1986; 116
de Goffau (10.1016/j.tem.2020.12.003_bb0310) 2013; 62
Zeng (10.1016/j.tem.2020.12.003_bb0285) 2016; 30
Rajas (10.1016/j.tem.2020.12.003_bb0445) 2000; 49
Wang (10.1016/j.tem.2020.12.003_bb0080) 2019; 102
Li (10.1016/j.tem.2020.12.003_bb0075) 2019; 26
Zhang (10.1016/j.tem.2020.12.003_bb0260) 2017; 118
Zaibi (10.1016/j.tem.2020.12.003_bb0345) 2010; 584
Nakatani (10.1016/j.tem.2020.12.003_bb0155) 2018; 10
Fang (10.1016/j.tem.2020.12.003_bb0085) 2019; 149
Vily-Petit (10.1016/j.tem.2020.12.003_bb0450) 2020; 69
Gao (10.1016/j.tem.2020.12.003_bb0045) 2009; 58
Louis (10.1016/j.tem.2020.12.003_bb0110) 2017; 19
Duteil (10.1016/j.tem.2020.12.003_bb0275) 2016; 17
Pierre (10.1016/j.tem.2020.12.003_bb0365) 2005; 94
Chang (10.1016/j.tem.2020.12.003_bb0390) 2014; 111
Bachmann (10.1016/j.tem.2020.12.003_bb0375) 1979; 92
Hara (10.1016/j.tem.2020.12.003_bb0300) 2014; 92
Xu (10.1016/j.tem.2020.12.003_bb0400) 2018; 238
Hasan (10.1016/j.tem.2020.12.003_bb0465) 2020
Gao (10.1016/j.tem.2020.12.003_bb0225) 2019; 10
Ohira (10.1016/j.tem.2020.12.003_bb0420) 2013; 20
Weber (10.1016/j.tem.2020.12.003_bb0255) 2008; 86
Troy (10.1016/j.tem.2020.12.003_bb0430) 2008; 8
Zhang (10.1016/j.tem.2020.12.003_bb0140) 2018; 6
Lu (10.1016/j.tem.2020.12.003_bb0245) 2012; 90
Tolhurst (10.1016/j.tem.2020.12.003_bb0325) 2012; 61
Turnbaugh (10.1016/j.tem.2020.12.003_bb0130) 2009; 587
Mitchell (10.1016/j.tem.2020.12.003_bb0380) 2011; 117
Schwiertz (10.1016/j.tem.2020.12.003_bb0030) 2010; 18
Puigserver (10.1016/j.tem.2020.12.003_bb0270) 1998; 92
De Vadder (10.1016/j.tem.2020.12.003_bb0050) 2014; 156
Khan (10.1016/j.tem.2020.12.003_bb0230) 2016; 254
Krautkramer (10.1016/j.tem.2020.12.003_bb0135) 2016; 64
Zhang (10.1016/j.tem.2020.12.003_bb0265) 2019; 67
Zhan (10.1016/j.tem.2020.12.003_bb0460) 2020; 103
Rahat-Rozenbloom (10.1016/j.tem.2020.12.003_bb0115) 2014; 38
Clarke (10.1016/j.tem.2020.12.003_bb0360) 2014; 28
Patel (10.1016/j.tem.2020.12.003_bb0455) 2015; 309
Dalby (10.1016/j.tem.2020.12.003_bb0125) 2017; 21
Bloemen (10.1016/j.tem.2020.12.003_bb0160) 2009; 28
Elgamal (10.1016/j.tem.2020.12.003_bb0305) 2020; 503
Boets (10.1016/j.tem.2020.12.003_bb0120) 2015; 7
Christiansen (10.1016/j.tem.2020.12.003_bb0330) 2018; 315
Chou (10.1016/j.tem.2020.12.003_bb0295) 2012; 19
Xiong (10.1016/j.tem.2020.12.003_bb0340) 2004; 101
Donohoe (10.1016/j.tem.2020.12.003_bb0020) 2011; 13
Smith (10.1016/j.tem.2020.12.003_bb0395) 2013; 341
Li (10.1016/j.tem.2020.12.003_bb0070) 2018; 67
Kimura (10.1016/j.tem.2020.12.003_bb0190) 2011; 108
Samuel (10.1016/j.tem.2020.12.003_bb0185) 2008; 105
Egorin (10.1016/j.tem.2020.12.003_bb0170) 1999; 43
Mithieux (10.1016/j.tem.2020.12.003_bb0425) 2005; 2
Zhao (10.1016/j.tem.2020.12.003_bb0015) 2018; 359
Larasati (10.1016/j.tem.2020.12.003_bb0415) 2019; 7
den Besten (10.1016/j.tem.2020.12.003_bb0055) 2015; 64
Sambeat (10.1016/j.tem.2020.12.003_bb0280) 2016; 15
Turnbaugh (10.1016/j.tem.2020.12.003_bb0025) 2006; 444
Khan (10.1016/j.tem.2020.12.003_bb0290) 2014; 213
Yu (10.1016/j.tem.2020.12.003_bb0090) 2019; 243
den Besten (10.1016/j.tem.2020.12.003_bb0210) 2013; 305
Naraoka (10.1016/j.tem.2020.12.003_bb0355) 2018; 14
Kim (10.1016/j.tem.2020.12.003_bb0175) 2013; 40
Bergman (10.1016/j.tem.2020.12.003_bb0095) 1990; 70
Encarnacao (10.1016/j.tem.2020.12.003_bb0105) 2015; 34
Lu (10.1016/j.tem.2020.12.003_bb0195) 2016; 6
Hong (10.1016/j.tem.2020.12.003_bb0220) 2016; 7
Qin (10.1016/j.tem.2020.12.003_bb0005) 2012; 490
Henagan (10.1016/j.tem.2020.12.003_bb0060) 2015; 172
Stephens (10.1016/j.tem.2020.12.003_bb0335) 1995; 377
Forslund (10.1016/j.tem.2020.12.003_bb0010) 2015; 528
Dalile (10.1016/j.tem.2020.12.003_bb0145) 2019; 16
Hotamisligil (10.1016/j.tem.2020.12.003_bb0385) 2006; 444
Guo (10.1016/j.tem.2020.12.003_bb0320) 2018; 9
De Vadder (10.1016/j.tem.2020.12.003_bb0435) 2016; 24
Lin (10.1016/j.tem.2020.12.003_bb0205) 2012; 7
Zhai (10.1016/j.tem.2020.12.003_bb0405) 2019; 366
Turnbaugh (10.1016/j.tem.2020.12.003_bb0035) 2009; 457
Biagi (10.1016/j.tem.2020.12.003_bb0250) 2007; 85
Aguilar (10.1016/j.tem.2020.12.003_bb0235) 2018; 47
Oldendorf (10.1016/j.tem.2020.12.003_bb0370) 1973; 224
Chatelain (10.1016/j.tem.2020.12.003_bb0440) 1998; 47
Perry (10.1016/j.tem.2020.12.003_bb0040) 2016; 534
Mattace Raso (10.1016/j.tem.2020.12.003_bb0410) 2013; 8
Brown (10.1016/j.tem.2020.12.003_bb0180) 2003; 278
Li (10.1016/j.tem.2020.12.003_bb0315) 2013; 6
Soliman (10.1016/j.tem.2020.12.003_bb0350) 2011; 12
Cummings (10.1016/j.tem.2020.12.003_bb0150) 1987; 28
Brahe (10.1016/j.tem.2020.12.003_bb0100) 2013; 14
Huang (10.1016/j.tem.2020.12.003_bb0240) 2017; 8
Mollica (10.1016/j.tem.2020.12.003_bb0065) 2017; 66
Canfora (10.1016/j.tem.2020.12.003_bb0165) 2017; 7
References_xml – volume: 12
  start-page: 319
  year: 2011
  end-page: 323
  ident: bb0350
  article-title: Butyrate regulates leptin expression through different signaling pathways in adipocytes
  publication-title: J. Vet. Sci.
– volume: 28
  start-page: 1221
  year: 2014
  end-page: 1238
  ident: bb0360
  article-title: Minireview: gut microbiota: the neglected endocrine organ
  publication-title: Mol. Endocrinol.
– volume: 13
  start-page: 517
  year: 2011
  end-page: 526
  ident: bb0020
  article-title: The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
  publication-title: Cell Metab.
– volume: 24
  start-page: 151
  year: 2016
  end-page: 157
  ident: bb0435
  article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis
  publication-title: Cell Metab.
– volume: 278
  start-page: 11312
  year: 2003
  end-page: 11319
  ident: bb0180
  article-title: The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
  publication-title: J. Biol. Chem.
– volume: 309
  start-page: R499
  year: 2015
  end-page: R509
  ident: bb0455
  article-title: Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 70
  start-page: 567
  year: 1990
  end-page: 590
  ident: bb0095
  article-title: Energy contributions of volatile fatty acids from the gastrointestinal tract in various species
  publication-title: Physiol. Rev.
– volume: 67
  start-page: 7694
  year: 2019
  end-page: 7705
  ident: bb0265
  article-title: Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus
  publication-title: J. Agric. Food Chem.
– volume: 6
  start-page: 103
  year: 2018
  ident: bb0140
  article-title: Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure
  publication-title: Microbiome
– volume: 67
  start-page: 1269
  year: 2018
  end-page: 1279
  ident: bb0070
  article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit
  publication-title: Gut
– volume: 94
  start-page: 1
  year: 2005
  end-page: 14
  ident: bb0365
  article-title: Monocarboxylate transporters in the central nervous system: distribution, regulation and function
  publication-title: J. Neurochem.
– volume: 21
  start-page: 1521
  year: 2017
  end-page: 1533
  ident: bb0125
  article-title: Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice
  publication-title: Cell Rep.
– volume: 19
  start-page: 669
  year: 2012
  end-page: 673
  ident: bb0295
  article-title: Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis
  publication-title: Chem. Biol.
– volume: 9
  start-page: 630
  year: 2018
  ident: bb0320
  article-title: Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression
  publication-title: Front Endocrinol. (Lausanne)
– volume: 444
  start-page: 1027
  year: 2006
  end-page: 1031
  ident: bb0025
  article-title: An obesity-associated gut microbiome with increased capacity for energy harvest
  publication-title: Nature
– volume: 86
  start-page: 442
  year: 2008
  end-page: 450
  ident: bb0255
  article-title: Effect of sodium butyrate on growth performance and response to lipopolysaccharide in weanling pigs
  publication-title: J. Anim. Sci.
– volume: 7
  start-page: 8916
  year: 2015
  end-page: 8929
  ident: bb0120
  article-title: Quantification of in vivo colonic short chain fatty acid production from inulin
  publication-title: Nutrients
– volume: 43
  start-page: 445
  year: 1999
  end-page: 453
  ident: bb0170
  article-title: Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats
  publication-title: Cancer Chemother. Pharmacol.
– volume: 444
  start-page: 860
  year: 2006
  end-page: 867
  ident: bb0385
  article-title: Inflammation and metabolic disorders
  publication-title: Nature
– volume: 92
  start-page: 93
  year: 2014
  end-page: 102
  ident: bb0300
  article-title: Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes
  publication-title: J. Mol. Med. (Berl)
– volume: 8
  start-page: 13073
  year: 2017
  end-page: 13084
  ident: bb0240
  article-title: Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring
  publication-title: Oncotarget
– volume: 28
  start-page: 657
  year: 2009
  end-page: 661
  ident: bb0160
  article-title: Short chain fatty acids exchange across the gut and liver in humans measured at surgery
  publication-title: Clin. Nutr.
– volume: 584
  start-page: 2381
  year: 2010
  end-page: 2386
  ident: bb0345
  article-title: Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids
  publication-title: FEBS Lett.
– volume: 7
  year: 2012
  ident: bb0205
  article-title: Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms
  publication-title: PLoS One
– volume: 111
  start-page: 2247
  year: 2014
  end-page: 2252
  ident: bb0390
  article-title: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 108
  start-page: 8030
  year: 2011
  end-page: 8035
  ident: bb0190
  article-title: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 66
  start-page: 1405
  year: 2017
  end-page: 1418
  ident: bb0065
  article-title: Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice
  publication-title: Diabetes
– volume: 377
  start-page: 530
  year: 1995
  ident: bb0335
  article-title: The role of neuropeptide Y in the antiobesity action of the obese gene product
  publication-title: Nature
– volume: 15
  start-page: 2536
  year: 2016
  end-page: 2549
  ident: bb0280
  article-title: LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program
  publication-title: Cell Rep.
– volume: 49
  start-page: 1165
  year: 2000
  end-page: 1168
  ident: bb0445
  article-title: Induction of PEPCK gene expression in insulinopenia in rat small intestine
  publication-title: Diabetes
– volume: 243
  start-page: 125
  year: 2019
  end-page: 135
  ident: bb0090
  article-title: Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism
  publication-title: J. Endocrinol.
– volume: 116
  start-page: 77
  year: 1986
  end-page: 86
  ident: bb0215
  article-title: Effects of absorption of large amounts of volatile fatty acids on rat liver metabolism
  publication-title: J. Nutr.
– volume: 7
  start-page: 56071
  year: 2016
  end-page: 56082
  ident: bb0220
  article-title: Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice
  publication-title: Oncotarget
– volume: 85
  start-page: 1184
  year: 2007
  end-page: 1191
  ident: bb0250
  article-title: Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate
  publication-title: J. Anim. Sci.
– volume: 117
  start-page: 735
  year: 2011
  end-page: 746
  ident: bb0380
  article-title: Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells
  publication-title: J. Neurochem.
– volume: 92
  start-page: 153
  year: 1979
  end-page: 159
  ident: bb0375
  article-title: Short chain fatty acids in plasma and brain: quantitative determination by gas chromatography
  publication-title: Clin. Chim. Acta
– volume: 149
  start-page: 747
  year: 2019
  end-page: 754
  ident: bb0085
  article-title: Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice
  publication-title: J. Nutr.
– volume: 305
  start-page: G900
  year: 2013
  end-page: G910
  ident: bb0210
  article-title: Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 341
  start-page: 569
  year: 2013
  end-page: 573
  ident: bb0395
  article-title: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
  publication-title: Science
– volume: 8
  start-page: 201
  year: 2008
  end-page: 211
  ident: bb0430
  article-title: Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice
  publication-title: Cell Metab.
– volume: 490
  start-page: 55
  year: 2012
  end-page: 60
  ident: bb0005
  article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
– volume: 8
  year: 2013
  ident: bb0410
  article-title: Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet
  publication-title: PLoS One
– volume: 92
  start-page: 829
  year: 1998
  end-page: 839
  ident: bb0270
  article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
  publication-title: Cell
– volume: 20
  start-page: 425
  year: 2013
  end-page: 442
  ident: bb0420
  article-title: Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages
  publication-title: J. Atheroscler. Thromb.
– volume: 118
  start-page: 2395
  year: 2017
  end-page: 2408
  ident: bb0260
  article-title: Sodium butyrate protects against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice
  publication-title: J. Cell. Biochem.
– volume: 103
  start-page: 5514
  year: 2020
  end-page: 5524
  ident: bb0460
  article-title: Propionate enhances the expression of key genes involved in the gluconeogenic pathway in bovine intestinal epithelial cells
  publication-title: J. Dairy Sci.
– volume: 30
  start-page: 1822
  year: 2016
  end-page: 1836
  ident: bb0285
  article-title: Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation
  publication-title: Genes Dev.
– volume: 17
  start-page: 1008
  year: 2016
  end-page: 1021
  ident: bb0275
  article-title: Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue
  publication-title: Cell Rep.
– volume: 26
  start-page: 2720
  year: 2019
  end-page: 2737
  ident: bb0075
  article-title: Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue
  publication-title: Cell Rep.
– volume: 14
  start-page: 287
  year: 2018
  end-page: 293
  ident: bb0355
  article-title: Short chain fatty acids upregulate adipokine production in type 2 diabetes-derived human adipocytes
  publication-title: Acta Endocrinol. (Buchar)
– year: 2020
  ident: bb0465
  article-title: Intestinal stem cell derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis
  publication-title: Mol. Metab.
– volume: 64
  start-page: 2398
  year: 2015
  end-page: 2408
  ident: bb0055
  article-title: Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-dependent switch from lipogenesis to fat oxidation
  publication-title: Diabetes
– volume: 102
  year: 2019
  ident: bb0080
  article-title: LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue
  publication-title: Metabolism
– volume: 34
  start-page: 465
  year: 2015
  end-page: 478
  ident: bb0105
  article-title: Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment
  publication-title: Cancer Metastasis Rev.
– volume: 213
  start-page: 1
  year: 2014
  end-page: 12
  ident: bb0290
  article-title: Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat
  publication-title: Chem. Biol. Interact.
– volume: 238
  start-page: 231
  year: 2018
  end-page: 244
  ident: bb0400
  article-title: Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice
  publication-title: J. Endocrinol.
– volume: 64
  start-page: 982
  year: 2016
  end-page: 992
  ident: bb0135
  article-title: Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues
  publication-title: Mol. Cell
– volume: 47
  start-page: 75
  year: 2018
  end-page: 82
  ident: bb0235
  article-title: Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice
  publication-title: Nutrition
– volume: 156
  start-page: 84
  year: 2014
  end-page: 96
  ident: bb0050
  article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits
  publication-title: Cell
– volume: 224
  start-page: 1450
  year: 1973
  end-page: 1453
  ident: bb0370
  article-title: Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids
  publication-title: Am. J. Phys.
– volume: 14
  start-page: 950
  year: 2013
  end-page: 959
  ident: bb0100
  article-title: Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?
  publication-title: Obes. Rev.
– volume: 28
  start-page: 1221
  year: 1987
  end-page: 1227
  ident: bb0150
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
– volume: 16
  start-page: 461
  year: 2019
  end-page: 478
  ident: bb0145
  article-title: The role of short-chain fatty acids in microbiota-gut-brain communication
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 10
  start-page: 1220
  year: 2018
  ident: bb0155
  article-title: Production, absorption, and blood flow dynamics of short-chain fatty acids produced by fermentation in piglet hindgut during the suckling(-)weaning period
  publication-title: Nutrients
– volume: 105
  start-page: 16767
  year: 2008
  end-page: 16772
  ident: bb0185
  article-title: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 534
  start-page: 213
  year: 2016
  end-page: 217
  ident: bb0040
  article-title: Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome
  publication-title: Nature
– volume: 254
  start-page: 124
  year: 2016
  end-page: 134
  ident: bb0230
  article-title: Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin
  publication-title: Chem. Biol. Interact.
– volume: 19
  start-page: 29
  year: 2017
  end-page: 41
  ident: bb0110
  article-title: Formation of propionate and butyrate by the human colonic microbiota
  publication-title: Environ. Microbiol.
– volume: 503
  year: 2020
  ident: bb0305
  article-title: Ultrastructure characterization of pancreatic beta-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats
  publication-title: Mol. Cell. Endocrinol.
– volume: 40
  start-page: 912
  year: 2013
  end-page: 918
  ident: bb0175
  article-title: Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET
  publication-title: Nucl. Med. Biol.
– volume: 587
  start-page: 4153
  year: 2009
  end-page: 4158
  ident: bb0130
  article-title: The core gut microbiome, energy balance and obesity
  publication-title: J. Physiol. (Lond.)
– volume: 62
  start-page: 1238
  year: 2013
  end-page: 1244
  ident: bb0310
  article-title: Fecal microbiota composition differs between children with beta-cell autoimmunity and those without
  publication-title: Diabetes
– volume: 315
  start-page: G53
  year: 2018
  end-page: G65
  ident: bb0330
  article-title: The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 6
  start-page: 1574
  year: 2013
  end-page: 1584
  ident: bb0315
  article-title: Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 101
  start-page: 1045
  year: 2004
  end-page: 1050
  ident: bb0340
  article-title: Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 58
  start-page: 1509
  year: 2009
  end-page: 1517
  ident: bb0045
  article-title: Butyrate improves insulin sensitivity and increases energy expenditure in mice
  publication-title: Diabetes
– volume: 38
  start-page: 1525
  year: 2014
  end-page: 1531
  ident: bb0115
  article-title: Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans
  publication-title: Int. J. Obes.
– volume: 7
  start-page: 74
  year: 2019
  ident: bb0415
  article-title: The role of butyrate on monocyte migration and inflammation response in patient with type 2 diabetes mellitus
  publication-title: Biomedicines
– volume: 7
  start-page: 2360
  year: 2017
  ident: bb0165
  article-title: Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial
  publication-title: Sci. Rep.
– volume: 69
  start-page: 2193
  year: 2020
  end-page: 2202
  ident: bb0450
  article-title: Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease
  publication-title: Gut
– volume: 61
  start-page: 364
  year: 2012
  end-page: 371
  ident: bb0325
  article-title: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2
  publication-title: Diabetes
– volume: 2
  start-page: 321
  year: 2005
  end-page: 329
  ident: bb0425
  article-title: Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein
  publication-title: Cell Metab.
– volume: 47
  start-page: 882
  year: 1998
  end-page: 889
  ident: bb0440
  article-title: Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes
  publication-title: Diabetes
– volume: 6
  year: 2016
  ident: bb0195
  article-title: Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota
  publication-title: Sci. Rep.
– volume: 457
  start-page: 480
  year: 2009
  end-page: 487
  ident: bb0035
  article-title: A core gut microbiome in obese and lean twins
  publication-title: Nature
– volume: 528
  start-page: 262
  year: 2015
  end-page: 266
  ident: bb0010
  article-title: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
  publication-title: Nature
– volume: 359
  start-page: 1151
  year: 2018
  end-page: 1156
  ident: bb0015
  article-title: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes
  publication-title: Science
– volume: 18
  start-page: 190
  year: 2010
  end-page: 195
  ident: bb0030
  article-title: Microbiota and SCFA in lean and overweight healthy subjects
  publication-title: Obesity
– volume: 172
  start-page: 2782
  year: 2015
  end-page: 2798
  ident: bb0060
  article-title: Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning
  publication-title: Br. J. Pharmacol.
– volume: 300
  start-page: E211
  year: 2011
  end-page: E220
  ident: bb0200
  article-title: Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 10
  start-page: 1040
  year: 2019
  ident: bb0225
  article-title: Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet
  publication-title: Front. Pharmacol.
– volume: 366
  year: 2019
  ident: bb0405
  article-title: Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice
  publication-title: FEMS Microbiol. Lett.
– volume: 90
  start-page: 430
  year: 2012
  end-page: 432
  ident: bb0245
  article-title: Butyrate supplementation to gestating sows and piglets induces muscle and adipose tissue oxidative genes and improves growth performance
  publication-title: J. Anim. Sci.
– volume: 30
  start-page: 1822
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0285
  article-title: Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation
  publication-title: Genes Dev.
  doi: 10.1101/gad.285312.116
– volume: 62
  start-page: 1238
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0310
  article-title: Fecal microbiota composition differs between children with beta-cell autoimmunity and those without
  publication-title: Diabetes
  doi: 10.2337/db12-0526
– volume: 24
  start-page: 151
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0435
  article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.013
– volume: 69
  start-page: 2193
  year: 2020
  ident: 10.1016/j.tem.2020.12.003_bb0450
  article-title: Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319745
– volume: 7
  start-page: 2360
  year: 2017
  ident: 10.1016/j.tem.2020.12.003_bb0165
  article-title: Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02546-x
– volume: 90
  start-page: 430
  year: 2012
  ident: 10.1016/j.tem.2020.12.003_bb0245
  article-title: Butyrate supplementation to gestating sows and piglets induces muscle and adipose tissue oxidative genes and improves growth performance
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.53817
– volume: 503
  year: 2020
  ident: 10.1016/j.tem.2020.12.003_bb0305
  article-title: Ultrastructure characterization of pancreatic beta-cells is accompanied by modulatory effects of the HDAC inhibitor sodium butyrate on the PI3/AKT insulin signaling pathway in juvenile diabetic rats
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2019.110700
– volume: 2
  start-page: 321
  year: 2005
  ident: 10.1016/j.tem.2020.12.003_bb0425
  article-title: Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.09.010
– volume: 8
  start-page: 201
  year: 2008
  ident: 10.1016/j.tem.2020.12.003_bb0430
  article-title: Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.08.008
– volume: 16
  start-page: 461
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0145
  article-title: The role of short-chain fatty acids in microbiota-gut-brain communication
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-019-0157-3
– volume: 28
  start-page: 1221
  year: 1987
  ident: 10.1016/j.tem.2020.12.003_bb0150
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
  doi: 10.1136/gut.28.10.1221
– volume: 26
  start-page: 2720
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0075
  article-title: Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.02.015
– volume: 70
  start-page: 567
  year: 1990
  ident: 10.1016/j.tem.2020.12.003_bb0095
  article-title: Energy contributions of volatile fatty acids from the gastrointestinal tract in various species
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1990.70.2.567
– volume: 12
  start-page: 319
  year: 2011
  ident: 10.1016/j.tem.2020.12.003_bb0350
  article-title: Butyrate regulates leptin expression through different signaling pathways in adipocytes
  publication-title: J. Vet. Sci.
  doi: 10.4142/jvs.2011.12.4.319
– volume: 66
  start-page: 1405
  year: 2017
  ident: 10.1016/j.tem.2020.12.003_bb0065
  article-title: Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice
  publication-title: Diabetes
  doi: 10.2337/db16-0924
– volume: 243
  start-page: 125
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0090
  article-title: Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-19-0122
– volume: 17
  start-page: 1008
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0275
  article-title: Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.053
– volume: 278
  start-page: 11312
  year: 2003
  ident: 10.1016/j.tem.2020.12.003_bb0180
  article-title: The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M211609200
– volume: 85
  start-page: 1184
  year: 2007
  ident: 10.1016/j.tem.2020.12.003_bb0250
  article-title: Performance, intestinal microflora, and wall morphology of weanling pigs fed sodium butyrate
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2006-378
– volume: 94
  start-page: 1
  year: 2005
  ident: 10.1016/j.tem.2020.12.003_bb0365
  article-title: Monocarboxylate transporters in the central nervous system: distribution, regulation and function
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2005.03168.x
– volume: 47
  start-page: 882
  year: 1998
  ident: 10.1016/j.tem.2020.12.003_bb0440
  article-title: Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes
  publication-title: Diabetes
  doi: 10.2337/diabetes.47.6.882
– volume: 28
  start-page: 1221
  year: 2014
  ident: 10.1016/j.tem.2020.12.003_bb0360
  article-title: Minireview: gut microbiota: the neglected endocrine organ
  publication-title: Mol. Endocrinol.
  doi: 10.1210/me.2014-1108
– volume: 117
  start-page: 735
  year: 2011
  ident: 10.1016/j.tem.2020.12.003_bb0380
  article-title: Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells
  publication-title: J. Neurochem.
– volume: 38
  start-page: 1525
  year: 2014
  ident: 10.1016/j.tem.2020.12.003_bb0115
  article-title: Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2014.46
– volume: 10
  start-page: 1220
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0155
  article-title: Production, absorption, and blood flow dynamics of short-chain fatty acids produced by fermentation in piglet hindgut during the suckling(-)weaning period
  publication-title: Nutrients
  doi: 10.3390/nu10091220
– volume: 224
  start-page: 1450
  year: 1973
  ident: 10.1016/j.tem.2020.12.003_bb0370
  article-title: Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids
  publication-title: Am. J. Phys.
  doi: 10.1152/ajplegacy.1973.224.6.1450
– volume: 587
  start-page: 4153
  year: 2009
  ident: 10.1016/j.tem.2020.12.003_bb0130
  article-title: The core gut microbiome, energy balance and obesity
  publication-title: J. Physiol. (Lond.)
  doi: 10.1113/jphysiol.2009.174136
– volume: 40
  start-page: 912
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0175
  article-title: Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET
  publication-title: Nucl. Med. Biol.
  doi: 10.1016/j.nucmedbio.2013.06.007
– volume: 213
  start-page: 1
  year: 2014
  ident: 10.1016/j.tem.2020.12.003_bb0290
  article-title: Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2014.02.001
– volume: 64
  start-page: 2398
  year: 2015
  ident: 10.1016/j.tem.2020.12.003_bb0055
  article-title: Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-dependent switch from lipogenesis to fat oxidation
  publication-title: Diabetes
  doi: 10.2337/db14-1213
– volume: 10
  start-page: 1040
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0225
  article-title: Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01040
– volume: 6
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0195
  article-title: Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota
  publication-title: Sci. Rep.
  doi: 10.1038/srep37589
– volume: 315
  start-page: G53
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0330
  article-title: The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00346.2017
– volume: 116
  start-page: 77
  year: 1986
  ident: 10.1016/j.tem.2020.12.003_bb0215
  article-title: Effects of absorption of large amounts of volatile fatty acids on rat liver metabolism
  publication-title: J. Nutr.
  doi: 10.1093/jn/116.1.77
– volume: 9
  start-page: 630
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0320
  article-title: Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression
  publication-title: Front Endocrinol. (Lausanne)
  doi: 10.3389/fendo.2018.00630
– volume: 8
  start-page: 13073
  year: 2017
  ident: 10.1016/j.tem.2020.12.003_bb0240
  article-title: Maternal butyrate supplementation induces insulin resistance associated with enhanced intramuscular fat deposition in the offspring
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14375
– volume: 18
  start-page: 190
  year: 2010
  ident: 10.1016/j.tem.2020.12.003_bb0030
  article-title: Microbiota and SCFA in lean and overweight healthy subjects
  publication-title: Obesity
  doi: 10.1038/oby.2009.167
– volume: 300
  start-page: E211
  year: 2011
  ident: 10.1016/j.tem.2020.12.003_bb0200
  article-title: Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00229.2010
– volume: 101
  start-page: 1045
  year: 2004
  ident: 10.1016/j.tem.2020.12.003_bb0340
  article-title: Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2637002100
– volume: 444
  start-page: 860
  year: 2006
  ident: 10.1016/j.tem.2020.12.003_bb0385
  article-title: Inflammation and metabolic disorders
  publication-title: Nature
  doi: 10.1038/nature05485
– volume: 359
  start-page: 1151
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0015
  article-title: Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes
  publication-title: Science
  doi: 10.1126/science.aao5774
– volume: 49
  start-page: 1165
  year: 2000
  ident: 10.1016/j.tem.2020.12.003_bb0445
  article-title: Induction of PEPCK gene expression in insulinopenia in rat small intestine
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.7.1165
– volume: 118
  start-page: 2395
  year: 2017
  ident: 10.1016/j.tem.2020.12.003_bb0260
  article-title: Sodium butyrate protects against high fat diet-induced cardiac dysfunction and metabolic disorders in type II diabetic mice
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.25902
– volume: 92
  start-page: 829
  year: 1998
  ident: 10.1016/j.tem.2020.12.003_bb0270
  article-title: A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81410-5
– volume: 172
  start-page: 2782
  year: 2015
  ident: 10.1016/j.tem.2020.12.003_bb0060
  article-title: Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13058
– volume: 67
  start-page: 1269
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0070
  article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314050
– volume: 490
  start-page: 55
  year: 2012
  ident: 10.1016/j.tem.2020.12.003_bb0005
  article-title: A metagenome-wide association study of gut microbiota in type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature11450
– volume: 13
  start-page: 517
  year: 2011
  ident: 10.1016/j.tem.2020.12.003_bb0020
  article-title: The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.02.018
– volume: 457
  start-page: 480
  year: 2009
  ident: 10.1016/j.tem.2020.12.003_bb0035
  article-title: A core gut microbiome in obese and lean twins
  publication-title: Nature
  doi: 10.1038/nature07540
– volume: 19
  start-page: 29
  year: 2017
  ident: 10.1016/j.tem.2020.12.003_bb0110
  article-title: Formation of propionate and butyrate by the human colonic microbiota
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13589
– volume: 7
  year: 2012
  ident: 10.1016/j.tem.2020.12.003_bb0205
  article-title: Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms
  publication-title: PLoS One
– volume: 309
  start-page: R499
  year: 2015
  ident: 10.1016/j.tem.2020.12.003_bb0455
  article-title: Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00128.2015
– volume: 61
  start-page: 364
  year: 2012
  ident: 10.1016/j.tem.2020.12.003_bb0325
  article-title: Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2
  publication-title: Diabetes
  doi: 10.2337/db11-1019
– volume: 43
  start-page: 445
  year: 1999
  ident: 10.1016/j.tem.2020.12.003_bb0170
  article-title: Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s002800050922
– volume: 7
  start-page: 56071
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0220
  article-title: Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11267
– volume: 366
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0405
  article-title: Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1093/femsle/fnz153
– volume: 149
  start-page: 747
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0085
  article-title: Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice
  publication-title: J. Nutr.
  doi: 10.1093/jn/nxy324
– volume: 156
  start-page: 84
  year: 2014
  ident: 10.1016/j.tem.2020.12.003_bb0050
  article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.016
– volume: 15
  start-page: 2536
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0280
  article-title: LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.05.019
– volume: 19
  start-page: 669
  year: 2012
  ident: 10.1016/j.tem.2020.12.003_bb0295
  article-title: Inhibition of histone deacetylase 3 protects beta cells from cytokine-induced apoptosis
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2012.05.010
– volume: 28
  start-page: 657
  year: 2009
  ident: 10.1016/j.tem.2020.12.003_bb0160
  article-title: Short chain fatty acids exchange across the gut and liver in humans measured at surgery
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2009.05.011
– volume: 14
  start-page: 950
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0100
  article-title: Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?
  publication-title: Obes. Rev.
  doi: 10.1111/obr.12068
– volume: 34
  start-page: 465
  year: 2015
  ident: 10.1016/j.tem.2020.12.003_bb0105
  article-title: Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-015-9578-9
– volume: 238
  start-page: 231
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0400
  article-title: Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-18-0137
– volume: 20
  start-page: 425
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0420
  article-title: Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages
  publication-title: J. Atheroscler. Thromb.
  doi: 10.5551/jat.15065
– year: 2020
  ident: 10.1016/j.tem.2020.12.003_bb0465
  article-title: Intestinal stem cell derived enteroids from morbidly obese patients preserve obesity-related phenotypes: elevated glucose absorption and gluconeogenesis
  publication-title: Mol. Metab.
– volume: 7
  start-page: 74
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0415
  article-title: The role of butyrate on monocyte migration and inflammation response in patient with type 2 diabetes mellitus
  publication-title: Biomedicines
  doi: 10.3390/biomedicines7040074
– volume: 444
  start-page: 1027
  year: 2006
  ident: 10.1016/j.tem.2020.12.003_bb0025
  article-title: An obesity-associated gut microbiome with increased capacity for energy harvest
  publication-title: Nature
  doi: 10.1038/nature05414
– volume: 21
  start-page: 1521
  year: 2017
  ident: 10.1016/j.tem.2020.12.003_bb0125
  article-title: Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.10.056
– volume: 14
  start-page: 287
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0355
  article-title: Short chain fatty acids upregulate adipokine production in type 2 diabetes-derived human adipocytes
  publication-title: Acta Endocrinol. (Buchar)
  doi: 10.4183/aeb.2018.287
– volume: 108
  start-page: 8030
  year: 2011
  ident: 10.1016/j.tem.2020.12.003_bb0190
  article-title: Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1016088108
– volume: 92
  start-page: 93
  year: 2014
  ident: 10.1016/j.tem.2020.12.003_bb0300
  article-title: Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes
  publication-title: J. Mol. Med. (Berl)
  doi: 10.1007/s00109-013-1078-1
– volume: 534
  start-page: 213
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0040
  article-title: Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome
  publication-title: Nature
  doi: 10.1038/nature18309
– volume: 105
  start-page: 16767
  year: 2008
  ident: 10.1016/j.tem.2020.12.003_bb0185
  article-title: Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0808567105
– volume: 377
  start-page: 530
  year: 1995
  ident: 10.1016/j.tem.2020.12.003_bb0335
  article-title: The role of neuropeptide Y in the antiobesity action of the obese gene product
  publication-title: Nature
  doi: 10.1038/377530a0
– volume: 254
  start-page: 124
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0230
  article-title: Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2016.06.007
– volume: 111
  start-page: 2247
  year: 2014
  ident: 10.1016/j.tem.2020.12.003_bb0390
  article-title: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1322269111
– volume: 6
  start-page: 1574
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0315
  article-title: Butyrate alleviates metabolic impairments and protects pancreatic β cell function in pregnant mice with obesity
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 103
  start-page: 5514
  year: 2020
  ident: 10.1016/j.tem.2020.12.003_bb0460
  article-title: Propionate enhances the expression of key genes involved in the gluconeogenic pathway in bovine intestinal epithelial cells
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-17309
– volume: 341
  start-page: 569
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0395
  article-title: The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
  publication-title: Science
  doi: 10.1126/science.1241165
– volume: 6
  start-page: 103
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0140
  article-title: Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0473-9
– volume: 102
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0080
  article-title: LSD1 mediates microbial metabolite butyrate-induced thermogenesis in brown and white adipose tissue
  publication-title: Metabolism
– volume: 92
  start-page: 153
  year: 1979
  ident: 10.1016/j.tem.2020.12.003_bb0375
  article-title: Short chain fatty acids in plasma and brain: quantitative determination by gas chromatography
  publication-title: Clin. Chim. Acta
  doi: 10.1016/0009-8981(79)90109-8
– volume: 47
  start-page: 75
  year: 2018
  ident: 10.1016/j.tem.2020.12.003_bb0235
  article-title: Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-gamma in obese Apo E knockout mice
  publication-title: Nutrition
  doi: 10.1016/j.nut.2017.10.007
– volume: 64
  start-page: 982
  year: 2016
  ident: 10.1016/j.tem.2020.12.003_bb0135
  article-title: Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.10.025
– volume: 7
  start-page: 8916
  year: 2015
  ident: 10.1016/j.tem.2020.12.003_bb0120
  article-title: Quantification of in vivo colonic short chain fatty acid production from inulin
  publication-title: Nutrients
  doi: 10.3390/nu7115440
– volume: 86
  start-page: 442
  year: 2008
  ident: 10.1016/j.tem.2020.12.003_bb0255
  article-title: Effect of sodium butyrate on growth performance and response to lipopolysaccharide in weanling pigs
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2007-0499
– volume: 58
  start-page: 1509
  year: 2009
  ident: 10.1016/j.tem.2020.12.003_bb0045
  article-title: Butyrate improves insulin sensitivity and increases energy expenditure in mice
  publication-title: Diabetes
  doi: 10.2337/db08-1637
– volume: 305
  start-page: G900
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0210
  article-title: Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00265.2013
– volume: 584
  start-page: 2381
  year: 2010
  ident: 10.1016/j.tem.2020.12.003_bb0345
  article-title: Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.04.027
– volume: 8
  year: 2013
  ident: 10.1016/j.tem.2020.12.003_bb0410
  article-title: Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068626
– volume: 67
  start-page: 7694
  year: 2019
  ident: 10.1016/j.tem.2020.12.003_bb0265
  article-title: Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b02083
– volume: 528
  start-page: 262
  year: 2015
  ident: 10.1016/j.tem.2020.12.003_bb0010
  article-title: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota
  publication-title: Nature
  doi: 10.1038/nature15766
SSID ssj0014815
Score 2.6709316
SecondaryResourceType review_article
Snippet Butyrate, a main product of gut microbial fermentation, has been recognized as an important mediator of gut microbiota regulation in whole body energy...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 159
SubjectTerms butyrate
diabetes
Endocrinology and Metabolism
energy homeostasis
gut microbiota
obesity
Title Butyrate in Energy Metabolism: There Is Still More to Learn
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1043276020302526
https://www.clinicalkey.es/playcontent/1-s2.0-S1043276020302526
https://dx.doi.org/10.1016/j.tem.2020.12.003
https://www.ncbi.nlm.nih.gov/pubmed/33461886
https://www.proquest.com/docview/2479040301
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED5KBmMvY2v3I1sbVNjTwEssXSSnfepKS7qRvrSDvgnbksEjc0rtPOxlf_vuZDswsmawR9s6bJ9P3518d58APtCSI3UoXSSnTkVIHi7KptwIrNEVWTLDNGRMF9d6_g2_3E3v9uC874XhssoO-1tMD2jdnRl32hzfl-X4JmY2OaM5lUaOWzLtNqJhK__0a1PmETMZSctIoCIe3Wc2Q41X47kZXU7CH8F-36xt3_RY7Bl80OULeN4Fj-Ksfb6XsOerfXi66NLjB3D6ed38ZO4HUVbiInT1iYVv6Dsvy_rHiSCbePDiqhY3TblcisWKjpqVCByrr-D28uL2fB51uyNEOU6TJnIyzx3qlH2PnDHgTXwSe6WTNJ1hXCg_wTx2OkvSLKOoyqnCKLqCWe6NM-o1DKpV5d-CyBUFFYV2htYW6HyeIS-CvFYFxUfSuCFMerXYvGMO5w0slrYvEftuSZOWNWljyXSjQ_i4EblvaTN2DZa9rm3fD0oIZgnUdwmZvwn5upuDtY1tTSPtlp0MATeSf5jav2543JuBpSnIeZW08qt1bSWaGWEhQeUQ3rT2sXlppVDHSaLf_d9N38MzyUU0oejtEAbNw9ofURTUZKNg5iN4cnb1dX79G_HlARk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xIm28ILbxUT42T9rTpKiN7TgpPAECtYP0hU7izUpiRwoqKSLpA_89d4lTCbGBtMckPiW5nH93zt39DPATlxyJkdx4PDDCk-jhvDSgRmAlTZ5GI5k0GdN4qsZ_5O_b4HYNzrteGCqrdNjfYnqD1u7MwGlz8FAUgxuf2ORCRak0dNxcfYB1YqcKerB-OrkaT1fJBOIjaUkJhEcCXXKzKfOqLfWj82HzU7DbOuu1e_pX-Nm4ocst2HTxIzttH_EzrNnyC3yMXYb8K5ycLesnon9gRckumsY-FtsaP_W8qO6PGZrFo2WTit3UxXzO4gUe1QvW0Kxuw-zyYnY-9twGCV4mg6j2DM8yI1VC7oePCPOGNvKtUFGSjKSfCzuUmW9UGiVpioGVEXko8IpMMxuaUOxAr1yUdg9YJjCuyJUJcXkhjc1SSesgq0SOIRIPTR-GnVp05sjDaQ-Lue6qxO40alKTJrXPiXG0D79WIg8tc8Zbg3mna921hCKIacT1t4TCvwnZyk3DSvu6wpH6lan0Qa4kX1jbezf80ZmBxllIqZWktItlpbkMRwiHiJZ92G3tY_XSQkjlR5Ha_7-bfodP41l8ra8n06sD2OBUU9PUwB1Cr35c2iMMiur0mzP6Z8ciA8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Butyrate+in+Energy+Metabolism%3A+There+Is+Still+More+to+Learn&rft.jtitle=Trends+in+endocrinology+and+metabolism&rft.au=Zhang%2C+Lin&rft.au=Liu%2C+Chudan&rft.au=Jiang%2C+Qingyan&rft.au=Yin%2C+Yulong&rft.date=2021-03-01&rft.eissn=1879-3061&rft.volume=32&rft.issue=3&rft.spage=159&rft_id=info:doi/10.1016%2Fj.tem.2020.12.003&rft_id=info%3Apmid%2F33461886&rft.externalDocID=33461886
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-2760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-2760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-2760&client=summon