Single-cell transcriptome analysis of endometrial tissue

Abstract STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RN...

Full description

Saved in:
Bibliographic Details
Published inHuman reproduction (Oxford) Vol. 31; no. 4; pp. 844 - 853
Main Authors Krjutškov, K., Katayama, S., Saare, M., Vera-Rodriguez, M., Lubenets, D., Samuel, K., Laisk-Podar, T., Teder, H., Einarsdottir, E., Salumets, A., Kere, J.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. STUDY DESIGN, SIZE, DURATION The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. PARTICIPANTS/MATERIALS, SETTING, METHODS For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603 commonly expressed genes were detected, with 241 significantly differentially expressed genes. Of these, 231 genes were up- and 10 down-regulated in cultured cells, respectively. In addition, we performed a gene ontology analysis of the differentially expressed genes and found that these genes are mainly related to cell cycle, translational processes and metabolism. LIMITATIONS, REASONS FOR CAUTION Although CD9-positive single epithelial cells sorting was successfully established in our laboratory, the amount of transcriptome data per individual epithelial cell was low, complicating further analysis. This step most likely failed due to the high dose of RNases that are released by the cells' natural processes, or due to rapid turnaround time or the apoptotic conditions in freezing- or single-cell solutions. Since only the cells from the late-secretory phase were subject to more focused analysis, further studies including larger sample size from the different time-points of the natural menstrual cycle are needed. The methodology also needs further optimization to examine different cell types at high quality. WIDER IMPLICATIONS OF THE FINDINGS The symbiosis between clinical biopsy and the sophisticated laboratory and bioinformatic protocols described here brings together clinical diagnostic needs and modern laboratory and bioinformatic solutions, enabling us to implement a precise analytical toolbox for studying the endometrial tissue even at the single-cell level.
AbstractList How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603 commonly expressed genes were detected, with 241 significantly differentially expressed genes. Of these, 231 genes were up- and 10 down-regulated in cultured cells, respectively. In addition, we performed a gene ontology analysis of the differentially expressed genes and found that these genes are mainly related to cell cycle, translational processes and metabolism. Although CD9-positive single epithelial cells sorting was successfully established in our laboratory, the amount of transcriptome data per individual epithelial cell was low, complicating further analysis. This step most likely failed due to the high dose of RNases that are released by the cells' natural processes, or due to rapid turnaround time or the apoptotic conditions in freezing- or single-cell solutions. Since only the cells from the late-secretory phase were subject to more focused analysis, further studies including larger sample size from the different time-points of the natural menstrual cycle are needed. The methodology also needs further optimization to examine different cell types at high quality. The symbiosis between clinical biopsy and the sophisticated laboratory and bioinformatic protocols described here brings together clinical diagnostic needs and modern laboratory and bioinformatic solutions, enabling us to implement a precise analytical toolbox for studying the endometrial tissue even at the single-cell level.
Abstract STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. STUDY DESIGN, SIZE, DURATION The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. PARTICIPANTS/MATERIALS, SETTING, METHODS For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603 commonly expressed genes were detected, with 241 significantly differentially expressed genes. Of these, 231 genes were up- and 10 down-regulated in cultured cells, respectively. In addition, we performed a gene ontology analysis of the differentially expressed genes and found that these genes are mainly related to cell cycle, translational processes and metabolism. LIMITATIONS, REASONS FOR CAUTION Although CD9-positive single epithelial cells sorting was successfully established in our laboratory, the amount of transcriptome data per individual epithelial cell was low, complicating further analysis. This step most likely failed due to the high dose of RNases that are released by the cells' natural processes, or due to rapid turnaround time or the apoptotic conditions in freezing- or single-cell solutions. Since only the cells from the late-secretory phase were subject to more focused analysis, further studies including larger sample size from the different time-points of the natural menstrual cycle are needed. The methodology also needs further optimization to examine different cell types at high quality. WIDER IMPLICATIONS OF THE FINDINGS The symbiosis between clinical biopsy and the sophisticated laboratory and bioinformatic protocols described here brings together clinical diagnostic needs and modern laboratory and bioinformatic solutions, enabling us to implement a precise analytical toolbox for studying the endometrial tissue even at the single-cell level.
STUDY QUESTIONHow can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level?SUMMARY ANSWERBy compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis.WHAT IS KNOWN ALREADYAlthough single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described.STUDY DESIGN, SIZE, DURATIONThe frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells.PARTICIPANTS/MATERIALS, SETTING, METHODSFor method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing.MAIN RESULTS AND THE ROLE OF CHANCEHere we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603 commonly expressed genes were detected, with 241 significantly differentially expressed genes. Of these, 231 genes were up- and 10 down-regulated in cultured cells, respectively. In addition, we performed a gene ontology analysis of the differentially expressed genes and found that these genes are mainly related to cell cycle, translational processes and metabolism.LIMITATIONS, REASONS FOR CAUTIONAlthough CD9-positive single epithelial cells sorting was successfully established in our laboratory, the amount of transcriptome data per individual epithelial cell was low, complicating further analysis. This step most likely failed due to the high dose of RNases that are released by the cells' natural processes, or due to rapid turnaround time or the apoptotic conditions in freezing- or single-cell solutions. Since only the cells from the late-secretory phase were subject to more focused analysis, further studies including larger sample size from the different time-points of the natural menstrual cycle are needed. The methodology also needs further optimization to examine different cell types at high quality.WIDER IMPLICATIONS OF THE FINDINGSThe symbiosis between clinical biopsy and the sophisticated laboratory and bioinformatic protocols described here brings together clinical diagnostic needs and modern laboratory and bioinformatic solutions, enabling us to implement a precise analytical toolbox for studying the endometrial tissue even at the single-cell level.
Author Krjutškov, K.
Katayama, S.
Saare, M.
Lubenets, D.
Einarsdottir, E.
Samuel, K.
Teder, H.
Vera-Rodriguez, M.
Salumets, A.
Kere, J.
Laisk-Podar, T.
Author_xml – sequence: 1
  givenname: K.
  surname: Krjutškov
  fullname: Krjutškov, K.
  organization: 1 Competence Centre on Health Technologies, Tartu 50410, Estonia
– sequence: 2
  givenname: S.
  surname: Katayama
  fullname: Katayama, S.
  email: shintaro.katayama@ki.se
  organization: 2 Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
– sequence: 3
  givenname: M.
  surname: Saare
  fullname: Saare, M.
  organization: 1 Competence Centre on Health Technologies, Tartu 50410, Estonia
– sequence: 4
  givenname: M.
  surname: Vera-Rodriguez
  fullname: Vera-Rodriguez, M.
  organization: 4 Igenomix, Valencia 46980, Spain
– sequence: 5
  givenname: D.
  surname: Lubenets
  fullname: Lubenets, D.
  organization: 5 Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
– sequence: 6
  givenname: K.
  surname: Samuel
  fullname: Samuel, K.
  organization: 1 Competence Centre on Health Technologies, Tartu 50410, Estonia
– sequence: 7
  givenname: T.
  surname: Laisk-Podar
  fullname: Laisk-Podar, T.
  organization: 1 Competence Centre on Health Technologies, Tartu 50410, Estonia
– sequence: 8
  givenname: H.
  surname: Teder
  fullname: Teder, H.
  organization: 1 Competence Centre on Health Technologies, Tartu 50410, Estonia
– sequence: 9
  givenname: E.
  surname: Einarsdottir
  fullname: Einarsdottir, E.
  organization: 2 Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
– sequence: 10
  givenname: A.
  surname: Salumets
  fullname: Salumets, A.
  organization: 1 Competence Centre on Health Technologies, Tartu 50410, Estonia
– sequence: 11
  givenname: J.
  surname: Kere
  fullname: Kere, J.
  organization: 2 Department of Biosciences and Nutrition, and Center for Innovative Medicine, Karolinska Institutet, Huddinge 141 83, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26874359$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:133368132$$DView record from Swedish Publication Index
BookMark eNqFkctP7CAUxonR6PhYujWzvJsqDFDK5iY3xldi4kJdEwqnirZQoXXify-Tjq_FjStOzvnxfeexizZ98IDQIcHHBEt68jh2EfoTC0uMqw00I6zExYJyvIlmeFFWBSEl2UG7KT1hnMOq3EY7OS8Y5XKGqlvnH1ooDLTtfIjaJxNdP4QO5trr9i25NA_NHLzNqSE6nSmX0gj7aKvRbYKD9buH7s_P7k4vi-ubi6vTf9eFYbwaCiOFbagW0pZaWMJrZoXRjTA1AbBMiwY4hSr3IrkAIzkDw2hdCV5rYmlD91Ax6aYl9GOt-ug6Hd9U0E6tU885AsWxWHCc-b8TnysdWAM-T9X--Paz4t2jegiviglJJBFZ4M9aIIaXEdKgOpdW69EewpgUEYIRLiRbeR199_o0-VhvBugEmBhSitAo4wY9uLCydq0iWK2OqKYjqumIXyN__voQ_h-_7jiM_S_oO4CBsoo
CitedBy_id crossref_primary_10_3389_frph_2021_811537
crossref_primary_10_1093_biolre_ioy067
crossref_primary_10_1186_s13059_019_1906_x
crossref_primary_10_1016_j_stemcr_2022_06_002
crossref_primary_10_1038_s41598_017_10098_3
crossref_primary_10_1183_13993003_01330_2019
crossref_primary_10_1093_hropen_hoac043
crossref_primary_10_4049_jimmunol_2200433
crossref_primary_10_1038_s41598_017_01109_4
crossref_primary_10_1093_hropen_hoae028
crossref_primary_10_3390_biom15030450
crossref_primary_10_1016_j_ebiom_2020_102872
crossref_primary_10_1093_bfgp_elx029
crossref_primary_10_1096_fj_202002123R
crossref_primary_10_1038_s41598_019_50334_6
crossref_primary_10_1159_000506162
crossref_primary_10_1038_s41598_018_30551_1
crossref_primary_10_1007_s10528_024_10950_y
crossref_primary_10_1016_j_bbadis_2017_06_018
crossref_primary_10_1152_physrev_00050_2021
crossref_primary_10_3390_biology12040634
crossref_primary_10_1093_humrep_dey301
crossref_primary_10_1038_s41598_018_36275_6
crossref_primary_10_1016_j_jri_2019_04_001
crossref_primary_10_1097_RD9_0000000000000037
crossref_primary_10_1016_j_cryobiol_2024_105161
crossref_primary_10_3389_fgene_2022_847646
crossref_primary_10_1007_s00125_018_4687_y
crossref_primary_10_1093_humupd_dmad031
crossref_primary_10_1016_j_isci_2022_104137
crossref_primary_10_1038_s42003_022_04025_0
crossref_primary_10_1016_j_fertnstert_2020_11_034
crossref_primary_10_1530_REP_17_0092
crossref_primary_10_1016_j_placenta_2022_01_006
crossref_primary_10_1016_j_rbmo_2017_06_003
crossref_primary_10_1007_s12035_020_01905_6
crossref_primary_10_1038_s41598_019_57207_y
crossref_primary_10_1007_s10815_019_01442_9
crossref_primary_10_1038_s41390_020_01276_7
crossref_primary_10_1002_ajhb_23983
crossref_primary_10_1242_dev_134510
crossref_primary_10_3390_v14081723
crossref_primary_10_1016_j_bpobgyn_2018_01_012
crossref_primary_10_3389_fphys_2019_00125
crossref_primary_10_1038_srep31584
crossref_primary_10_1007_s15010_024_02318_6
crossref_primary_10_1038_s41591_020_1040_z
crossref_primary_10_1016_j_rbmo_2019_05_004
crossref_primary_10_1111_pedi_13346
crossref_primary_10_1038_s41421_022_00438_7
crossref_primary_10_1016_j_reprotox_2019_05_064
crossref_primary_10_3390_cells14030156
crossref_primary_10_1186_s12859_019_3017_9
crossref_primary_10_1186_s12905_024_03531_z
crossref_primary_10_1152_physiolgenomics_00059_2024
crossref_primary_10_3390_ijms22147696
crossref_primary_10_1038_s41467_018_05067_x
crossref_primary_10_1186_s12864_018_4512_5
crossref_primary_10_1002_cam4_1828
crossref_primary_10_1172_jci_insight_140443
crossref_primary_10_1093_carcin_bgy056
crossref_primary_10_1016_j_jid_2019_02_035
crossref_primary_10_14336_AD_2022_0323
crossref_primary_10_1016_j_isci_2023_107993
crossref_primary_10_1242_jcs_249789
crossref_primary_10_1038_s41598_019_44882_0
crossref_primary_10_1183_23120541_00917_2020
crossref_primary_10_18632_oncotarget_15807
crossref_primary_10_3389_fendo_2022_903505
crossref_primary_10_1186_s12915_024_01845_w
crossref_primary_10_1016_j_jri_2023_103943
crossref_primary_10_1530_EC_18_0537
crossref_primary_10_1111_sms_14028
crossref_primary_10_1038_s42003_022_03541_3
crossref_primary_10_1093_jleuko_qiad058
Cites_doi 10.1038/nbt.2325
10.1038/nbt.2967
10.1186/s12864-015-1671-5
10.1038/nature13173
10.1038/nsmb.2660
10.1038/nbt.3102
10.1093/nar/gku1303
10.1016/j.mce.2014.04.006
10.1210/en.143.6.2119
10.1186/1471-2121-11-95
10.1126/science.aaa1934
10.1016/j.fertnstert.2012.03.007
10.1210/en.2014-1566
10.1016/j.fertnstert.2014.04.005
10.1093/humrep/dev181
10.1093/humrep/det285
10.1038/jid.2009.216
10.1101/gr.110882.110
10.1101/pdb.prot072439
10.1152/physiolgenomics.00061.2001
10.1002/0471142956.cy0740s57
10.1093/bioinformatics/btt511
10.1038/nbt.2282
10.1093/humrep/del514
10.1016/j.celrep.2012.08.003
10.1073/pnas.1507125112
10.1038/nature14966
10.1095/biolreprod46.3.328
10.1038/nmeth.2639
10.1038/nprot.2012.022
10.1038/ncomms9207
10.1126/science.1247651
10.1038/nmeth.1315
10.1016/S0015-0282(97)81391-X
ContentType Journal Article
Copyright The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology 2016
The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Copyright_xml – notice: The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology 2016
– notice: The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1093/humrep/dew008
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Pharmacy, Therapeutics, & Pharmacology
EISSN 1460-2350
EndPage 853
ExternalDocumentID oai_swepub_ki_se_507250
PMC4791917
26874359
10_1093_humrep_dew008
10.1093/humrep/dew008
Genre Validation Studies
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EU
  grantid: FP7-PEOPLE-2012-IAPP; 324509
– fundername: EU-FP7 Eurostars
  grantid: EU41564
– fundername: Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX)
  grantid: b2014069
– fundername: Enterprise Estonia
  grantid: EU30020; EU48695
– fundername: Karolinska Institutet
– fundername: Estonian Ministry of Education and Research
  grantid: IUT34-16
– fundername: Swedish Institute Visby Program
– fundername: Swedish Research Council
GroupedDBID ---
-E4
.2P
.I3
.XZ
.ZR
0R~
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABJNI
ABKDP
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABWST
ABXVV
ABZBJ
ACCCW
ACGFS
ACPRK
ACUFI
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCN
TCURE
TEORI
TJX
TLC
TOX
TR2
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
.55
.GJ
3O-
AAPGJ
AAWDT
AAYOK
AAYXX
ABDFA
ABEJV
ABGNP
ABIME
ABPIB
ABPQP
ABSMQ
ABVGC
ABXZS
ABZEO
ACFRR
ACPQN
ACUTJ
ACVCV
ACZBC
ADMTO
ADNBA
AEHUL
AEKPW
AEMQT
AFFNX
AFFQV
AFSHK
AFYAG
AGKRT
AGMDO
AGORE
AGQPQ
AHGBF
AHMMS
AJBYB
AJDVS
AJNCP
ALXQX
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
CITATION
COF
CXTWN
DFGAJ
EIHJH
ELUNK
FEDTE
HVGLF
MBLQV
MBTAY
NTWIH
O0~
OBFPC
OHT
O~Y
PB-
QBD
RNI
RZF
RZO
TMA
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c458t-c97df3a79d6a7d15b4d7caf7cb1eed4a7fe53e8359957ec954ec43b875ba1d3f3
IEDL.DBID TOX
ISSN 0268-1161
IngestDate Mon Sep 01 03:33:18 EDT 2025
Thu Aug 21 14:06:46 EDT 2025
Thu Jul 10 23:06:22 EDT 2025
Mon Jul 21 06:05:11 EDT 2025
Tue Jul 01 03:02:55 EDT 2025
Thu Apr 24 22:58:59 EDT 2025
Wed Sep 11 04:47:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords single-cell FACS
clinical sampling
biopsy cryopreservation
endometrial receptivity
endometrial biopsy
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-c97df3a79d6a7d15b4d7caf7cb1eed4a7fe53e8359957ec954ec43b875ba1d3f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
The first two authors should be regarded as joint first authors
OpenAccessLink https://dx.doi.org/10.1093/humrep/dew008
PMID 26874359
PQID 1774157940
PQPubID 23479
PageCount 10
ParticipantIDs swepub_primary_oai_swepub_ki_se_507250
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4791917
proquest_miscellaneous_1774157940
pubmed_primary_26874359
crossref_citationtrail_10_1093_humrep_dew008
crossref_primary_10_1093_humrep_dew008
oup_primary_10_1093_humrep_dew008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Human reproduction (Oxford)
PublicationTitleAlternate Hum Reprod
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016031505230026000_31.4.844.7
2016031505230026000_31.4.844.29
2016031505230026000_31.4.844.8
2016031505230026000_31.4.844.6
2016031505230026000_31.4.844.25
2016031505230026000_31.4.844.26
2016031505230026000_31.4.844.9
2016031505230026000_31.4.844.27
2016031505230026000_31.4.844.28
2016031505230026000_31.4.844.3
2016031505230026000_31.4.844.4
2016031505230026000_31.4.844.1
2016031505230026000_31.4.844.2
Chabrat (2016031505230026000_31.4.844.5) 2015; 98
2016031505230026000_31.4.844.10
2016031505230026000_31.4.844.32
2016031505230026000_31.4.844.11
2016031505230026000_31.4.844.33
2016031505230026000_31.4.844.12
2016031505230026000_31.4.844.34
2016031505230026000_31.4.844.13
2016031505230026000_31.4.844.35
2016031505230026000_31.4.844.30
2016031505230026000_31.4.844.31
2016031505230026000_31.4.844.18
2016031505230026000_31.4.844.19
2016031505230026000_31.4.844.14
2016031505230026000_31.4.844.15
2016031505230026000_31.4.844.16
2016031505230026000_31.4.844.17
2016031505230026000_31.4.844.21
2016031505230026000_31.4.844.22
2016031505230026000_31.4.844.23
2016031505230026000_31.4.844.24
2016031505230026000_31.4.844.20
21732310 - Curr Protoc Cytom. 2011 Jul;Chapter 7:Unit 7.40
25599176 - Nat Biotechnol. 2015 Feb;33(2):155-60
25561613 - Cold Spring Harb Protoc. 2015 Jan;2015(1):pdb.prot072439
24531970 - Science. 2014 Feb 14;343(6172):776-9
23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9
26108968 - BMC Genomics. 2015;16:476
21134253 - BMC Cell Biol. 2010;11:95
25722368 - Nucleic Acids Res. 2015 May 19;43(9):e60
24769282 - Mol Cell Endocrinol. 2014 Jun 5;390(1-2):85-92
11773600 - Physiol Genomics. 2001 Dec 21;7(2):135-48
24739965 - Nature. 2014 May 15;509(7500):371-5
22871714 - Nat Biotechnol. 2012 Aug;30(8):763-5
25781565 - Endocrinology. 2015 Jun;156(6):2239-53
23995393 - Bioinformatics. 2013 Nov 15;29(22):2943-5
22939981 - Cell Rep. 2012 Sep 27;2(3):666-73
26202914 - Hum Reprod. 2015 Sep;30(9):2014-21
24837612 - Fertil Steril. 2014 Jul;102(1):307-317.e7
26287467 - Nature. 2015 Sep 10;525(7568):251-5
12021176 - Endocrinology. 2002 Jun;143(6):2119-38
17283036 - Hum Reprod. 2007 May;22(5):1214-23
25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8
9130884 - Fertil Steril. 1997 May;67(5):817-21
23847113 - Hum Reprod. 2013 Oct;28(10):2695-708
21543516 - Genome Res. 2011 Jul;21(7):1160-7
25700174 - Science. 2015 Mar 6;347(6226):1138-42
22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82
26060301 - Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90
19349980 - Nat Methods. 2009 May;6(5):377-82
19809422 - J Invest Dermatol. 2009 Sep;129(9):2091-3
26360614 - Nat Commun. 2015;6:8207
22480820 - Fertil Steril. 2012 Jun;97(6):1365-73.e1-2
22481528 - Nat Protoc. 2012 May;7(5):813-28
25939046 - J Vis Exp. 2015;(98). doi: 10.3791/52510
1352146 - Biol Reprod. 1992 Mar;46(3):328-34
24056875 - Nat Methods. 2013 Nov;10(11):1096-8
References_xml – ident: 2016031505230026000_31.4.844.11
  doi: 10.1038/nbt.2325
– ident: 2016031505230026000_31.4.844.26
  doi: 10.1038/nbt.2967
– ident: 2016031505230026000_31.4.844.20
  doi: 10.1186/s12864-015-1671-5
– volume: 98
  start-page: 1
  year: 2015
  ident: 2016031505230026000_31.4.844.5
  article-title: RNA Isolation from Cell Specific Subpopulations Using Laser-capture Microdissection Combined with Rapid Immunolabeling
  publication-title: J Vis Exp
– ident: 2016031505230026000_31.4.844.30
  doi: 10.1038/nature13173
– ident: 2016031505230026000_31.4.844.33
  doi: 10.1038/nsmb.2660
– ident: 2016031505230026000_31.4.844.4
  doi: 10.1038/nbt.3102
– ident: 2016031505230026000_31.4.844.24
  doi: 10.1093/nar/gku1303
– ident: 2016031505230026000_31.4.844.7
  doi: 10.1016/j.mce.2014.04.006
– ident: 2016031505230026000_31.4.844.18
  doi: 10.1210/en.143.6.2119
– ident: 2016031505230026000_31.4.844.2
  doi: 10.1186/1471-2121-11-95
– ident: 2016031505230026000_31.4.844.35
  doi: 10.1126/science.aaa1934
– ident: 2016031505230026000_31.4.844.9
  doi: 10.1016/j.fertnstert.2012.03.007
– ident: 2016031505230026000_31.4.844.23
  doi: 10.1210/en.2014-1566
– ident: 2016031505230026000_31.4.844.10
  doi: 10.1016/j.fertnstert.2014.04.005
– ident: 2016031505230026000_31.4.844.32
  doi: 10.1093/humrep/dev181
– ident: 2016031505230026000_31.4.844.31
  doi: 10.1093/humrep/det285
– ident: 2016031505230026000_31.4.844.34
  doi: 10.1038/jid.2009.216
– ident: 2016031505230026000_31.4.844.15
  doi: 10.1101/gr.110882.110
– ident: 2016031505230026000_31.4.844.22
  doi: 10.1101/pdb.prot072439
– ident: 2016031505230026000_31.4.844.3
  doi: 10.1152/physiolgenomics.00061.2001
– ident: 2016031505230026000_31.4.844.6
  doi: 10.1002/0471142956.cy0740s57
– ident: 2016031505230026000_31.4.844.19
  doi: 10.1093/bioinformatics/btt511
– ident: 2016031505230026000_31.4.844.27
  doi: 10.1038/nbt.2282
– ident: 2016031505230026000_31.4.844.21
  doi: 10.1093/humrep/del514
– ident: 2016031505230026000_31.4.844.13
  doi: 10.1016/j.celrep.2012.08.003
– ident: 2016031505230026000_31.4.844.8
  doi: 10.1073/pnas.1507125112
– ident: 2016031505230026000_31.4.844.12
  doi: 10.1038/nature14966
– ident: 2016031505230026000_31.4.844.14
  doi: 10.1095/biolreprod46.3.328
– ident: 2016031505230026000_31.4.844.25
  doi: 10.1038/nmeth.2639
– ident: 2016031505230026000_31.4.844.16
  doi: 10.1038/nprot.2012.022
– ident: 2016031505230026000_31.4.844.29
  doi: 10.1038/ncomms9207
– ident: 2016031505230026000_31.4.844.17
  doi: 10.1126/science.1247651
– ident: 2016031505230026000_31.4.844.28
  doi: 10.1038/nmeth.1315
– ident: 2016031505230026000_31.4.844.1
  doi: 10.1016/S0015-0282(97)81391-X
– reference: 21732310 - Curr Protoc Cytom. 2011 Jul;Chapter 7:Unit 7.40
– reference: 24056875 - Nat Methods. 2013 Nov;10(11):1096-8
– reference: 26202914 - Hum Reprod. 2015 Sep;30(9):2014-21
– reference: 22871714 - Nat Biotechnol. 2012 Aug;30(8):763-5
– reference: 21134253 - BMC Cell Biol. 2010;11:95
– reference: 25939046 - J Vis Exp. 2015;(98). doi: 10.3791/52510
– reference: 24837612 - Fertil Steril. 2014 Jul;102(1):307-317.e7
– reference: 23847113 - Hum Reprod. 2013 Oct;28(10):2695-708
– reference: 24531970 - Science. 2014 Feb 14;343(6172):776-9
– reference: 19809422 - J Invest Dermatol. 2009 Sep;129(9):2091-3
– reference: 25561613 - Cold Spring Harb Protoc. 2015 Jan;2015(1):pdb.prot072439
– reference: 23934149 - Nat Struct Mol Biol. 2013 Sep;20(9):1131-9
– reference: 26060301 - Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90
– reference: 25086649 - Nat Biotechnol. 2014 Oct;32(10):1053-8
– reference: 11773600 - Physiol Genomics. 2001 Dec 21;7(2):135-48
– reference: 25781565 - Endocrinology. 2015 Jun;156(6):2239-53
– reference: 17283036 - Hum Reprod. 2007 May;22(5):1214-23
– reference: 1352146 - Biol Reprod. 1992 Mar;46(3):328-34
– reference: 12021176 - Endocrinology. 2002 Jun;143(6):2119-38
– reference: 9130884 - Fertil Steril. 1997 May;67(5):817-21
– reference: 23995393 - Bioinformatics. 2013 Nov 15;29(22):2943-5
– reference: 21543516 - Genome Res. 2011 Jul;21(7):1160-7
– reference: 22480820 - Fertil Steril. 2012 Jun;97(6):1365-73.e1-2
– reference: 25599176 - Nat Biotechnol. 2015 Feb;33(2):155-60
– reference: 26287467 - Nature. 2015 Sep 10;525(7568):251-5
– reference: 25700174 - Science. 2015 Mar 6;347(6226):1138-42
– reference: 24739965 - Nature. 2014 May 15;509(7500):371-5
– reference: 19349980 - Nat Methods. 2009 May;6(5):377-82
– reference: 22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82
– reference: 22939981 - Cell Rep. 2012 Sep 27;2(3):666-73
– reference: 26360614 - Nat Commun. 2015;6:8207
– reference: 24769282 - Mol Cell Endocrinol. 2014 Jun 5;390(1-2):85-92
– reference: 25722368 - Nucleic Acids Res. 2015 May 19;43(9):e60
– reference: 26108968 - BMC Genomics. 2015;16:476
– reference: 22481528 - Nat Protoc. 2012 May;7(5):813-28
SSID ssj0016186
Score 2.465953
Snippet Abstract STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By...
How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? By compiling and developing novel analytical...
STUDY QUESTIONHow can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level?SUMMARY ANSWERBy compiling and...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 844
SubjectTerms Adult
Biomarkers - metabolism
CD13 Antigens - metabolism
Cell Separation
Cells, Cultured
Cryopreservation
Endometrium - cytology
Endometrium - metabolism
Epithelial Cells - cytology
Epithelial Cells - metabolism
Estonia
Female
Gene Expression Profiling
Gene Expression Regulation
Gene Library
Gene Ontology
Humans
Luteal Phase
Original
RNA, Messenger - chemistry
RNA, Messenger - metabolism
Sequence Analysis, RNA
Single-Cell Analysis
Stromal Cells - cytology
Stromal Cells - metabolism
Tetraspanin-29 - metabolism
Transcriptome
Title Single-cell transcriptome analysis of endometrial tissue
URI https://www.ncbi.nlm.nih.gov/pubmed/26874359
https://www.proquest.com/docview/1774157940
https://pubmed.ncbi.nlm.nih.gov/PMC4791917
http://kipublications.ki.se/Default.aspx?queryparsed=id:133368132
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED4NHqa9IFYYFBjyJNSnRjTYrutHNA3QJDYkitS3yLEvAtGmiKZC_fec7ZAtYoi9Oc7Zkn227zvb9xngSBsy8ihlonmOiSCXITGKU8oMnBkNnFIhPPry1_DiRvycyEm937H4xxG-5se3y9kjPhw7fIpRvWSAPUn--PekOS7wpO9xM4VcIvqqyTRflW4Zn1ZA21-48vX1yBaJaDA8Z5uwUSNGdhpV_Bk-YNmBrdOSvOXZivVYuMMZNsc78PGyPirvQO8qklKv-mz8J8Zq0Q8lGrrq1RaMrsl6TTHxW_is8qYrLCTzGTJTM5awecGwdJQVHvlgVdDWNtyc_Rh_v0jq9xQSK-SoSqxWruBGaTc0yqUyF05ZUyibp2QphVEFSo4EybSWCq2WAq3gOXk0uUkdL_gXWC_nJe4Cy6kePEmNdZgLWiOoFjQjq8mBE5qMfhf6Lx2d2Zps3L95Mc3ioTfPol6yqJcu9Brxh8iy8ZbgN9LauzIvOs1orvjeMyXOl4ssVR4_0Qo06MJO1HFTFQ0dAlNSd0G1tN8IeB7u9p_y7jbwcQulvddLjYjjpFWkzrqnFGYEvgly7v1HI_bhE0GzYbwjdADr1eMSvxL8qfJDWDufpIdhAjwDba8KFg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+transcriptome+analysis+of+endometrial+tissue&rft.jtitle=Human+reproduction+%28Oxford%29&rft.au=Krjut%C5%A1kov%2C+K&rft.au=Katayama%2C+S&rft.au=Saare%2C+M&rft.au=Vera-Rodriguez%2C+M&rft.date=2016-04-01&rft.eissn=1460-2350&rft.volume=31&rft.issue=4&rft.spage=844&rft_id=info:doi/10.1093%2Fhumrep%2Fdew008&rft_id=info%3Apmid%2F26874359&rft.externalDocID=26874359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-1161&client=summon