Group-by-Treatment Interaction Effects in Comparative Bioavailability Studies

Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a group-by-treatment interaction should be...

Full description

Saved in:
Bibliographic Details
Published inThe AAPS journal Vol. 26; no. 3; p. 50
Main Authors Schütz, Helmut, Burger, Divan A., Cobo, Erik, Dubins, David D., Farkás, Tibor, Labes, Detlew, Lang, Benjamin, Ocaña, Jordi, Ring, Arne, Shitova, Anastasia, Stus, Volodymyr, Tomashevskiy, Michael
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 17.04.2024
Springer
Subjects
Online AccessGet full text
ISSN1550-7416
1550-7416
DOI10.1208/s12248-024-00921-x

Cover

Loading…
Abstract Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a group-by-treatment interaction should be evaluated. We investigated the presence or absence of group-by-treatment interactions through both simulation techniques and a meta-study of well-controlled trials. Our findings reveal that the test falsely detects an interaction when no true group-by-treatment interaction exists. Conversely, when a true group-by-treatment interaction does exist, it often goes undetected. In our meta-study, the detected group-by-treatment interactions were observed at approximately the level of the test and, thus, can be considered false positives. Testing for a group-by-treatment interaction is both misleading and uninformative. It often falsely identifies an interaction when none exists and fails to detect a real one. This occurs because the test is performed between subjects in crossover designs, and studies are powered to compare treatments within subjects. This work demonstrates a lack of utility for including a group-by-treatment interaction in the model when assessing single-site comparative bioavailability studies, and the clinical trial study structure is divided into groups. Graphical Abstract
AbstractList Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a group-by-treatment interaction should be evaluated. We investigated the presence or absence of group-by-treatment interactions through both simulation techniques and a meta-study of well-controlled trials. Our findings reveal that the test falsely detects an interaction when no true group-by-treatment interaction exists. Conversely, when a true group-by-treatment interaction does exist, it often goes undetected. In our meta-study, the detected group-by-treatment interactions were observed at approximately the level of the test and, thus, can be considered false positives. Testing for a group-by-treatment interaction is both misleading and uninformative. It often falsely identifies an interaction when none exists and fails to detect a real one. This occurs because the test is performed between subjects in crossover designs, and studies are powered to compare treatments within subjects. This work demonstrates a lack of utility for including a group-by-treatment interaction in the model when assessing single-site comparative bioavailability studies, and the clinical trial study structure is divided into groups.Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a group-by-treatment interaction should be evaluated. We investigated the presence or absence of group-by-treatment interactions through both simulation techniques and a meta-study of well-controlled trials. Our findings reveal that the test falsely detects an interaction when no true group-by-treatment interaction exists. Conversely, when a true group-by-treatment interaction does exist, it often goes undetected. In our meta-study, the detected group-by-treatment interactions were observed at approximately the level of the test and, thus, can be considered false positives. Testing for a group-by-treatment interaction is both misleading and uninformative. It often falsely identifies an interaction when none exists and fails to detect a real one. This occurs because the test is performed between subjects in crossover designs, and studies are powered to compare treatments within subjects. This work demonstrates a lack of utility for including a group-by-treatment interaction in the model when assessing single-site comparative bioavailability studies, and the clinical trial study structure is divided into groups.
Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a group-by-treatment interaction should be evaluated. We investigated the presence or absence of group-by-treatment interactions through both simulation techniques and a meta-study of well-controlled trials. Our findings reveal that the test falsely detects an interaction when no true group-by-treatment interaction exists. Conversely, when a true group-by-treatment interaction does exist, it often goes undetected. In our meta-study, the detected group-by-treatment interactions were observed at approximately the level of the test and, thus, can be considered false positives. Testing for a group-by-treatment interaction is both misleading and uninformative. It often falsely identifies an interaction when none exists and fails to detect a real one. This occurs because the test is performed between subjects in crossover designs, and studies are powered to compare treatments within subjects. This work demonstrates a lack of utility for including a group-by-treatment interaction in the model when assessing single-site comparative bioavailability studies, and the clinical trial study structure is divided into groups.
Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a group-by-treatment interaction should be evaluated. We investigated the presence or absence of group-by-treatment interactions through both simulation techniques and a meta-study of well-controlled trials. Our findings reveal that the test falsely detects an interaction when no true group-by-treatment interaction exists. Conversely, when a true group-by-treatment interaction does exist, it often goes undetected. In our meta-study, the detected group-by-treatment interactions were observed at approximately the level of the test and, thus, can be considered false positives. Testing for a group-by-treatment interaction is both misleading and uninformative. It often falsely identifies an interaction when none exists and fails to detect a real one. This occurs because the test is performed between subjects in crossover designs, and studies are powered to compare treatments within subjects. This work demonstrates a lack of utility for including a group-by-treatment interaction in the model when assessing single-site comparative bioavailability studies, and the clinical trial study structure is divided into groups. Graphical
Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises questions about the validity of pooling data from these groups in the statistical analysis and whether a group-by-treatment interaction should be evaluated. We investigated the presence or absence of group-by-treatment interactions through both simulation techniques and a meta-study of well-controlled trials. Our findings reveal that the test falsely detects an interaction when no true group-by-treatment interaction exists. Conversely, when a true group-by-treatment interaction does exist, it often goes undetected. In our meta-study, the detected group-by-treatment interactions were observed at approximately the level of the test and, thus, can be considered false positives. Testing for a group-by-treatment interaction is both misleading and uninformative. It often falsely identifies an interaction when none exists and fails to detect a real one. This occurs because the test is performed between subjects in crossover designs, and studies are powered to compare treatments within subjects. This work demonstrates a lack of utility for including a group-by-treatment interaction in the model when assessing single-site comparative bioavailability studies, and the clinical trial study structure is divided into groups. Graphical Abstract
ArticleNumber 50
Audience Academic
Author Dubins, David D.
Stus, Volodymyr
Tomashevskiy, Michael
Burger, Divan A.
Schütz, Helmut
Shitova, Anastasia
Cobo, Erik
Ocaña, Jordi
Labes, Detlew
Lang, Benjamin
Farkás, Tibor
Ring, Arne
Author_xml – sequence: 1
  givenname: Helmut
  orcidid: 0000-0002-1167-7880
  surname: Schütz
  fullname: Schütz, Helmut
  email: helmut.schuetz@bebac.at
  organization: Center for Medical Data Science of the Medical University of Vienna, Faculty of Pharmacy, Universidade de Lisboa, BEBAC
– sequence: 2
  givenname: Divan A.
  orcidid: 0000-0001-8096-6371
  surname: Burger
  fullname: Burger, Divan A.
  organization: University of Pretoria, Syneos Health
– sequence: 3
  givenname: Erik
  orcidid: 0000-0002-3534-5602
  surname: Cobo
  fullname: Cobo, Erik
  organization: Department of Statistics and Operations Research, Universitat Politecnica de Catalunya
– sequence: 4
  givenname: David D.
  orcidid: 0000-0002-3039-3808
  surname: Dubins
  fullname: Dubins, David D.
  organization: Leslie Dan Faculty of Pharmacy
– sequence: 5
  givenname: Tibor
  surname: Farkás
  fullname: Farkás, Tibor
  organization: Gedeon Richter Plc
– sequence: 6
  givenname: Detlew
  orcidid: 0000-0003-2169-426X
  surname: Labes
  fullname: Labes, Detlew
– sequence: 7
  givenname: Benjamin
  surname: Lang
  fullname: Lang, Benjamin
  organization: Boehringer Ingelheim Pharma GmbH & Co. KG
– sequence: 8
  givenname: Jordi
  surname: Ocaña
  fullname: Ocaña, Jordi
  organization: Department of Genetics, Microbiology and Statistics, Universitat de Barcelona
– sequence: 9
  givenname: Arne
  orcidid: 0000-0002-4324-5820
  surname: Ring
  fullname: Ring, Arne
  organization: University of the Free State, Hexal – a Sandoz Brand
– sequence: 10
  givenname: Anastasia
  orcidid: 0000-0003-3546-7316
  surname: Shitova
  fullname: Shitova, Anastasia
  organization: Quinta-Analytica Yaroslavl
– sequence: 11
  givenname: Volodymyr
  surname: Stus
  fullname: Stus, Volodymyr
  organization: Zakłady Farmaceutyczne Polpharma S.A
– sequence: 12
  givenname: Michael
  surname: Tomashevskiy
  fullname: Tomashevskiy, Michael
  organization: OnTarget Group
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38632178$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2KqsC0L9BFFambbkL9k9ieJR0BRaLqAlhbN84NMkrsqe0g5u3rISC1VYW8sGV951z7nGNy4INHQj4yesI41V8T47zRNeVNTemas_rxDTlibUtr1TB58Mf5kByndE-p4IKxd-RQaCk4U_qI_LiIYd7W3a6-iQh5Qp-rS58xgs0u-OpsGNDmVDlfbcK0hQjZPWD1zQV4ADdC50aXd9V1nnuH6T15O8CY8MPzviK352c3m-_11c-Ly83pVW2bVue6Y1qCldAq2wmqoAFQEgfaYAOKdQOXfC2EXAM2sgcmVdtZQNtqBRJ514sV-bL4bmP4NWPKZnLJ4jiCxzAnI2jDuKCMyoJ-XtA7GNE4P4Rc_rbHzalaU8m0LrNW5OQ_VFk9Ts6W2AdX7v8SfHp-wdxN2JttdBPEnXlJtgB6AWwMKUUcjHUZ9pkWZzcaRs2-RLOUaEqJ5qlE81ik_B_pi_urIrGIUoH9HUZzH-boSwuvqX4Da-auWA
CitedBy_id crossref_primary_10_1208_s12248_024_01008_3
crossref_primary_10_1208_s12248_024_00972_0
Cites_doi 10.1016/j.medcli.2015.10.011
10.7326/M18-3667
10.1208/s12248-013-9499-x
10.1080/00031305.2016.1154108
10.1002/sim.7614
10.1002/pst.111
10.1080/19466315.2022.2123385
10.1145/272991.272995
10.1208/s12248-013-9475-5
10.1208/s12248-014-9571-1
10.1002/sim.4780081202
10.1002/1097-0258(20001030)19:20<2867::AID-SIM551>3.0.CO;2-J
10.1002/pst.1522
10.1002/pst.294
10.1002/bimj.201900388
10.1198/0003130031856
10.1348/000711004849222
10.1080/19466315.2015.1077726
10.1002/cpt.2050
10.1081/bip-100104196
10.1002/pst.483
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
COPYRIGHT 2024 Springer
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 Springer
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1208/s12248-024-00921-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1550-7416
ExternalDocumentID A790618893
38632178
10_1208_s12248_024_00921_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical University of Vienna
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
123
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
406
408
40D
40E
53G
67N
6J9
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKDD
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMJI
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BA0
BGNMA
C6C
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GX1
HG6
HH5
HMJXF
HRMNR
HZ~
IAO
IEA
IHR
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KPH
LGEZI
LLZTM
LOTEE
M4Y
MA-
NADUK
NPVJJ
NQJWS
NXXTH
O9-
O93
O9I
O9J
P6G
PF0
PT4
PT5
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z83
Z87
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
EBD
EMOBN
MK0
SV3
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
7X8
ID FETCH-LOGICAL-c458t-b186ac6a57cb307a4aa76ef04e4a71bf26293369ae46da1675bcaec587a6e2bd3
IEDL.DBID U2A
ISSN 1550-7416
IngestDate Fri Jul 11 04:33:02 EDT 2025
Tue Jun 17 22:06:37 EDT 2025
Tue Jun 10 21:07:44 EDT 2025
Thu Apr 03 06:54:56 EDT 2025
Tue Jul 01 01:45:21 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Monte-Carlo simulations
group-by-treatment interaction
regulatory guidelines
average bioequivalence
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-b186ac6a57cb307a4aa76ef04e4a71bf26293369ae46da1675bcaec587a6e2bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4324-5820
0000-0003-2169-426X
0000-0001-8096-6371
0000-0002-3534-5602
0000-0002-3039-3808
0000-0003-3546-7316
0000-0002-1167-7880
OpenAccessLink https://link.springer.com/10.1208/s12248-024-00921-x
PMID 38632178
PQID 3041230106
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3041230106
gale_infotracmisc_A790618893
gale_infotracacademiconefile_A790618893
pubmed_primary_38632178
crossref_citationtrail_10_1208_s12248_024_00921_x
crossref_primary_10_1208_s12248_024_00921_x
springer_journals_10_1208_s12248_024_00921_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-17
PublicationDateYYYYMMDD 2024-04-17
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-17
  day: 17
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle The AAPS journal
PublicationTitleAbbrev AAPS J
PublicationTitleAlternate AAPS J
PublicationYear 2024
Publisher Springer International Publishing
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer
References PressWHFlanneryBPTeukolskySAVetterlingWTNumerical recipes in Fortran 77: the art of scientific computing19922CambridgeCambridge University Press603
US Food and Drug Administration, CDER. Guidance for industry. Bioavailability studies submitted in NDAs or INDs — general considerations. Silver Spring, April 2022. https://www.fda.gov/media/121311/download. Accessed 22 October 2023.
AloshMFritschKHuqueMMahjoobKPennelloGRothmannMRussek-CohenESmithFWilsonSYueLStatistical considerations on subgroup analysis in clinical trialsStat Biopharm Res20157428630410.1080/19466315.2015.1077726
SunWSchuirmannDGrosserSQualitative versus quantitative treatment-by-subgroup interaction in equivalence studies with multiple subgroupsStat Biopharm Res202210.1080/19466315.2022.2123385
FuglsangASequential bioequivalence trial designs with increased power and controlled type I error ratesAAPS J20131565966110.1208/s12248-013-9475-5235436033691437
MatsumotoMNishimuraTMersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generatorACM Trans Model Comput Simul1998833010.1145/272991.272995
ZimmermanDWA note on preliminary tests of equality of variancesBr J Math Stat Psychol200457117318110.1348/00071100484922215171807
LeeJFengKXuMGongXSunWKimJZhangZWangMFangLZhaoLApplications of adaptive designs in generic drug developmentClin Pharm Ther20201101323510.1002/cpt.2050
MontagueTHPotvinDDiLibertiCEHauckWWParrAFSchuirmannDJAdditional results for ‘Sequential design approaches for bioequivalence studies with crossover designs’Pharm Stat.20111181310.1002/pst.48321308974
US Food and Drug Administration, CDER. Guidance for industry. Food-effect bioavailability and fed bioequivalence studies. Rockville, December 2002. https://www.fda.gov/files/drugs/published/Food-Effect-Bioavailability-and-Fed-Bioequivalence-Studies.pdf. Accessed 22 October 2023.
SennSD’AngeloGPotvinDCarry-over in cross-over trials in bioequivalence: theoretical concerns and empirical evidencePharm Stat2004313314210.1002/pst.111
BoltonSBonCPharmaceutical statistics. Practical and clinical applications20105New YorkInforma Healthcare629
R Core Team. R: a language and environment for statistical computing. Vienna, Austria, 2023. https://www.r-project.org/. Accessed 22 Oct 2023.
US Food and Drug Administration, CDER. Guidance for industry. Statistical approaches to establishing bioequivalence. Revision 1. Silver Spring, December 2022. https://www.fda.gov/media/163638/download. Accessed 22 October 2023.
FreemanPRThe performance of the two-stage analysis of two-treatment, two-period crossover trialsStatist Med1989812142114321:STN:280:DyaK3c7jvF2rsg%3D%3D10.1002/sim.4780081202
US Food and Drug Administration, CDER. ANDA 077570. Bioequivalence reviews. 2008. Control document #98–392 regarding the Group-by-Treatment interaction discussion. Rockville, September 10, 1999. https://www.accessdata.fda.gov/drugsatfda_docs/anda/2008/077570Orig1s000BioeqR.pdf. Accessed 22 October 2023.
D’AngeloGPotvinDTurgeonJCarry-over effects in bioequivalence studiesJ Biopharm Stat2001111&2354310.1081/bip-100104196
EndrényiLTabackNTóthfalusiProperties of the estimated variance component for subject-by-formulation interaction in studies of individual bioequivalenceStatist Med.2000192867287810.1002/1097-0258(20001030)19:20<2867::AID-SIM551>3.0.CO;2-J
EMA, CHMP. Guideline on the investigation of bioequivalence. London; 2010. https://www.ema.europa.eu/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf. Accessed 22 October 2023.
PotvinDDiLibertiCEHauckWWParrAFSchuirmannDJSmithRASequential design approaches for bioequivalence studies with crossover designsPharm Stat2008724526210.1002/pst.29417710740
US Food and Drug Administration, CDER. Guidance for industry. Bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA. Silver Spring, August 2021. https://www.fda.gov/media/87219/download. Accessed 22 October 2023.
US Food and Drug Administration, CDER. Guidance for industry. SUPAC-IR: immediate-release solid oral dosage forms: scale-up and post-approval changes: chemistry, manufacturing and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. Rockville, November 1995. https://www.fda.gov/media/70949/download. Accessed 22 October 2023.
Sun W. Bioequivalence studies in multiple groups. Presentation at: SBIA. A deep dive: FDA draft guidance on statistical approaches to establishing bioequivalence. Silver Spring, March 14, 2023. https://www.fda.gov/media/167459/download. Accessed 22 October 2023.
WestlakeWJBlanchardJSawchukRJBrodieBBDesign and evaluation of bioequivalence studies in manPrinciples and perspectives in drug bioavailability1979BaselKarger192210
KentDMPaulusJKvan KlaverenDD’AgostinoRGoodmanSHaywardRIoannidisJPAPatrick-LakeBMortonSPencinaMRamanGRossJSSelkerHSVaradhanRVickersAWongJBSteyerbergEWThe predictive approaches to treatment effect heterogeneity (PATH) statementAnn Intern Med20201721354510.7326/M18-366731711134
WestlakeWJPeaceKEBioavailability and bioequivalence of pharmaceutical formulationsBiopharmaceutical statistics for drug development1988New YorkMarcel Dekker336337
US Food and Drug Administration, CDER. Guidance for industry. Clinical drug interaction studies — cytochrome P450 enzyme- and transporter-mediated drug interactions. Silver Spring, January 2020. https://www.fda.gov/media/134581/download. Accessed 22 October 2023.
Cortés J, Casals M, Langohr K, González JA. Importance of statistical power and hypothesis in P value. Med Clin (Barc). 2016. https://doi.org/10.1016/j.medcli.2015.10.011.
Medicines for Europe. Second bioequivalence workshop. Session 2 – ICH M13 – bioequivalence for IR solid oral dosage forms. Brussels; 2023.
Health Canada, Guidance Document. Conduct and analysis of comparative bioavailability studies. Ottawa. Revised Date: 2023/01/30. https://www.canada.ca/content/dam/hc-sc/documents/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/bioavailability-bioequivalence/conduct-analysis-comparative.pdf. Accessed 22 October 2023.
Council of the Eurasian Economic Community. On the approval of the rules for conducting research of bioequivalence of drugs within the framework of the Eurasian Economic Union. November 3, 2016; amended September 4, 2020.
ICH. Bioequivalence for immediate release solid oral dosage forms. M13A. Draft version. 20 December 2022. https://database.ich.org/sites/default/files/ICH_M13A_Step2_draft_Guideline_2022_1125.pdf. Accessed 22 October 2023.
ZhengCWangJZhaoLTesting bioequivalence for multiple formulations with power and sample size calculationsPharm Stat20121133434110.1002/pst.152222692852
WassersteinRLLazarNAThe ASA’s statement on p-values: context, process, and purposeAm Stat201670212913310.1080/00031305.2016.1154108
FuglsangASequential bioequivalence approaches for parallel designsAAPS J20141637337810.1208/s12248-014-9571-1245266104012040
MolinsELabesDSchützHCoboEOcañaJAn iterative method to protect the type I error rate in bioequivalence studies under two-stage adaptive 2×2 crossover designsBiom J202163112213310.1002/bimj.20190038833000873
HubbardRBayarriMJConfusion over measures of evidence (p’s) versus errors (α’s) in classical statistical testingAm Stat200357317118210.1198/0003130031856
European Medicines Agency, CHMP. Guideline on the investigation of drug interactions. Revision 1. London, 21 June 2012. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf. Accessed 22 October 2023.
DavitBBraddyACConnerDPYuLXInternational guidelines for bioequivalence of systemically available orally administered generic drug products: a survey of similarities and differencesAAPS J201315497429010.1208/s12248-013-9499-x238213523787230
MaurerWJonesBChenYControlling the type 1 error rate in two-stage sequential designs when testing for average bioequivalenceStatist Med2018371012110.1002/sim.7614
921_CR40
G D’Angelo (921_CR23) 2001; 11
R Hubbard (921_CR39) 2003; 57
921_CR21
S Senn (921_CR26) 2004; 3
A Fuglsang (921_CR30) 2013; 15
J Lee (921_CR33) 2020; 110
DW Zimmerman (921_CR24) 2004; 57
M Matsumoto (921_CR20) 1998; 8
921_CR6
L Endrényi (921_CR27) 2000; 19
921_CR7
921_CR8
A Fuglsang (921_CR31) 2014; 16
E Molins (921_CR34) 2021; 63
921_CR9
C Zheng (921_CR19) 2012; 11
B Davit (921_CR3) 2013; 15
PR Freeman (921_CR25) 1989; 8
921_CR11
921_CR12
921_CR10
921_CR2
921_CR15
WJ Westlake (921_CR17) 1979
921_CR16
921_CR4
WH Press (921_CR37) 1992
921_CR5
921_CR14
921_CR1
WJ Westlake (921_CR18) 1988
TH Montague (921_CR29) 2011; 11
RL Wasserstein (921_CR38) 2016; 70
S Bolton (921_CR13) 2010
W Sun (921_CR22) 2022
D Potvin (921_CR28) 2008; 7
M Alosh (921_CR36) 2015; 7
DM Kent (921_CR35) 2020; 172
W Maurer (921_CR32) 2018; 37
38710975 - AAPS J. 2024 May 6;26(3):58. doi: 10.1208/s12248-024-00927-5.
39251474 - AAPS J. 2024 Sep 9;26(5):101. doi: 10.1208/s12248-024-00972-0.
References_xml – reference: LeeJFengKXuMGongXSunWKimJZhangZWangMFangLZhaoLApplications of adaptive designs in generic drug developmentClin Pharm Ther20201101323510.1002/cpt.2050
– reference: US Food and Drug Administration, CDER. Guidance for industry. Bioavailability studies submitted in NDAs or INDs — general considerations. Silver Spring, April 2022. https://www.fda.gov/media/121311/download. Accessed 22 October 2023.
– reference: US Food and Drug Administration, CDER. Guidance for industry. Statistical approaches to establishing bioequivalence. Revision 1. Silver Spring, December 2022. https://www.fda.gov/media/163638/download. Accessed 22 October 2023.
– reference: SunWSchuirmannDGrosserSQualitative versus quantitative treatment-by-subgroup interaction in equivalence studies with multiple subgroupsStat Biopharm Res202210.1080/19466315.2022.2123385
– reference: US Food and Drug Administration, CDER. Guidance for industry. SUPAC-IR: immediate-release solid oral dosage forms: scale-up and post-approval changes: chemistry, manufacturing and controls, in vitro dissolution testing, and in vivo bioequivalence documentation. Rockville, November 1995. https://www.fda.gov/media/70949/download. Accessed 22 October 2023.
– reference: Council of the Eurasian Economic Community. On the approval of the rules for conducting research of bioequivalence of drugs within the framework of the Eurasian Economic Union. November 3, 2016; amended September 4, 2020.
– reference: D’AngeloGPotvinDTurgeonJCarry-over effects in bioequivalence studiesJ Biopharm Stat2001111&2354310.1081/bip-100104196
– reference: HubbardRBayarriMJConfusion over measures of evidence (p’s) versus errors (α’s) in classical statistical testingAm Stat200357317118210.1198/0003130031856
– reference: Health Canada, Guidance Document. Conduct and analysis of comparative bioavailability studies. Ottawa. Revised Date: 2023/01/30. https://www.canada.ca/content/dam/hc-sc/documents/services/drugs-health-products/drug-products/applications-submissions/guidance-documents/bioavailability-bioequivalence/conduct-analysis-comparative.pdf. Accessed 22 October 2023.
– reference: BoltonSBonCPharmaceutical statistics. Practical and clinical applications20105New YorkInforma Healthcare629
– reference: PotvinDDiLibertiCEHauckWWParrAFSchuirmannDJSmithRASequential design approaches for bioequivalence studies with crossover designsPharm Stat2008724526210.1002/pst.29417710740
– reference: DavitBBraddyACConnerDPYuLXInternational guidelines for bioequivalence of systemically available orally administered generic drug products: a survey of similarities and differencesAAPS J201315497429010.1208/s12248-013-9499-x238213523787230
– reference: ZhengCWangJZhaoLTesting bioequivalence for multiple formulations with power and sample size calculationsPharm Stat20121133434110.1002/pst.152222692852
– reference: US Food and Drug Administration, CDER. Guidance for industry. Bioequivalence studies with pharmacokinetic endpoints for drugs submitted under an ANDA. Silver Spring, August 2021. https://www.fda.gov/media/87219/download. Accessed 22 October 2023.
– reference: PressWHFlanneryBPTeukolskySAVetterlingWTNumerical recipes in Fortran 77: the art of scientific computing19922CambridgeCambridge University Press603
– reference: FuglsangASequential bioequivalence approaches for parallel designsAAPS J20141637337810.1208/s12248-014-9571-1245266104012040
– reference: ICH. Bioequivalence for immediate release solid oral dosage forms. M13A. Draft version. 20 December 2022. https://database.ich.org/sites/default/files/ICH_M13A_Step2_draft_Guideline_2022_1125.pdf. Accessed 22 October 2023.
– reference: EMA, CHMP. Guideline on the investigation of bioequivalence. London; 2010. https://www.ema.europa.eu/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf. Accessed 22 October 2023.
– reference: AloshMFritschKHuqueMMahjoobKPennelloGRothmannMRussek-CohenESmithFWilsonSYueLStatistical considerations on subgroup analysis in clinical trialsStat Biopharm Res20157428630410.1080/19466315.2015.1077726
– reference: Medicines for Europe. Second bioequivalence workshop. Session 2 – ICH M13 – bioequivalence for IR solid oral dosage forms. Brussels; 2023.
– reference: SennSD’AngeloGPotvinDCarry-over in cross-over trials in bioequivalence: theoretical concerns and empirical evidencePharm Stat2004313314210.1002/pst.111
– reference: WestlakeWJPeaceKEBioavailability and bioequivalence of pharmaceutical formulationsBiopharmaceutical statistics for drug development1988New YorkMarcel Dekker336337
– reference: European Medicines Agency, CHMP. Guideline on the investigation of drug interactions. Revision 1. London, 21 June 2012. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf. Accessed 22 October 2023.
– reference: US Food and Drug Administration, CDER. ANDA 077570. Bioequivalence reviews. 2008. Control document #98–392 regarding the Group-by-Treatment interaction discussion. Rockville, September 10, 1999. https://www.accessdata.fda.gov/drugsatfda_docs/anda/2008/077570Orig1s000BioeqR.pdf. Accessed 22 October 2023.
– reference: US Food and Drug Administration, CDER. Guidance for industry. Food-effect bioavailability and fed bioequivalence studies. Rockville, December 2002. https://www.fda.gov/files/drugs/published/Food-Effect-Bioavailability-and-Fed-Bioequivalence-Studies.pdf. Accessed 22 October 2023.
– reference: ZimmermanDWA note on preliminary tests of equality of variancesBr J Math Stat Psychol200457117318110.1348/00071100484922215171807
– reference: MatsumotoMNishimuraTMersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generatorACM Trans Model Comput Simul1998833010.1145/272991.272995
– reference: MontagueTHPotvinDDiLibertiCEHauckWWParrAFSchuirmannDJAdditional results for ‘Sequential design approaches for bioequivalence studies with crossover designs’Pharm Stat.20111181310.1002/pst.48321308974
– reference: MolinsELabesDSchützHCoboEOcañaJAn iterative method to protect the type I error rate in bioequivalence studies under two-stage adaptive 2×2 crossover designsBiom J202163112213310.1002/bimj.20190038833000873
– reference: FreemanPRThe performance of the two-stage analysis of two-treatment, two-period crossover trialsStatist Med1989812142114321:STN:280:DyaK3c7jvF2rsg%3D%3D10.1002/sim.4780081202
– reference: MaurerWJonesBChenYControlling the type 1 error rate in two-stage sequential designs when testing for average bioequivalenceStatist Med2018371012110.1002/sim.7614
– reference: WestlakeWJBlanchardJSawchukRJBrodieBBDesign and evaluation of bioequivalence studies in manPrinciples and perspectives in drug bioavailability1979BaselKarger192210
– reference: EndrényiLTabackNTóthfalusiProperties of the estimated variance component for subject-by-formulation interaction in studies of individual bioequivalenceStatist Med.2000192867287810.1002/1097-0258(20001030)19:20<2867::AID-SIM551>3.0.CO;2-J
– reference: US Food and Drug Administration, CDER. Guidance for industry. Clinical drug interaction studies — cytochrome P450 enzyme- and transporter-mediated drug interactions. Silver Spring, January 2020. https://www.fda.gov/media/134581/download. Accessed 22 October 2023.
– reference: WassersteinRLLazarNAThe ASA’s statement on p-values: context, process, and purposeAm Stat201670212913310.1080/00031305.2016.1154108
– reference: Sun W. Bioequivalence studies in multiple groups. Presentation at: SBIA. A deep dive: FDA draft guidance on statistical approaches to establishing bioequivalence. Silver Spring, March 14, 2023. https://www.fda.gov/media/167459/download. Accessed 22 October 2023.
– reference: Cortés J, Casals M, Langohr K, González JA. Importance of statistical power and hypothesis in P value. Med Clin (Barc). 2016. https://doi.org/10.1016/j.medcli.2015.10.011.
– reference: R Core Team. R: a language and environment for statistical computing. Vienna, Austria, 2023. https://www.r-project.org/. Accessed 22 Oct 2023.
– reference: FuglsangASequential bioequivalence trial designs with increased power and controlled type I error ratesAAPS J20131565966110.1208/s12248-013-9475-5235436033691437
– reference: KentDMPaulusJKvan KlaverenDD’AgostinoRGoodmanSHaywardRIoannidisJPAPatrick-LakeBMortonSPencinaMRamanGRossJSSelkerHSVaradhanRVickersAWongJBSteyerbergEWThe predictive approaches to treatment effect heterogeneity (PATH) statementAnn Intern Med20201721354510.7326/M18-366731711134
– ident: 921_CR4
– ident: 921_CR40
  doi: 10.1016/j.medcli.2015.10.011
– ident: 921_CR15
– ident: 921_CR21
– volume: 172
  start-page: 35
  issue: 1
  year: 2020
  ident: 921_CR35
  publication-title: Ann Intern Med
  doi: 10.7326/M18-3667
– ident: 921_CR8
– ident: 921_CR6
– ident: 921_CR2
– volume: 15
  start-page: 974
  issue: 4
  year: 2013
  ident: 921_CR3
  publication-title: AAPS J
  doi: 10.1208/s12248-013-9499-x
– volume: 70
  start-page: 129
  issue: 2
  year: 2016
  ident: 921_CR38
  publication-title: Am Stat
  doi: 10.1080/00031305.2016.1154108
– ident: 921_CR11
– volume: 37
  start-page: 1
  issue: 10
  year: 2018
  ident: 921_CR32
  publication-title: Statist Med
  doi: 10.1002/sim.7614
– start-page: 336
  volume-title: Biopharmaceutical statistics for drug development
  year: 1988
  ident: 921_CR18
– start-page: 603
  volume-title: Numerical recipes in Fortran 77: the art of scientific computing
  year: 1992
  ident: 921_CR37
– volume: 3
  start-page: 133
  year: 2004
  ident: 921_CR26
  publication-title: Pharm Stat
  doi: 10.1002/pst.111
– ident: 921_CR5
– year: 2022
  ident: 921_CR22
  publication-title: Stat Biopharm Res
  doi: 10.1080/19466315.2022.2123385
– volume: 8
  start-page: 3
  year: 1998
  ident: 921_CR20
  publication-title: ACM Trans Model Comput Simul
  doi: 10.1145/272991.272995
– ident: 921_CR16
– ident: 921_CR14
– volume: 15
  start-page: 659
  year: 2013
  ident: 921_CR30
  publication-title: AAPS J
  doi: 10.1208/s12248-013-9475-5
– start-page: 192
  volume-title: Principles and perspectives in drug bioavailability
  year: 1979
  ident: 921_CR17
– volume: 16
  start-page: 373
  year: 2014
  ident: 921_CR31
  publication-title: AAPS J
  doi: 10.1208/s12248-014-9571-1
– volume: 8
  start-page: 1421
  issue: 12
  year: 1989
  ident: 921_CR25
  publication-title: Statist Med
  doi: 10.1002/sim.4780081202
– volume: 19
  start-page: 2867
  year: 2000
  ident: 921_CR27
  publication-title: Statist Med.
  doi: 10.1002/1097-0258(20001030)19:20<2867::AID-SIM551>3.0.CO;2-J
– volume: 11
  start-page: 334
  year: 2012
  ident: 921_CR19
  publication-title: Pharm Stat
  doi: 10.1002/pst.1522
– ident: 921_CR9
– volume: 7
  start-page: 245
  year: 2008
  ident: 921_CR28
  publication-title: Pharm Stat
  doi: 10.1002/pst.294
– ident: 921_CR7
– volume: 63
  start-page: 122
  issue: 1
  year: 2021
  ident: 921_CR34
  publication-title: Biom J
  doi: 10.1002/bimj.201900388
– ident: 921_CR1
– start-page: 629
  volume-title: Pharmaceutical statistics. Practical and clinical applications
  year: 2010
  ident: 921_CR13
– volume: 57
  start-page: 171
  issue: 3
  year: 2003
  ident: 921_CR39
  publication-title: Am Stat
  doi: 10.1198/0003130031856
– volume: 57
  start-page: 173
  issue: 1
  year: 2004
  ident: 921_CR24
  publication-title: Br J Math Stat Psychol
  doi: 10.1348/000711004849222
– volume: 7
  start-page: 286
  issue: 4
  year: 2015
  ident: 921_CR36
  publication-title: Stat Biopharm Res
  doi: 10.1080/19466315.2015.1077726
– ident: 921_CR10
– ident: 921_CR12
– volume: 110
  start-page: 32
  issue: 1
  year: 2020
  ident: 921_CR33
  publication-title: Clin Pharm Ther
  doi: 10.1002/cpt.2050
– volume: 11
  start-page: 35
  issue: 1&2
  year: 2001
  ident: 921_CR23
  publication-title: J Biopharm Stat
  doi: 10.1081/bip-100104196
– volume: 11
  start-page: 8
  year: 2011
  ident: 921_CR29
  publication-title: Pharm Stat.
  doi: 10.1002/pst.483
– reference: 38710975 - AAPS J. 2024 May 6;26(3):58. doi: 10.1208/s12248-024-00927-5.
– reference: 39251474 - AAPS J. 2024 Sep 9;26(5):101. doi: 10.1208/s12248-024-00972-0.
SSID ssj0032311
Score 2.4210522
Snippet Comparative bioavailability studies often involve multiple groups of subjects for a variety of reasons, such as clinical capacity limitations. This raises...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 50
SubjectTerms Biochemistry
Biological Availability
Biomedical and Life Sciences
Biomedicine
Biotechnology
Comparative analysis
Cross-Over Studies
Humans
Medical research
Medicine, Experimental
Pharmacology/Toxicology
Pharmacy
Research Article
Research Design
Simulation methods
Title Group-by-Treatment Interaction Effects in Comparative Bioavailability Studies
URI https://link.springer.com/article/10.1208/s12248-024-00921-x
https://www.ncbi.nlm.nih.gov/pubmed/38632178
https://www.proquest.com/docview/3041230106
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB7a5NJLafrcNjEqlPRQi1orraQ9uiYPWlJysME9CUnWgiGsQ9cp9b_PSLsbx6EEetmLpEVoZjTfSDOfAD65wkuhFximOqapqMII90FRUlSdSnKFACW9sXTxU57PxPd5Me-Kwpo-272_kkw7dWJAGOmvTbwD0hR9Co1EQYwictwvYuyOWjzLx_3-yxGxsK485t_jdlzQw434nid6cDWaPM7pC3jeQUUybmV7AE9C_RKOL1uu6c2QTLelU82QHJPLLQv15hVcpFMl6jZ02ueSk3T811YykJa2uCHLmky2DODk23Jl_9jlVUvfvSFdnuFrmJ2eTCfntHs7gXpR6DXFlZfWS1so79CMrbBWyVCNRBBWMVflEv08l6UNQi4sw7DBeRt8oZWVIXcL_gb26lUd3gHRo4WvVF4VJUIPV3KbM165okTnJyrlVAasX07jO2Lx-L7FlYkBBorAtCIwKAKTRGD-ZvDlbsx1S6vxaO_PUUom2hz-2duudADnF9mrzFiVCEs0Qq8MDnd6oq34neaPvZxNbIoJZnVY3TSGR94xHgPkDN62CnA3Ma4lx8hNZzDsNcJ0lt48Muv3_9f9AzzLk5IKytQh7K1_34QjBDxrN4D98dmvHycDeDqRE_yezdkg6fwt5oD6gg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5ED-5F1sfutusjguhhJ-x0J52kjzoo42PEwwjeQpJJw4D0iD0uO__eSj8cR0TwnAchVZX6Kqn6AnBoUye4GmGYamNFee67eA7yjKLq5IJJBCjVH0uDG9G_45f36X1DkxNqYd6-3ydd9bcMLz-KoiehgR4opogXVzhGyiF9ryd67anLEKfETVHMx-MWHM_74_eN_3n3IFr5mfPvsNYARHJSS3QdlnyxAUe3NcP0rEOG84KpskOOyO2ce3q2CYPqLonaGR22GeSkuvSr6xdITVZcknFBenPeb3I6nph_ZvxQk3bPSJNduAV352fDXp82PyZQx1M1pbjfwjhhUuksGq_hxkjh8y733MjY5olA785EZjwXIxNjsGCd8S5V0gif2BH7AcvFpPC_gKjuyOUyydMMAYfNmElilts0Q5fHc2llBHG7ndo1dOLhV4sHHcIKFIGuRaBRBLoSgf4fwZ_XMY81mcanvY-DlHSwNJzZmaZgANcXOKv0icwQjCgEXBHsLPREC3ELzQetnHVoCmllhZ88l5oFtjEWwuIIftYK8LowpgTDeE1F0Gk1Qjf2XX6y6u2vdd-H1f5wcK2vL26ufsO3pFJYTmO5A8vTp2e_i5BnavcqXX8B7R718g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEA5iofSlWPtrrbUpiH3oBW832ST7aK89tFa5hxN8C0k2gQPZE_cs3n_vJNn1PClCn5MsYb-ZzExm5gtC-6a0nMkawlSTS8K8G8I5yCoCouM5FeCgxDeWzs758QX7fVlePurij9XufUoy9TQElqZmcXhd-8SGMJSHbcgHSQL2hQTSoJyAF_kCIpWYqB3xUX8WU_Be8q5V5t_r1szR00P5kVV6kiaN1me8hV53biM-Sji_QRuu2UYHk8Q7vRzg6aqNqh3gAzxZMVIv36KzeMNEzJJM-7pyHK8CU1cDThTGLZ41eLRiA8c_ZnP9V8-uEpX3Enc1h-_QxfjXdHRMuncUiGWlXBBAgWvLdSmsAZXWTGvBnR8yx7TIjS842HzKK-0Yr3UOIYSx2tlSCs1dYWr6Hm0288Z9RFgOa-tF4csK3BBTUV3k1JuyAkPIvDAiQ3n_O5XtSMbDWxdXKgQbAIFKECiAQEUI1F2Gvj-suU4UG8_O_hZQUkH_4MtWd20EsL_AZKWORAUuigQ3LEO7azNBb-za8NceZxWGQrFZ4-a3raKBg4yGYDlDH5IAPGyMSk4hipMZGvQSoTqtb5_Z9c7_Tf-CXk5-jtWfk_PTT-hVEeWVkVzsos3Fza37DH7QwuxFUb8HauL-OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group-by-Treatment+Interaction+Effects+in+Comparative+Bioavailability+Studies&rft.jtitle=The+AAPS+journal&rft.au=Sch%C3%BCtz%2C+Helmut&rft.au=Burger%2C+Divan+A&rft.au=Cobo%2C+Erik&rft.au=Dubins%2C+David+D&rft.date=2024-04-17&rft.issn=1550-7416&rft.eissn=1550-7416&rft.volume=26&rft.issue=3&rft.spage=50&rft_id=info:doi/10.1208%2Fs12248-024-00921-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-7416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-7416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-7416&client=summon