Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia

The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite t...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 49; pp. 21170 - 21175
Main Authors Breshears, Jonathan D., Roland, Jarod L., Sharma, Mohit, Gaona, Charles M., Freudenburg, Zachary V., Tempelhoff, Rene, Avidan, Michael S., Leuthardt, Eric C., Raichle, Marcus E.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.12.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase—power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.
AbstractList The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase–power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.
The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between ... and ...-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase - power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness. (ProQuest: ... denotes formulae/symbols omitted.)
The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.
The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between {theta}- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.
Author Avidan, Michael S.
Sharma, Mohit
Tempelhoff, Rene
Freudenburg, Zachary V.
Raichle, Marcus E.
Leuthardt, Eric C.
Gaona, Charles M.
Breshears, Jonathan D.
Roland, Jarod L.
Author_xml – sequence: 1
  givenname: Jonathan D.
  surname: Breshears
  fullname: Breshears, Jonathan D.
– sequence: 2
  givenname: Jarod L.
  surname: Roland
  fullname: Roland, Jarod L.
– sequence: 3
  givenname: Mohit
  surname: Sharma
  fullname: Sharma, Mohit
– sequence: 4
  givenname: Charles M.
  surname: Gaona
  fullname: Gaona, Charles M.
– sequence: 5
  givenname: Zachary V.
  surname: Freudenburg
  fullname: Freudenburg, Zachary V.
– sequence: 6
  givenname: Rene
  surname: Tempelhoff
  fullname: Tempelhoff, Rene
– sequence: 7
  givenname: Michael S.
  surname: Avidan
  fullname: Avidan, Michael S.
– sequence: 8
  givenname: Eric C.
  surname: Leuthardt
  fullname: Leuthardt, Eric C.
– sequence: 9
  givenname: Marcus E.
  surname: Raichle
  fullname: Raichle, Marcus E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21078987$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1vFCEYxompsdvq2ZNm4kUvY2GGz4uJafxKmnhQz4QBZpcNAyOwmv3vZbprV3voCcL7e16e9-MCnIUYLADPEXyLIOuv5qByvSEksKgPj8AKQYFaigU8AysIO9Zy3OFzcJHzFkIoCIdPwHlXWS44WwH1rajB20YF05h9UJPTjY6pOK18Y73VJcV5s88u-rjeN3FsXDA7XVwMtxo72bS2QdvmtyubZq50HKOvMZvLxmannoLHo_LZPjuel-DHxw_frz-3N18_fbl-f9NqTHhp1WjwyO0wQM017vUgoBFCG6X6ThnEBbEMI0RhbxDtKLUKcTMMI1VU1wfSX4J3h7zzbpis0TaUpLyck5tU2suonPw_EtxGruMv2cOlT7AmeH1MkOLPXbUvJ5e19b7WEndZckSZ6KuTSr55kES8IxgxRlBFX91Dt3GXQm1EzccQ7WthFXr5r_U7z3_HVIGrA6BTzDnZ8Q5BUC6LIJdFkKdFqApyT6FdUcvYau3OP6BrjlaWwOkXJrGoftBtn14ckG0uMZ3MEkYoJ7D_AxOmzeY
CitedBy_id crossref_primary_10_1186_s40560_024_00749_9
crossref_primary_10_1111_j_1528_1167_2012_03650_x
crossref_primary_10_1093_cercor_bhae473
crossref_primary_10_1016_j_cub_2011_10_017
crossref_primary_10_1073_pnas_1311716111
crossref_primary_10_1016_j_neuroimage_2016_11_069
crossref_primary_10_3390_brainsci13040597
crossref_primary_10_1073_pnas_1210907109
crossref_primary_10_3389_fnhum_2016_00330
crossref_primary_10_1523_JNEUROSCI_5813_12_2014
crossref_primary_10_1016_j_neuroimage_2017_04_067
crossref_primary_10_1007_s13246_018_0688_x
crossref_primary_10_3389_fphar_2022_887981
crossref_primary_10_1097_ALN_0000000000000183
crossref_primary_10_1371_journal_pone_0029072
crossref_primary_10_1089_brain_2011_0019
crossref_primary_10_1093_bja_aes265
crossref_primary_10_3389_fnhum_2017_00149
crossref_primary_10_1007_s12630_018_1224_x
crossref_primary_10_1016_j_neuroimage_2024_120744
crossref_primary_10_1097_ALN_0000000000003015
crossref_primary_10_1097_ALN_0000000000004148
crossref_primary_10_1142_S0129065720500057
crossref_primary_10_1227_01_neu_0000430311_63702_77
crossref_primary_10_1093_cercor_bhae243
crossref_primary_10_1213_ANE_0000000000001166
crossref_primary_10_3389_fnins_2021_664410
crossref_primary_10_1111_epi_13515
crossref_primary_10_1089_brain_2013_0157
crossref_primary_10_3389_fnsys_2017_00016
crossref_primary_10_5662_wjm_v8_i2_9
crossref_primary_10_1111_epi_12544
crossref_primary_10_1016_j_clinph_2015_06_001
crossref_primary_10_1016_j_neuroimage_2021_118407
crossref_primary_10_1016_j_plrev_2019_09_009
crossref_primary_10_1371_journal_pone_0198349
crossref_primary_10_3389_fnetp_2023_1279646
crossref_primary_10_1093_bja_aes432
crossref_primary_10_1097_WNR_0b013e3283509ba0
crossref_primary_10_7554_eLife_33250
crossref_primary_10_1038_s41598_017_15082_5
crossref_primary_10_1109_TBME_2021_3090027
crossref_primary_10_1093_bja_aeu016
crossref_primary_10_1162_jocn_a_00884
crossref_primary_10_1016_j_neuron_2013_06_022
crossref_primary_10_1038_s41598_019_44238_8
crossref_primary_10_1097_ALN_0000000000002559
crossref_primary_10_1093_brain_awz169
crossref_primary_10_1016_j_neuroimage_2021_118042
crossref_primary_10_1088_1741_2560_11_1_016006
crossref_primary_10_1097_ALN_0000000000001940
crossref_primary_10_1371_journal_pone_0106291
crossref_primary_10_1186_s12871_016_0214_1
crossref_primary_10_1371_journal_pone_0223921
crossref_primary_10_1097_ACO_0b013e3283628b5d
crossref_primary_10_1016_j_pnpbp_2012_11_005
crossref_primary_10_1016_j_tacc_2013_03_009
crossref_primary_10_1093_cercor_bhu089
crossref_primary_10_1007_s40140_013_0045_2
crossref_primary_10_1088_1741_2552_ac6a7b
crossref_primary_10_1016_j_bja_2021_01_034
crossref_primary_10_1016_j_yebeh_2021_107902
crossref_primary_10_1146_annurev_neuro_060909_153200
crossref_primary_10_1073_pnas_1221180110
crossref_primary_10_1371_journal_pone_0123287
crossref_primary_10_1371_journal_pone_0070899
crossref_primary_10_1186_s40779_024_00585_w
crossref_primary_10_1016_j_cortex_2018_03_029
crossref_primary_10_1089_brain_2016_0464
crossref_primary_10_1016_j_neubiorev_2013_09_009
crossref_primary_10_1088_1361_6579_aab4d0
crossref_primary_10_1016_j_clinph_2012_08_007
crossref_primary_10_1002_ana_24752
crossref_primary_10_7554_eLife_06513
crossref_primary_10_1093_sleep_34_3_247
crossref_primary_10_3389_fnins_2019_00174
crossref_primary_10_1371_journal_pone_0107401
crossref_primary_10_1016_j_nicl_2015_08_013
crossref_primary_10_1007_s00429_017_1396_0
crossref_primary_10_1371_journal_pcbi_1004669
crossref_primary_10_1016_j_clinph_2023_01_020
crossref_primary_10_1186_1471_2253_15_11
crossref_primary_10_1371_journal_pone_0173448
crossref_primary_10_1007_s12630_013_0100_y
crossref_primary_10_1016_j_neuroimage_2018_02_003
crossref_primary_10_1109_JBHI_2020_3008052
crossref_primary_10_1109_TNSRE_2022_3221965
crossref_primary_10_3389_fnhum_2018_00360
crossref_primary_10_1007_s11571_022_09912_0
crossref_primary_10_1093_scan_nsr018
crossref_primary_10_1227_NEU_0b013e318258e5d1
crossref_primary_10_1016_j_bja_2018_04_031
Cites_doi 10.1016/S1053-8119(03)00103-4
10.1016/j.neuron.2006.11.014
10.1016/S0896-6273(02)00586-X
10.1152/jn.1998.79.6.2875
10.1126/science.274.5284.109
10.1152/jn.2000.84.3.1505
10.1016/S0165-0270(01)00372-7
10.1006/ccog.2001.0507
10.1523/JNEUROSCI.19-13-05506.1999
10.1126/science.1149213
10.1109/TBME.2004.827072
10.1126/science.1128115
10.1073/pnas.0807010105
10.1006/ccog.1999.0423
10.1073/pnas.0911531107
10.1124/mol.53.3.530
10.1016/j.jneumeth.2007.01.019
10.1212/WNL.57.11.2045
10.1146/annurev.neuro.20.1.185
10.1213/01.ane.0000277496.12747.29
10.1213/00000539-199607000-00029
10.1093/acprof:oso/9780195050387.001.0001
10.1073/pnas.0913008107
10.1097/00000542-200309000-00015
10.1038/nature05758
10.1152/jn.00324.2005
10.1038/nrn2372
10.1016/j.neuron.2006.10.023
ContentType Journal Article
Copyright Copyright National Academy of Sciences Dec 7, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Dec 7, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1011949107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Sciences (General)
EISSN 1091-6490
EndPage 21175
ExternalDocumentID PMC3000270
2209783941
21078987
10_1073_pnas_1011949107
107_49_21170
25756850
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c458t-afd4f8ebb0c8c43cb90d99cdaa32ad1895e7411603d16266ea18dbbf6a6c16253
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:34:28 EDT 2025
Thu Jul 10 22:10:06 EDT 2025
Fri Jul 11 15:03:40 EDT 2025
Mon Jun 30 08:41:03 EDT 2025
Mon Jul 21 05:54:42 EDT 2025
Tue Jul 01 00:47:02 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Wed Nov 11 00:30:54 EST 2020
Thu May 29 08:40:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c458t-afd4f8ebb0c8c43cb90d99cdaa32ad1895e7411603d16266ea18dbbf6a6c16253
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: J.D.B., R.T., and E.C.L. designed research; J.D.B., J.L.R., M.S., C.M.G., Z.V.F., and E.C.L. performed research; J.D.B., R.T., M.S.A., and E.C.L. analyzed data; and J.D.B. and E.C.L. wrote the paper.
Edited by Marcus E. Raichle, Washington University, St. Louis, MO, and approved October 27, 2010 (received for review August 13, 2010)
PMID 21078987
PQID 817163895
PQPubID 42026
PageCount 6
ParticipantIDs pnas_primary_107_49_21170
proquest_journals_817163895
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3000270
proquest_miscellaneous_816793189
proquest_miscellaneous_1825417751
pubmed_primary_21078987
crossref_citationtrail_10_1073_pnas_1011949107
jstor_primary_25756850
crossref_primary_10_1073_pnas_1011949107
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-07
PublicationDateYYYYMMDD 2010-12-07
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
17145497 - Neuron. 2006 Dec 7;52(5):748-9
11832222 - Neuron. 2002 Jan 31;33(3):325-40
12814589 - Neuroimage. 2003 Jun;19(2 Pt 1):402-11
12960544 - Anesthesiology. 2003 Sep;99(3):603-13
18843113 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44
20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6
10980023 - J Neurophysiol. 2000 Sep;84(3):1505-18
11595276 - J Neurosci Methods. 2001 Oct 30;111(2):83-98
9495821 - Mol Pharmacol. 1998 Mar;53(3):530-8
17717218 - Anesth Analg. 2007 Sep;105(3):648-55
10993665 - Conscious Cogn. 2000 Sep;9(3):370-86
16093343 - J Neurophysiol. 2005 Dec;94(6):4269-80
9056712 - Annu Rev Neurosci. 1997;20:185-215
18988836 - Science. 2008 Nov 7;322(5903):876-80
17145507 - Neuron. 2006 Dec 7;52(5):871-82
11739824 - Neurology. 2001 Dec 11;57(11):2045-53
17476267 - Nature. 2007 May 3;447(7140):83-6
9636093 - J Neurophysiol. 1998 Jun;79(6):2875-84
20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33
15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
8659729 - Anesth Analg. 1996 Jul;83(1):169-74
8810245 - Science. 1996 Oct 4;274(5284):109-13
17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8
10377359 - J Neurosci. 1999 Jul 1;19(13):5506-13
18425091 - Nat Rev Neurosci. 2008 May;9(5):370-86
16973878 - Science. 2006 Sep 15;313(5793):1626-8
11414713 - Conscious Cogn. 2001 Jun;10(2):165-83
References_xml – ident: e_1_3_3_4_2
  doi: 10.1016/S1053-8119(03)00103-4
– ident: e_1_3_3_19_2
  doi: 10.1016/j.neuron.2006.11.014
– ident: e_1_3_3_17_2
  doi: 10.1016/S0896-6273(02)00586-X
– ident: e_1_3_3_20_2
  doi: 10.1152/jn.1998.79.6.2875
– ident: e_1_3_3_11_2
  doi: 10.1126/science.274.5284.109
– ident: e_1_3_3_21_2
  doi: 10.1152/jn.2000.84.3.1505
– ident: e_1_3_3_27_2
  doi: 10.1016/S0165-0270(01)00372-7
– ident: e_1_3_3_12_2
  doi: 10.1006/ccog.2001.0507
– ident: e_1_3_3_3_2
  doi: 10.1523/JNEUROSCI.19-13-05506.1999
– ident: e_1_3_3_14_2
  doi: 10.1126/science.1149213
– ident: e_1_3_3_25_2
  doi: 10.1109/TBME.2004.827072
– ident: e_1_3_3_16_2
  doi: 10.1126/science.1128115
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.0807010105
– ident: e_1_3_3_2_2
  doi: 10.1006/ccog.1999.0423
– ident: e_1_3_3_18_2
  doi: 10.1073/pnas.0911531107
– ident: e_1_3_3_22_2
  doi: 10.1124/mol.53.3.530
– ident: e_1_3_3_28_2
  doi: 10.1016/j.jneumeth.2007.01.019
– ident: e_1_3_3_13_2
  doi: 10.1212/WNL.57.11.2045
– ident: e_1_3_3_10_2
  doi: 10.1146/annurev.neuro.20.1.185
– ident: e_1_3_3_7_2
  doi: 10.1213/01.ane.0000277496.12747.29
– ident: e_1_3_3_26_2
  doi: 10.1213/00000539-199607000-00029
– ident: e_1_3_3_15_2
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.0913008107
– ident: e_1_3_3_6_2
  doi: 10.1097/00000542-200309000-00015
– ident: e_1_3_3_9_2
  doi: 10.1038/nature05758
– ident: e_1_3_3_23_2
  doi: 10.1152/jn.00324.2005
– ident: e_1_3_3_1_2
  doi: 10.1038/nrn2372
– ident: e_1_3_3_24_2
  doi: 10.1016/j.neuron.2006.10.023
– reference: 9056712 - Annu Rev Neurosci. 1997;20:185-215
– reference: 9495821 - Mol Pharmacol. 1998 Mar;53(3):530-8
– reference: 10980023 - J Neurophysiol. 2000 Sep;84(3):1505-18
– reference: 11414713 - Conscious Cogn. 2001 Jun;10(2):165-83
– reference: 11832222 - Neuron. 2002 Jan 31;33(3):325-40
– reference: 10377359 - J Neurosci. 1999 Jul 1;19(13):5506-13
– reference: 18988836 - Science. 2008 Nov 7;322(5903):876-80
– reference: 17476267 - Nature. 2007 May 3;447(7140):83-6
– reference: 9636093 - J Neurophysiol. 1998 Jun;79(6):2875-84
– reference: 16973878 - Science. 2006 Sep 15;313(5793):1626-8
– reference: 17145507 - Neuron. 2006 Dec 7;52(5):871-82
– reference: 11595276 - J Neurosci Methods. 2001 Oct 30;111(2):83-98
– reference: 17717218 - Anesth Analg. 2007 Sep;105(3):648-55
– reference: 20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6
– reference: 10993665 - Conscious Cogn. 2000 Sep;9(3):370-86
– reference: 11739824 - Neurology. 2001 Dec 11;57(11):2045-53
– reference: 18843113 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44
– reference: 8810245 - Science. 1996 Oct 4;274(5284):109-13
– reference: 12960544 - Anesthesiology. 2003 Sep;99(3):603-13
– reference: 20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33
– reference: 18425091 - Nat Rev Neurosci. 2008 May;9(5):370-86
– reference: 12814589 - Neuroimage. 2003 Jun;19(2 Pt 1):402-11
– reference: 17145497 - Neuron. 2006 Dec 7;52(5):748-9
– reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43
– reference: 16093343 - J Neurophysiol. 2005 Dec;94(6):4269-80
– reference: 17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8
– reference: 8659729 - Anesth Analg. 1996 Jul;83(1):169-74
SSID ssj0009580
Score 2.3526614
Snippet The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21170
SubjectTerms Anesthesia
Anesthesia - methods
Anesthetics
Architecture
Biological Sciences
Brain
Cerebral Cortex - drug effects
Cerebral Cortex - physiology
consciousness
Consciousness - drug effects
Correlation coefficients
Correlations
cortex
Covariance
Electrodes
Electroencephalography - methods
Electrophysiological Phenomena
Electrophysiology
Evoked Potentials, Somatosensory - drug effects
Human subjects
Humans
image analysis
Metabolism
Propofol - pharmacology
Statistical variance
Studies
Thalamus - drug effects
Thalamus - physiology
Unconsciousness
variance
Title Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia
URI https://www.jstor.org/stable/25756850
http://www.pnas.org/content/107/49/21170.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21078987
https://www.proquest.com/docview/817163895
https://www.proquest.com/docview/1825417751
https://www.proquest.com/docview/816793189
https://pubmed.ncbi.nlm.nih.gov/PMC3000270
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiEATISh6EqI06cxD5OCJh2qCbYpN0iO3HUSqOpSHvZn7G_mOfPpNsqAZeoSuwkzfvlfeX59xD6WJRcMbDrcQMOfkxbSWKWNjQuVNqC9ZEZvFO62mJWnF7Ss6v8ajK5HVUtbdbyuL55cF3J_0gV9oFc9SrZf5BsOCnsgN8gX9iChGH7VzIGT1EvfNK578Z2lp9CMGmz066_jclcWJ4lQw7RbFxvcJij3NJLZbOxK90woe00dwCYirnqF2Lsup4HU9f7woKZzySeDOtSnLLop_H0fDbqcgxhvW6e3Y9T9kO58Y_OV1ieCVDp05CS_mmotU3atpsvQo3Od9HZxWyuXMAldV36wpWCWBOrrMoFjyUuqG0aGnSyG2LBZ0lNg4olttXIPeUP2kp3LF6KXuckCKfcnWYEhdUvgwUIdEvGnanf5tv2hx6hxymEHqnPAAUiZ5Z4iqgy-3znaoZb2s7fcnRsrasm0IXxDwUzd2tyR07OxTP01EUn-MRCbR9N1PI52vcixUeOpPzTCyQs9jBIDTvsYY89fA97uGtxwJ6ZE7CHNfawxx4esPcSXX77evHlNHbtOuKa5mwdi7ahLVNSJjWraVZLnjSc140QWSoawniuwH3Vbc0bAmF0oQRhjZRtIYoaduTZAdpbdkv1GuGapKQQIudEUZrwVNKWKi6zQrWajIlH6Ng_26p2XPa6pcp1ZWoqyqzSz7ka5BKhozBhZWlcdg89MMIK48Co5QXLkwhFZugwv6worwweI3ToRVo5BdFXTFNRQUCQR-hDOAraW3-Sg6fZbeCyOkFDyjInEcI7xjD9pRRML_zrVxYjw605rEWo3EJPGKDJ47ePLBdzQyKfmaKD5M3Ocx6iJ8P7-hbtrX9v1DtwwNfyvXkj_gCUW94B
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+and+dynamic+cortical+electrophysiology+of+induction+and+emergence+with+propofol+anesthesia&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Breshears%2C+Jonathan+D&rft.au=Roland%2C+Jarod+L&rft.au=Sharma%2C+Mohit&rft.au=Gaona%2C+Charles+M&rft.date=2010-12-07&rft.eissn=1091-6490&rft.volume=107&rft.issue=49&rft.spage=21170&rft_id=info:doi/10.1073%2Fpnas.1011949107&rft_id=info%3Apmid%2F21078987&rft.externalDocID=21078987
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F49.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F49.cover.gif