Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia
The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite t...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 49; pp. 21170 - 21175 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.12.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase—power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness. |
---|---|
AbstractList | The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase–power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness. The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between ... and ...-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase - power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness. (ProQuest: ... denotes formulae/symbols omitted.) The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness.The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between θ- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness. The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic changes in thalamic and cortical metabolic activity, as well as the maintained presence of metabolically defined functional networks despite the loss of consciousness. However, the invasive electrophysiology associated with these observations has yet to be studied. By recording electrical activity directly from the cortical surface, electrocorticography (ECoG) provides a powerful method to integrate spatial, temporal, and spectral features of cortical electrophysiology not possible with noninvasive approaches. In this study, we report a unique comprehensive recording of invasive human cortical physiology during both induction and emergence from propofol anesthesia. Propofol-induced transitions in and out of consciousness (defined here as responsiveness) were characterized by maintained large-scale functional networks defined by correlated fluctuations of the slow cortical potential (<0.5 Hz) over the somatomotor cortex, present even in the deeply anesthetized state of burst suppression. Similarly, phase-power coupling between {theta}- and γ-range frequencies persisted throughout the induction and emergence from anesthesia. Superimposed on this preserved functional architecture were alterations in frequency band power, variance, covariance, and phase-power interactions that were distinct to different frequency ranges and occurred in separable phases. These data support that dynamic alterations in cortical and thalamocortical circuit activity occur in the context of a larger stable architecture that is maintained despite anesthetic-induced alterations in consciousness. |
Author | Avidan, Michael S. Sharma, Mohit Tempelhoff, Rene Freudenburg, Zachary V. Raichle, Marcus E. Leuthardt, Eric C. Gaona, Charles M. Breshears, Jonathan D. Roland, Jarod L. |
Author_xml | – sequence: 1 givenname: Jonathan D. surname: Breshears fullname: Breshears, Jonathan D. – sequence: 2 givenname: Jarod L. surname: Roland fullname: Roland, Jarod L. – sequence: 3 givenname: Mohit surname: Sharma fullname: Sharma, Mohit – sequence: 4 givenname: Charles M. surname: Gaona fullname: Gaona, Charles M. – sequence: 5 givenname: Zachary V. surname: Freudenburg fullname: Freudenburg, Zachary V. – sequence: 6 givenname: Rene surname: Tempelhoff fullname: Tempelhoff, Rene – sequence: 7 givenname: Michael S. surname: Avidan fullname: Avidan, Michael S. – sequence: 8 givenname: Eric C. surname: Leuthardt fullname: Leuthardt, Eric C. – sequence: 9 givenname: Marcus E. surname: Raichle fullname: Raichle, Marcus E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21078987$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1vFCEYxompsdvq2ZNm4kUvY2GGz4uJafxKmnhQz4QBZpcNAyOwmv3vZbprV3voCcL7e16e9-MCnIUYLADPEXyLIOuv5qByvSEksKgPj8AKQYFaigU8AysIO9Zy3OFzcJHzFkIoCIdPwHlXWS44WwH1rajB20YF05h9UJPTjY6pOK18Y73VJcV5s88u-rjeN3FsXDA7XVwMtxo72bS2QdvmtyubZq50HKOvMZvLxmannoLHo_LZPjuel-DHxw_frz-3N18_fbl-f9NqTHhp1WjwyO0wQM017vUgoBFCG6X6ThnEBbEMI0RhbxDtKLUKcTMMI1VU1wfSX4J3h7zzbpis0TaUpLyck5tU2suonPw_EtxGruMv2cOlT7AmeH1MkOLPXbUvJ5e19b7WEndZckSZ6KuTSr55kES8IxgxRlBFX91Dt3GXQm1EzccQ7WthFXr5r_U7z3_HVIGrA6BTzDnZ8Q5BUC6LIJdFkKdFqApyT6FdUcvYau3OP6BrjlaWwOkXJrGoftBtn14ckG0uMZ3MEkYoJ7D_AxOmzeY |
CitedBy_id | crossref_primary_10_1186_s40560_024_00749_9 crossref_primary_10_1111_j_1528_1167_2012_03650_x crossref_primary_10_1093_cercor_bhae473 crossref_primary_10_1016_j_cub_2011_10_017 crossref_primary_10_1073_pnas_1311716111 crossref_primary_10_1016_j_neuroimage_2016_11_069 crossref_primary_10_3390_brainsci13040597 crossref_primary_10_1073_pnas_1210907109 crossref_primary_10_3389_fnhum_2016_00330 crossref_primary_10_1523_JNEUROSCI_5813_12_2014 crossref_primary_10_1016_j_neuroimage_2017_04_067 crossref_primary_10_1007_s13246_018_0688_x crossref_primary_10_3389_fphar_2022_887981 crossref_primary_10_1097_ALN_0000000000000183 crossref_primary_10_1371_journal_pone_0029072 crossref_primary_10_1089_brain_2011_0019 crossref_primary_10_1093_bja_aes265 crossref_primary_10_3389_fnhum_2017_00149 crossref_primary_10_1007_s12630_018_1224_x crossref_primary_10_1016_j_neuroimage_2024_120744 crossref_primary_10_1097_ALN_0000000000003015 crossref_primary_10_1097_ALN_0000000000004148 crossref_primary_10_1142_S0129065720500057 crossref_primary_10_1227_01_neu_0000430311_63702_77 crossref_primary_10_1093_cercor_bhae243 crossref_primary_10_1213_ANE_0000000000001166 crossref_primary_10_3389_fnins_2021_664410 crossref_primary_10_1111_epi_13515 crossref_primary_10_1089_brain_2013_0157 crossref_primary_10_3389_fnsys_2017_00016 crossref_primary_10_5662_wjm_v8_i2_9 crossref_primary_10_1111_epi_12544 crossref_primary_10_1016_j_clinph_2015_06_001 crossref_primary_10_1016_j_neuroimage_2021_118407 crossref_primary_10_1016_j_plrev_2019_09_009 crossref_primary_10_1371_journal_pone_0198349 crossref_primary_10_3389_fnetp_2023_1279646 crossref_primary_10_1093_bja_aes432 crossref_primary_10_1097_WNR_0b013e3283509ba0 crossref_primary_10_7554_eLife_33250 crossref_primary_10_1038_s41598_017_15082_5 crossref_primary_10_1109_TBME_2021_3090027 crossref_primary_10_1093_bja_aeu016 crossref_primary_10_1162_jocn_a_00884 crossref_primary_10_1016_j_neuron_2013_06_022 crossref_primary_10_1038_s41598_019_44238_8 crossref_primary_10_1097_ALN_0000000000002559 crossref_primary_10_1093_brain_awz169 crossref_primary_10_1016_j_neuroimage_2021_118042 crossref_primary_10_1088_1741_2560_11_1_016006 crossref_primary_10_1097_ALN_0000000000001940 crossref_primary_10_1371_journal_pone_0106291 crossref_primary_10_1186_s12871_016_0214_1 crossref_primary_10_1371_journal_pone_0223921 crossref_primary_10_1097_ACO_0b013e3283628b5d crossref_primary_10_1016_j_pnpbp_2012_11_005 crossref_primary_10_1016_j_tacc_2013_03_009 crossref_primary_10_1093_cercor_bhu089 crossref_primary_10_1007_s40140_013_0045_2 crossref_primary_10_1088_1741_2552_ac6a7b crossref_primary_10_1016_j_bja_2021_01_034 crossref_primary_10_1016_j_yebeh_2021_107902 crossref_primary_10_1146_annurev_neuro_060909_153200 crossref_primary_10_1073_pnas_1221180110 crossref_primary_10_1371_journal_pone_0123287 crossref_primary_10_1371_journal_pone_0070899 crossref_primary_10_1186_s40779_024_00585_w crossref_primary_10_1016_j_cortex_2018_03_029 crossref_primary_10_1089_brain_2016_0464 crossref_primary_10_1016_j_neubiorev_2013_09_009 crossref_primary_10_1088_1361_6579_aab4d0 crossref_primary_10_1016_j_clinph_2012_08_007 crossref_primary_10_1002_ana_24752 crossref_primary_10_7554_eLife_06513 crossref_primary_10_1093_sleep_34_3_247 crossref_primary_10_3389_fnins_2019_00174 crossref_primary_10_1371_journal_pone_0107401 crossref_primary_10_1016_j_nicl_2015_08_013 crossref_primary_10_1007_s00429_017_1396_0 crossref_primary_10_1371_journal_pcbi_1004669 crossref_primary_10_1016_j_clinph_2023_01_020 crossref_primary_10_1186_1471_2253_15_11 crossref_primary_10_1371_journal_pone_0173448 crossref_primary_10_1007_s12630_013_0100_y crossref_primary_10_1016_j_neuroimage_2018_02_003 crossref_primary_10_1109_JBHI_2020_3008052 crossref_primary_10_1109_TNSRE_2022_3221965 crossref_primary_10_3389_fnhum_2018_00360 crossref_primary_10_1007_s11571_022_09912_0 crossref_primary_10_1093_scan_nsr018 crossref_primary_10_1227_NEU_0b013e318258e5d1 crossref_primary_10_1016_j_bja_2018_04_031 |
Cites_doi | 10.1016/S1053-8119(03)00103-4 10.1016/j.neuron.2006.11.014 10.1016/S0896-6273(02)00586-X 10.1152/jn.1998.79.6.2875 10.1126/science.274.5284.109 10.1152/jn.2000.84.3.1505 10.1016/S0165-0270(01)00372-7 10.1006/ccog.2001.0507 10.1523/JNEUROSCI.19-13-05506.1999 10.1126/science.1149213 10.1109/TBME.2004.827072 10.1126/science.1128115 10.1073/pnas.0807010105 10.1006/ccog.1999.0423 10.1073/pnas.0911531107 10.1124/mol.53.3.530 10.1016/j.jneumeth.2007.01.019 10.1212/WNL.57.11.2045 10.1146/annurev.neuro.20.1.185 10.1213/01.ane.0000277496.12747.29 10.1213/00000539-199607000-00029 10.1093/acprof:oso/9780195050387.001.0001 10.1073/pnas.0913008107 10.1097/00000542-200309000-00015 10.1038/nature05758 10.1152/jn.00324.2005 10.1038/nrn2372 10.1016/j.neuron.2006.10.023 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Dec 7, 2010 |
Copyright_xml | – notice: Copyright National Academy of Sciences Dec 7, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1011949107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture Sciences (General) |
EISSN | 1091-6490 |
EndPage | 21175 |
ExternalDocumentID | PMC3000270 2209783941 21078987 10_1073_pnas_1011949107 107_49_21170 25756850 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c458t-afd4f8ebb0c8c43cb90d99cdaa32ad1895e7411603d16266ea18dbbf6a6c16253 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 14:34:28 EDT 2025 Thu Jul 10 22:10:06 EDT 2025 Fri Jul 11 15:03:40 EDT 2025 Mon Jun 30 08:41:03 EDT 2025 Mon Jul 21 05:54:42 EDT 2025 Tue Jul 01 00:47:02 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Wed Nov 11 00:30:54 EST 2020 Thu May 29 08:40:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c458t-afd4f8ebb0c8c43cb90d99cdaa32ad1895e7411603d16266ea18dbbf6a6c16253 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: J.D.B., R.T., and E.C.L. designed research; J.D.B., J.L.R., M.S., C.M.G., Z.V.F., and E.C.L. performed research; J.D.B., R.T., M.S.A., and E.C.L. analyzed data; and J.D.B. and E.C.L. wrote the paper. Edited by Marcus E. Raichle, Washington University, St. Louis, MO, and approved October 27, 2010 (received for review August 13, 2010) |
PMID | 21078987 |
PQID | 817163895 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_107_49_21170 proquest_journals_817163895 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3000270 proquest_miscellaneous_816793189 proquest_miscellaneous_1825417751 pubmed_primary_21078987 crossref_citationtrail_10_1073_pnas_1011949107 jstor_primary_25756850 crossref_primary_10_1073_pnas_1011949107 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-07 |
PublicationDateYYYYMMDD | 2010-12-07 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 17145497 - Neuron. 2006 Dec 7;52(5):748-9 11832222 - Neuron. 2002 Jan 31;33(3):325-40 12814589 - Neuroimage. 2003 Jun;19(2 Pt 1):402-11 12960544 - Anesthesiology. 2003 Sep;99(3):603-13 18843113 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44 20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6 10980023 - J Neurophysiol. 2000 Sep;84(3):1505-18 11595276 - J Neurosci Methods. 2001 Oct 30;111(2):83-98 9495821 - Mol Pharmacol. 1998 Mar;53(3):530-8 17717218 - Anesth Analg. 2007 Sep;105(3):648-55 10993665 - Conscious Cogn. 2000 Sep;9(3):370-86 16093343 - J Neurophysiol. 2005 Dec;94(6):4269-80 9056712 - Annu Rev Neurosci. 1997;20:185-215 18988836 - Science. 2008 Nov 7;322(5903):876-80 17145507 - Neuron. 2006 Dec 7;52(5):871-82 11739824 - Neurology. 2001 Dec 11;57(11):2045-53 17476267 - Nature. 2007 May 3;447(7140):83-6 9636093 - J Neurophysiol. 1998 Jun;79(6):2875-84 20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 8659729 - Anesth Analg. 1996 Jul;83(1):169-74 8810245 - Science. 1996 Oct 4;274(5284):109-13 17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8 10377359 - J Neurosci. 1999 Jul 1;19(13):5506-13 18425091 - Nat Rev Neurosci. 2008 May;9(5):370-86 16973878 - Science. 2006 Sep 15;313(5793):1626-8 11414713 - Conscious Cogn. 2001 Jun;10(2):165-83 |
References_xml | – ident: e_1_3_3_4_2 doi: 10.1016/S1053-8119(03)00103-4 – ident: e_1_3_3_19_2 doi: 10.1016/j.neuron.2006.11.014 – ident: e_1_3_3_17_2 doi: 10.1016/S0896-6273(02)00586-X – ident: e_1_3_3_20_2 doi: 10.1152/jn.1998.79.6.2875 – ident: e_1_3_3_11_2 doi: 10.1126/science.274.5284.109 – ident: e_1_3_3_21_2 doi: 10.1152/jn.2000.84.3.1505 – ident: e_1_3_3_27_2 doi: 10.1016/S0165-0270(01)00372-7 – ident: e_1_3_3_12_2 doi: 10.1006/ccog.2001.0507 – ident: e_1_3_3_3_2 doi: 10.1523/JNEUROSCI.19-13-05506.1999 – ident: e_1_3_3_14_2 doi: 10.1126/science.1149213 – ident: e_1_3_3_25_2 doi: 10.1109/TBME.2004.827072 – ident: e_1_3_3_16_2 doi: 10.1126/science.1128115 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.0807010105 – ident: e_1_3_3_2_2 doi: 10.1006/ccog.1999.0423 – ident: e_1_3_3_18_2 doi: 10.1073/pnas.0911531107 – ident: e_1_3_3_22_2 doi: 10.1124/mol.53.3.530 – ident: e_1_3_3_28_2 doi: 10.1016/j.jneumeth.2007.01.019 – ident: e_1_3_3_13_2 doi: 10.1212/WNL.57.11.2045 – ident: e_1_3_3_10_2 doi: 10.1146/annurev.neuro.20.1.185 – ident: e_1_3_3_7_2 doi: 10.1213/01.ane.0000277496.12747.29 – ident: e_1_3_3_26_2 doi: 10.1213/00000539-199607000-00029 – ident: e_1_3_3_15_2 doi: 10.1093/acprof:oso/9780195050387.001.0001 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.0913008107 – ident: e_1_3_3_6_2 doi: 10.1097/00000542-200309000-00015 – ident: e_1_3_3_9_2 doi: 10.1038/nature05758 – ident: e_1_3_3_23_2 doi: 10.1152/jn.00324.2005 – ident: e_1_3_3_1_2 doi: 10.1038/nrn2372 – ident: e_1_3_3_24_2 doi: 10.1016/j.neuron.2006.10.023 – reference: 9056712 - Annu Rev Neurosci. 1997;20:185-215 – reference: 9495821 - Mol Pharmacol. 1998 Mar;53(3):530-8 – reference: 10980023 - J Neurophysiol. 2000 Sep;84(3):1505-18 – reference: 11414713 - Conscious Cogn. 2001 Jun;10(2):165-83 – reference: 11832222 - Neuron. 2002 Jan 31;33(3):325-40 – reference: 10377359 - J Neurosci. 1999 Jul 1;19(13):5506-13 – reference: 18988836 - Science. 2008 Nov 7;322(5903):876-80 – reference: 17476267 - Nature. 2007 May 3;447(7140):83-6 – reference: 9636093 - J Neurophysiol. 1998 Jun;79(6):2875-84 – reference: 16973878 - Science. 2006 Sep 15;313(5793):1626-8 – reference: 17145507 - Neuron. 2006 Dec 7;52(5):871-82 – reference: 11595276 - J Neurosci Methods. 2001 Oct 30;111(2):83-98 – reference: 17717218 - Anesth Analg. 2007 Sep;105(3):648-55 – reference: 20133802 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2681-6 – reference: 10993665 - Conscious Cogn. 2000 Sep;9(3):370-86 – reference: 11739824 - Neurology. 2001 Dec 11;57(11):2045-53 – reference: 18843113 - Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44 – reference: 8810245 - Science. 1996 Oct 4;274(5284):109-13 – reference: 12960544 - Anesthesiology. 2003 Sep;99(3):603-13 – reference: 20133762 - Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3228-33 – reference: 18425091 - Nat Rev Neurosci. 2008 May;9(5):370-86 – reference: 12814589 - Neuroimage. 2003 Jun;19(2 Pt 1):402-11 – reference: 17145497 - Neuron. 2006 Dec 7;52(5):748-9 – reference: 15188875 - IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43 – reference: 16093343 - J Neurophysiol. 2005 Dec;94(6):4269-80 – reference: 17343918 - J Neurosci Methods. 2007 May 15;162(1-2):303-8 – reference: 8659729 - Anesth Analg. 1996 Jul;83(1):169-74 |
SSID | ssj0009580 |
Score | 2.3526614 |
Snippet | The mechanism(s) by which anesthetics reversibly suppress consciousness are incompletely understood. Previous functional imaging studies demonstrated dynamic... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21170 |
SubjectTerms | Anesthesia Anesthesia - methods Anesthetics Architecture Biological Sciences Brain Cerebral Cortex - drug effects Cerebral Cortex - physiology consciousness Consciousness - drug effects Correlation coefficients Correlations cortex Covariance Electrodes Electroencephalography - methods Electrophysiological Phenomena Electrophysiology Evoked Potentials, Somatosensory - drug effects Human subjects Humans image analysis Metabolism Propofol - pharmacology Statistical variance Studies Thalamus - drug effects Thalamus - physiology Unconsciousness variance |
Title | Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia |
URI | https://www.jstor.org/stable/25756850 http://www.pnas.org/content/107/49/21170.abstract https://www.ncbi.nlm.nih.gov/pubmed/21078987 https://www.proquest.com/docview/817163895 https://www.proquest.com/docview/1825417751 https://www.proquest.com/docview/816793189 https://pubmed.ncbi.nlm.nih.gov/PMC3000270 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiEATISh6EqI06cxD5OCJh2qCbYpN0iO3HUSqOpSHvZn7G_mOfPpNsqAZeoSuwkzfvlfeX59xD6WJRcMbDrcQMOfkxbSWKWNjQuVNqC9ZEZvFO62mJWnF7Ss6v8ajK5HVUtbdbyuL55cF3J_0gV9oFc9SrZf5BsOCnsgN8gX9iChGH7VzIGT1EvfNK578Z2lp9CMGmz066_jclcWJ4lQw7RbFxvcJij3NJLZbOxK90woe00dwCYirnqF2Lsup4HU9f7woKZzySeDOtSnLLop_H0fDbqcgxhvW6e3Y9T9kO58Y_OV1ieCVDp05CS_mmotU3atpsvQo3Od9HZxWyuXMAldV36wpWCWBOrrMoFjyUuqG0aGnSyG2LBZ0lNg4olttXIPeUP2kp3LF6KXuckCKfcnWYEhdUvgwUIdEvGnanf5tv2hx6hxymEHqnPAAUiZ5Z4iqgy-3znaoZb2s7fcnRsrasm0IXxDwUzd2tyR07OxTP01EUn-MRCbR9N1PI52vcixUeOpPzTCyQs9jBIDTvsYY89fA97uGtxwJ6ZE7CHNfawxx4esPcSXX77evHlNHbtOuKa5mwdi7ahLVNSJjWraVZLnjSc140QWSoawniuwH3Vbc0bAmF0oQRhjZRtIYoaduTZAdpbdkv1GuGapKQQIudEUZrwVNKWKi6zQrWajIlH6Ng_26p2XPa6pcp1ZWoqyqzSz7ka5BKhozBhZWlcdg89MMIK48Co5QXLkwhFZugwv6worwweI3ToRVo5BdFXTFNRQUCQR-hDOAraW3-Sg6fZbeCyOkFDyjInEcI7xjD9pRRML_zrVxYjw605rEWo3EJPGKDJ47ePLBdzQyKfmaKD5M3Ocx6iJ8P7-hbtrX9v1DtwwNfyvXkj_gCUW94B |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+and+dynamic+cortical+electrophysiology+of+induction+and+emergence+with+propofol+anesthesia&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Breshears%2C+Jonathan+D&rft.au=Roland%2C+Jarod+L&rft.au=Sharma%2C+Mohit&rft.au=Gaona%2C+Charles+M&rft.date=2010-12-07&rft.eissn=1091-6490&rft.volume=107&rft.issue=49&rft.spage=21170&rft_id=info:doi/10.1073%2Fpnas.1011949107&rft_id=info%3Apmid%2F21078987&rft.externalDocID=21078987 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F49.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F49.cover.gif |