Review on residual stress in selective laser melting additive manufacturing of alloy parts

•The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are analyzed.•New concepts on controlling the residual stress in alloy parts by SLM are proposed. The undesirable residual stress accumulated in the...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 129; p. 106283
Main Authors Fang, Ze-Chen, Wu, Zhi-Lin, Huang, Chen-Guang, Wu, Chen-Wu
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.09.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0030-3992
1879-2545
DOI10.1016/j.optlastec.2020.106283

Cover

Loading…
Abstract •The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are analyzed.•New concepts on controlling the residual stress in alloy parts by SLM are proposed. The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further application of the selective laser melting (SLM) process. This paper focuses on reviewing the recent illuminating achievements about physical modeling, experimental characterizing, and active adjusting of the residual stress in the parts fabricated by SLM. The advantages and disadvantages of the mainstream and emerging models or approaches are further analyzed. Based on the status and prospect of the relative techniques, a series of conceptual methods are discussed on mitigating residual stress to make some practical inspiration for developing a systematical residual stress balancing technique for SLM.
AbstractList The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further application of the selective laser melting (SLM) process. This paper focuses on reviewing the recent illuminating achievements about physical modeling, experimental characterizing, and active adjusting of the residual stress in the parts fabricated by SLM. The advantages and disadvantages of the mainstream and emerging models or approaches are further analyzed. Based on the status and prospect of the relative techniques, a series of conceptual methods are discussed on mitigating residual stress to make some practical inspiration for developing a systematical residual stress balancing technique for SLM.
•The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are analyzed.•New concepts on controlling the residual stress in alloy parts by SLM are proposed. The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further application of the selective laser melting (SLM) process. This paper focuses on reviewing the recent illuminating achievements about physical modeling, experimental characterizing, and active adjusting of the residual stress in the parts fabricated by SLM. The advantages and disadvantages of the mainstream and emerging models or approaches are further analyzed. Based on the status and prospect of the relative techniques, a series of conceptual methods are discussed on mitigating residual stress to make some practical inspiration for developing a systematical residual stress balancing technique for SLM.
ArticleNumber 106283
Author Fang, Ze-Chen
Huang, Chen-Guang
Wu, Zhi-Lin
Wu, Chen-Wu
Author_xml – sequence: 1
  givenname: Ze-Chen
  surname: Fang
  fullname: Fang, Ze-Chen
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 2
  givenname: Zhi-Lin
  surname: Wu
  fullname: Wu, Zhi-Lin
  organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 3
  givenname: Chen-Guang
  surname: Huang
  fullname: Huang, Chen-Guang
  organization: Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Chen-Wu
  surname: Wu
  fullname: Wu, Chen-Wu
  email: chenwuwu@imech.ac.cn, c.w.wu@outlook.com
  organization: Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNqNkEtLxDAUhYOM4Dj6Gwy47phH0zYLFyK-QBBEN25Cmt5Khk4yJqky_97UERdu9G7u5XDOPfAdopnzDhA6oWRJCa3OVku_SYOOCcySETapFWv4HprTppYFE6WYoTkhnBRcSnaADmNcEULKSvA5enmEdwsf2DscINpu1AOOKZ8RW4cjDGCSfQecCyDgNQzJulesu85-yWvtxl6bNIZJ9j3Ww-C3eKNDikdov9dDhOPvvUDP11dPl7fF_cPN3eXFfWFK0aRCS25I33eibWXZEcF6TdsW6obSmlOo66ppTMWEFJQxKeuKs4a1lS77PFoKvkCnu7-b4N9GiEmt_BhcrlSsLCmnhFGaXfXOZYKPMUCvNsGuddgqStQEUq3UD0g1gVQ7kDl5_itpbNLJepeCtsM_8he7PGQIGXZQ0VhwBjobMl3Vefvnj0_7Cpfy
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_168529
crossref_primary_10_3390_alloys1030017
crossref_primary_10_1051_e3sconf_202343106016
crossref_primary_10_1016_j_optlastec_2023_109355
crossref_primary_10_3390_met11010053
crossref_primary_10_2351_7_0000445
crossref_primary_10_26896_1028_6861_2024_90_7_56_67
crossref_primary_10_3390_met13081431
crossref_primary_10_3390_photonics11100935
crossref_primary_10_1016_j_optlastec_2024_111270
crossref_primary_10_1002_adem_202300489
crossref_primary_10_1016_j_cirpj_2020_12_004
crossref_primary_10_1016_j_msea_2022_144290
crossref_primary_10_1115_1_4055717
crossref_primary_10_1016_j_jallcom_2024_173449
crossref_primary_10_1016_j_jmapro_2023_01_035
crossref_primary_10_3390_app132111694
crossref_primary_10_1016_j_jmapro_2023_01_036
crossref_primary_10_1007_s40684_023_00546_z
crossref_primary_10_1007_s12540_024_01722_9
crossref_primary_10_1108_RPJ_01_2024_0042
crossref_primary_10_1089_3dp_2023_0065
crossref_primary_10_1016_j_jmps_2022_104822
crossref_primary_10_1051_matecconf_202338802003
crossref_primary_10_1088_1742_6596_2842_1_012075
crossref_primary_10_3390_ma14205962
crossref_primary_10_1002_adem_202101330
crossref_primary_10_1111_ffe_14119
crossref_primary_10_1016_j_cjmeam_2022_100039
crossref_primary_10_1016_j_ijfatigue_2024_108354
crossref_primary_10_1016_j_optlastec_2021_107604
crossref_primary_10_1016_j_msea_2022_143773
crossref_primary_10_1016_j_addma_2022_102744
crossref_primary_10_1007_s11340_023_01018_w
crossref_primary_10_1088_1402_4896_ad48cb
crossref_primary_10_1016_j_optlastec_2021_107391
crossref_primary_10_2351_7_0001515
crossref_primary_10_3390_ma15217708
crossref_primary_10_1016_j_ijfatigue_2022_107375
crossref_primary_10_1016_j_ijplas_2024_103981
crossref_primary_10_1007_s10853_022_07046_6
crossref_primary_10_1007_s11665_021_05578_7
crossref_primary_10_2351_7_0000670
crossref_primary_10_1016_j_jma_2023_02_005
crossref_primary_10_1016_j_addma_2023_103563
crossref_primary_10_1016_j_prostr_2022_01_056
crossref_primary_10_1016_j_addma_2022_103149
crossref_primary_10_1016_j_addma_2020_101603
crossref_primary_10_1134_S0020168524700596
crossref_primary_10_1007_s11665_024_09194_z
crossref_primary_10_1016_j_infrared_2021_103686
crossref_primary_10_1002_adem_202001502
crossref_primary_10_1016_j_jmrt_2024_04_136
crossref_primary_10_1007_s40192_021_00233_4
crossref_primary_10_1007_s11661_022_06928_3
crossref_primary_10_2351_7_0001410
crossref_primary_10_1016_j_ijfatigue_2023_108077
crossref_primary_10_1007_s12541_024_00967_z
crossref_primary_10_1115_1_4056571
crossref_primary_10_1016_j_mtcomm_2023_107254
crossref_primary_10_1177_09544054211041281
crossref_primary_10_1016_j_mtcomm_2021_103095
crossref_primary_10_1007_s12540_020_00931_2
crossref_primary_10_1016_j_matdes_2022_110847
crossref_primary_10_1007_s11340_022_00839_5
crossref_primary_10_3390_s24237457
crossref_primary_10_1016_j_msea_2021_141808
crossref_primary_10_3390_cryst11010009
crossref_primary_10_1016_j_jmrt_2022_02_054
crossref_primary_10_1007_s40516_023_00217_6
crossref_primary_10_1016_j_ceramint_2020_11_089
crossref_primary_10_1080_17452759_2021_1896173
crossref_primary_10_1016_j_matchar_2022_111977
crossref_primary_10_1088_1757_899X_1296_1_012006
crossref_primary_10_3390_ma14061511
crossref_primary_10_1007_s40964_024_00869_6
crossref_primary_10_1016_j_finel_2023_104018
crossref_primary_10_3390_photonics11111082
crossref_primary_10_3390_met11050686
crossref_primary_10_1016_j_ijrmhm_2021_105769
crossref_primary_10_3390_designs8050087
crossref_primary_10_3390_coatings13020321
crossref_primary_10_1016_j_optlaseng_2020_106355
crossref_primary_10_3390_met14091081
crossref_primary_10_1016_j_matdes_2021_109550
crossref_primary_10_3390_technologies9020027
crossref_primary_10_1088_1402_4896_aca184
crossref_primary_10_1016_j_matdes_2025_113658
crossref_primary_10_1002_pen_26244
crossref_primary_10_3390_ma16196461
crossref_primary_10_3390_jmmp5040138
crossref_primary_10_1016_j_optlaseng_2021_106680
crossref_primary_10_1007_s11661_021_06472_6
crossref_primary_10_1177_09544089231169380
crossref_primary_10_1007_s12596_024_01854_6
crossref_primary_10_1016_j_jmst_2024_01_080
crossref_primary_10_1557_s43579_022_00253_x
crossref_primary_10_1016_j_simpat_2025_103094
crossref_primary_10_1007_s10853_023_09172_1
crossref_primary_10_1007_s11340_025_01150_9
crossref_primary_10_2139_ssrn_4021770
crossref_primary_10_1016_j_matdes_2023_111681
crossref_primary_10_1016_j_optlaseng_2024_108277
crossref_primary_10_1016_j_tafmec_2024_104343
crossref_primary_10_1016_j_ijrmhm_2022_106094
crossref_primary_10_1016_j_matdes_2023_111732
crossref_primary_10_1016_j_scriptamat_2021_114034
crossref_primary_10_1007_s00170_024_14082_w
crossref_primary_10_1016_j_addma_2021_101997
crossref_primary_10_2139_ssrn_4193388
crossref_primary_10_1016_j_engfailanal_2023_107403
crossref_primary_10_1080_10408436_2023_2170975
crossref_primary_10_3390_met11111830
crossref_primary_10_1016_j_msea_2024_147163
crossref_primary_10_1002_lpor_202300588
crossref_primary_10_1016_j_ijsolstr_2024_113047
crossref_primary_10_1108_RPJ_03_2021_0063
crossref_primary_10_1016_j_mechmat_2021_103882
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_3390_cryst14070581
crossref_primary_10_1007_s00170_023_12749_4
crossref_primary_10_1002_advs_202206486
crossref_primary_10_1016_j_matdes_2022_111209
crossref_primary_10_1016_j_intermet_2024_108272
crossref_primary_10_1016_j_optlastec_2024_111201
crossref_primary_10_1007_s11665_023_09087_7
crossref_primary_10_5937_jaes0_45624
crossref_primary_10_1016_j_powtec_2024_120450
crossref_primary_10_3390_cryst15010025
crossref_primary_10_1007_s40964_022_00294_7
crossref_primary_10_1016_j_ijplas_2025_104264
crossref_primary_10_1016_j_matpr_2024_05_008
crossref_primary_10_1016_j_addma_2023_103830
crossref_primary_10_3390_coatings13061117
crossref_primary_10_1007_s00170_024_13638_0
crossref_primary_10_1007_s41403_021_00240_z
crossref_primary_10_1134_S1063783422030076
crossref_primary_10_1016_j_tws_2022_109729
crossref_primary_10_1016_j_msea_2022_142965
crossref_primary_10_1007_s11665_021_06340_9
crossref_primary_10_1016_j_ijrmhm_2023_106110
crossref_primary_10_1016_j_jmrt_2022_05_124
crossref_primary_10_3390_met14091039
crossref_primary_10_1007_s00170_024_14148_9
crossref_primary_10_1016_j_jmst_2022_02_015
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_1002_adem_202401442
crossref_primary_10_1016_j_matdes_2021_110180
crossref_primary_10_1016_j_commatsci_2020_110263
crossref_primary_10_3390_ma14040781
crossref_primary_10_1134_S102995992304001X
crossref_primary_10_1007_s12540_021_01155_8
crossref_primary_10_3389_fbioe_2021_641130
crossref_primary_10_1016_j_jmrt_2025_03_001
crossref_primary_10_1080_17452759_2023_2181192
crossref_primary_10_1051_matecconf_202338810003
crossref_primary_10_1177_09544089221132737
crossref_primary_10_1007_s11665_024_09817_5
crossref_primary_10_1002_adem_202100184
crossref_primary_10_1007_s41403_023_00393_z
crossref_primary_10_1016_j_icheatmasstransfer_2025_108714
crossref_primary_10_3390_ma16237316
crossref_primary_10_1016_j_intermet_2022_107557
crossref_primary_10_1080_17452759_2023_2246041
crossref_primary_10_1016_j_jmrt_2024_09_165
crossref_primary_10_2351_7_0001222
crossref_primary_10_3390_ma15196785
crossref_primary_10_1007_s11665_023_08785_6
crossref_primary_10_1016_j_jmrt_2023_11_139
crossref_primary_10_1016_j_addma_2024_104314
crossref_primary_10_1016_j_jmapro_2023_12_048
crossref_primary_10_1007_s11665_024_09580_7
crossref_primary_10_1016_j_actamat_2022_118187
crossref_primary_10_1016_j_matdes_2022_110440
crossref_primary_10_1016_j_ast_2024_109786
crossref_primary_10_1016_j_optlastec_2021_107246
crossref_primary_10_1080_09506608_2023_2193785
crossref_primary_10_1016_j_jmrt_2023_12_046
crossref_primary_10_1016_j_corsci_2022_110789
crossref_primary_10_1016_j_enganabound_2024_105876
crossref_primary_10_1016_j_dt_2023_01_002
crossref_primary_10_1016_j_jallcom_2024_178403
crossref_primary_10_2478_fas_2021_0007
crossref_primary_10_1016_j_ijfatigue_2024_108153
crossref_primary_10_1016_j_ijthermalsci_2024_109163
crossref_primary_10_1016_j_ijmecsci_2023_108583
crossref_primary_10_1016_j_optlastec_2021_107806
crossref_primary_10_1016_j_jmapro_2025_03_015
crossref_primary_10_1016_j_electacta_2023_143067
crossref_primary_10_3390_ma17102270
crossref_primary_10_15541_jim20210608
crossref_primary_10_1007_s00170_025_15273_9
crossref_primary_10_3390_met13122003
crossref_primary_10_1007_s12289_022_01729_w
crossref_primary_10_1016_j_rio_2024_100652
crossref_primary_10_1016_j_addma_2024_104532
crossref_primary_10_1016_j_matdes_2022_111311
crossref_primary_10_1016_j_addma_2022_102779
crossref_primary_10_1016_j_precisioneng_2022_04_007
crossref_primary_10_1016_j_jmrt_2022_01_079
crossref_primary_10_1016_j_addma_2022_103194
crossref_primary_10_1007_s11665_024_09153_8
crossref_primary_10_1016_j_addma_2024_104521
crossref_primary_10_1007_s12598_022_02079_x
crossref_primary_10_1016_j_cossms_2022_101024
crossref_primary_10_1007_s11837_023_06201_x
Cites_doi 10.1179/136217111X12978476537783
10.1016/j.actamat.2015.07.014
10.1016/j.msea.2013.10.066
10.1016/j.mfglet.2017.01.002
10.4028/www.scientific.net/KEM.554-557.1828
10.1016/j.engfracmech.2014.03.008
10.1007/s40684-017-0029-7
10.1016/S0749-6419(98)00055-2
10.1186/s40192-016-0047-2
10.1016/j.phpro.2014.08.135
10.1007/s00466-015-1243-1
10.1016/j.optlastec.2019.105725
10.1016/j.actamat.2016.05.017
10.1016/j.msea.2003.10.328
10.1016/j.jmatprotec.2010.12.016
10.1016/j.matchar.2015.11.021
10.1016/j.msea.2018.04.046
10.2351/1.4828755
10.1016/j.jmatprotec.2018.01.015
10.1016/j.procir.2014.10.023
10.1016/j.phpro.2016.08.092
10.1016/j.surfcoat.2010.09.033
10.1016/j.actamat.2015.12.017
10.1016/j.proeng.2015.01.510
10.1080/17452759.2019.1614198
10.1177/0954405412437085
10.1088/0957-0233/28/1/015001
10.1016/S0921-5093(01)01179-0
10.1016/j.msea.2010.12.010
10.1016/j.mprp.2018.01.003
10.1016/j.jmbbm.2017.01.043
10.1016/j.ijmecsci.2019.01.043
10.1016/j.phpro.2010.08.089
10.1016/J.ENG.2017.05.011
10.1115/1.4043622
10.1179/026708301101509980
10.1179/1743284714Y.0000000728
10.1016/j.matdes.2014.07.006
10.1016/j.matchar.2019.02.010
10.1016/j.optlaseng.2019.05.020
10.1016/j.jmatprotec.2003.11.051
10.1016/j.optlastec.2018.05.031
10.1016/j.phpro.2013.03.162
10.1038/s41598-017-03761-2
10.1108/RPJ-06-2017-0120
10.1115/1.4040264
10.1016/j.msea.2011.06.045
10.1007/s00170-018-2104-9
10.1126/science.aav4687
10.1007/s11663-019-01523-1
10.1016/j.commatsci.2016.07.005
10.1007/s11666-007-9026-7
10.1016/S0007-8506(07)60395-3
10.1080/17452759.2015.1026045
10.1115/1.4028540
10.1002/adem.201100233
10.1080/17452759.2019.1677345
10.1016/j.jallcom.2012.07.022
10.1016/j.optlastec.2016.11.002
10.1007/s00170-014-6769-4
10.1016/j.mfglet.2018.04.003
10.1146/annurev-matsci-070115-032158
10.1016/j.jmatprotec.2014.07.030
10.1016/j.actamat.2016.02.014
10.1016/S0142-1123(01)00205-5
10.1080/01495739.2013.784121
10.1016/j.jmatprotec.2017.02.017
10.1016/j.camwa.2013.10.001
10.1038/s41467-018-05234-0
10.3390/qubs2020013
10.1115/1.2194037
10.1016/j.actamat.2015.06.004
10.1002/adem.201600172
10.1016/j.jmatprotec.2007.06.060
10.1016/j.msea.2005.02.019
10.1007/s11661-014-2549-x
10.3390/ma12010050
10.1016/j.actamat.2009.08.027
10.1016/j.jmatprotec.2015.10.022
10.1007/s11740-009-0192-y
10.1016/j.intermet.2013.11.012
10.1080/21663831.2017.1299808
10.1016/j.msea.2017.02.038
10.1016/j.commatsci.2011.06.023
10.1016/j.jallcom.2019.04.017
10.1115/1.4028513
10.1007/s00170-019-03396-9
10.1016/S0890-6955(02)00163-3
10.1016/j.actamat.2015.04.035
10.3390/ma12030455
10.1007/s00466-017-1528-7
10.1007/s11661-011-0731-y
10.1016/S1005-0302(12)60016-4
10.1016/j.msea.2019.138511
10.3390/ma9020112
10.1016/j.msea.2017.04.033
10.3390/met9010103
10.3390/ma10040348
10.1117/12.2253600
10.1016/j.ijleo.2017.02.060
10.1080/00207543.2016.1223378
10.1016/j.msea.2016.04.086
10.1016/j.ijfatigue.2018.06.038
10.1016/j.scriptamat.2016.02.022
10.1016/S0007-8506(07)60677-5
10.1016/j.cirp.2017.04.084
10.1179/136217110X12714217309614
10.1063/1.4935926
10.1007/s11837-000-0028-x
10.1088/1361-651X/aa9a5b
10.1063/1.5017236
10.1016/j.phpro.2011.03.032
10.1016/j.procir.2018.08.002
10.1108/13552540610707013
10.1016/j.jmatprotec.2007.07.045
10.1007/s00466-015-1170-1
10.1007/s11837-018-3025-7
10.1016/j.msea.2017.08.058
10.1016/j.optlastec.2017.08.015
10.1016/j.ijleo.2018.05.128
10.1016/j.optlastec.2017.07.034
10.1016/j.jmbbm.2015.06.024
10.1016/j.msea.2019.04.023
10.1179/026708301101510087
10.3390/ma11081480
10.1179/136217109X437178
10.1115/1.3122036
10.1142/S0217984916502559
10.1179/174328407X213116
10.1007/s11665-017-2716-5
10.1016/j.optlastec.2015.07.009
10.1016/j.optlaseng.2019.105801
10.1016/j.ijmecsci.2017.12.001
10.3390/technologies5020024
10.1016/j.optlastec.2005.12.006
10.1016/j.commatsci.2016.01.044
10.1154/1.2951814
10.3390/ma12060930
10.1016/j.matchar.2015.02.008
10.1016/j.jmatprotec.2016.08.003
10.1016/j.jmatprotec.2014.04.002
10.1016/j.optlaseng.2019.05.026
10.1016/j.scriptamat.2014.05.016
10.1108/RPJ-12-2014-0177
10.1016/j.corsci.2017.08.023
10.1016/j.jmatprotec.2014.06.001
10.1016/j.ijfatigue.2012.11.011
10.1016/j.optlastec.2016.04.009
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Sep 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 2020
DBID AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
H8D
L7M
DOI 10.1016/j.optlastec.2020.106283
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
ExternalDocumentID 10_1016_j_optlastec_2020_106283
S0030399219322492
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7U5
8FD
EFKBS
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c458t-a93c0ffd5bb94d052fa1bbe7811731e77688c6259512299763282b6a4ffffa953
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Mon Jul 14 07:33:06 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Tue Jul 01 01:38:39 EDT 2025
Fri Feb 23 02:47:08 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SLM
Modeling
Residual stress
Characterizing
Adjusting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-a93c0ffd5bb94d052fa1bbe7811731e77688c6259512299763282b6a4ffffa953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dspace.imech.ac.cn/handle/311007/82134
PQID 2441310211
PQPubID 2045422
ParticipantIDs proquest_journals_2441310211
crossref_primary_10_1016_j_optlastec_2020_106283
crossref_citationtrail_10_1016_j_optlastec_2020_106283
elsevier_sciencedirect_doi_10_1016_j_optlastec_2020_106283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Optics and laser technology
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Verhaeghe, Craeghs, Heulens, Pandelaers (b0305) 2009; 57
Mishurova, Cabeza, Artzt, Haubrich, Klaus, Genzel, Requena, Bruno (b0660) 2017; 10
Francis, Stone, Kundu, Bhadeshia, Rogge, Withers, Karlsson (b0900) 2009; 131
Harrison, Todd, Mumtaz (b0155) 2015; 94
Yamaguchi, Fergani, Wu (b0870) 2017; 66
He, Shi, Li, Xie (b0570) 2019; 122
Calta, Wang, Kiss, Martin, Depond, Guss, Thampy, Fong, Weker, Stone, Tassone, Kramer, Toney, Van Buuren, Matthews (b0575) 2018; 89
Murakawa, Beres, Davies, Rashed, Vega, Tsunori, Nikbin, Dye (b0905) 2010; 15
Li, Ramezani, Li, Ma, Wang (b0605) 2018; 16
Buchbinder, Meiners, Wissenbach, Müller-Lohmeier, Brandl, Skrynecki (b0775) 2008
Boegelein, Louvis, Dawson, Tatlock, Jones (b0030) 2016; 112
Tapia, Elwany (b0830) 2014; 136
Zhang, Qi, Shi, Li (b0130) 2015; 79
Mertens, Dadbakhsh, Van Humbeeck, Kruth (b0780) 2018; 74
Li, Gu (b0365) 2014; 1–4
Shi, Gu, Xia, Cao, Rong (b0420) 2016; 84
Berumen, Bechmann, Lindner, Kruth, Craeghs (b0680) 2010; 5
Megahed, Mindt, N'Dri, Duan, Desmaison (b0465) 2016; 5
Dong, Liu, Wen, Ge, Liang (b0300) 2018; 12
Li, Liu, Fang, Guo (b0535) 2018; 140
Tammas-Williams, Zhao, Leonard, Derguti, Todd, Prangnell (b0640) 2015; 102
Maly, Holler, Skalon, Meier, Koutny, Pichler, Sommitsch, Palousek (b0765) 2019; 12
Gu, Chen (b0940) 2018; 725
Ali, Ghadbeigi, Mumtaz (b0285) 2018; 97
Torres, Voorwald (b0855) 2002; 24
M. Mohammad, R. Prahalada, Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach, J. Manuf. Sci. Eng. 140(9) (2018) 091002.
W. Xing, D. Ouyang, N. Li, L. Liu, Estimation of Residual Stress in Selective Laser Melting of a Zr-Based Amorphous Alloy, Materials (Basel) 11(8) (2018) 1480-. https://doi.org/10.3390/ma11081480.
Oyelola, Crawforth, M'Saoubi, Clare (b0880) 2018; 19
J.C.H. Erik R. Denlinger, Pan Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, J. Mater. Process. Technol. 215 (2015) 123–131. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2014.07.030.
Yap, Chua, Dong, Liu, Zhang, Loh, Sing (b0010) 2015; 2
Wu, Wang, An (b0395) 2017; 137
Otto, Koch, Vazquez (b0470) 2012; 39
Vrancken, Cain, Knutsen, Van Humbeeck (b0195) 2014; 87
Leuders, Thöne, Riemer, Niendorf, Tröster, Richard, Maier (b0165) 2013; 48
Yu, Sing, Chua, Tian (b0945) 2019; 792
Bartlett, Groom, Burdick, Henkel, Li (b0415) 2018; 22
Tomus, Tian, Rometsch, Heilmaier, Wu (b0595) 2016; 667
Li, Liu, Zhou, Wen, Wei, Yan, Shi (b0740) 2016; 118
Agelet de Saracibar (b0265) 1999; 15
Koopmann, Voigt, Niendorf (b0045) 2019; 50
Khairallah, Anderson (b0295) 2014; 214
Saarimäki, Lundberg, Moverare, Brodin (b0565) 2017
Parry, Ashcroft, Wildman (b0105) 2016; 12
Zaeh, Branner (b0110) 2010; 4
Yadroitsev, Yadroitsava (b0135) 2015; 10
Nassar, Keist, Reutzel, Spurgeon (b0820) 2015; 6
Zhang, Yang, Lin, Song, Zhang (b0175) 2017; 26
S. Mohanty, J.H. Hattel, Laser Additive Manufacturing of multimaterial tool inserts: A simulation-based optimization study, Laser 3d Manuf. Iv 10095 (2017). https://doi.org/10.1117/12.2253600.
Rombouts, Kruth, Froyen, Mercelis (b0220) 2006; 55
Löber, Schimansky, Kühn, Pyczak, Eckert (b0370) 2014; 214
Gu, Dai, Xia, Ma (b0510) 2017; 49
Vrancken, Buls, Kruth, Humbeeck (b0770) 2016
Mugwagwa, Dimitrov, Matope, Yadroitsev (b0335) 2019; 102
J.P. Kruth, J. Deckers, E. Yasa, R. Wauthle, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 226(B6) (2012) 980–991. https://doi.org/10.1177/0954405412437085.
Ding, Colegrove, Mehnen, Ganguly, Almeida, Wang, Williams (b0315) 2011; 50
Brückner, Lepski, Beyer (b0250) 2007; 16
Mines (b0015) 2019
Zohdi (b0435) 2017
Prime, DeWald (b0545) 2013
King, Anderson, Ferencz, Hodge, Kamath, Khairallah (b0225) 2015; 31
Wang, Jiang, Zhu, Ding, Zhu, Sun, Yan (b0930) 2018
Roberts (b0610) 2012
Wu, Brown, Kumar, Gallegos, King (b0430) 2014; 45a
Korsunsky, Sebastiani, Bemporad (b0590) 2010; 205
Lindgren, Lundback, Fisk (b0270) 2013; 36
Zhou, Kou, Yao, Zhu, Kai, Tamura (b0655) 2018; 2
Khorasani, Gibson, Ghasemi, Ghaderi (b0955) 2019; 14
Gürtler, Karg, Leitz, Schmidt (b0475) 2013; 41
Ali, Ma, Ghadbeigi, Mumtaz (b0760) 2017; 695
Murr, Gaytan, Ramirez, Martinez, Hernandez, Amato, Shindo, Medina, Wicker (b0785) 2012; 28
B. Vrancken, Study of residual stresses in selective laser melting, KU Leuven, 2016.
Tamanna, Crouch, Naher (b0490) 2019; 122
Kou (b0205) 2003
Zhang, Zhang, Lee, Wu, Choi, Jung (b0445) 2018; 73
Mani, Lane, Donmez, Feng, Moylan (b0845) 2017; 55
Song, Wu, Zhang, He, Lu, Ni, Long, Zhu (b0380) 2018; 170
Gu, He (b0390) 2016; 117
Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (b0480) 2015; 96
Shiomi, Osakada, Nakamura, Yamashita, Abe (b0190) 2004; 53
Shirzadi, Bhadeshia, Karlsson, Withers (b0895) 2009; 14
Li, Zhou, Tan, Tor, Chua, Leong (b0280) 2018; 136
Lu, Lin, Chiumenti, Cervera, Hu, Ji, Ma, Huang (b0520) 2019; 153–154
Dai, Gu, Zhang, Xiong, Ma, Hong, Poprawe (b0290) 2018; 99
Montazeri, Rao (b0675) 2018; 140
Vrancken, Buls, Kruth, Van Humbeeck (b0750) 2015
Markl, Korner (b0515) 2016; 46
Chao, White, Fang, Weaver, Guo (b0600) 2017; 705
Matthews, Guss, Khairallah, Rubenchik, Depond, King (b0615) 2016; 114
Tian, Wang, Sheng (b0810) 2016; 30
Smith, Xiong, Cao, Liu (b0320) 2016; 57
Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (b0720) 2004; 149
Mercelis, Kruth (b0090) 2006; 12
Vora, Martinez, Hopkinson, Todd, Mumtaz (b0910) 2017; 5
Francis, Bhadeshia, Withers (b0890) 2007; 23
Mohanty, Hattel (b0310) 2014; 56
Furumoto, Ogura, Hishida, Hosokawa, Koyano, Abe, Ueda (b0340) 2017; 245
Rangaswamy, Griffith, Prime, Holden, Rogge, Edwards, Sebring (b0550) 2005; 399
Yoshida, Sasaki, Usui, Sakamoto, Gurney, Park (b0700) 2016; 9
Vrancken, Thijs, Kruth, Van Humbeeck (b0790) 2012; 541
Wang, Zhang, Tang, Tian, Liu (b0020) 2012
Hassanin, Modica, El-Sayed, Liu, Essa (b0065) 2016; 18
Mishurova, Artzt, Haubrich, Requena, Bruno (b0385) 2019; 25
Montero-Sistiaga, Mertens, Vrancken, Wang, Van Hooreweder, Kruth, Van Humbeeck (b0915) 2016; 238
Zhang, Xiao, Zhang (b0500) 2019; 13
R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, J. Van Humbeeck, Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts, in: Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016 83 (2016) 882–890. https://doi.org/10.1016/j.phpro.2016.08.092.
Krakhmalev, Yadroitsev (b0375) 2014; 46
Hu, Kovacevic (b0665) 2003; 43
Ghosh, Choi (b0245) 2006; 128
Li, Fu, Guo, Fang (b0345) 2016; 229
Kreitcberg, Brailovski, Turenne (b0805) 2017; 689
Withers, Bhadeshia (b0215) 2013; 17
Van Hooreweder, Moens, Boonen, Kruth, Sas (b0170) 2012; 14
Eto, Miura, Tani, Fujii (b0150) 2014; 590
Körner, Attar, Heinl (b0450) 2011; 211
De, DebRoy (b0200) 2011; 16
Tan, Sing, Yeong (b0505) 2020; 15
Whiting, Fox (b0140) 2016
A.M. Kamat, Y.T. Pei, An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion, Addit. Manuf. 29 (2019) 100796. https://doi.org/UNSP 100796 10.1016/j.addma.2019.100796.
Koric, Thomas (b0085) 2008; 197
Kempen, Vrancken, Buls, Thijs, Van Humbeeck, Kruth (b0735) 2014; 136
Withers, Bhadeshia (b0525) 2001; 17
Ammer, Markl, Ljungblad, Korner, Rude (b0455) 2014; 67
Kuryntsev (b0795) 2018; 107
A.V. Gusarov, M. Pavlov, I. Smurov, Residual stresses at laser surface remelting and additive manufacturing, lasers in manufacturing 2011, in: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, vol 12, Pt A 12(1) (2011) 248–254. https://doi.org/10.1016/j.phpro.2011.03.032.
Bael, Kerckhofs, Moesen, Pyka, Schrooten, Kruth (b0635) 2011; 528
Reutzel, Nassar (b0825) 2015; 21
Lu, Wu, Gan, Huang, Yang, Lin, Lin (b0100) 2015; 75
C. Seidel, M.F. Zaeh, M. Wunderer, J. Weirather, T.A. Krol, M. Ott, Simulation of the laser beam melting process - approaches for an efficient modelling of the beam-material interaction, in: 8th International Conference on Digital Enterprise Technology - Det 2014 Disruptive Innovation in Manufacturing Engineering Towards the 4th Industrial Revolution 25 (2014) 146–153. https://doi.org/10.1016/j.procir.2014.10.023.
Prabhakar, Sames, Dehoff, Babu (b0125) 2015; 7
Yang, Knol, van Keulen, Ayas (b0275) 2018; 21
Shrestha, Starr, Chou (b0630) 2019; 141
X. Xing, X. Duan, X. Sun, H. Gong, L. Wang, F. Jiang, Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique, Materials (Basel) 12(3) (2019) 455. https://doi.org/10.3390/ma12030455.
Kalentics, Boillat, Peyre, Ciric-Kostic, Bogojevic, Loge (b0850) 2017; 16
Demir, Previtali (b0050) 2017; 11
Sing, Huang, Yeong (b0815) 2020; 769
Tian, Wang, Zhu, Zhou (b0400) 2008; 199
Lou, Othon, Rebak (b0180) 2017; 127
Nickel, Barnett, Prinz (b0210) 2001; 317
Grafe, Wickberg, Zieger, Wegener, Blasco, Barner-Kowollik (b0040) 2018; 9
T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen, J.-P. Kruth, Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring, Opt. Lasers Eng. 49(12) (2011) 1440–1446. https:// doi.org/10.1016/j.optlaseng.2011.06.016.
Gaja, Liou (b0705) 2016
P. Hanzl, M. Zetek, T. Baksa, T. Kroupa, The Influence of processing parameters on the mechanical properties of SLM parts, in: 25th Daaam International Symposium on Intelligent Manufacturing and Automation, 2014 100 (2015) 1405–1413. https://doi.org/10.1016/j.proeng.2015.01.510.
Bhadeshia (b0885) 2004; 378
Yan, Smith, Ge, Lin, Liu (b0495) 2015; 56
Syed, Ahmad, Guo, Machry, Eatock, Meyer, Fitzpatrick, Zhang (b0145) 2019; 755
Kao, Zhang, Wang, Tai (b0060) 2016
Riemer, Leuders, Thone, Richard, Troster, Niendorf (b0185) 2014; 120
Hodge, Ferencz, Vignes (b0330) 2016; 12
Liu, Zhang, Pang (b0350) 2018; 98
Song, Tang, Feng, Ma, Setchi, Liu, Han, Fan, Zhang (b0800) 2019; 120
Cunningham, Zhao, Parab, Kantzos, Pauza, Fezzaa, Sun, Rollet
Lu (10.1016/j.optlastec.2020.106283_b0100) 2015; 75
Yamaguchi (10.1016/j.optlastec.2020.106283_b0870) 2017; 66
Maly (10.1016/j.optlastec.2020.106283_b0765) 2019; 12
Withers (10.1016/j.optlastec.2020.106283_b0215) 2013; 17
10.1016/j.optlastec.2020.106283_b0860
Boegelein (10.1016/j.optlastec.2020.106283_b0030) 2016; 112
10.1016/j.optlastec.2020.106283_b0620
Liu (10.1016/j.optlastec.2020.106283_b0350) 2018; 98
Van Hooreweder (10.1016/j.optlastec.2020.106283_b0170) 2012; 14
Li (10.1016/j.optlastec.2020.106283_b0740) 2016; 118
Gu (10.1016/j.optlastec.2020.106283_b0940) 2018; 725
Yan (10.1016/j.optlastec.2020.106283_b0495) 2015; 56
Robinson (10.1016/j.optlastec.2020.106283_b0715) 2016; 23
Mercelis (10.1016/j.optlastec.2020.106283_b0090) 2006; 12
Kruth (10.1016/j.optlastec.2020.106283_b0720) 2004; 149
Arcella (10.1016/j.optlastec.2020.106283_b0005) 2000; 52
Vrancken (10.1016/j.optlastec.2020.106283_b0790) 2012; 541
Tapia (10.1016/j.optlastec.2020.106283_b0830) 2014; 136
Xing (10.1016/j.optlastec.2020.106283_b0865) 2019; 9
Fousova (10.1016/j.optlastec.2020.106283_b0070) 2017; 69
Eto (10.1016/j.optlastec.2020.106283_b0150) 2014; 590
Mishurova (10.1016/j.optlastec.2020.106283_b0385) 2019; 25
Bhadeshia (10.1016/j.optlastec.2020.106283_b0885) 2004; 378
Li (10.1016/j.optlastec.2020.106283_b0535) 2018; 140
Francis (10.1016/j.optlastec.2020.106283_b0890) 2007; 23
Lindgren (10.1016/j.optlastec.2020.106283_b0270) 2013; 36
Wu (10.1016/j.optlastec.2020.106283_b0395) 2017; 137
Montazeri (10.1016/j.optlastec.2020.106283_b0675) 2018; 140
Yang (10.1016/j.optlastec.2020.106283_b0275) 2018; 21
10.1016/j.optlastec.2020.106283_b0355
Mishurova (10.1016/j.optlastec.2020.106283_b0660) 2017; 10
10.1016/j.optlastec.2020.106283_b0235
Withers (10.1016/j.optlastec.2020.106283_b0525) 2001; 17
10.1016/j.optlastec.2020.106283_b0755
Lambiase (10.1016/j.optlastec.2020.106283_b0875) 2020; 124
Sing (10.1016/j.optlastec.2020.106283_b0815) 2020; 769
Vora (10.1016/j.optlastec.2020.106283_b0115) 2015; 7
Clemon (10.1016/j.optlastec.2020.106283_b0835) 2017
Torres (10.1016/j.optlastec.2020.106283_b0855) 2002; 24
Yin (10.1016/j.optlastec.2020.106283_b0055) 2018; 255
Hodge (10.1016/j.optlastec.2020.106283_b0330) 2016; 12
Otto (10.1016/j.optlastec.2020.106283_b0470) 2012; 39
Shirzadi (10.1016/j.optlastec.2020.106283_b0895) 2009; 14
Vrancken (10.1016/j.optlastec.2020.106283_b0770) 2016
Shiomi (10.1016/j.optlastec.2020.106283_b0190) 2004; 53
Zhang (10.1016/j.optlastec.2020.106283_b0710) 2014; 33
Wang (10.1016/j.optlastec.2020.106283_b0930) 2018
Leuders (10.1016/j.optlastec.2020.106283_b0165) 2013; 48
Saarimäki (10.1016/j.optlastec.2020.106283_b0565) 2017
Zhao (10.1016/j.optlastec.2020.106283_b0690) 2016; 91
Ghosh (10.1016/j.optlastec.2020.106283_b0245) 2006; 128
Li (10.1016/j.optlastec.2020.106283_b0405) 2014; 63
Cunningham (10.1016/j.optlastec.2020.106283_b0585) 2019; 363
Tamanna (10.1016/j.optlastec.2020.106283_b0490) 2019; 122
Harrison (10.1016/j.optlastec.2020.106283_b0155) 2015; 94
10.1016/j.optlastec.2020.106283_b0925
Lou (10.1016/j.optlastec.2020.106283_b0180) 2017; 127
Shi (10.1016/j.optlastec.2020.106283_b0240) 2007; 39
Demir (10.1016/j.optlastec.2020.106283_b0050) 2017; 11
Zhang (10.1016/j.optlastec.2020.106283_b0175) 2017; 26
Oyelola (10.1016/j.optlastec.2020.106283_b0880) 2018; 19
Wu (10.1016/j.optlastec.2020.106283_b0430) 2014; 45a
Khairallah (10.1016/j.optlastec.2020.106283_b0230) 2016; 108
Rombouts (10.1016/j.optlastec.2020.106283_b0220) 2006; 55
Krakhmalev (10.1016/j.optlastec.2020.106283_b0375) 2014; 46
Zhang (10.1016/j.optlastec.2020.106283_b0445) 2018; 73
Rangaswamy (10.1016/j.optlastec.2020.106283_b0550) 2005; 399
Yan (10.1016/j.optlastec.2020.106283_b0075) 2015; 51
Lu (10.1016/j.optlastec.2020.106283_b0520) 2019; 153–154
Francis (10.1016/j.optlastec.2020.106283_b0900) 2009; 131
Grafe (10.1016/j.optlastec.2020.106283_b0040) 2018; 9
Li (10.1016/j.optlastec.2020.106283_b0280) 2018; 136
Stutzman (10.1016/j.optlastec.2020.106283_b0645) 2018; 21
Gu (10.1016/j.optlastec.2020.106283_b0510) 2017; 49
10.1016/j.optlastec.2020.106283_b0410
Montero-Sistiaga (10.1016/j.optlastec.2020.106283_b0915) 2016; 238
Hassanin (10.1016/j.optlastec.2020.106283_b0065) 2016; 18
Ali (10.1016/j.optlastec.2020.106283_b0760) 2017; 695
Kao (10.1016/j.optlastec.2020.106283_b0060) 2016
Vrancken (10.1016/j.optlastec.2020.106283_b0195) 2014; 87
Chao (10.1016/j.optlastec.2020.106283_b0600) 2017; 705
Koopmann (10.1016/j.optlastec.2020.106283_b0045) 2019; 50
Riemer (10.1016/j.optlastec.2020.106283_b0185) 2014; 120
10.1016/j.optlastec.2020.106283_b0935
Yang (10.1016/j.optlastec.2020.106283_b0325) 2018; 61
Murr (10.1016/j.optlastec.2020.106283_b0785) 2012; 28
Gu (10.1016/j.optlastec.2020.106283_b0390) 2016; 117
Buchbinder (10.1016/j.optlastec.2020.106283_b0775) 2008
Tian (10.1016/j.optlastec.2020.106283_b0810) 2016; 30
cr-split#-10.1016/j.optlastec.2020.106283_b0095.1
cr-split#-10.1016/j.optlastec.2020.106283_b0095.2
Smith (10.1016/j.optlastec.2020.106283_b0320) 2016; 57
Cheng (10.1016/j.optlastec.2020.106283_b0360) 2016; 12
Gürtler (10.1016/j.optlastec.2020.106283_b0475) 2013; 41
10.1016/j.optlastec.2020.106283_b0260
Löber (10.1016/j.optlastec.2020.106283_b0370) 2014; 214
Mertens (10.1016/j.optlastec.2020.106283_b0780) 2018; 74
Prabhakar (10.1016/j.optlastec.2020.106283_b0125) 2015; 7
Zhang (10.1016/j.optlastec.2020.106283_b0130) 2015; 79
Calta (10.1016/j.optlastec.2020.106283_b0575) 2018; 89
10.1016/j.optlastec.2020.106283_b0540
Zhang (10.1016/j.optlastec.2020.106283_b0500) 2019; 13
Zhao (10.1016/j.optlastec.2020.106283_b0580) 2017; 7
Matthews (10.1016/j.optlastec.2020.106283_b0615) 2016; 114
Markl (10.1016/j.optlastec.2020.106283_b0515) 2016; 46
Moat (10.1016/j.optlastec.2020.106283_b0530) 2011; 528
Roberts (10.1016/j.optlastec.2020.106283_b0610) 2012
Zhou (10.1016/j.optlastec.2020.106283_b0625) 2015; 98
Tomus (10.1016/j.optlastec.2020.106283_b0595) 2016; 667
Kreitcberg (10.1016/j.optlastec.2020.106283_b0805) 2017; 689
Yadroitsev (10.1016/j.optlastec.2020.106283_b0135) 2015; 10
Murakawa (10.1016/j.optlastec.2020.106283_b0905) 2010; 15
Ammer (10.1016/j.optlastec.2020.106283_b0455) 2014; 67
Agelet de Saracibar (10.1016/j.optlastec.2020.106283_b0265) 1999; 15
Kempen (10.1016/j.optlastec.2020.106283_b0735) 2014; 136
Buchbinder (10.1016/j.optlastec.2020.106283_b0745) 2014; 26
Prashanth (10.1016/j.optlastec.2020.106283_b0950) 2017; 5
Mohanty (10.1016/j.optlastec.2020.106283_b0310) 2014; 56
Reutzel (10.1016/j.optlastec.2020.106283_b0825) 2015; 21
Prime (10.1016/j.optlastec.2020.106283_b0545) 2013
Sheng (10.1016/j.optlastec.2020.106283_b0025) 2016; 105
Berumen (10.1016/j.optlastec.2020.106283_b0680) 2010; 5
Yap (10.1016/j.optlastec.2020.106283_b0010) 2015; 2
Megahed (10.1016/j.optlastec.2020.106283_b0465) 2016; 5
10.1016/j.optlastec.2020.106283_b0670
Syed (10.1016/j.optlastec.2020.106283_b0145) 2019; 755
Kalentics (10.1016/j.optlastec.2020.106283_b0850) 2017; 16
Kostevsek (10.1016/j.optlastec.2020.106283_b0080) 2018; 24
Nickel (10.1016/j.optlastec.2020.106283_b0210) 2001; 317
10.1016/j.optlastec.2020.106283_b0035
Zohdi (10.1016/j.optlastec.2020.106283_b0435) 2017
Mani (10.1016/j.optlastec.2020.106283_b0845) 2017; 55
Zhao (10.1016/j.optlastec.2020.106283_b0695) 2017; 28
Bael (10.1016/j.optlastec.2020.106283_b0635) 2011; 528
Williams (10.1016/j.optlastec.2020.106283_b0120) 2018; 22
Dai (10.1016/j.optlastec.2020.106283_b0290) 2018; 99
Bartlett (10.1016/j.optlastec.2020.106283_b0415) 2018; 22
Ding (10.1016/j.optlastec.2020.106283_b0315) 2011; 50
Rai (10.1016/j.optlastec.2020.106283_b0460) 2016; 124
Parry (10.1016/j.optlastec.2020.106283_b0105) 2016; 12
Mines (10.1016/j.optlastec.2020.106283_b0015) 2019
Belle (10.1016/j.optlastec.2020.106283_b0920) 2013; 554–557
De (10.1016/j.optlastec.2020.106283_b0200) 2011; 16
Furumoto (10.1016/j.optlastec.2020.106283_b0340) 2017; 245
Tan (10.1016/j.optlastec.2020.106283_b0505) 2020; 15
10.1016/j.optlastec.2020.106283_b0160
Mugwagwa (10.1016/j.optlastec.2020.106283_b0335) 2019; 102
Zaeh (10.1016/j.optlastec.2020.106283_b0110) 2010; 4
Song (10.1016/j.optlastec.2020.106283_b0800) 2019; 120
10.1016/j.optlastec.2020.106283_b0560
Vrancken (10.1016/j.optlastec.2020.106283_b0750) 2015
10.1016/j.optlastec.2020.106283_b0685
Qiu (10.1016/j.optlastec.2020.106283_b0480) 2015; 96
Dong (10.1016/j.optlastec.2020.106283_b0300) 2018; 12
Korsunsky (10.1016/j.optlastec.2020.106283_b0590) 2010; 205
Shi (10.1016/j.optlastec.2020.106283_b0425) 2017; 90
Shrestha (10.1016/j.optlastec.2020.106283_b0630) 2019; 141
Chris (10.1016/j.optlastec.2020.106283_b0650) 2018; 70
10.1016/j.optlastec.2020.106283_b0725
Li (10.1016/j.optlastec.2020.106283_b0345) 2016; 229
Hu (10.1016/j.optlastec.2020.106283_b0665) 2003; 43
Vora (10.1016/j.optlastec.2020.106283_b0910) 2017; 5
Kuryntsev (10.1016/j.optlastec.2020.106283_b0795) 2018; 107
Gaja (10.1016/j.optlastec.2020.106283_b0705) 2016
Wei (10.1016/j.optlastec.2020.106283_b0555) 2019; 150
Vilaro (10.1016/j.optlastec.2020.106283_b0730) 2011; 42a
Chua (10.1016/j.optlastec.2020.106283_b0840) 2017; 4
Yoshida (10.1016/j.optlastec.2020.106283_b0700) 2016; 9
Verhaeghe (10.1016/j.optlastec.2020.106283_b0305) 2009; 57
Tian (10.1016/j.optlastec.2020.106283_b0400) 2008; 199
Khorasani (10.1016/j.optlastec.2020.106283_b0955) 2019; 14
Gu (10.1016/j.optlastec.2020.106283_b0440) 2017; 3
Whiting (10.1016/j.optlastec.2020.106283_b0140) 2016
Song (10.1016/j.optlastec.2020.106283_b0380) 2018; 170
Körner (10.1016/j.optlastec.2020.106283_b0450) 2011; 211
Perron (10.1016/j.optlastec.2020.106283_b0485) 2017; 26
Nassar (10.1016/j.optlastec.2020.106283_b0820) 2015; 6
King (10.1016/j.optlastec.2020.106283_b0225) 2015; 31
Ali (10.1016/j.optlastec.2020.106283_b0285) 2018; 97
Shi (10.1016/j.optlastec.2020.106283_b0420) 2016; 84
Tammas-Williams (10.1016/j.optlastec.2020.106283_b0640) 2015; 102
Wang (10.1016/j.optlastec.2020.106283_b0020) 2012
Li (10.1016/j.optlastec.2020.106283_b0365) 2014; 1–4
Kou (10.1016/j.optlastec.2020.106283_b0205) 2003
He (10.1016/j.optlastec.2020.106283_b0570) 2019; 122
Zhou (10.1016/j.optlastec.2020.106283_b0655) 2018; 2
Khairallah (10.1016/j.optlastec.2020.106283_b0295) 2014; 214
Koric (10.1016/j.optlastec.2020.106283_b0085) 2008; 197
Br
References_xml – volume: 7
  start-page: 83
  year: 2015
  end-page: 91
  ident: b0125
  article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718
  publication-title: Addit. Manuf.
– volume: 112
  start-page: 30
  year: 2016
  end-page: 40
  ident: b0030
  article-title: Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel
  publication-title: Mater. Charact.
– volume: 14
  start-page: 349
  year: 2019
  end-page: 359
  ident: b0955
  article-title: A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4V
  publication-title: Virt. Phys. Prototyp.
– volume: 89
  year: 2018
  ident: b0575
  article-title: An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes
  publication-title: Rev. Sci. Instrum.
– volume: 137
  start-page: 65
  year: 2017
  end-page: 78
  ident: b0395
  article-title: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting
  publication-title: Optik
– volume: 122
  start-page: 151
  year: 2019
  end-page: 163
  ident: b0490
  article-title: Progress in numerical simulation of the laser cladding process
  publication-title: Opt. Lasers Eng.
– volume: 199
  start-page: 41
  year: 2008
  end-page: 48
  ident: b0400
  article-title: Finite element modeling of electron beam welding of a large complex Al alloy structure by parallel computations
  publication-title: J. Mater. Process. Technol.
– volume: 12
  start-page: 159
  year: 2016
  end-page: 168
  ident: b0330
  article-title: Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting
  publication-title: Addit. Manuf.
– reference: S. Mohanty, J.H. Hattel, Laser Additive Manufacturing of multimaterial tool inserts: A simulation-based optimization study, Laser 3d Manuf. Iv 10095 (2017). https://doi.org/10.1117/12.2253600.
– volume: 16
  start-page: 355
  year: 2007
  end-page: 373
  ident: b0250
  article-title: Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding
  publication-title: J. Therm. Spray Technol.
– volume: 36
  start-page: 564
  year: 2013
  end-page: 588
  ident: b0270
  article-title: Thermo-mechanics and microstructure evolution in manufacturing simulations
  publication-title: J. Therm. Stresses
– volume: 102
  start-page: 2441
  year: 2019
  end-page: 2450
  ident: b0335
  article-title: Evaluation of the impact of scanning strategies on residual stresses in selective laser melting
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 22
  start-page: 1
  year: 2018
  end-page: 12
  ident: b0415
  article-title: Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation
  publication-title: Addit. Manuf.
– volume: 10
  start-page: 348
  year: 2017
  ident: b0660
  article-title: An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V
  publication-title: Materials
– volume: 21
  start-page: 333
  year: 2018
  end-page: 339
  ident: b0645
  article-title: Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality
  publication-title: Addit. Manuf.
– volume: 98
  start-page: 1
  year: 2015
  end-page: 16
  ident: b0625
  article-title: 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT
  publication-title: Acta Materialia
– volume: 70
  start-page: 1844
  year: 2018
  end-page: 1852
  ident: b0650
  article-title: Micron-level layer-wise surface profilometry to detect porosity defects in powder bed fusion of inconel 718
  publication-title: JOM
– volume: 9
  start-page: 2788
  year: 2018
  ident: b0040
  article-title: Adding chemically selective subtraction to multi-material 3D additive manufacturing
  publication-title: Nat. Commun.
– volume: 50
  start-page: 1042
  year: 2019
  end-page: 1051
  ident: b0045
  article-title: Additive manufacturing of a steel-ceramic multi-material by selective laser melting
  publication-title: Metallurg. Mater. Trans. B-Process Metall. Mater. Process. Sci.
– volume: 24
  start-page: 877
  year: 2002
  end-page: 886
  ident: b0855
  article-title: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel
  publication-title: Int. J. Fatigue
– volume: 5
  start-page: 61
  year: 2016
  end-page: 93
  ident: b0465
  article-title: Metal additive-manufacturing process and residual stress modeling
  publication-title: Integr. Mater. Manuf. Innov.
– volume: 26
  year: 2017
  ident: b0485
  article-title: Matching time and spatial scales of rapid solidification: Dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations
  publication-title: Modell. Simul. Mater. Sci. Eng
– volume: 363
  start-page: 849
  year: 2019
  end-page: 852
  ident: b0585
  article-title: Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging
  publication-title: Science
– volume: 11
  start-page: 8
  year: 2017
  end-page: 11
  ident: b0050
  article-title: Multi-material selective laser melting of Fe/Al-12Si components
  publication-title: Manuf. Lett.
– volume: 120
  year: 2019
  ident: b0800
  article-title: Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting
  publication-title: Opt. Laser Technol.
– year: 2017
  ident: b0565
  article-title: 3D residual stresses in selective laser melted Hastelloy X
  publication-title: Icrs
– volume: 136
  start-page: 24
  year: 2018
  end-page: 35
  ident: b0280
  article-title: Modeling temperature and residual stress fields in selective laser melting
  publication-title: Int. J. Mech. Sci.
– volume: 75
  start-page: 197
  year: 2015
  end-page: 206
  ident: b0100
  article-title: Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy
  publication-title: Opt. Laser Technol.
– volume: 205
  start-page: 2393
  year: 2010
  end-page: 2403
  ident: b0590
  article-title: Residual stress evaluation at the micrometer scale: Aanalysis of thin coatings by FIB milling and digital image correlation
  publication-title: Surf. Coat. Technol.
– start-page: 17
  year: 2019
  end-page: 31
  ident: b0015
  article-title: Additive Manufacturing Processes and Materials for Metallic Microlattice Structures Using Selective Laser Melting, Electron Beam Melting and Binder Jetting, Metallic Microlattice Structures
– volume: 94
  start-page: 59
  year: 2015
  end-page: 68
  ident: b0155
  article-title: Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach
  publication-title: Acta Mater.
– volume: 114
  start-page: 33
  year: 2016
  end-page: 42
  ident: b0615
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
– volume: 23
  start-page: 1009
  year: 2007
  end-page: 1020
  ident: b0890
  article-title: Welding residual stresses in ferritic power plant steels
  publication-title: Mater. Sci. Technol.
– volume: 117
  start-page: 221
  year: 2016
  end-page: 232
  ident: b0390
  article-title: Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy
  publication-title: Comput. Mater. Sci.
– volume: 10
  start-page: 67
  year: 2015
  end-page: 76
  ident: b0135
  article-title: Evaluation of residual stress in stainless steel 316L and Ti-6Al-4V samples produced by selective laser melting
  publication-title: Virt. Phys. Prototyp.
– volume: 140
  year: 2018
  ident: b0675
  article-title: Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach
  publication-title: J. Manuf. Sci. Eng.
– volume: 33
  start-page: 82
  year: 2014
  end-page: 92
  ident: b0710
  article-title: Residual stresses comparison determined by short-wavelength X-ray diffraction and neutron diffraction for 7075 aluminum alloy
  publication-title: J. Nondestr. Eval.
– reference: R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, J. Van Humbeeck, Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts, in: Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016 83 (2016) 882–890. https://doi.org/10.1016/j.phpro.2016.08.092.
– volume: 149
  start-page: 616
  year: 2004
  end-page: 622
  ident: b0720
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mater. Process. Technol.
– volume: 63
  start-page: 856
  year: 2014
  end-page: 867
  ident: b0405
  article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder
  publication-title: Mater. Des.
– volume: 24
  start-page: 670
  year: 2018
  end-page: 676
  ident: b0080
  article-title: Development of productivity estimation model for mass-customized production by selective laser melting
  publication-title: Rapid Prototyp. J.
– volume: 56
  start-page: 379
  year: 2014
  end-page: 389
  ident: b0310
  article-title: Numerical model based reliability estimation of selective laser melting process
  publication-title: Physics Procedia
– reference: Nathan Charles Levkulich, An Experimental Investigation of Residual Stress Development during Selective Laser Melting of Ti-6Al-4V, Wright State University, 2017.
– volume: 792
  start-page: 574
  year: 2019
  end-page: 581
  ident: b0945
  article-title: Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting
  publication-title: J. Alloy. Compd.
– volume: 107
  start-page: 59
  year: 2018
  end-page: 66
  ident: b0795
  article-title: The influence of pre-heat treatment on laser welding of T-joints of workpieces made of selective laser melting steel and cold rolled stainless steel
  publication-title: Opt. Laser Technol.
– volume: 7
  start-page: 12
  year: 2015
  end-page: 19
  ident: b0115
  article-title: AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting
  publication-title: Addit. Manuf.
– reference: C. Rans, J. Michielssen, M. Walker, W.D. Wang, L. 't Hoen-Velterop, Beyond the orthogonal: on the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V, Int. J. Fatigue 116 (2018) 344–354. https://doi.org/10.1016/j.ijfatigue.2018.06.038.
– volume: 150
  start-page: 67
  year: 2019
  end-page: 77
  ident: b0555
  article-title: Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5 Sn alloy
  publication-title: Mater. Char.
– volume: 214
  start-page: 1852
  year: 2014
  end-page: 1860
  ident: b0370
  article-title: Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy
  publication-title: J. Mater. Process. Technol.
– reference: A.V. Gusarov, M. Pavlov, I. Smurov, Residual stresses at laser surface remelting and additive manufacturing, lasers in manufacturing 2011, in: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, vol 12, Pt A 12(1) (2011) 248–254. https://doi.org/10.1016/j.phpro.2011.03.032.
– volume: 211
  start-page: 978
  year: 2011
  end-page: 987
  ident: b0450
  article-title: Mesoscopic simulation of selective beam melting processes
  publication-title: J. Mater. Process. Technol.
– volume: 120
  start-page: 15
  year: 2014
  end-page: 25
  ident: b0185
  article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
  publication-title: Eng. Fract. Mech.
– volume: 45a
  start-page: 6260
  year: 2014
  end-page: 6270
  ident: b0430
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater.Sci.
– volume: 15
  start-page: 87
  year: 2020
  end-page: 105
  ident: b0505
  article-title: Microstructure modelling for metallic additive manufacturing: a review
  publication-title: Virt. Phys. Prototyp.
– volume: 73
  start-page: 151
  year: 2018
  end-page: 157
  ident: b0445
  article-title: A multi-scale multi-physics modeling framework of laser powder bed fusion additive manufacturing process
  publication-title: Met. Powder Rep.
– volume: 5
  start-page: 617
  year: 2010
  end-page: 622
  ident: b0680
  article-title: Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies
  publication-title: Phys. Procedia
– volume: 41
  start-page: 881
  year: 2013
  end-page: 886
  ident: b0475
  article-title: Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method
  publication-title: Phys. Procedia
– volume: 66
  start-page: 305
  year: 2017
  end-page: 308
  ident: b0870
  article-title: Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components
  publication-title: Cirp Ann.-Manuf. Technol.
– volume: 15
  start-page: 393
  year: 2010
  end-page: 399
  ident: b0905
  article-title: Effect of low transformation temperature weld filler metal on welding residual stress
  publication-title: Sci. Technol. Weld. Join.
– volume: 96
  start-page: 72
  year: 2015
  end-page: 79
  ident: b0480
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
– volume: 28
  start-page: 1
  year: 2012
  end-page: 14
  ident: b0785
  article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies
  publication-title: J. Mater. Sci. Technol.
– volume: 69
  start-page: 368
  year: 2017
  end-page: 376
  ident: b0070
  article-title: Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 245
  start-page: 207
  year: 2017
  end-page: 214
  ident: b0340
  article-title: Study on deformation restraining of metal structure fabricated by selective laser melting
  publication-title: J. Mater. Process. Technol.
– volume: 22
  start-page: 416
  year: 2018
  end-page: 425
  ident: b0120
  article-title: A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion
  publication-title: Addit. Manuf.
– volume: 74
  start-page: 5
  year: 2018
  end-page: 11
  ident: b0780
  article-title: Application of base plate preheating during selective laser melting
  publication-title: Procedia CIRP
– start-page: 1
  year: 2016
  end-page: 14
  ident: b0705
  article-title: Defects monitoring of laser metal deposition using acoustic emission sensor
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 214
  start-page: 2627
  year: 2014
  end-page: 2636
  ident: b0295
  article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder
  publication-title: J. Mater. Process. Technol.
– reference: A.M. Kamat, Y.T. Pei, An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion, Addit. Manuf. 29 (2019) 100796. https://doi.org/UNSP 100796 10.1016/j.addma.2019.100796.
– volume: 102
  start-page: 47
  year: 2015
  end-page: 61
  ident: b0640
  article-title: XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting
  publication-title: Mater. Charact.
– volume: 52
  start-page: 28
  year: 2000
  end-page: 30
  ident: b0005
  article-title: Producing titanium aerospace components from powder using laser forming
  publication-title: Jom-J. Miner. Met. Mater. Soc.
– volume: 50
  start-page: 3315
  year: 2011
  end-page: 3322
  ident: b0315
  article-title: Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts
  publication-title: Comput. Mater. Sci.
– volume: 9
  year: 2019
  ident: b0865
  article-title: Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting
  publication-title: Metals
– year: 2017
  ident: b0435
  article-title: Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media: Continuum and Discrete Element Methods
– volume: 28
  year: 2017
  ident: b0695
  article-title: Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm
  publication-title: Meas. Sci. Technol.
– start-page: 1269
  year: 2016
  end-page: 1277
  ident: b0770
  article-title: Preheating of selective laser melted Ti- 6Al-4V: microstructure and mechanical properties
  publication-title: Proceedings of the 13th World Conference on Titanium, Wiley Online Library
– volume: 5
  start-page: 386
  year: 2017
  end-page: 390
  ident: b0950
  article-title: Is the energy density a reliable parameter for materials synthesis by selective laser melting?
  publication-title: Mater. Res. Lett.
– volume: 197
  start-page: 408
  year: 2008
  end-page: 418
  ident: b0085
  article-title: Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws
  publication-title: J. Mater. Process. Technol.
– volume: 17
  start-page: 366
  year: 2013
  end-page: 375
  ident: b0215
  article-title: Residual stress. Part 2 – nature and origins
  publication-title: Mater. Sci. Technol.
– volume: 769
  year: 2020
  ident: b0815
  article-title: Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum
  publication-title: Mater. Sci. Eng., A
– volume: 21
  start-page: 284
  year: 2018
  end-page: 297
  ident: b0275
  article-title: A semi-analytical thermal modelling approach for selective laser melting
  publication-title: Addit. Manuf.
– volume: 140
  year: 2018
  ident: b0535
  article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting
  publication-title: J. Manuf. Sci. Engi.-Trans. ASME
– reference: C. Seidel, M.F. Zaeh, M. Wunderer, J. Weirather, T.A. Krol, M. Ott, Simulation of the laser beam melting process - approaches for an efficient modelling of the beam-material interaction, in: 8th International Conference on Digital Enterprise Technology - Det 2014 Disruptive Innovation in Manufacturing Engineering Towards the 4th Industrial Revolution 25 (2014) 146–153. https://doi.org/10.1016/j.procir.2014.10.023.
– reference: X. Xing, X. Duan, X. Sun, H. Gong, L. Wang, F. Jiang, Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique, Materials (Basel) 12(3) (2019) 455. https://doi.org/10.3390/ma12030455.
– volume: 153–154
  start-page: 119
  year: 2019
  end-page: 130
  ident: b0520
  article-title: In situ measurements and thermo-mechanical simulation of Ti–6Al–4V laser solid forming processes
  publication-title: Int. J. Mech. Sci.
– volume: 317
  start-page: 59
  year: 2001
  end-page: 64
  ident: b0210
  article-title: Thermal stresses and deposition patterns in layered manufacturing
  publication-title: Mater. Sci. Eng., A
– volume: 7
  start-page: 3602
  year: 2017
  ident: b0580
  article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction
  publication-title: Sci. Rep.
– volume: 55
  start-page: 187
  year: 2006
  end-page: 192
  ident: b0220
  article-title: Fundamentals of selective laser melting of alloyed steel powders
  publication-title: Cirp Ann.-Manuf. Technol.
– volume: 30
  start-page: 1650255
  year: 2016
  ident: b0810
  article-title: Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process
  publication-title: Mod. Phys. Lett. B
– volume: 6
  start-page: 39
  year: 2015
  end-page: 52
  ident: b0820
  article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti-6Al-4V
  publication-title: Addit. Manuf.
– volume: 755
  start-page: 246
  year: 2019
  end-page: 257
  ident: b0145
  article-title: An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti-6Al-4V
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process.
– start-page: 115
  year: 2009
  end-page: 120
  ident: b0255
  article-title: Calculation of stresses in two-and three-dimensional structures generated by induction assisted laser cladding
  publication-title: Proc. LIM
– start-page: 1
  year: 2003
  end-page: 29
  ident: b0205
  article-title: Welding Metallurgy
– volume: 57
  start-page: 6006
  year: 2009
  end-page: 6012
  ident: b0305
  article-title: A pragmatic model for selective laser melting with evaporation
  publication-title: Acta Mater.
– volume: 97
  start-page: 2621
  year: 2018
  end-page: 2633
  ident: b0285
  article-title: Residual stress development in selective laser-melted Ti-6Al-4V: a parametric thermal modelling approach
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 25
  start-page: 325
  year: 2019
  end-page: 334
  ident: b0385
  article-title: New aspects about the search for the most relevant parameters optimizing SLM materials
  publication-title: Addit. Manuf.
– volume: 23
  start-page: 187
  year: 2016
  ident: b0715
  article-title: S51 Influence of cold compression on the residual stresses in 7449 forgings
  publication-title: Powder Diffr.
– volume: 87
  start-page: 29
  year: 2014
  end-page: 32
  ident: b0195
  article-title: Residual stress via the contour method in compact tension specimens produced via selective laser melting
  publication-title: Scr. Mater.
– volume: 229
  start-page: 703
  year: 2016
  end-page: 712
  ident: b0345
  article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting
  publication-title: J. Mater. Process. Technol.
– volume: 49
  start-page: 645
  year: 2017
  end-page: 652
  ident: b0510
  article-title: Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing
  publication-title: J. Nanjing Univ. Aeronaut. Astronaut.
– volume: 170
  start-page: 342
  year: 2018
  end-page: 352
  ident: b0380
  article-title: Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting
  publication-title: Optik
– reference: T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen, J.-P. Kruth, Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring, Opt. Lasers Eng. 49(12) (2011) 1440–1446. https:// doi.org/10.1016/j.optlaseng.2011.06.016.
– year: 2017
  ident: b0835
  article-title: Material Quality and Process Monitoring in Metal Additive Manufacturing
– volume: 91
  start-page: 1255
  year: 2016
  end-page: 1273
  ident: b0690
  article-title: Experimental validation and characterization of a real-time metrology system for photopolymerization-based stereolithographic additive manufacturing process
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: H. Krauss, C. Eschey, M. Zaeh, Thermography for monitoring the selective laser melting process, in: Proceedings of the Solid Freeform Fabrication Symposium, 2012, pp. 999–1014.
– volume: 4
  start-page: 235
  year: 2017
  end-page: 245
  ident: b0840
  article-title: Process monitoring and inspection systems in metal additive manufacturing: status and applications
  publication-title: Int. J. Precis. Eng. Manuf.-Green Technol.
– volume: 56
  start-page: 265
  year: 2015
  end-page: 276
  ident: b0495
  article-title: Multiscale modeling of electron beam and substrate interaction: a new heat source model
  publication-title: Comput. Mech.
– volume: 105
  start-page: 75
  year: 2016
  end-page: 83
  ident: b0025
  article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting
  publication-title: Acta Mater.
– volume: 16
  start-page: 36
  year: 2018
  end-page: 39
  ident: b0605
  article-title: Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting
  publication-title: Manuf. Lett.
– year: 2008
  ident: b0775
  article-title: Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM)
  publication-title: International Conference on Rapid Manufacturing
– volume: 26
  year: 2014
  ident: b0745
  article-title: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting
  publication-title: J. Laser Appl.
– volume: 79
  start-page: 81
  year: 2015
  end-page: 88
  ident: b0130
  article-title: Effect of curvature radius on the residual stress of thin-walled parts in laser direct forming
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 128
  start-page: 662
  year: 2006
  end-page: 679
  ident: b0245
  article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process
  publication-title: J. Heat Transf.-Trans. ASME
– volume: 5
  start-page: 24
  year: 2017
  ident: b0910
  article-title: Customised alloy blends for in-situ Al339 alloy formation using anchorless selective laser melting
  publication-title: Technologies
– volume: 12
  year: 2019
  ident: b0765
  article-title: Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti-6Al-4V processed by selective laser melting
  publication-title: Materials (Basel)
– volume: 21
  start-page: 159
  year: 2015
  end-page: 167
  ident: b0825
  article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing
  publication-title: Rapid Prototyp. J.
– volume: 667
  start-page: 42
  year: 2016
  end-page: 53
  ident: b0595
  article-title: Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
– year: 2016
  ident: b0060
  article-title: Loading-unloading cycles of 3D-printing built bi-material structures with ceramic and elastomer
  publication-title: ASME 2016 11th International Manufacturing Science and Engineering Conference
– volume: 378
  start-page: 34
  year: 2004
  end-page: 39
  ident: b0885
  article-title: Developments in martensitic and bainitic steels: role of the shape deformation
  publication-title: Mater. Sci. Eng A-Struct. Mater. Propert. Microstruct. Process.
– volume: 2
  year: 2015
  ident: b0010
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl. Phys. Rev.
– volume: 39
  start-page: 858
  year: 2007
  end-page: 863
  ident: b0240
  article-title: Temperature gradient mechanism in laser forming of thin plates
  publication-title: Opt. Laser Technol.
– volume: 84
  start-page: 9
  year: 2016
  end-page: 22
  ident: b0420
  article-title: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites
  publication-title: Opt. Laser Technol.
– volume: 4
  start-page: 35
  year: 2010
  end-page: 45
  ident: b0110
  article-title: Investigations on residual stresses and deformations in selective laser melting
  publication-title: Prod. Eng. Res. Devel.
– volume: 590
  start-page: 433
  year: 2014
  end-page: 439
  ident: b0150
  article-title: Effect of residual stress induced by pulsed-laser irradiation on initiation of chloride stress corrosion cracking in stainless steel
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
– volume: 108
  start-page: 36
  year: 2016
  end-page: 45
  ident: b0230
  article-title: Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
– volume: 57
  start-page: 359
  year: 2016
  end-page: 370
  ident: b0320
  article-title: Thermodynamically consistent microstructure prediction of additively manufactured materials
  publication-title: Comput. Mech.
– reference: J.P. Kruth, J. Deckers, E. Yasa, R. Wauthle, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 226(B6) (2012) 980–991. https://doi.org/10.1177/0954405412437085.
– volume: 255
  start-page: 650
  year: 2018
  end-page: 655
  ident: b0055
  article-title: Hybrid additive manufacturing of Al-Ti-6Al-4V functionally graded materials with selective laser melting and cold spraying
  publication-title: J. Mater. Process. Technol.
– volume: 61
  start-page: 599
  year: 2018
  end-page: 615
  ident: b0325
  article-title: Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
  publication-title: Comput. Mech.
– volume: 14
  start-page: 559
  year: 2009
  end-page: 565
  ident: b0895
  article-title: Stainless steel weld metal designed to mitigate residual stresses
  publication-title: Sci. Technol. Weld. Join.
– year: 2016
  ident: b0140
  article-title: Characterization of feedstock in the powder bed fusion process: sources of variation in particle size distribution and the factors that influence them
  publication-title: International Solid Freeform Fabrication Symposium Austin, Texas, USA
– volume: 31
  start-page: 957
  year: 2015
  end-page: 968
  ident: b0225
  article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory
  publication-title: Mater. Sci. Technol.
– volume: 98
  start-page: 23
  year: 2018
  end-page: 32
  ident: b0350
  article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel
  publication-title: Opt. Laser Technol.
– volume: 18
  start-page: 1544
  year: 2016
  end-page: 1549
  ident: b0065
  article-title: Manufacturing of Ti-6Al-4V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining
  publication-title: Adv. Eng. Mater.
– volume: 1–4
  start-page: 99
  year: 2014
  end-page: 109
  ident: b0365
  article-title: Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study
  publication-title: Addit. Manuf.
– volume: 118
  start-page: 13
  year: 2016
  end-page: 18
  ident: b0740
  article-title: Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting
  publication-title: Scr. Mater.
– volume: 124
  year: 2020
  ident: b0875
  article-title: Laser finishing of 3D printed parts produced by material extrusion
  publication-title: Opt. Lasers Eng.
– volume: 528
  start-page: 2288
  year: 2011
  end-page: 2298
  ident: b0530
  article-title: Residual stresses in laser direct metal deposited Waspaloy
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
– reference: P. Hanzl, M. Zetek, T. Baksa, T. Kroupa, The Influence of processing parameters on the mechanical properties of SLM parts, in: 25th Daaam International Symposium on Intelligent Manufacturing and Automation, 2014 100 (2015) 1405–1413. https://doi.org/10.1016/j.proeng.2015.01.510.
– volume: 12
  start-page: 1
  year: 2016
  end-page: 15
  ident: b0105
  article-title: Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation
  publication-title: Addit. Manuf.
– volume: 26
  start-page: 2869
  year: 2017
  end-page: 2877
  ident: b0175
  article-title: Study on the quality and performance of CoCrMo alloy parts manufactured by selective laser melting
  publication-title: J. Mater. Eng. Perform.
– volume: 13
  year: 2019
  ident: b0500
  article-title: Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography
  publication-title: Res. Phys.
– volume: 39
  start-page: 843
  year: 2012
  end-page: 852
  ident: b0470
  article-title: Multiphysical simulation of laser material processing
  publication-title: Laser Assisted Net Shape Eng. 7 (Lane 2012)
– reference: R. Baskett, Effects of Support Structure Geometry on SLM Induced Residual Stresses in Overhanging Features (2017).
– volume: 541
  start-page: 177
  year: 2012
  end-page: 185
  ident: b0790
  article-title: Heat treatment of Ti-6Al-4V produced by Selective Laser Melting: microstructure and mechanical properties
  publication-title: J. Alloy. Compd.
– volume: 689
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0805
  article-title: Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
– volume: 705
  start-page: 20
  year: 2017
  end-page: 31
  ident: b0600
  article-title: Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment
  publication-title: Mater. Sci. Eng., A
– volume: 16
  start-page: 90
  year: 2017
  end-page: 97
  ident: b0850
  article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening
  publication-title: Addit. Manuf.
– volume: 19
  start-page: 39
  year: 2018
  end-page: 50
  ident: b0880
  article-title: On the machinability of directed energy deposited Ti-6Al-4V
  publication-title: Addit. Manuf.
– volume: 67
  start-page: 318
  year: 2014
  end-page: 330
  ident: b0455
  article-title: Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method
  publication-title: Comput. Math. Appl.
– volume: 14
  start-page: 92
  year: 2012
  end-page: 97
  ident: b0170
  article-title: Analysis of fracture toughness and crack propagation of Ti-6Al-4V produced by selective laser melting
  publication-title: Adv. Eng. Mater.
– volume: 99
  start-page: 91
  year: 2018
  end-page: 100
  ident: b0290
  article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts
  publication-title: Opt. Laser Technol.
– volume: 51
  start-page: 61
  year: 2015
  end-page: 73
  ident: b0075
  article-title: Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 55
  start-page: 1400
  year: 2017
  end-page: 1418
  ident: b0845
  article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes
  publication-title: Int. J. Prod. Res.
– reference: W. Xing, D. Ouyang, N. Li, L. Liu, Estimation of Residual Stress in Selective Laser Melting of a Zr-Based Amorphous Alloy, Materials (Basel) 11(8) (2018) 1480-. https://doi.org/10.3390/ma11081480.
– volume: 131
  year: 2009
  ident: b0900
  article-title: The Effects of filler metal transformation temperature on residual stresses in a high strength steel weld
  publication-title: J. Press. Vessel Technol.-Trans. ASME
– volume: 90
  start-page: 71
  year: 2017
  end-page: 79
  ident: b0425
  article-title: Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks
  publication-title: Opt. Laser Technol.
– volume: 554–557
  start-page: 1828
  year: 2013
  end-page: 1834
  ident: b0920
  article-title: Investigation of residual stresses induced during the selective laser melting process
  publication-title: Key Eng. Mater.
– volume: 695
  start-page: 211
  year: 2017
  end-page: 220
  ident: b0760
  article-title: In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti-6Al-4V
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
– volume: 127
  start-page: 120
  year: 2017
  end-page: 130
  ident: b0180
  article-title: Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water
  publication-title: Corros. Sci.
– volume: 43
  start-page: 51
  year: 2003
  end-page: 60
  ident: b0665
  article-title: Sensing, modeling and control for laser-based additive manufacturing
  publication-title: Int. J. Mach. Tools Manuf
– volume: 12
  start-page: 50
  year: 2018
  ident: b0300
  article-title: Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modeling and experimental approaches
  publication-title: Materials
– volume: 725
  start-page: 419
  year: 2018
  end-page: 427
  ident: b0940
  article-title: Selective laser melting of high strength and toughness stainless steel parts: The roles of laser hatch style and part placement strategy
  publication-title: Mater. Sci. Eng., A
– volume: 16
  start-page: 204
  year: 2011
  end-page: 208
  ident: b0200
  article-title: A perspective on residual stresses in welding
  publication-title: Sci. Technol. Weld. Join.
– volume: 17
  start-page: 355
  year: 2001
  end-page: 365
  ident: b0525
  article-title: Residual stress part 1 – measurement techniques
  publication-title: Mater. Sci. Technol.
– start-page: 109
  year: 2013
  end-page: 138
  ident: b0545
  article-title: The contour method, practical residual stress measurement
  publication-title: Methods
– reference: J.C.H. Erik R. Denlinger, Pan Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, J. Mater. Process. Technol. 215 (2015) 123–131. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2014.07.030.
– year: 2015
  ident: b0750
  article-title: Influence of preheating and oxygen content on Selective Laser Melting of Ti-6Al-4V
  publication-title: Proceedings of the 16th RAPDASA Conference
– volume: 12
  start-page: 240
  year: 2016
  end-page: 251
  ident: b0360
  article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting
  publication-title: Addit. Manuf.
– volume: 238
  start-page: 437
  year: 2016
  end-page: 445
  ident: b0915
  article-title: Changing the alloy composition of Al7075 for better processability by selective laser melting
  publication-title: J. Mater. Process. Technol.
– volume: 136
  year: 2014
  ident: b0830
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.-Trans. ASME
– volume: 12
  start-page: 254
  year: 2006
  end-page: 265
  ident: b0090
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
– volume: 3
  start-page: 675
  year: 2017
  end-page: 684
  ident: b0440
  article-title: A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing
  publication-title: Engineering
– year: 2012
  ident: b0610
  article-title: Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing
– volume: 528
  start-page: 7423
  year: 2011
  end-page: 7431
  ident: b0635
  article-title: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti-6Al-4V porous structures
  publication-title: Mater. Sci. Eng., A
– volume: 136
  year: 2014
  ident: b0735
  article-title: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating
  publication-title: J. Manuf. Sci. Eng.-Trans. ASME
– volume: 399
  start-page: 72
  year: 2005
  end-page: 83
  ident: b0550
  article-title: Residual stresses in LENS ® components using neutron diffraction and contour method
  publication-title: Mater. Sci. Eng., A
– volume: 48
  start-page: 300
  year: 2013
  end-page: 307
  ident: b0165
  article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance
  publication-title: Int. J. Fatigue
– volume: 46
  start-page: 93
  year: 2016
  end-page: 123
  ident: b0515
  article-title: Multiscale modeling of powder bed-based additive manufacturing
  publication-title: Annu. Rev. Mater. Res.
– reference: M. Mohammad, R. Prahalada, Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach, J. Manuf. Sci. Eng. 140(9) (2018) 091002.
– volume: 2
  start-page: 13
  year: 2018
  ident: b0655
  article-title: Quantitative scanning laue diffraction microscopy: application to the study of 3D printed nickel-based superalloys
  publication-title: Quantum Beam Sci.
– reference: B. Vrancken, Study of residual stresses in selective laser melting, KU Leuven, 2016.
– volume: 141
  start-page: 1
  year: 2019
  ident: b0630
  article-title: A study of keyhole porosity in selective laser melting: single-track scanning with micro-CT analysis
  publication-title: J. Manuf. Sci. Eng.-Trans. ASME
– volume: 15
  start-page: 1
  year: 1999
  end-page: 34
  ident: b0265
  article-title: On the formulation of coupled thermoplastic problems with phase-change
  publication-title: Int. J. Plast.
– volume: 124
  start-page: 37
  year: 2016
  end-page: 48
  ident: b0460
  article-title: A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing
  publication-title: Comput. Mater. Sci.
– volume: 9
  start-page: 112
  year: 2016
  ident: b0700
  article-title: Residual stress analysis based on acoustic and optical methods
  publication-title: Materials (Basel)
– volume: 42a
  start-page: 3190
  year: 2011
  end-page: 3199
  ident: b0730
  article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting
  publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater. Sci.
– year: 2018
  ident: b0930
  article-title: Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting
  publication-title: Adv. Mater. Sci. Eng.
– start-page: p. MTh3B.2
  year: 2012
  ident: b0020
  article-title: Laser additive manufacturing of aerospace large metallic structural components: state of the arts and challenges, international photonics and optoelectronics meetings
  publication-title: Opt. Soc. Am, Wuhan
– volume: 122
  start-page: 74
  year: 2019
  end-page: 88
  ident: b0570
  article-title: In-situ monitoring and deformation characterization by optical techniques; part I: Laser-aided direct metal deposition for additive manufacturing
  publication-title: Opt. Lasers Eng.
– volume: 53
  start-page: 195
  year: 2004
  end-page: 198
  ident: b0190
  article-title: Residual stress within metallic model made by selective laser melting process
  publication-title: Cirp Ann.-Manuf. Technol.
– volume: 46
  start-page: 147
  year: 2014
  end-page: 155
  ident: b0375
  article-title: Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures
  publication-title: Intermetallics
– volume: 16
  start-page: 204
  issue: 3
  year: 2011
  ident: 10.1016/j.optlastec.2020.106283_b0200
  article-title: A perspective on residual stresses in welding
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/136217111X12978476537783
– volume: 98
  start-page: 1
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0625
  article-title: 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2015.07.014
– volume: 590
  start-page: 433
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0150
  article-title: Effect of residual stress induced by pulsed-laser irradiation on initiation of chloride stress corrosion cracking in stainless steel
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
  doi: 10.1016/j.msea.2013.10.066
– volume: 11
  start-page: 8
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0050
  article-title: Multi-material selective laser melting of Fe/Al-12Si components
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2017.01.002
– volume: 554–557
  start-page: 1828
  issue: 2013
  year: 2013
  ident: 10.1016/j.optlastec.2020.106283_b0920
  article-title: Investigation of residual stresses induced during the selective laser melting process
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.554-557.1828
– volume: 120
  start-page: 15
  issue: 4
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0185
  article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2014.03.008
– volume: 4
  start-page: 235
  issue: 2
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0840
  article-title: Process monitoring and inspection systems in metal additive manufacturing: status and applications
  publication-title: Int. J. Precis. Eng. Manuf.-Green Technol.
  doi: 10.1007/s40684-017-0029-7
– volume: 15
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.optlastec.2020.106283_b0265
  article-title: On the formulation of coupled thermoplastic problems with phase-change
  publication-title: Int. J. Plast.
  doi: 10.1016/S0749-6419(98)00055-2
– volume: 5
  start-page: 61
  issue: 1
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0465
  article-title: Metal additive-manufacturing process and residual stress modeling
  publication-title: Integr. Mater. Manuf. Innov.
  doi: 10.1186/s40192-016-0047-2
– volume: 56
  start-page: 379
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0310
  article-title: Numerical model based reliability estimation of selective laser melting process
  publication-title: Physics Procedia
  doi: 10.1016/j.phpro.2014.08.135
– year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0565
  article-title: 3D residual stresses in selective laser melted Hastelloy X
  publication-title: Icrs
– volume: 57
  start-page: 359
  issue: 3
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0320
  article-title: Thermodynamically consistent microstructure prediction of additively manufactured materials
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1243-1
– volume: 120
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0800
  article-title: Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.105725
– volume: 114
  start-page: 33
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0615
  article-title: Denudation of metal powder layers in laser powder bed fusion processes
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.05.017
– volume: 378
  start-page: 34
  issue: 1–2
  year: 2004
  ident: 10.1016/j.optlastec.2020.106283_b0885
  article-title: Developments in martensitic and bainitic steels: role of the shape deformation
  publication-title: Mater. Sci. Eng A-Struct. Mater. Propert. Microstruct. Process.
  doi: 10.1016/j.msea.2003.10.328
– volume: 211
  start-page: 978
  issue: 6
  year: 2011
  ident: 10.1016/j.optlastec.2020.106283_b0450
  article-title: Mesoscopic simulation of selective beam melting processes
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2010.12.016
– volume: 112
  start-page: 30
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0030
  article-title: Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2015.11.021
– volume: 725
  start-page: 419
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0940
  article-title: Selective laser melting of high strength and toughness stainless steel parts: The roles of laser hatch style and part placement strategy
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2018.04.046
– volume: 26
  issue: 1
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0745
  article-title: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting
  publication-title: J. Laser Appl.
  doi: 10.2351/1.4828755
– volume: 255
  start-page: 650
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0055
  article-title: Hybrid additive manufacturing of Al-Ti-6Al-4V functionally graded materials with selective laser melting and cold spraying
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2018.01.015
– ident: 10.1016/j.optlastec.2020.106283_b0355
  doi: 10.1016/j.procir.2014.10.023
– volume: 91
  start-page: 1255
  issue: 1–4
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0690
  article-title: Experimental validation and characterization of a real-time metrology system for photopolymerization-based stereolithographic additive manufacturing process
  publication-title: Int. J. Adv. Manuf. Technol.
– ident: 10.1016/j.optlastec.2020.106283_b0755
  doi: 10.1016/j.phpro.2016.08.092
– volume: 205
  start-page: 2393
  issue: 7
  year: 2010
  ident: 10.1016/j.optlastec.2020.106283_b0590
  article-title: Residual stress evaluation at the micrometer scale: Aanalysis of thin coatings by FIB milling and digital image correlation
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2010.09.033
– volume: 105
  start-page: 75
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0025
  article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.12.017
– ident: 10.1016/j.optlastec.2020.106283_b0725
  doi: 10.1016/j.proeng.2015.01.510
– volume: 14
  start-page: 349
  issue: 4
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0955
  article-title: A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4V
  publication-title: Virt. Phys. Prototyp.
  doi: 10.1080/17452759.2019.1614198
– ident: 10.1016/j.optlastec.2020.106283_b0560
  doi: 10.1177/0954405412437085
– volume: 49
  start-page: 645
  issue: 5
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0510
  article-title: Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing
  publication-title: J. Nanjing Univ. Aeronaut. Astronaut.
– volume: 28
  issue: 1
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0695
  article-title: Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/28/1/015001
– volume: 317
  start-page: 59
  issue: 1
  year: 2001
  ident: 10.1016/j.optlastec.2020.106283_b0210
  article-title: Thermal stresses and deposition patterns in layered manufacturing
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/S0921-5093(01)01179-0
– volume: 528
  start-page: 2288
  issue: 6
  year: 2011
  ident: 10.1016/j.optlastec.2020.106283_b0530
  article-title: Residual stresses in laser direct metal deposited Waspaloy
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
  doi: 10.1016/j.msea.2010.12.010
– year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0060
  article-title: Loading-unloading cycles of 3D-printing built bi-material structures with ceramic and elastomer
– start-page: 1269
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0770
  article-title: Preheating of selective laser melted Ti- 6Al-4V: microstructure and mechanical properties
– volume: 73
  start-page: 151
  issue: 3
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0445
  article-title: A multi-scale multi-physics modeling framework of laser powder bed fusion additive manufacturing process
  publication-title: Met. Powder Rep.
  doi: 10.1016/j.mprp.2018.01.003
– volume: 69
  start-page: 368
  issue: Complete
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0070
  article-title: Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.01.043
– volume: 153–154
  start-page: 119
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0520
  article-title: In situ measurements and thermo-mechanical simulation of Ti–6Al–4V laser solid forming processes
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.01.043
– volume: 16
  start-page: 90
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0850
  article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening
  publication-title: Addit. Manuf.
– volume: 5
  start-page: 617
  year: 2010
  ident: 10.1016/j.optlastec.2020.106283_b0680
  article-title: Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2010.08.089
– volume: 3
  start-page: 675
  issue: 5
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0440
  article-title: A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.05.011
– volume: 141
  start-page: 1
  issue: 7
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0630
  article-title: A study of keyhole porosity in selective laser melting: single-track scanning with micro-CT analysis
  publication-title: J. Manuf. Sci. Eng.-Trans. ASME
  doi: 10.1115/1.4043622
– volume: 17
  start-page: 355
  issue: 4
  year: 2001
  ident: 10.1016/j.optlastec.2020.106283_b0525
  article-title: Residual stress part 1 – measurement techniques
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708301101509980
– volume: 31
  start-page: 957
  issue: 8
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0225
  article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000728
– volume: 63
  start-page: 856
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0405
  article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.07.006
– volume: 1–4
  start-page: 99
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0365
  article-title: Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study
  publication-title: Addit. Manuf.
– volume: 150
  start-page: 67
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0555
  article-title: Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5 Sn alloy
  publication-title: Mater. Char.
  doi: 10.1016/j.matchar.2019.02.010
– volume: 122
  start-page: 74
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0570
  article-title: In-situ monitoring and deformation characterization by optical techniques; part I: Laser-aided direct metal deposition for additive manufacturing
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.05.020
– volume: 149
  start-page: 616
  issue: 1–3
  year: 2004
  ident: 10.1016/j.optlastec.2020.106283_b0720
  article-title: Selective laser melting of iron-based powder
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2003.11.051
– volume: 12
  start-page: 159
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0330
  article-title: Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting
  publication-title: Addit. Manuf.
– volume: 107
  start-page: 59
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0795
  article-title: The influence of pre-heat treatment on laser welding of T-joints of workpieces made of selective laser melting steel and cold rolled stainless steel
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.05.031
– volume: 41
  start-page: 881
  year: 2013
  ident: 10.1016/j.optlastec.2020.106283_b0475
  article-title: Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2013.03.162
– volume: 7
  start-page: 3602
  issue: 1
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0580
  article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03761-2
– volume: 24
  start-page: 670
  issue: 3
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0080
  article-title: Development of productivity estimation model for mass-customized production by selective laser melting
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-06-2017-0120
– ident: 10.1016/j.optlastec.2020.106283_b0620
  doi: 10.1115/1.4040264
– volume: 528
  start-page: 7423
  issue: 24
  year: 2011
  ident: 10.1016/j.optlastec.2020.106283_b0635
  article-title: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti-6Al-4V porous structures
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.06.045
– start-page: 1
  year: 2003
  ident: 10.1016/j.optlastec.2020.106283_b0205
– volume: 97
  start-page: 2621
  issue: 5–8
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0285
  article-title: Residual stress development in selective laser-melted Ti-6Al-4V: a parametric thermal modelling approach
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-2104-9
– volume: 363
  start-page: 849
  issue: 6429
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0585
  article-title: Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging
  publication-title: Science
  doi: 10.1126/science.aav4687
– volume: 50
  start-page: 1042
  issue: 2
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0045
  article-title: Additive manufacturing of a steel-ceramic multi-material by selective laser melting
  publication-title: Metallurg. Mater. Trans. B-Process Metall. Mater. Process. Sci.
  doi: 10.1007/s11663-019-01523-1
– volume: 39
  start-page: 843
  year: 2012
  ident: 10.1016/j.optlastec.2020.106283_b0470
  article-title: Multiphysical simulation of laser material processing
  publication-title: Laser Assisted Net Shape Eng. 7 (Lane 2012)
– volume: 124
  start-page: 37
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0460
  article-title: A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.07.005
– ident: 10.1016/j.optlastec.2020.106283_b0235
– volume: 16
  start-page: 355
  issue: 3
  year: 2007
  ident: 10.1016/j.optlastec.2020.106283_b0250
  article-title: Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding
  publication-title: J. Therm. Spray Technol.
  doi: 10.1007/s11666-007-9026-7
– volume: 55
  start-page: 187
  issue: 1
  year: 2006
  ident: 10.1016/j.optlastec.2020.106283_b0220
  article-title: Fundamentals of selective laser melting of alloyed steel powders
  publication-title: Cirp Ann.-Manuf. Technol.
  doi: 10.1016/S0007-8506(07)60395-3
– ident: 10.1016/j.optlastec.2020.106283_b0685
– volume: 10
  start-page: 67
  issue: 2
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0135
  article-title: Evaluation of residual stress in stainless steel 316L and Ti-6Al-4V samples produced by selective laser melting
  publication-title: Virt. Phys. Prototyp.
  doi: 10.1080/17452759.2015.1026045
– year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0750
  article-title: Influence of preheating and oxygen content on Selective Laser Melting of Ti-6Al-4V
– volume: 22
  start-page: 1
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0415
  article-title: Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation
  publication-title: Addit. Manuf.
– volume: 136
  issue: 6
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0830
  article-title: A review on process monitoring and control in metal-based additive manufacturing
  publication-title: J. Manuf. Sci. Eng.-Trans. ASME
  doi: 10.1115/1.4028540
– volume: 14
  start-page: 92
  issue: 1–2
  year: 2012
  ident: 10.1016/j.optlastec.2020.106283_b0170
  article-title: Analysis of fracture toughness and crack propagation of Ti-6Al-4V produced by selective laser melting
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201100233
– volume: 15
  start-page: 87
  issue: 1
  year: 2020
  ident: 10.1016/j.optlastec.2020.106283_b0505
  article-title: Microstructure modelling for metallic additive manufacturing: a review
  publication-title: Virt. Phys. Prototyp.
  doi: 10.1080/17452759.2019.1677345
– start-page: 17
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0015
– volume: 541
  start-page: 177
  year: 2012
  ident: 10.1016/j.optlastec.2020.106283_b0790
  article-title: Heat treatment of Ti-6Al-4V produced by Selective Laser Melting: microstructure and mechanical properties
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2012.07.022
– volume: 90
  start-page: 71
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0425
  article-title: Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2016.11.002
– volume: 6
  start-page: 39
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0820
  article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti-6Al-4V
  publication-title: Addit. Manuf.
– volume: 79
  start-page: 81
  issue: 1–4
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0130
  article-title: Effect of curvature radius on the residual stress of thin-walled parts in laser direct forming
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-6769-4
– volume: 16
  start-page: 36
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0605
  article-title: Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2018.04.003
– volume: 46
  start-page: 93
  issue: 1
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0515
  article-title: Multiscale modeling of powder bed-based additive manufacturing
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-032158
– ident: 10.1016/j.optlastec.2020.106283_b0935
  doi: 10.1016/j.jmatprotec.2014.07.030
– volume: 19
  start-page: 39
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0880
  article-title: On the machinability of directed energy deposited Ti-6Al-4V
  publication-title: Addit. Manuf.
– volume: 108
  start-page: 36
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0230
  article-title: Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
– volume: 24
  start-page: 877
  issue: 8
  year: 2002
  ident: 10.1016/j.optlastec.2020.106283_b0855
  article-title: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel
  publication-title: Int. J. Fatigue
  doi: 10.1016/S0142-1123(01)00205-5
– volume: 36
  start-page: 564
  issue: 6
  year: 2013
  ident: 10.1016/j.optlastec.2020.106283_b0270
  article-title: Thermo-mechanics and microstructure evolution in manufacturing simulations
  publication-title: J. Therm. Stresses
  doi: 10.1080/01495739.2013.784121
– volume: 245
  start-page: 207
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0340
  article-title: Study on deformation restraining of metal structure fabricated by selective laser melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.02.017
– volume: 67
  start-page: 318
  issue: 2
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0455
  article-title: Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2013.10.001
– volume: 9
  start-page: 2788
  issue: 1
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0040
  article-title: Adding chemically selective subtraction to multi-material 3D additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05234-0
– volume: 2
  start-page: 13
  issue: 2
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0655
  article-title: Quantitative scanning laue diffraction microscopy: application to the study of 3D printed nickel-based superalloys
  publication-title: Quantum Beam Sci.
  doi: 10.3390/qubs2020013
– volume: 128
  start-page: 662
  issue: 7
  year: 2006
  ident: 10.1016/j.optlastec.2020.106283_b0245
  article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process
  publication-title: J. Heat Transf.-Trans. ASME
  doi: 10.1115/1.2194037
– volume: 96
  start-page: 72
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0480
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.004
– volume: 18
  start-page: 1544
  issue: 9
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0065
  article-title: Manufacturing of Ti-6Al-4V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201600172
– volume: 197
  start-page: 408
  issue: 1–3
  year: 2008
  ident: 10.1016/j.optlastec.2020.106283_b0085
  article-title: Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.06.060
– volume: 399
  start-page: 72
  issue: 1
  year: 2005
  ident: 10.1016/j.optlastec.2020.106283_b0550
  article-title: Residual stresses in LENS ® components using neutron diffraction and contour method
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2005.02.019
– volume: 45a
  start-page: 6260
  issue: 13
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0430
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater.Sci.
  doi: 10.1007/s11661-014-2549-x
– year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0435
– volume: 12
  start-page: 50
  issue: 1
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0300
  article-title: Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modeling and experimental approaches
  publication-title: Materials
  doi: 10.3390/ma12010050
– year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0835
– volume: 57
  start-page: 6006
  issue: 20
  year: 2009
  ident: 10.1016/j.optlastec.2020.106283_b0305
  article-title: A pragmatic model for selective laser melting with evaporation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.08.027
– volume: 229
  start-page: 703
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0345
  article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.10.022
– volume: 4
  start-page: 35
  issue: 1
  year: 2010
  ident: 10.1016/j.optlastec.2020.106283_b0110
  article-title: Investigations on residual stresses and deformations in selective laser melting
  publication-title: Prod. Eng. Res. Devel.
  doi: 10.1007/s11740-009-0192-y
– volume: 46
  start-page: 147
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0375
  article-title: Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.11.012
– volume: 5
  start-page: 386
  issue: 6
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0950
  article-title: Is the energy density a reliable parameter for materials synthesis by selective laser melting?
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2017.1299808
– volume: 33
  start-page: 82
  issue: 1
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0710
  article-title: Residual stresses comparison determined by short-wavelength X-ray diffraction and neutron diffraction for 7075 aluminum alloy
  publication-title: J. Nondestr. Eval.
– volume: 689
  start-page: 1
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0805
  article-title: Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
  doi: 10.1016/j.msea.2017.02.038
– start-page: 115
  year: 2009
  ident: 10.1016/j.optlastec.2020.106283_b0255
  article-title: Calculation of stresses in two-and three-dimensional structures generated by induction assisted laser cladding
  publication-title: Proc. LIM
– volume: 50
  start-page: 3315
  issue: 12
  year: 2011
  ident: 10.1016/j.optlastec.2020.106283_b0315
  article-title: Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.06.023
– volume: 792
  start-page: 574
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0945
  article-title: Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.04.017
– volume: 136
  issue: 6
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0735
  article-title: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating
  publication-title: J. Manuf. Sci. Eng.-Trans. ASME
  doi: 10.1115/1.4028513
– volume: 102
  start-page: 2441
  issue: 5–8
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0335
  article-title: Evaluation of the impact of scanning strategies on residual stresses in selective laser melting
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-019-03396-9
– volume: 43
  start-page: 51
  issue: 1
  year: 2003
  ident: 10.1016/j.optlastec.2020.106283_b0665
  article-title: Sensing, modeling and control for laser-based additive manufacturing
  publication-title: Int. J. Mach. Tools Manuf
  doi: 10.1016/S0890-6955(02)00163-3
– volume: 94
  start-page: 59
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0155
  article-title: Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.04.035
– ident: 10.1016/j.optlastec.2020.106283_b0860
  doi: 10.3390/ma12030455
– volume: 61
  start-page: 599
  issue: 5
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0325
  article-title: Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-017-1528-7
– volume: 42a
  start-page: 3190
  issue: 10
  year: 2011
  ident: 10.1016/j.optlastec.2020.106283_b0730
  article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting
  publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater. Sci.
  doi: 10.1007/s11661-011-0731-y
– volume: 28
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.optlastec.2020.106283_b0785
  article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/S1005-0302(12)60016-4
– volume: 769
  year: 2020
  ident: 10.1016/j.optlastec.2020.106283_b0815
  article-title: Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2019.138511
– volume: 9
  start-page: 112
  issue: 2
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0700
  article-title: Residual stress analysis based on acoustic and optical methods
  publication-title: Materials (Basel)
  doi: 10.3390/ma9020112
– volume: 695
  start-page: 211
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0760
  article-title: In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti-6Al-4V
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
  doi: 10.1016/j.msea.2017.04.033
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0865
  article-title: Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting
  publication-title: Metals
  doi: 10.3390/met9010103
– volume: 10
  start-page: 348
  issue: 4
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0660
  article-title: An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V
  publication-title: Materials
  doi: 10.3390/ma10040348
– ident: 10.1016/j.optlastec.2020.106283_b0035
  doi: 10.1117/12.2253600
– volume: 21
  start-page: 284
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0275
  article-title: A semi-analytical thermal modelling approach for selective laser melting
  publication-title: Addit. Manuf.
– volume: 137
  start-page: 65
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0395
  article-title: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.02.060
– volume: 140
  issue: 4
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0535
  article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting
  publication-title: J. Manuf. Sci. Engi.-Trans. ASME
– volume: 55
  start-page: 1400
  issue: 5
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0845
  article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1223378
– volume: 22
  start-page: 416
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0120
  article-title: A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion
  publication-title: Addit. Manuf.
– year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0140
  article-title: Characterization of feedstock in the powder bed fusion process: sources of variation in particle size distribution and the factors that influence them
– volume: 667
  start-page: 42
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0595
  article-title: Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process.
  doi: 10.1016/j.msea.2016.04.086
– ident: 10.1016/j.optlastec.2020.106283_b0160
  doi: 10.1016/j.ijfatigue.2018.06.038
– volume: 118
  start-page: 13
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0740
  article-title: Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.02.022
– volume: 53
  start-page: 195
  issue: 1
  year: 2004
  ident: 10.1016/j.optlastec.2020.106283_b0190
  article-title: Residual stress within metallic model made by selective laser melting process
  publication-title: Cirp Ann.-Manuf. Technol.
  doi: 10.1016/S0007-8506(07)60677-5
– volume: 66
  start-page: 305
  issue: 1
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0870
  article-title: Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components
  publication-title: Cirp Ann.-Manuf. Technol.
  doi: 10.1016/j.cirp.2017.04.084
– volume: 15
  start-page: 393
  issue: 5
  year: 2010
  ident: 10.1016/j.optlastec.2020.106283_b0905
  article-title: Effect of low transformation temperature weld filler metal on welding residual stress
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/136217110X12714217309614
– volume: 2
  issue: 4
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0010
  article-title: Review of selective laser melting: materials and applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4935926
– start-page: 109
  year: 2013
  ident: 10.1016/j.optlastec.2020.106283_b0545
  article-title: The contour method, practical residual stress measurement
  publication-title: Methods
– volume: 52
  start-page: 28
  issue: 5
  year: 2000
  ident: 10.1016/j.optlastec.2020.106283_b0005
  article-title: Producing titanium aerospace components from powder using laser forming
  publication-title: Jom-J. Miner. Met. Mater. Soc.
  doi: 10.1007/s11837-000-0028-x
– volume: 12
  start-page: 240
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0360
  article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting
  publication-title: Addit. Manuf.
– volume: 26
  issue: 1
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0485
  article-title: Matching time and spatial scales of rapid solidification: Dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations
  publication-title: Modell. Simul. Mater. Sci. Eng
  doi: 10.1088/1361-651X/aa9a5b
– volume: 89
  issue: 5
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0575
  article-title: An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5017236
– ident: #cr-split#-10.1016/j.optlastec.2020.106283_b0095.2
  doi: 10.1016/j.phpro.2011.03.032
– volume: 74
  start-page: 5
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0780
  article-title: Application of base plate preheating during selective laser melting
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.08.002
– volume: 25
  start-page: 325
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0385
  article-title: New aspects about the search for the most relevant parameters optimizing SLM materials
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 254
  issue: 5
  year: 2006
  ident: 10.1016/j.optlastec.2020.106283_b0090
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540610707013
– volume: 199
  start-page: 41
  issue: 1–3
  year: 2008
  ident: 10.1016/j.optlastec.2020.106283_b0400
  article-title: Finite element modeling of electron beam welding of a large complex Al alloy structure by parallel computations
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.07.045
– volume: 13
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0500
  article-title: Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography
  publication-title: Res. Phys.
– volume: 140
  issue: 9
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0675
  article-title: Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4040264
– ident: 10.1016/j.optlastec.2020.106283_b0260
– volume: 56
  start-page: 265
  issue: 2
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0495
  article-title: Multiscale modeling of electron beam and substrate interaction: a new heat source model
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1170-1
– year: 2012
  ident: 10.1016/j.optlastec.2020.106283_b0610
– volume: 70
  start-page: 1844
  issue: 9
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0650
  article-title: Micron-level layer-wise surface profilometry to detect porosity defects in powder bed fusion of inconel 718
  publication-title: JOM
  doi: 10.1007/s11837-018-3025-7
– volume: 705
  start-page: 20
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0600
  article-title: Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2017.08.058
– ident: 10.1016/j.optlastec.2020.106283_b0925
– volume: 99
  start-page: 91
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0290
  article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2017.08.015
– volume: 170
  start-page: 342
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0380
  article-title: Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.05.128
– volume: 98
  start-page: 23
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0350
  article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2017.07.034
– volume: 7
  start-page: 83
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0125
  article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718
  publication-title: Addit. Manuf.
– volume: 21
  start-page: 333
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0645
  article-title: Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality
  publication-title: Addit. Manuf.
– volume: 51
  start-page: 61
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0075
  article-title: Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.06.024
– volume: 755
  start-page: 246
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0145
  article-title: An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti-6Al-4V
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process.
  doi: 10.1016/j.msea.2019.04.023
– start-page: 1
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0705
  article-title: Defects monitoring of laser metal deposition using acoustic emission sensor
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 17
  start-page: 366
  issue: 4
  year: 2013
  ident: 10.1016/j.optlastec.2020.106283_b0215
  article-title: Residual stress. Part 2 – nature and origins
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708301101510087
– ident: 10.1016/j.optlastec.2020.106283_b0410
  doi: 10.3390/ma11081480
– volume: 14
  start-page: 559
  issue: 6
  year: 2009
  ident: 10.1016/j.optlastec.2020.106283_b0895
  article-title: Stainless steel weld metal designed to mitigate residual stresses
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/136217109X437178
– volume: 131
  issue: 4
  year: 2009
  ident: 10.1016/j.optlastec.2020.106283_b0900
  article-title: The Effects of filler metal transformation temperature on residual stresses in a high strength steel weld
  publication-title: J. Press. Vessel Technol.-Trans. ASME
  doi: 10.1115/1.3122036
– volume: 30
  start-page: 1650255
  issue: 19
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0810
  article-title: Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984916502559
– volume: 23
  start-page: 1009
  issue: 9
  year: 2007
  ident: 10.1016/j.optlastec.2020.106283_b0890
  article-title: Welding residual stresses in ferritic power plant steels
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/174328407X213116
– volume: 7
  start-page: 12
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0115
  article-title: AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting
  publication-title: Addit. Manuf.
– volume: 26
  start-page: 2869
  issue: 6
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0175
  article-title: Study on the quality and performance of CoCrMo alloy parts manufactured by selective laser melting
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-017-2716-5
– volume: 75
  start-page: 197
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0100
  article-title: Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2015.07.009
– volume: 124
  year: 2020
  ident: 10.1016/j.optlastec.2020.106283_b0875
  article-title: Laser finishing of 3D printed parts produced by material extrusion
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.105801
– volume: 136
  start-page: 24
  year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0280
  article-title: Modeling temperature and residual stress fields in selective laser melting
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.12.001
– volume: 5
  start-page: 24
  issue: 2
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0910
  article-title: Customised alloy blends for in-situ Al339 alloy formation using anchorless selective laser melting
  publication-title: Technologies
  doi: 10.3390/technologies5020024
– volume: 12
  start-page: 1
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0105
  article-title: Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation
  publication-title: Addit. Manuf.
– volume: 39
  start-page: 858
  issue: 4
  year: 2007
  ident: 10.1016/j.optlastec.2020.106283_b0240
  article-title: Temperature gradient mechanism in laser forming of thin plates
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2005.12.006
– volume: 117
  start-page: 221
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0390
  article-title: Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.01.044
– ident: 10.1016/j.optlastec.2020.106283_b0540
– volume: 23
  start-page: 187
  issue: 2
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0715
  article-title: S51 Influence of cold compression on the residual stresses in 7449 forgings
  publication-title: Powder Diffr.
  doi: 10.1154/1.2951814
– volume: 12
  issue: 6
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0765
  article-title: Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti-6Al-4V processed by selective laser melting
  publication-title: Materials (Basel)
  doi: 10.3390/ma12060930
– ident: 10.1016/j.optlastec.2020.106283_b0670
– volume: 102
  start-page: 47
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0640
  article-title: XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2015.02.008
– ident: #cr-split#-10.1016/j.optlastec.2020.106283_b0095.1
  doi: 10.1016/j.phpro.2011.03.032
– volume: 238
  start-page: 437
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0915
  article-title: Changing the alloy composition of Al7075 for better processability by selective laser melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.08.003
– volume: 214
  start-page: 1852
  issue: 9
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0370
  article-title: Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.04.002
– volume: 122
  start-page: 151
  year: 2019
  ident: 10.1016/j.optlastec.2020.106283_b0490
  article-title: Progress in numerical simulation of the laser cladding process
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.05.026
– volume: 87
  start-page: 29
  issue: 87
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0195
  article-title: Residual stress via the contour method in compact tension specimens produced via selective laser melting
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2014.05.016
– year: 2018
  ident: 10.1016/j.optlastec.2020.106283_b0930
  article-title: Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting
  publication-title: Adv. Mater. Sci. Eng.
– volume: 21
  start-page: 159
  issue: 2
  year: 2015
  ident: 10.1016/j.optlastec.2020.106283_b0825
  article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-12-2014-0177
– volume: 127
  start-page: 120
  year: 2017
  ident: 10.1016/j.optlastec.2020.106283_b0180
  article-title: Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.08.023
– volume: 214
  start-page: 2627
  issue: 11
  year: 2014
  ident: 10.1016/j.optlastec.2020.106283_b0295
  article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.06.001
– start-page: p. MTh3B.2
  year: 2012
  ident: 10.1016/j.optlastec.2020.106283_b0020
  article-title: Laser additive manufacturing of aerospace large metallic structural components: state of the arts and challenges, international photonics and optoelectronics meetings
  publication-title: Opt. Soc. Am, Wuhan
– volume: 48
  start-page: 300
  year: 2013
  ident: 10.1016/j.optlastec.2020.106283_b0165
  article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2012.11.011
– year: 2008
  ident: 10.1016/j.optlastec.2020.106283_b0775
  article-title: Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM)
– volume: 84
  start-page: 9
  year: 2016
  ident: 10.1016/j.optlastec.2020.106283_b0420
  article-title: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2016.04.009
SSID ssj0004653
Score 2.623941
SecondaryResourceType review_article
Snippet •The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are...
The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106283
SubjectTerms Adjusting
Characterizing
Laser beam melting
Metal powders
Modeling
Rapid prototyping
Residual stress
SLM
Solidification
Title Review on residual stress in selective laser melting additive manufacturing of alloy parts
URI https://dx.doi.org/10.1016/j.optlastec.2020.106283
https://www.proquest.com/docview/2441310211
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jIuhBdCpO58jBa11_pF3rbQzHVNzJwfASkiyByezK1h28-Lf7XtqOTZAd7K2hKeUl-d576fu-EHInUYRqakJHQazgMKVcWHPTwInjSMQSPDIzuA_5OoqGY_Y8CSc10q-4MFhWWWJ_gekWrcuWTmnNTjabIccX4DdJfAxBUPcOGeysi_r599_eFjeyVKIMAG_g6Z0ar0WWQ4yaa9Qy9LE18uPgLw_1C6utAxqckpMycqS94uPOSE2nDXK8pSfYIIe2nlOtzsl7sedPFymFfNoSrmhBC6GzlK7s4TeAcxS-Sy_pp55j9TPF4iLb_CnSNVIeLIeRLgzF3_NfNAPLrC7IePD41h865TEKjmJhnDsiCZRrzDSUMmFTN_SN8KTUlmIaeLoLCUesMA0C3w_OCQAH0jAZCWbgEkkYXJJ6ukj1FaG6C_lZVwsmtcdCE0nhSl-oSDHtGZXIJokq03FVaozjURdzXhWTffCNzTnanBc2bxJ30zErZDb2d3moxobvzBgOzmB_51Y1mrxctCsOkY4X4FHn3vV_3n1DjvCuKERrkXq-XOtbiFxy2bZTs00Oek8vw9EPPe3vYQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oRNSD-InTqTl4LfYj7VpvYyhT504K4iUkWQKTrRtbd_C_9702HSqIB3tMeSW8JO8jfb_fA7hSREI1tLGnMVbwuNY-nrlh5KVpIlOFHplbuod8GiS9F_7wGr-uQbfGwlBZpbP9lU0vrbUbuXbavJ6NRoTxRfObZSGFIMR7tw4bxE6Fm32jc__YG3yBRzoyyghNDgp8K_OazgoMUwtDdIYhjSZhGv3mpH6Y69IH3e3BrgseWaea3z6smfwAdr5QCh7AZlnSqReH8FZd-7NpzjClLjFXrEKGsFHOFmX_GzR1DOdl5mxixlQAzai-qByeyHxJqIcSxsimltEf-g82Q-UsjuDl7va52_NcJwVP8zgtPJlF2rd2GCuV8aEfh1YGSpkSZRoFpo05R6opE0L3j_4JbQ5mYiqR3OIjszg6hkY-zc0JMNPGFK1tJFcm4LFNlPRVKHWiuQmszlQTklp1Qjuacep2MRZ1Pdm7WOlckM5FpfMm-CvBWcW08bfITb024tumEegP_hZu1asp3LldCAx2goi6nQen__n2JWz1np_6on8_eDyDbXpT1aW1oFHMl-YcA5lCXbiN-glvOPIS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+residual+stress+in+selective+laser+melting+additive+manufacturing+of+alloy+parts&rft.jtitle=Optics+and+laser+technology&rft.au=Fang%2C+Ze-Chen&rft.au=Wu%2C+Zhi-Lin&rft.au=Huang%2C+Chen-Guang&rft.au=Wu%2C+Chen-Wu&rft.date=2020-09-01&rft.pub=Elsevier+BV&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=129&rft.spage=1&rft_id=info:doi/10.1016%2Fj.optlastec.2020.106283&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon