Review on residual stress in selective laser melting additive manufacturing of alloy parts
•The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are analyzed.•New concepts on controlling the residual stress in alloy parts by SLM are proposed. The undesirable residual stress accumulated in the...
Saved in:
Published in | Optics and laser technology Vol. 129; p. 106283 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0030-3992 1879-2545 |
DOI | 10.1016/j.optlastec.2020.106283 |
Cover
Loading…
Abstract | •The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are analyzed.•New concepts on controlling the residual stress in alloy parts by SLM are proposed.
The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further application of the selective laser melting (SLM) process. This paper focuses on reviewing the recent illuminating achievements about physical modeling, experimental characterizing, and active adjusting of the residual stress in the parts fabricated by SLM. The advantages and disadvantages of the mainstream and emerging models or approaches are further analyzed. Based on the status and prospect of the relative techniques, a series of conceptual methods are discussed on mitigating residual stress to make some practical inspiration for developing a systematical residual stress balancing technique for SLM. |
---|---|
AbstractList | The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further application of the selective laser melting (SLM) process. This paper focuses on reviewing the recent illuminating achievements about physical modeling, experimental characterizing, and active adjusting of the residual stress in the parts fabricated by SLM. The advantages and disadvantages of the mainstream and emerging models or approaches are further analyzed. Based on the status and prospect of the relative techniques, a series of conceptual methods are discussed on mitigating residual stress to make some practical inspiration for developing a systematical residual stress balancing technique for SLM. •The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are analyzed.•New concepts on controlling the residual stress in alloy parts by SLM are proposed. The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further application of the selective laser melting (SLM) process. This paper focuses on reviewing the recent illuminating achievements about physical modeling, experimental characterizing, and active adjusting of the residual stress in the parts fabricated by SLM. The advantages and disadvantages of the mainstream and emerging models or approaches are further analyzed. Based on the status and prospect of the relative techniques, a series of conceptual methods are discussed on mitigating residual stress to make some practical inspiration for developing a systematical residual stress balancing technique for SLM. |
ArticleNumber | 106283 |
Author | Fang, Ze-Chen Huang, Chen-Guang Wu, Zhi-Lin Wu, Chen-Wu |
Author_xml | – sequence: 1 givenname: Ze-Chen surname: Fang fullname: Fang, Ze-Chen organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China – sequence: 2 givenname: Zhi-Lin surname: Wu fullname: Wu, Zhi-Lin organization: School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China – sequence: 3 givenname: Chen-Guang surname: Huang fullname: Huang, Chen-Guang organization: Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Chen-Wu surname: Wu fullname: Wu, Chen-Wu email: chenwuwu@imech.ac.cn, c.w.wu@outlook.com organization: Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNqNkEtLxDAUhYOM4Dj6Gwy47phH0zYLFyK-QBBEN25Cmt5Khk4yJqky_97UERdu9G7u5XDOPfAdopnzDhA6oWRJCa3OVku_SYOOCcySETapFWv4HprTppYFE6WYoTkhnBRcSnaADmNcEULKSvA5enmEdwsf2DscINpu1AOOKZ8RW4cjDGCSfQecCyDgNQzJulesu85-yWvtxl6bNIZJ9j3Ww-C3eKNDikdov9dDhOPvvUDP11dPl7fF_cPN3eXFfWFK0aRCS25I33eibWXZEcF6TdsW6obSmlOo66ppTMWEFJQxKeuKs4a1lS77PFoKvkCnu7-b4N9GiEmt_BhcrlSsLCmnhFGaXfXOZYKPMUCvNsGuddgqStQEUq3UD0g1gVQ7kDl5_itpbNLJepeCtsM_8he7PGQIGXZQ0VhwBjobMl3Vefvnj0_7Cpfy |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2022_168529 crossref_primary_10_3390_alloys1030017 crossref_primary_10_1051_e3sconf_202343106016 crossref_primary_10_1016_j_optlastec_2023_109355 crossref_primary_10_3390_met11010053 crossref_primary_10_2351_7_0000445 crossref_primary_10_26896_1028_6861_2024_90_7_56_67 crossref_primary_10_3390_met13081431 crossref_primary_10_3390_photonics11100935 crossref_primary_10_1016_j_optlastec_2024_111270 crossref_primary_10_1002_adem_202300489 crossref_primary_10_1016_j_cirpj_2020_12_004 crossref_primary_10_1016_j_msea_2022_144290 crossref_primary_10_1115_1_4055717 crossref_primary_10_1016_j_jallcom_2024_173449 crossref_primary_10_1016_j_jmapro_2023_01_035 crossref_primary_10_3390_app132111694 crossref_primary_10_1016_j_jmapro_2023_01_036 crossref_primary_10_1007_s40684_023_00546_z crossref_primary_10_1007_s12540_024_01722_9 crossref_primary_10_1108_RPJ_01_2024_0042 crossref_primary_10_1089_3dp_2023_0065 crossref_primary_10_1016_j_jmps_2022_104822 crossref_primary_10_1051_matecconf_202338802003 crossref_primary_10_1088_1742_6596_2842_1_012075 crossref_primary_10_3390_ma14205962 crossref_primary_10_1002_adem_202101330 crossref_primary_10_1111_ffe_14119 crossref_primary_10_1016_j_cjmeam_2022_100039 crossref_primary_10_1016_j_ijfatigue_2024_108354 crossref_primary_10_1016_j_optlastec_2021_107604 crossref_primary_10_1016_j_msea_2022_143773 crossref_primary_10_1016_j_addma_2022_102744 crossref_primary_10_1007_s11340_023_01018_w crossref_primary_10_1088_1402_4896_ad48cb crossref_primary_10_1016_j_optlastec_2021_107391 crossref_primary_10_2351_7_0001515 crossref_primary_10_3390_ma15217708 crossref_primary_10_1016_j_ijfatigue_2022_107375 crossref_primary_10_1016_j_ijplas_2024_103981 crossref_primary_10_1007_s10853_022_07046_6 crossref_primary_10_1007_s11665_021_05578_7 crossref_primary_10_2351_7_0000670 crossref_primary_10_1016_j_jma_2023_02_005 crossref_primary_10_1016_j_addma_2023_103563 crossref_primary_10_1016_j_prostr_2022_01_056 crossref_primary_10_1016_j_addma_2022_103149 crossref_primary_10_1016_j_addma_2020_101603 crossref_primary_10_1134_S0020168524700596 crossref_primary_10_1007_s11665_024_09194_z crossref_primary_10_1016_j_infrared_2021_103686 crossref_primary_10_1002_adem_202001502 crossref_primary_10_1016_j_jmrt_2024_04_136 crossref_primary_10_1007_s40192_021_00233_4 crossref_primary_10_1007_s11661_022_06928_3 crossref_primary_10_2351_7_0001410 crossref_primary_10_1016_j_ijfatigue_2023_108077 crossref_primary_10_1007_s12541_024_00967_z crossref_primary_10_1115_1_4056571 crossref_primary_10_1016_j_mtcomm_2023_107254 crossref_primary_10_1177_09544054211041281 crossref_primary_10_1016_j_mtcomm_2021_103095 crossref_primary_10_1007_s12540_020_00931_2 crossref_primary_10_1016_j_matdes_2022_110847 crossref_primary_10_1007_s11340_022_00839_5 crossref_primary_10_3390_s24237457 crossref_primary_10_1016_j_msea_2021_141808 crossref_primary_10_3390_cryst11010009 crossref_primary_10_1016_j_jmrt_2022_02_054 crossref_primary_10_1007_s40516_023_00217_6 crossref_primary_10_1016_j_ceramint_2020_11_089 crossref_primary_10_1080_17452759_2021_1896173 crossref_primary_10_1016_j_matchar_2022_111977 crossref_primary_10_1088_1757_899X_1296_1_012006 crossref_primary_10_3390_ma14061511 crossref_primary_10_1007_s40964_024_00869_6 crossref_primary_10_1016_j_finel_2023_104018 crossref_primary_10_3390_photonics11111082 crossref_primary_10_3390_met11050686 crossref_primary_10_1016_j_ijrmhm_2021_105769 crossref_primary_10_3390_designs8050087 crossref_primary_10_3390_coatings13020321 crossref_primary_10_1016_j_optlaseng_2020_106355 crossref_primary_10_3390_met14091081 crossref_primary_10_1016_j_matdes_2021_109550 crossref_primary_10_3390_technologies9020027 crossref_primary_10_1088_1402_4896_aca184 crossref_primary_10_1016_j_matdes_2025_113658 crossref_primary_10_1002_pen_26244 crossref_primary_10_3390_ma16196461 crossref_primary_10_3390_jmmp5040138 crossref_primary_10_1016_j_optlaseng_2021_106680 crossref_primary_10_1007_s11661_021_06472_6 crossref_primary_10_1177_09544089231169380 crossref_primary_10_1007_s12596_024_01854_6 crossref_primary_10_1016_j_jmst_2024_01_080 crossref_primary_10_1557_s43579_022_00253_x crossref_primary_10_1016_j_simpat_2025_103094 crossref_primary_10_1007_s10853_023_09172_1 crossref_primary_10_1007_s11340_025_01150_9 crossref_primary_10_2139_ssrn_4021770 crossref_primary_10_1016_j_matdes_2023_111681 crossref_primary_10_1016_j_optlaseng_2024_108277 crossref_primary_10_1016_j_tafmec_2024_104343 crossref_primary_10_1016_j_ijrmhm_2022_106094 crossref_primary_10_1016_j_matdes_2023_111732 crossref_primary_10_1016_j_scriptamat_2021_114034 crossref_primary_10_1007_s00170_024_14082_w crossref_primary_10_1016_j_addma_2021_101997 crossref_primary_10_2139_ssrn_4193388 crossref_primary_10_1016_j_engfailanal_2023_107403 crossref_primary_10_1080_10408436_2023_2170975 crossref_primary_10_3390_met11111830 crossref_primary_10_1016_j_msea_2024_147163 crossref_primary_10_1002_lpor_202300588 crossref_primary_10_1016_j_ijsolstr_2024_113047 crossref_primary_10_1108_RPJ_03_2021_0063 crossref_primary_10_1016_j_mechmat_2021_103882 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_3390_cryst14070581 crossref_primary_10_1007_s00170_023_12749_4 crossref_primary_10_1002_advs_202206486 crossref_primary_10_1016_j_matdes_2022_111209 crossref_primary_10_1016_j_intermet_2024_108272 crossref_primary_10_1016_j_optlastec_2024_111201 crossref_primary_10_1007_s11665_023_09087_7 crossref_primary_10_5937_jaes0_45624 crossref_primary_10_1016_j_powtec_2024_120450 crossref_primary_10_3390_cryst15010025 crossref_primary_10_1007_s40964_022_00294_7 crossref_primary_10_1016_j_ijplas_2025_104264 crossref_primary_10_1016_j_matpr_2024_05_008 crossref_primary_10_1016_j_addma_2023_103830 crossref_primary_10_3390_coatings13061117 crossref_primary_10_1007_s00170_024_13638_0 crossref_primary_10_1007_s41403_021_00240_z crossref_primary_10_1134_S1063783422030076 crossref_primary_10_1016_j_tws_2022_109729 crossref_primary_10_1016_j_msea_2022_142965 crossref_primary_10_1007_s11665_021_06340_9 crossref_primary_10_1016_j_ijrmhm_2023_106110 crossref_primary_10_1016_j_jmrt_2022_05_124 crossref_primary_10_3390_met14091039 crossref_primary_10_1007_s00170_024_14148_9 crossref_primary_10_1016_j_jmst_2022_02_015 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_1002_adem_202401442 crossref_primary_10_1016_j_matdes_2021_110180 crossref_primary_10_1016_j_commatsci_2020_110263 crossref_primary_10_3390_ma14040781 crossref_primary_10_1134_S102995992304001X crossref_primary_10_1007_s12540_021_01155_8 crossref_primary_10_3389_fbioe_2021_641130 crossref_primary_10_1016_j_jmrt_2025_03_001 crossref_primary_10_1080_17452759_2023_2181192 crossref_primary_10_1051_matecconf_202338810003 crossref_primary_10_1177_09544089221132737 crossref_primary_10_1007_s11665_024_09817_5 crossref_primary_10_1002_adem_202100184 crossref_primary_10_1007_s41403_023_00393_z crossref_primary_10_1016_j_icheatmasstransfer_2025_108714 crossref_primary_10_3390_ma16237316 crossref_primary_10_1016_j_intermet_2022_107557 crossref_primary_10_1080_17452759_2023_2246041 crossref_primary_10_1016_j_jmrt_2024_09_165 crossref_primary_10_2351_7_0001222 crossref_primary_10_3390_ma15196785 crossref_primary_10_1007_s11665_023_08785_6 crossref_primary_10_1016_j_jmrt_2023_11_139 crossref_primary_10_1016_j_addma_2024_104314 crossref_primary_10_1016_j_jmapro_2023_12_048 crossref_primary_10_1007_s11665_024_09580_7 crossref_primary_10_1016_j_actamat_2022_118187 crossref_primary_10_1016_j_matdes_2022_110440 crossref_primary_10_1016_j_ast_2024_109786 crossref_primary_10_1016_j_optlastec_2021_107246 crossref_primary_10_1080_09506608_2023_2193785 crossref_primary_10_1016_j_jmrt_2023_12_046 crossref_primary_10_1016_j_corsci_2022_110789 crossref_primary_10_1016_j_enganabound_2024_105876 crossref_primary_10_1016_j_dt_2023_01_002 crossref_primary_10_1016_j_jallcom_2024_178403 crossref_primary_10_2478_fas_2021_0007 crossref_primary_10_1016_j_ijfatigue_2024_108153 crossref_primary_10_1016_j_ijthermalsci_2024_109163 crossref_primary_10_1016_j_ijmecsci_2023_108583 crossref_primary_10_1016_j_optlastec_2021_107806 crossref_primary_10_1016_j_jmapro_2025_03_015 crossref_primary_10_1016_j_electacta_2023_143067 crossref_primary_10_3390_ma17102270 crossref_primary_10_15541_jim20210608 crossref_primary_10_1007_s00170_025_15273_9 crossref_primary_10_3390_met13122003 crossref_primary_10_1007_s12289_022_01729_w crossref_primary_10_1016_j_rio_2024_100652 crossref_primary_10_1016_j_addma_2024_104532 crossref_primary_10_1016_j_matdes_2022_111311 crossref_primary_10_1016_j_addma_2022_102779 crossref_primary_10_1016_j_precisioneng_2022_04_007 crossref_primary_10_1016_j_jmrt_2022_01_079 crossref_primary_10_1016_j_addma_2022_103194 crossref_primary_10_1007_s11665_024_09153_8 crossref_primary_10_1016_j_addma_2024_104521 crossref_primary_10_1007_s12598_022_02079_x crossref_primary_10_1016_j_cossms_2022_101024 crossref_primary_10_1007_s11837_023_06201_x |
Cites_doi | 10.1179/136217111X12978476537783 10.1016/j.actamat.2015.07.014 10.1016/j.msea.2013.10.066 10.1016/j.mfglet.2017.01.002 10.4028/www.scientific.net/KEM.554-557.1828 10.1016/j.engfracmech.2014.03.008 10.1007/s40684-017-0029-7 10.1016/S0749-6419(98)00055-2 10.1186/s40192-016-0047-2 10.1016/j.phpro.2014.08.135 10.1007/s00466-015-1243-1 10.1016/j.optlastec.2019.105725 10.1016/j.actamat.2016.05.017 10.1016/j.msea.2003.10.328 10.1016/j.jmatprotec.2010.12.016 10.1016/j.matchar.2015.11.021 10.1016/j.msea.2018.04.046 10.2351/1.4828755 10.1016/j.jmatprotec.2018.01.015 10.1016/j.procir.2014.10.023 10.1016/j.phpro.2016.08.092 10.1016/j.surfcoat.2010.09.033 10.1016/j.actamat.2015.12.017 10.1016/j.proeng.2015.01.510 10.1080/17452759.2019.1614198 10.1177/0954405412437085 10.1088/0957-0233/28/1/015001 10.1016/S0921-5093(01)01179-0 10.1016/j.msea.2010.12.010 10.1016/j.mprp.2018.01.003 10.1016/j.jmbbm.2017.01.043 10.1016/j.ijmecsci.2019.01.043 10.1016/j.phpro.2010.08.089 10.1016/J.ENG.2017.05.011 10.1115/1.4043622 10.1179/026708301101509980 10.1179/1743284714Y.0000000728 10.1016/j.matdes.2014.07.006 10.1016/j.matchar.2019.02.010 10.1016/j.optlaseng.2019.05.020 10.1016/j.jmatprotec.2003.11.051 10.1016/j.optlastec.2018.05.031 10.1016/j.phpro.2013.03.162 10.1038/s41598-017-03761-2 10.1108/RPJ-06-2017-0120 10.1115/1.4040264 10.1016/j.msea.2011.06.045 10.1007/s00170-018-2104-9 10.1126/science.aav4687 10.1007/s11663-019-01523-1 10.1016/j.commatsci.2016.07.005 10.1007/s11666-007-9026-7 10.1016/S0007-8506(07)60395-3 10.1080/17452759.2015.1026045 10.1115/1.4028540 10.1002/adem.201100233 10.1080/17452759.2019.1677345 10.1016/j.jallcom.2012.07.022 10.1016/j.optlastec.2016.11.002 10.1007/s00170-014-6769-4 10.1016/j.mfglet.2018.04.003 10.1146/annurev-matsci-070115-032158 10.1016/j.jmatprotec.2014.07.030 10.1016/j.actamat.2016.02.014 10.1016/S0142-1123(01)00205-5 10.1080/01495739.2013.784121 10.1016/j.jmatprotec.2017.02.017 10.1016/j.camwa.2013.10.001 10.1038/s41467-018-05234-0 10.3390/qubs2020013 10.1115/1.2194037 10.1016/j.actamat.2015.06.004 10.1002/adem.201600172 10.1016/j.jmatprotec.2007.06.060 10.1016/j.msea.2005.02.019 10.1007/s11661-014-2549-x 10.3390/ma12010050 10.1016/j.actamat.2009.08.027 10.1016/j.jmatprotec.2015.10.022 10.1007/s11740-009-0192-y 10.1016/j.intermet.2013.11.012 10.1080/21663831.2017.1299808 10.1016/j.msea.2017.02.038 10.1016/j.commatsci.2011.06.023 10.1016/j.jallcom.2019.04.017 10.1115/1.4028513 10.1007/s00170-019-03396-9 10.1016/S0890-6955(02)00163-3 10.1016/j.actamat.2015.04.035 10.3390/ma12030455 10.1007/s00466-017-1528-7 10.1007/s11661-011-0731-y 10.1016/S1005-0302(12)60016-4 10.1016/j.msea.2019.138511 10.3390/ma9020112 10.1016/j.msea.2017.04.033 10.3390/met9010103 10.3390/ma10040348 10.1117/12.2253600 10.1016/j.ijleo.2017.02.060 10.1080/00207543.2016.1223378 10.1016/j.msea.2016.04.086 10.1016/j.ijfatigue.2018.06.038 10.1016/j.scriptamat.2016.02.022 10.1016/S0007-8506(07)60677-5 10.1016/j.cirp.2017.04.084 10.1179/136217110X12714217309614 10.1063/1.4935926 10.1007/s11837-000-0028-x 10.1088/1361-651X/aa9a5b 10.1063/1.5017236 10.1016/j.phpro.2011.03.032 10.1016/j.procir.2018.08.002 10.1108/13552540610707013 10.1016/j.jmatprotec.2007.07.045 10.1007/s00466-015-1170-1 10.1007/s11837-018-3025-7 10.1016/j.msea.2017.08.058 10.1016/j.optlastec.2017.08.015 10.1016/j.ijleo.2018.05.128 10.1016/j.optlastec.2017.07.034 10.1016/j.jmbbm.2015.06.024 10.1016/j.msea.2019.04.023 10.1179/026708301101510087 10.3390/ma11081480 10.1179/136217109X437178 10.1115/1.3122036 10.1142/S0217984916502559 10.1179/174328407X213116 10.1007/s11665-017-2716-5 10.1016/j.optlastec.2015.07.009 10.1016/j.optlaseng.2019.105801 10.1016/j.ijmecsci.2017.12.001 10.3390/technologies5020024 10.1016/j.optlastec.2005.12.006 10.1016/j.commatsci.2016.01.044 10.1154/1.2951814 10.3390/ma12060930 10.1016/j.matchar.2015.02.008 10.1016/j.jmatprotec.2016.08.003 10.1016/j.jmatprotec.2014.04.002 10.1016/j.optlaseng.2019.05.026 10.1016/j.scriptamat.2014.05.016 10.1108/RPJ-12-2014-0177 10.1016/j.corsci.2017.08.023 10.1016/j.jmatprotec.2014.06.001 10.1016/j.ijfatigue.2012.11.011 10.1016/j.optlastec.2016.04.009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Sep 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Sep 2020 |
DBID | AAYXX CITATION 7SP 7U5 8FD F28 FR3 H8D L7M |
DOI | 10.1016/j.optlastec.2020.106283 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2545 |
ExternalDocumentID | 10_1016_j_optlastec_2020_106283 S0030399219322492 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7U5 8FD EFKBS F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c458t-a93c0ffd5bb94d052fa1bbe7811731e77688c6259512299763282b6a4ffffa953 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Mon Jul 14 07:33:06 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Tue Jul 01 01:38:39 EDT 2025 Fri Feb 23 02:47:08 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SLM Modeling Residual stress Characterizing Adjusting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-a93c0ffd5bb94d052fa1bbe7811731e77688c6259512299763282b6a4ffffa953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dspace.imech.ac.cn/handle/311007/82134 |
PQID | 2441310211 |
PQPubID | 2045422 |
ParticipantIDs | proquest_journals_2441310211 crossref_primary_10_1016_j_optlastec_2020_106283 crossref_citationtrail_10_1016_j_optlastec_2020_106283 elsevier_sciencedirect_doi_10_1016_j_optlastec_2020_106283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Optics and laser technology |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Verhaeghe, Craeghs, Heulens, Pandelaers (b0305) 2009; 57 Mishurova, Cabeza, Artzt, Haubrich, Klaus, Genzel, Requena, Bruno (b0660) 2017; 10 Francis, Stone, Kundu, Bhadeshia, Rogge, Withers, Karlsson (b0900) 2009; 131 Harrison, Todd, Mumtaz (b0155) 2015; 94 Yamaguchi, Fergani, Wu (b0870) 2017; 66 He, Shi, Li, Xie (b0570) 2019; 122 Calta, Wang, Kiss, Martin, Depond, Guss, Thampy, Fong, Weker, Stone, Tassone, Kramer, Toney, Van Buuren, Matthews (b0575) 2018; 89 Murakawa, Beres, Davies, Rashed, Vega, Tsunori, Nikbin, Dye (b0905) 2010; 15 Li, Ramezani, Li, Ma, Wang (b0605) 2018; 16 Buchbinder, Meiners, Wissenbach, Müller-Lohmeier, Brandl, Skrynecki (b0775) 2008 Boegelein, Louvis, Dawson, Tatlock, Jones (b0030) 2016; 112 Tapia, Elwany (b0830) 2014; 136 Zhang, Qi, Shi, Li (b0130) 2015; 79 Mertens, Dadbakhsh, Van Humbeeck, Kruth (b0780) 2018; 74 Li, Gu (b0365) 2014; 1–4 Shi, Gu, Xia, Cao, Rong (b0420) 2016; 84 Berumen, Bechmann, Lindner, Kruth, Craeghs (b0680) 2010; 5 Megahed, Mindt, N'Dri, Duan, Desmaison (b0465) 2016; 5 Dong, Liu, Wen, Ge, Liang (b0300) 2018; 12 Li, Liu, Fang, Guo (b0535) 2018; 140 Tammas-Williams, Zhao, Leonard, Derguti, Todd, Prangnell (b0640) 2015; 102 Maly, Holler, Skalon, Meier, Koutny, Pichler, Sommitsch, Palousek (b0765) 2019; 12 Gu, Chen (b0940) 2018; 725 Ali, Ghadbeigi, Mumtaz (b0285) 2018; 97 Torres, Voorwald (b0855) 2002; 24 M. Mohammad, R. Prahalada, Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach, J. Manuf. Sci. Eng. 140(9) (2018) 091002. W. Xing, D. Ouyang, N. Li, L. Liu, Estimation of Residual Stress in Selective Laser Melting of a Zr-Based Amorphous Alloy, Materials (Basel) 11(8) (2018) 1480-. https://doi.org/10.3390/ma11081480. Oyelola, Crawforth, M'Saoubi, Clare (b0880) 2018; 19 J.C.H. Erik R. Denlinger, Pan Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, J. Mater. Process. Technol. 215 (2015) 123–131. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2014.07.030. Yap, Chua, Dong, Liu, Zhang, Loh, Sing (b0010) 2015; 2 Wu, Wang, An (b0395) 2017; 137 Otto, Koch, Vazquez (b0470) 2012; 39 Vrancken, Cain, Knutsen, Van Humbeeck (b0195) 2014; 87 Leuders, Thöne, Riemer, Niendorf, Tröster, Richard, Maier (b0165) 2013; 48 Yu, Sing, Chua, Tian (b0945) 2019; 792 Bartlett, Groom, Burdick, Henkel, Li (b0415) 2018; 22 Tomus, Tian, Rometsch, Heilmaier, Wu (b0595) 2016; 667 Li, Liu, Zhou, Wen, Wei, Yan, Shi (b0740) 2016; 118 Agelet de Saracibar (b0265) 1999; 15 Koopmann, Voigt, Niendorf (b0045) 2019; 50 Khairallah, Anderson (b0295) 2014; 214 Saarimäki, Lundberg, Moverare, Brodin (b0565) 2017 Parry, Ashcroft, Wildman (b0105) 2016; 12 Zaeh, Branner (b0110) 2010; 4 Yadroitsev, Yadroitsava (b0135) 2015; 10 Nassar, Keist, Reutzel, Spurgeon (b0820) 2015; 6 Zhang, Yang, Lin, Song, Zhang (b0175) 2017; 26 S. Mohanty, J.H. Hattel, Laser Additive Manufacturing of multimaterial tool inserts: A simulation-based optimization study, Laser 3d Manuf. Iv 10095 (2017). https://doi.org/10.1117/12.2253600. Rombouts, Kruth, Froyen, Mercelis (b0220) 2006; 55 Löber, Schimansky, Kühn, Pyczak, Eckert (b0370) 2014; 214 Gu, Dai, Xia, Ma (b0510) 2017; 49 Vrancken, Buls, Kruth, Humbeeck (b0770) 2016 Mugwagwa, Dimitrov, Matope, Yadroitsev (b0335) 2019; 102 J.P. Kruth, J. Deckers, E. Yasa, R. Wauthle, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 226(B6) (2012) 980–991. https://doi.org/10.1177/0954405412437085. Ding, Colegrove, Mehnen, Ganguly, Almeida, Wang, Williams (b0315) 2011; 50 Brückner, Lepski, Beyer (b0250) 2007; 16 Mines (b0015) 2019 Zohdi (b0435) 2017 Prime, DeWald (b0545) 2013 King, Anderson, Ferencz, Hodge, Kamath, Khairallah (b0225) 2015; 31 Wang, Jiang, Zhu, Ding, Zhu, Sun, Yan (b0930) 2018 Roberts (b0610) 2012 Wu, Brown, Kumar, Gallegos, King (b0430) 2014; 45a Korsunsky, Sebastiani, Bemporad (b0590) 2010; 205 Lindgren, Lundback, Fisk (b0270) 2013; 36 Zhou, Kou, Yao, Zhu, Kai, Tamura (b0655) 2018; 2 Khorasani, Gibson, Ghasemi, Ghaderi (b0955) 2019; 14 Gürtler, Karg, Leitz, Schmidt (b0475) 2013; 41 Ali, Ma, Ghadbeigi, Mumtaz (b0760) 2017; 695 Murr, Gaytan, Ramirez, Martinez, Hernandez, Amato, Shindo, Medina, Wicker (b0785) 2012; 28 B. Vrancken, Study of residual stresses in selective laser melting, KU Leuven, 2016. Tamanna, Crouch, Naher (b0490) 2019; 122 Kou (b0205) 2003 Zhang, Zhang, Lee, Wu, Choi, Jung (b0445) 2018; 73 Mani, Lane, Donmez, Feng, Moylan (b0845) 2017; 55 Song, Wu, Zhang, He, Lu, Ni, Long, Zhu (b0380) 2018; 170 Gu, He (b0390) 2016; 117 Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (b0480) 2015; 96 Shiomi, Osakada, Nakamura, Yamashita, Abe (b0190) 2004; 53 Shirzadi, Bhadeshia, Karlsson, Withers (b0895) 2009; 14 Li, Zhou, Tan, Tor, Chua, Leong (b0280) 2018; 136 Lu, Lin, Chiumenti, Cervera, Hu, Ji, Ma, Huang (b0520) 2019; 153–154 Dai, Gu, Zhang, Xiong, Ma, Hong, Poprawe (b0290) 2018; 99 Montazeri, Rao (b0675) 2018; 140 Vrancken, Buls, Kruth, Van Humbeeck (b0750) 2015 Markl, Korner (b0515) 2016; 46 Chao, White, Fang, Weaver, Guo (b0600) 2017; 705 Matthews, Guss, Khairallah, Rubenchik, Depond, King (b0615) 2016; 114 Tian, Wang, Sheng (b0810) 2016; 30 Smith, Xiong, Cao, Liu (b0320) 2016; 57 Kruth, Froyen, Van Vaerenbergh, Mercelis, Rombouts, Lauwers (b0720) 2004; 149 Mercelis, Kruth (b0090) 2006; 12 Vora, Martinez, Hopkinson, Todd, Mumtaz (b0910) 2017; 5 Francis, Bhadeshia, Withers (b0890) 2007; 23 Mohanty, Hattel (b0310) 2014; 56 Furumoto, Ogura, Hishida, Hosokawa, Koyano, Abe, Ueda (b0340) 2017; 245 Rangaswamy, Griffith, Prime, Holden, Rogge, Edwards, Sebring (b0550) 2005; 399 Yoshida, Sasaki, Usui, Sakamoto, Gurney, Park (b0700) 2016; 9 Vrancken, Thijs, Kruth, Van Humbeeck (b0790) 2012; 541 Wang, Zhang, Tang, Tian, Liu (b0020) 2012 Hassanin, Modica, El-Sayed, Liu, Essa (b0065) 2016; 18 Mishurova, Artzt, Haubrich, Requena, Bruno (b0385) 2019; 25 Montero-Sistiaga, Mertens, Vrancken, Wang, Van Hooreweder, Kruth, Van Humbeeck (b0915) 2016; 238 Zhang, Xiao, Zhang (b0500) 2019; 13 R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, J. Van Humbeeck, Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts, in: Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016 83 (2016) 882–890. https://doi.org/10.1016/j.phpro.2016.08.092. Krakhmalev, Yadroitsev (b0375) 2014; 46 Hu, Kovacevic (b0665) 2003; 43 Ghosh, Choi (b0245) 2006; 128 Li, Fu, Guo, Fang (b0345) 2016; 229 Kreitcberg, Brailovski, Turenne (b0805) 2017; 689 Withers, Bhadeshia (b0215) 2013; 17 Van Hooreweder, Moens, Boonen, Kruth, Sas (b0170) 2012; 14 Eto, Miura, Tani, Fujii (b0150) 2014; 590 Körner, Attar, Heinl (b0450) 2011; 211 De, DebRoy (b0200) 2011; 16 Tan, Sing, Yeong (b0505) 2020; 15 Whiting, Fox (b0140) 2016 A.M. Kamat, Y.T. Pei, An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion, Addit. Manuf. 29 (2019) 100796. https://doi.org/UNSP 100796 10.1016/j.addma.2019.100796. Koric, Thomas (b0085) 2008; 197 Kempen, Vrancken, Buls, Thijs, Van Humbeeck, Kruth (b0735) 2014; 136 Withers, Bhadeshia (b0525) 2001; 17 Ammer, Markl, Ljungblad, Korner, Rude (b0455) 2014; 67 Kuryntsev (b0795) 2018; 107 A.V. Gusarov, M. Pavlov, I. Smurov, Residual stresses at laser surface remelting and additive manufacturing, lasers in manufacturing 2011, in: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, vol 12, Pt A 12(1) (2011) 248–254. https://doi.org/10.1016/j.phpro.2011.03.032. Bael, Kerckhofs, Moesen, Pyka, Schrooten, Kruth (b0635) 2011; 528 Reutzel, Nassar (b0825) 2015; 21 Lu, Wu, Gan, Huang, Yang, Lin, Lin (b0100) 2015; 75 C. Seidel, M.F. Zaeh, M. Wunderer, J. Weirather, T.A. Krol, M. Ott, Simulation of the laser beam melting process - approaches for an efficient modelling of the beam-material interaction, in: 8th International Conference on Digital Enterprise Technology - Det 2014 Disruptive Innovation in Manufacturing Engineering Towards the 4th Industrial Revolution 25 (2014) 146–153. https://doi.org/10.1016/j.procir.2014.10.023. Prabhakar, Sames, Dehoff, Babu (b0125) 2015; 7 Yang, Knol, van Keulen, Ayas (b0275) 2018; 21 Shrestha, Starr, Chou (b0630) 2019; 141 X. Xing, X. Duan, X. Sun, H. Gong, L. Wang, F. Jiang, Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique, Materials (Basel) 12(3) (2019) 455. https://doi.org/10.3390/ma12030455. Kalentics, Boillat, Peyre, Ciric-Kostic, Bogojevic, Loge (b0850) 2017; 16 Demir, Previtali (b0050) 2017; 11 Sing, Huang, Yeong (b0815) 2020; 769 Tian, Wang, Zhu, Zhou (b0400) 2008; 199 Lou, Othon, Rebak (b0180) 2017; 127 Nickel, Barnett, Prinz (b0210) 2001; 317 Grafe, Wickberg, Zieger, Wegener, Blasco, Barner-Kowollik (b0040) 2018; 9 T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen, J.-P. Kruth, Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring, Opt. Lasers Eng. 49(12) (2011) 1440–1446. https:// doi.org/10.1016/j.optlaseng.2011.06.016. Gaja, Liou (b0705) 2016 P. Hanzl, M. Zetek, T. Baksa, T. Kroupa, The Influence of processing parameters on the mechanical properties of SLM parts, in: 25th Daaam International Symposium on Intelligent Manufacturing and Automation, 2014 100 (2015) 1405–1413. https://doi.org/10.1016/j.proeng.2015.01.510. Bhadeshia (b0885) 2004; 378 Yan, Smith, Ge, Lin, Liu (b0495) 2015; 56 Syed, Ahmad, Guo, Machry, Eatock, Meyer, Fitzpatrick, Zhang (b0145) 2019; 755 Kao, Zhang, Wang, Tai (b0060) 2016 Riemer, Leuders, Thone, Richard, Troster, Niendorf (b0185) 2014; 120 Hodge, Ferencz, Vignes (b0330) 2016; 12 Liu, Zhang, Pang (b0350) 2018; 98 Song, Tang, Feng, Ma, Setchi, Liu, Han, Fan, Zhang (b0800) 2019; 120 Cunningham, Zhao, Parab, Kantzos, Pauza, Fezzaa, Sun, Rollet Lu (10.1016/j.optlastec.2020.106283_b0100) 2015; 75 Yamaguchi (10.1016/j.optlastec.2020.106283_b0870) 2017; 66 Maly (10.1016/j.optlastec.2020.106283_b0765) 2019; 12 Withers (10.1016/j.optlastec.2020.106283_b0215) 2013; 17 10.1016/j.optlastec.2020.106283_b0860 Boegelein (10.1016/j.optlastec.2020.106283_b0030) 2016; 112 10.1016/j.optlastec.2020.106283_b0620 Liu (10.1016/j.optlastec.2020.106283_b0350) 2018; 98 Van Hooreweder (10.1016/j.optlastec.2020.106283_b0170) 2012; 14 Li (10.1016/j.optlastec.2020.106283_b0740) 2016; 118 Gu (10.1016/j.optlastec.2020.106283_b0940) 2018; 725 Yan (10.1016/j.optlastec.2020.106283_b0495) 2015; 56 Robinson (10.1016/j.optlastec.2020.106283_b0715) 2016; 23 Mercelis (10.1016/j.optlastec.2020.106283_b0090) 2006; 12 Kruth (10.1016/j.optlastec.2020.106283_b0720) 2004; 149 Arcella (10.1016/j.optlastec.2020.106283_b0005) 2000; 52 Vrancken (10.1016/j.optlastec.2020.106283_b0790) 2012; 541 Tapia (10.1016/j.optlastec.2020.106283_b0830) 2014; 136 Xing (10.1016/j.optlastec.2020.106283_b0865) 2019; 9 Fousova (10.1016/j.optlastec.2020.106283_b0070) 2017; 69 Eto (10.1016/j.optlastec.2020.106283_b0150) 2014; 590 Mishurova (10.1016/j.optlastec.2020.106283_b0385) 2019; 25 Bhadeshia (10.1016/j.optlastec.2020.106283_b0885) 2004; 378 Li (10.1016/j.optlastec.2020.106283_b0535) 2018; 140 Francis (10.1016/j.optlastec.2020.106283_b0890) 2007; 23 Lindgren (10.1016/j.optlastec.2020.106283_b0270) 2013; 36 Wu (10.1016/j.optlastec.2020.106283_b0395) 2017; 137 Montazeri (10.1016/j.optlastec.2020.106283_b0675) 2018; 140 Yang (10.1016/j.optlastec.2020.106283_b0275) 2018; 21 10.1016/j.optlastec.2020.106283_b0355 Mishurova (10.1016/j.optlastec.2020.106283_b0660) 2017; 10 10.1016/j.optlastec.2020.106283_b0235 Withers (10.1016/j.optlastec.2020.106283_b0525) 2001; 17 10.1016/j.optlastec.2020.106283_b0755 Lambiase (10.1016/j.optlastec.2020.106283_b0875) 2020; 124 Sing (10.1016/j.optlastec.2020.106283_b0815) 2020; 769 Vora (10.1016/j.optlastec.2020.106283_b0115) 2015; 7 Clemon (10.1016/j.optlastec.2020.106283_b0835) 2017 Torres (10.1016/j.optlastec.2020.106283_b0855) 2002; 24 Yin (10.1016/j.optlastec.2020.106283_b0055) 2018; 255 Hodge (10.1016/j.optlastec.2020.106283_b0330) 2016; 12 Otto (10.1016/j.optlastec.2020.106283_b0470) 2012; 39 Shirzadi (10.1016/j.optlastec.2020.106283_b0895) 2009; 14 Vrancken (10.1016/j.optlastec.2020.106283_b0770) 2016 Shiomi (10.1016/j.optlastec.2020.106283_b0190) 2004; 53 Zhang (10.1016/j.optlastec.2020.106283_b0710) 2014; 33 Wang (10.1016/j.optlastec.2020.106283_b0930) 2018 Leuders (10.1016/j.optlastec.2020.106283_b0165) 2013; 48 Saarimäki (10.1016/j.optlastec.2020.106283_b0565) 2017 Zhao (10.1016/j.optlastec.2020.106283_b0690) 2016; 91 Ghosh (10.1016/j.optlastec.2020.106283_b0245) 2006; 128 Li (10.1016/j.optlastec.2020.106283_b0405) 2014; 63 Cunningham (10.1016/j.optlastec.2020.106283_b0585) 2019; 363 Tamanna (10.1016/j.optlastec.2020.106283_b0490) 2019; 122 Harrison (10.1016/j.optlastec.2020.106283_b0155) 2015; 94 10.1016/j.optlastec.2020.106283_b0925 Lou (10.1016/j.optlastec.2020.106283_b0180) 2017; 127 Shi (10.1016/j.optlastec.2020.106283_b0240) 2007; 39 Demir (10.1016/j.optlastec.2020.106283_b0050) 2017; 11 Zhang (10.1016/j.optlastec.2020.106283_b0175) 2017; 26 Oyelola (10.1016/j.optlastec.2020.106283_b0880) 2018; 19 Wu (10.1016/j.optlastec.2020.106283_b0430) 2014; 45a Khairallah (10.1016/j.optlastec.2020.106283_b0230) 2016; 108 Rombouts (10.1016/j.optlastec.2020.106283_b0220) 2006; 55 Krakhmalev (10.1016/j.optlastec.2020.106283_b0375) 2014; 46 Zhang (10.1016/j.optlastec.2020.106283_b0445) 2018; 73 Rangaswamy (10.1016/j.optlastec.2020.106283_b0550) 2005; 399 Yan (10.1016/j.optlastec.2020.106283_b0075) 2015; 51 Lu (10.1016/j.optlastec.2020.106283_b0520) 2019; 153–154 Francis (10.1016/j.optlastec.2020.106283_b0900) 2009; 131 Grafe (10.1016/j.optlastec.2020.106283_b0040) 2018; 9 Li (10.1016/j.optlastec.2020.106283_b0280) 2018; 136 Stutzman (10.1016/j.optlastec.2020.106283_b0645) 2018; 21 Gu (10.1016/j.optlastec.2020.106283_b0510) 2017; 49 10.1016/j.optlastec.2020.106283_b0410 Montero-Sistiaga (10.1016/j.optlastec.2020.106283_b0915) 2016; 238 Hassanin (10.1016/j.optlastec.2020.106283_b0065) 2016; 18 Ali (10.1016/j.optlastec.2020.106283_b0760) 2017; 695 Kao (10.1016/j.optlastec.2020.106283_b0060) 2016 Vrancken (10.1016/j.optlastec.2020.106283_b0195) 2014; 87 Chao (10.1016/j.optlastec.2020.106283_b0600) 2017; 705 Koopmann (10.1016/j.optlastec.2020.106283_b0045) 2019; 50 Riemer (10.1016/j.optlastec.2020.106283_b0185) 2014; 120 10.1016/j.optlastec.2020.106283_b0935 Yang (10.1016/j.optlastec.2020.106283_b0325) 2018; 61 Murr (10.1016/j.optlastec.2020.106283_b0785) 2012; 28 Gu (10.1016/j.optlastec.2020.106283_b0390) 2016; 117 Buchbinder (10.1016/j.optlastec.2020.106283_b0775) 2008 Tian (10.1016/j.optlastec.2020.106283_b0810) 2016; 30 cr-split#-10.1016/j.optlastec.2020.106283_b0095.1 cr-split#-10.1016/j.optlastec.2020.106283_b0095.2 Smith (10.1016/j.optlastec.2020.106283_b0320) 2016; 57 Cheng (10.1016/j.optlastec.2020.106283_b0360) 2016; 12 Gürtler (10.1016/j.optlastec.2020.106283_b0475) 2013; 41 10.1016/j.optlastec.2020.106283_b0260 Löber (10.1016/j.optlastec.2020.106283_b0370) 2014; 214 Mertens (10.1016/j.optlastec.2020.106283_b0780) 2018; 74 Prabhakar (10.1016/j.optlastec.2020.106283_b0125) 2015; 7 Zhang (10.1016/j.optlastec.2020.106283_b0130) 2015; 79 Calta (10.1016/j.optlastec.2020.106283_b0575) 2018; 89 10.1016/j.optlastec.2020.106283_b0540 Zhang (10.1016/j.optlastec.2020.106283_b0500) 2019; 13 Zhao (10.1016/j.optlastec.2020.106283_b0580) 2017; 7 Matthews (10.1016/j.optlastec.2020.106283_b0615) 2016; 114 Markl (10.1016/j.optlastec.2020.106283_b0515) 2016; 46 Moat (10.1016/j.optlastec.2020.106283_b0530) 2011; 528 Roberts (10.1016/j.optlastec.2020.106283_b0610) 2012 Zhou (10.1016/j.optlastec.2020.106283_b0625) 2015; 98 Tomus (10.1016/j.optlastec.2020.106283_b0595) 2016; 667 Kreitcberg (10.1016/j.optlastec.2020.106283_b0805) 2017; 689 Yadroitsev (10.1016/j.optlastec.2020.106283_b0135) 2015; 10 Murakawa (10.1016/j.optlastec.2020.106283_b0905) 2010; 15 Ammer (10.1016/j.optlastec.2020.106283_b0455) 2014; 67 Agelet de Saracibar (10.1016/j.optlastec.2020.106283_b0265) 1999; 15 Kempen (10.1016/j.optlastec.2020.106283_b0735) 2014; 136 Buchbinder (10.1016/j.optlastec.2020.106283_b0745) 2014; 26 Prashanth (10.1016/j.optlastec.2020.106283_b0950) 2017; 5 Mohanty (10.1016/j.optlastec.2020.106283_b0310) 2014; 56 Reutzel (10.1016/j.optlastec.2020.106283_b0825) 2015; 21 Prime (10.1016/j.optlastec.2020.106283_b0545) 2013 Sheng (10.1016/j.optlastec.2020.106283_b0025) 2016; 105 Berumen (10.1016/j.optlastec.2020.106283_b0680) 2010; 5 Yap (10.1016/j.optlastec.2020.106283_b0010) 2015; 2 Megahed (10.1016/j.optlastec.2020.106283_b0465) 2016; 5 10.1016/j.optlastec.2020.106283_b0670 Syed (10.1016/j.optlastec.2020.106283_b0145) 2019; 755 Kalentics (10.1016/j.optlastec.2020.106283_b0850) 2017; 16 Kostevsek (10.1016/j.optlastec.2020.106283_b0080) 2018; 24 Nickel (10.1016/j.optlastec.2020.106283_b0210) 2001; 317 10.1016/j.optlastec.2020.106283_b0035 Zohdi (10.1016/j.optlastec.2020.106283_b0435) 2017 Mani (10.1016/j.optlastec.2020.106283_b0845) 2017; 55 Zhao (10.1016/j.optlastec.2020.106283_b0695) 2017; 28 Bael (10.1016/j.optlastec.2020.106283_b0635) 2011; 528 Williams (10.1016/j.optlastec.2020.106283_b0120) 2018; 22 Dai (10.1016/j.optlastec.2020.106283_b0290) 2018; 99 Bartlett (10.1016/j.optlastec.2020.106283_b0415) 2018; 22 Ding (10.1016/j.optlastec.2020.106283_b0315) 2011; 50 Rai (10.1016/j.optlastec.2020.106283_b0460) 2016; 124 Parry (10.1016/j.optlastec.2020.106283_b0105) 2016; 12 Mines (10.1016/j.optlastec.2020.106283_b0015) 2019 Belle (10.1016/j.optlastec.2020.106283_b0920) 2013; 554–557 De (10.1016/j.optlastec.2020.106283_b0200) 2011; 16 Furumoto (10.1016/j.optlastec.2020.106283_b0340) 2017; 245 Tan (10.1016/j.optlastec.2020.106283_b0505) 2020; 15 10.1016/j.optlastec.2020.106283_b0160 Mugwagwa (10.1016/j.optlastec.2020.106283_b0335) 2019; 102 Zaeh (10.1016/j.optlastec.2020.106283_b0110) 2010; 4 Song (10.1016/j.optlastec.2020.106283_b0800) 2019; 120 10.1016/j.optlastec.2020.106283_b0560 Vrancken (10.1016/j.optlastec.2020.106283_b0750) 2015 10.1016/j.optlastec.2020.106283_b0685 Qiu (10.1016/j.optlastec.2020.106283_b0480) 2015; 96 Dong (10.1016/j.optlastec.2020.106283_b0300) 2018; 12 Korsunsky (10.1016/j.optlastec.2020.106283_b0590) 2010; 205 Shi (10.1016/j.optlastec.2020.106283_b0425) 2017; 90 Shrestha (10.1016/j.optlastec.2020.106283_b0630) 2019; 141 Chris (10.1016/j.optlastec.2020.106283_b0650) 2018; 70 10.1016/j.optlastec.2020.106283_b0725 Li (10.1016/j.optlastec.2020.106283_b0345) 2016; 229 Hu (10.1016/j.optlastec.2020.106283_b0665) 2003; 43 Vora (10.1016/j.optlastec.2020.106283_b0910) 2017; 5 Kuryntsev (10.1016/j.optlastec.2020.106283_b0795) 2018; 107 Gaja (10.1016/j.optlastec.2020.106283_b0705) 2016 Wei (10.1016/j.optlastec.2020.106283_b0555) 2019; 150 Vilaro (10.1016/j.optlastec.2020.106283_b0730) 2011; 42a Chua (10.1016/j.optlastec.2020.106283_b0840) 2017; 4 Yoshida (10.1016/j.optlastec.2020.106283_b0700) 2016; 9 Verhaeghe (10.1016/j.optlastec.2020.106283_b0305) 2009; 57 Tian (10.1016/j.optlastec.2020.106283_b0400) 2008; 199 Khorasani (10.1016/j.optlastec.2020.106283_b0955) 2019; 14 Gu (10.1016/j.optlastec.2020.106283_b0440) 2017; 3 Whiting (10.1016/j.optlastec.2020.106283_b0140) 2016 Song (10.1016/j.optlastec.2020.106283_b0380) 2018; 170 Körner (10.1016/j.optlastec.2020.106283_b0450) 2011; 211 Perron (10.1016/j.optlastec.2020.106283_b0485) 2017; 26 Nassar (10.1016/j.optlastec.2020.106283_b0820) 2015; 6 King (10.1016/j.optlastec.2020.106283_b0225) 2015; 31 Ali (10.1016/j.optlastec.2020.106283_b0285) 2018; 97 Shi (10.1016/j.optlastec.2020.106283_b0420) 2016; 84 Tammas-Williams (10.1016/j.optlastec.2020.106283_b0640) 2015; 102 Wang (10.1016/j.optlastec.2020.106283_b0020) 2012 Li (10.1016/j.optlastec.2020.106283_b0365) 2014; 1–4 Kou (10.1016/j.optlastec.2020.106283_b0205) 2003 He (10.1016/j.optlastec.2020.106283_b0570) 2019; 122 Zhou (10.1016/j.optlastec.2020.106283_b0655) 2018; 2 Khairallah (10.1016/j.optlastec.2020.106283_b0295) 2014; 214 Koric (10.1016/j.optlastec.2020.106283_b0085) 2008; 197 Br |
References_xml | – volume: 7 start-page: 83 year: 2015 end-page: 91 ident: b0125 article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718 publication-title: Addit. Manuf. – volume: 112 start-page: 30 year: 2016 end-page: 40 ident: b0030 article-title: Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel publication-title: Mater. Charact. – volume: 14 start-page: 349 year: 2019 end-page: 359 ident: b0955 article-title: A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4V publication-title: Virt. Phys. Prototyp. – volume: 89 year: 2018 ident: b0575 article-title: An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes publication-title: Rev. Sci. Instrum. – volume: 137 start-page: 65 year: 2017 end-page: 78 ident: b0395 article-title: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting publication-title: Optik – volume: 122 start-page: 151 year: 2019 end-page: 163 ident: b0490 article-title: Progress in numerical simulation of the laser cladding process publication-title: Opt. Lasers Eng. – volume: 199 start-page: 41 year: 2008 end-page: 48 ident: b0400 article-title: Finite element modeling of electron beam welding of a large complex Al alloy structure by parallel computations publication-title: J. Mater. Process. Technol. – volume: 12 start-page: 159 year: 2016 end-page: 168 ident: b0330 article-title: Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting publication-title: Addit. Manuf. – reference: S. Mohanty, J.H. Hattel, Laser Additive Manufacturing of multimaterial tool inserts: A simulation-based optimization study, Laser 3d Manuf. Iv 10095 (2017). https://doi.org/10.1117/12.2253600. – volume: 16 start-page: 355 year: 2007 end-page: 373 ident: b0250 article-title: Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding publication-title: J. Therm. Spray Technol. – volume: 36 start-page: 564 year: 2013 end-page: 588 ident: b0270 article-title: Thermo-mechanics and microstructure evolution in manufacturing simulations publication-title: J. Therm. Stresses – volume: 102 start-page: 2441 year: 2019 end-page: 2450 ident: b0335 article-title: Evaluation of the impact of scanning strategies on residual stresses in selective laser melting publication-title: Int. J. Adv. Manuf. Technol. – volume: 22 start-page: 1 year: 2018 end-page: 12 ident: b0415 article-title: Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation publication-title: Addit. Manuf. – volume: 10 start-page: 348 year: 2017 ident: b0660 article-title: An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V publication-title: Materials – volume: 21 start-page: 333 year: 2018 end-page: 339 ident: b0645 article-title: Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality publication-title: Addit. Manuf. – volume: 98 start-page: 1 year: 2015 end-page: 16 ident: b0625 article-title: 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT publication-title: Acta Materialia – volume: 70 start-page: 1844 year: 2018 end-page: 1852 ident: b0650 article-title: Micron-level layer-wise surface profilometry to detect porosity defects in powder bed fusion of inconel 718 publication-title: JOM – volume: 9 start-page: 2788 year: 2018 ident: b0040 article-title: Adding chemically selective subtraction to multi-material 3D additive manufacturing publication-title: Nat. Commun. – volume: 50 start-page: 1042 year: 2019 end-page: 1051 ident: b0045 article-title: Additive manufacturing of a steel-ceramic multi-material by selective laser melting publication-title: Metallurg. Mater. Trans. B-Process Metall. Mater. Process. Sci. – volume: 24 start-page: 877 year: 2002 end-page: 886 ident: b0855 article-title: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel publication-title: Int. J. Fatigue – volume: 5 start-page: 61 year: 2016 end-page: 93 ident: b0465 article-title: Metal additive-manufacturing process and residual stress modeling publication-title: Integr. Mater. Manuf. Innov. – volume: 26 year: 2017 ident: b0485 article-title: Matching time and spatial scales of rapid solidification: Dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations publication-title: Modell. Simul. Mater. Sci. Eng – volume: 363 start-page: 849 year: 2019 end-page: 852 ident: b0585 article-title: Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging publication-title: Science – volume: 11 start-page: 8 year: 2017 end-page: 11 ident: b0050 article-title: Multi-material selective laser melting of Fe/Al-12Si components publication-title: Manuf. Lett. – volume: 120 year: 2019 ident: b0800 article-title: Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting publication-title: Opt. Laser Technol. – year: 2017 ident: b0565 article-title: 3D residual stresses in selective laser melted Hastelloy X publication-title: Icrs – volume: 136 start-page: 24 year: 2018 end-page: 35 ident: b0280 article-title: Modeling temperature and residual stress fields in selective laser melting publication-title: Int. J. Mech. Sci. – volume: 75 start-page: 197 year: 2015 end-page: 206 ident: b0100 article-title: Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy publication-title: Opt. Laser Technol. – volume: 205 start-page: 2393 year: 2010 end-page: 2403 ident: b0590 article-title: Residual stress evaluation at the micrometer scale: Aanalysis of thin coatings by FIB milling and digital image correlation publication-title: Surf. Coat. Technol. – start-page: 17 year: 2019 end-page: 31 ident: b0015 article-title: Additive Manufacturing Processes and Materials for Metallic Microlattice Structures Using Selective Laser Melting, Electron Beam Melting and Binder Jetting, Metallic Microlattice Structures – volume: 94 start-page: 59 year: 2015 end-page: 68 ident: b0155 article-title: Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach publication-title: Acta Mater. – volume: 114 start-page: 33 year: 2016 end-page: 42 ident: b0615 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. – volume: 23 start-page: 1009 year: 2007 end-page: 1020 ident: b0890 article-title: Welding residual stresses in ferritic power plant steels publication-title: Mater. Sci. Technol. – volume: 117 start-page: 221 year: 2016 end-page: 232 ident: b0390 article-title: Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy publication-title: Comput. Mater. Sci. – volume: 10 start-page: 67 year: 2015 end-page: 76 ident: b0135 article-title: Evaluation of residual stress in stainless steel 316L and Ti-6Al-4V samples produced by selective laser melting publication-title: Virt. Phys. Prototyp. – volume: 140 year: 2018 ident: b0675 article-title: Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach publication-title: J. Manuf. Sci. Eng. – volume: 33 start-page: 82 year: 2014 end-page: 92 ident: b0710 article-title: Residual stresses comparison determined by short-wavelength X-ray diffraction and neutron diffraction for 7075 aluminum alloy publication-title: J. Nondestr. Eval. – reference: R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, J. Van Humbeeck, Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts, in: Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016 83 (2016) 882–890. https://doi.org/10.1016/j.phpro.2016.08.092. – volume: 149 start-page: 616 year: 2004 end-page: 622 ident: b0720 article-title: Selective laser melting of iron-based powder publication-title: J. Mater. Process. Technol. – volume: 63 start-page: 856 year: 2014 end-page: 867 ident: b0405 article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder publication-title: Mater. Des. – volume: 24 start-page: 670 year: 2018 end-page: 676 ident: b0080 article-title: Development of productivity estimation model for mass-customized production by selective laser melting publication-title: Rapid Prototyp. J. – volume: 56 start-page: 379 year: 2014 end-page: 389 ident: b0310 article-title: Numerical model based reliability estimation of selective laser melting process publication-title: Physics Procedia – reference: Nathan Charles Levkulich, An Experimental Investigation of Residual Stress Development during Selective Laser Melting of Ti-6Al-4V, Wright State University, 2017. – volume: 792 start-page: 574 year: 2019 end-page: 581 ident: b0945 article-title: Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting publication-title: J. Alloy. Compd. – volume: 107 start-page: 59 year: 2018 end-page: 66 ident: b0795 article-title: The influence of pre-heat treatment on laser welding of T-joints of workpieces made of selective laser melting steel and cold rolled stainless steel publication-title: Opt. Laser Technol. – volume: 7 start-page: 12 year: 2015 end-page: 19 ident: b0115 article-title: AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting publication-title: Addit. Manuf. – reference: C. Rans, J. Michielssen, M. Walker, W.D. Wang, L. 't Hoen-Velterop, Beyond the orthogonal: on the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V, Int. J. Fatigue 116 (2018) 344–354. https://doi.org/10.1016/j.ijfatigue.2018.06.038. – volume: 150 start-page: 67 year: 2019 end-page: 77 ident: b0555 article-title: Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5 Sn alloy publication-title: Mater. Char. – volume: 214 start-page: 1852 year: 2014 end-page: 1860 ident: b0370 article-title: Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy publication-title: J. Mater. Process. Technol. – reference: A.V. Gusarov, M. Pavlov, I. Smurov, Residual stresses at laser surface remelting and additive manufacturing, lasers in manufacturing 2011, in: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, vol 12, Pt A 12(1) (2011) 248–254. https://doi.org/10.1016/j.phpro.2011.03.032. – volume: 211 start-page: 978 year: 2011 end-page: 987 ident: b0450 article-title: Mesoscopic simulation of selective beam melting processes publication-title: J. Mater. Process. Technol. – volume: 120 start-page: 15 year: 2014 end-page: 25 ident: b0185 article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting publication-title: Eng. Fract. Mech. – volume: 45a start-page: 6260 year: 2014 end-page: 6270 ident: b0430 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater.Sci. – volume: 15 start-page: 87 year: 2020 end-page: 105 ident: b0505 article-title: Microstructure modelling for metallic additive manufacturing: a review publication-title: Virt. Phys. Prototyp. – volume: 73 start-page: 151 year: 2018 end-page: 157 ident: b0445 article-title: A multi-scale multi-physics modeling framework of laser powder bed fusion additive manufacturing process publication-title: Met. Powder Rep. – volume: 5 start-page: 617 year: 2010 end-page: 622 ident: b0680 article-title: Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies publication-title: Phys. Procedia – volume: 41 start-page: 881 year: 2013 end-page: 886 ident: b0475 article-title: Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method publication-title: Phys. Procedia – volume: 66 start-page: 305 year: 2017 end-page: 308 ident: b0870 article-title: Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components publication-title: Cirp Ann.-Manuf. Technol. – volume: 15 start-page: 393 year: 2010 end-page: 399 ident: b0905 article-title: Effect of low transformation temperature weld filler metal on welding residual stress publication-title: Sci. Technol. Weld. Join. – volume: 96 start-page: 72 year: 2015 end-page: 79 ident: b0480 article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting publication-title: Acta Mater. – volume: 28 start-page: 1 year: 2012 end-page: 14 ident: b0785 article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies publication-title: J. Mater. Sci. Technol. – volume: 69 start-page: 368 year: 2017 end-page: 376 ident: b0070 article-title: Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process publication-title: J. Mech. Behav. Biomed. Mater. – volume: 245 start-page: 207 year: 2017 end-page: 214 ident: b0340 article-title: Study on deformation restraining of metal structure fabricated by selective laser melting publication-title: J. Mater. Process. Technol. – volume: 22 start-page: 416 year: 2018 end-page: 425 ident: b0120 article-title: A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion publication-title: Addit. Manuf. – volume: 74 start-page: 5 year: 2018 end-page: 11 ident: b0780 article-title: Application of base plate preheating during selective laser melting publication-title: Procedia CIRP – start-page: 1 year: 2016 end-page: 14 ident: b0705 article-title: Defects monitoring of laser metal deposition using acoustic emission sensor publication-title: Int. J. Adv. Manuf. Technol. – volume: 214 start-page: 2627 year: 2014 end-page: 2636 ident: b0295 article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder publication-title: J. Mater. Process. Technol. – reference: A.M. Kamat, Y.T. Pei, An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion, Addit. Manuf. 29 (2019) 100796. https://doi.org/UNSP 100796 10.1016/j.addma.2019.100796. – volume: 102 start-page: 47 year: 2015 end-page: 61 ident: b0640 article-title: XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting publication-title: Mater. Charact. – volume: 52 start-page: 28 year: 2000 end-page: 30 ident: b0005 article-title: Producing titanium aerospace components from powder using laser forming publication-title: Jom-J. Miner. Met. Mater. Soc. – volume: 50 start-page: 3315 year: 2011 end-page: 3322 ident: b0315 article-title: Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts publication-title: Comput. Mater. Sci. – volume: 9 year: 2019 ident: b0865 article-title: Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting publication-title: Metals – year: 2017 ident: b0435 article-title: Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media: Continuum and Discrete Element Methods – volume: 28 year: 2017 ident: b0695 article-title: Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm publication-title: Meas. Sci. Technol. – start-page: 1269 year: 2016 end-page: 1277 ident: b0770 article-title: Preheating of selective laser melted Ti- 6Al-4V: microstructure and mechanical properties publication-title: Proceedings of the 13th World Conference on Titanium, Wiley Online Library – volume: 5 start-page: 386 year: 2017 end-page: 390 ident: b0950 article-title: Is the energy density a reliable parameter for materials synthesis by selective laser melting? publication-title: Mater. Res. Lett. – volume: 197 start-page: 408 year: 2008 end-page: 418 ident: b0085 article-title: Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws publication-title: J. Mater. Process. Technol. – volume: 17 start-page: 366 year: 2013 end-page: 375 ident: b0215 article-title: Residual stress. Part 2 – nature and origins publication-title: Mater. Sci. Technol. – volume: 769 year: 2020 ident: b0815 article-title: Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum publication-title: Mater. Sci. Eng., A – volume: 21 start-page: 284 year: 2018 end-page: 297 ident: b0275 article-title: A semi-analytical thermal modelling approach for selective laser melting publication-title: Addit. Manuf. – volume: 140 year: 2018 ident: b0535 article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting publication-title: J. Manuf. Sci. Engi.-Trans. ASME – reference: C. Seidel, M.F. Zaeh, M. Wunderer, J. Weirather, T.A. Krol, M. Ott, Simulation of the laser beam melting process - approaches for an efficient modelling of the beam-material interaction, in: 8th International Conference on Digital Enterprise Technology - Det 2014 Disruptive Innovation in Manufacturing Engineering Towards the 4th Industrial Revolution 25 (2014) 146–153. https://doi.org/10.1016/j.procir.2014.10.023. – reference: X. Xing, X. Duan, X. Sun, H. Gong, L. Wang, F. Jiang, Modification of residual stresses in laser additive manufactured AlSi10Mg specimens using an ultrasonic peening technique, Materials (Basel) 12(3) (2019) 455. https://doi.org/10.3390/ma12030455. – volume: 153–154 start-page: 119 year: 2019 end-page: 130 ident: b0520 article-title: In situ measurements and thermo-mechanical simulation of Ti–6Al–4V laser solid forming processes publication-title: Int. J. Mech. Sci. – volume: 317 start-page: 59 year: 2001 end-page: 64 ident: b0210 article-title: Thermal stresses and deposition patterns in layered manufacturing publication-title: Mater. Sci. Eng., A – volume: 7 start-page: 3602 year: 2017 ident: b0580 article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction publication-title: Sci. Rep. – volume: 55 start-page: 187 year: 2006 end-page: 192 ident: b0220 article-title: Fundamentals of selective laser melting of alloyed steel powders publication-title: Cirp Ann.-Manuf. Technol. – volume: 30 start-page: 1650255 year: 2016 ident: b0810 article-title: Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process publication-title: Mod. Phys. Lett. B – volume: 6 start-page: 39 year: 2015 end-page: 52 ident: b0820 article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti-6Al-4V publication-title: Addit. Manuf. – volume: 755 start-page: 246 year: 2019 end-page: 257 ident: b0145 article-title: An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti-6Al-4V publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. – start-page: 115 year: 2009 end-page: 120 ident: b0255 article-title: Calculation of stresses in two-and three-dimensional structures generated by induction assisted laser cladding publication-title: Proc. LIM – start-page: 1 year: 2003 end-page: 29 ident: b0205 article-title: Welding Metallurgy – volume: 57 start-page: 6006 year: 2009 end-page: 6012 ident: b0305 article-title: A pragmatic model for selective laser melting with evaporation publication-title: Acta Mater. – volume: 97 start-page: 2621 year: 2018 end-page: 2633 ident: b0285 article-title: Residual stress development in selective laser-melted Ti-6Al-4V: a parametric thermal modelling approach publication-title: Int. J. Adv. Manuf. Technol. – volume: 25 start-page: 325 year: 2019 end-page: 334 ident: b0385 article-title: New aspects about the search for the most relevant parameters optimizing SLM materials publication-title: Addit. Manuf. – volume: 23 start-page: 187 year: 2016 ident: b0715 article-title: S51 Influence of cold compression on the residual stresses in 7449 forgings publication-title: Powder Diffr. – volume: 87 start-page: 29 year: 2014 end-page: 32 ident: b0195 article-title: Residual stress via the contour method in compact tension specimens produced via selective laser melting publication-title: Scr. Mater. – volume: 229 start-page: 703 year: 2016 end-page: 712 ident: b0345 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. – volume: 49 start-page: 645 year: 2017 end-page: 652 ident: b0510 article-title: Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing publication-title: J. Nanjing Univ. Aeronaut. Astronaut. – volume: 170 start-page: 342 year: 2018 end-page: 352 ident: b0380 article-title: Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting publication-title: Optik – reference: T. Craeghs, S. Clijsters, E. Yasa, F. Bechmann, S. Berumen, J.-P. Kruth, Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring, Opt. Lasers Eng. 49(12) (2011) 1440–1446. https:// doi.org/10.1016/j.optlaseng.2011.06.016. – year: 2017 ident: b0835 article-title: Material Quality and Process Monitoring in Metal Additive Manufacturing – volume: 91 start-page: 1255 year: 2016 end-page: 1273 ident: b0690 article-title: Experimental validation and characterization of a real-time metrology system for photopolymerization-based stereolithographic additive manufacturing process publication-title: Int. J. Adv. Manuf. Technol. – reference: H. Krauss, C. Eschey, M. Zaeh, Thermography for monitoring the selective laser melting process, in: Proceedings of the Solid Freeform Fabrication Symposium, 2012, pp. 999–1014. – volume: 4 start-page: 235 year: 2017 end-page: 245 ident: b0840 article-title: Process monitoring and inspection systems in metal additive manufacturing: status and applications publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. – volume: 56 start-page: 265 year: 2015 end-page: 276 ident: b0495 article-title: Multiscale modeling of electron beam and substrate interaction: a new heat source model publication-title: Comput. Mech. – volume: 105 start-page: 75 year: 2016 end-page: 83 ident: b0025 article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting publication-title: Acta Mater. – volume: 16 start-page: 36 year: 2018 end-page: 39 ident: b0605 article-title: Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting publication-title: Manuf. Lett. – year: 2008 ident: b0775 article-title: Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM) publication-title: International Conference on Rapid Manufacturing – volume: 26 year: 2014 ident: b0745 article-title: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting publication-title: J. Laser Appl. – volume: 79 start-page: 81 year: 2015 end-page: 88 ident: b0130 article-title: Effect of curvature radius on the residual stress of thin-walled parts in laser direct forming publication-title: Int. J. Adv. Manuf. Technol. – volume: 128 start-page: 662 year: 2006 end-page: 679 ident: b0245 article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process publication-title: J. Heat Transf.-Trans. ASME – volume: 5 start-page: 24 year: 2017 ident: b0910 article-title: Customised alloy blends for in-situ Al339 alloy formation using anchorless selective laser melting publication-title: Technologies – volume: 12 year: 2019 ident: b0765 article-title: Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti-6Al-4V processed by selective laser melting publication-title: Materials (Basel) – volume: 21 start-page: 159 year: 2015 end-page: 167 ident: b0825 article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing publication-title: Rapid Prototyp. J. – volume: 667 start-page: 42 year: 2016 end-page: 53 ident: b0595 article-title: Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. – year: 2016 ident: b0060 article-title: Loading-unloading cycles of 3D-printing built bi-material structures with ceramic and elastomer publication-title: ASME 2016 11th International Manufacturing Science and Engineering Conference – volume: 378 start-page: 34 year: 2004 end-page: 39 ident: b0885 article-title: Developments in martensitic and bainitic steels: role of the shape deformation publication-title: Mater. Sci. Eng A-Struct. Mater. Propert. Microstruct. Process. – volume: 2 year: 2015 ident: b0010 article-title: Review of selective laser melting: materials and applications publication-title: Appl. Phys. Rev. – volume: 39 start-page: 858 year: 2007 end-page: 863 ident: b0240 article-title: Temperature gradient mechanism in laser forming of thin plates publication-title: Opt. Laser Technol. – volume: 84 start-page: 9 year: 2016 end-page: 22 ident: b0420 article-title: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites publication-title: Opt. Laser Technol. – volume: 4 start-page: 35 year: 2010 end-page: 45 ident: b0110 article-title: Investigations on residual stresses and deformations in selective laser melting publication-title: Prod. Eng. Res. Devel. – volume: 590 start-page: 433 year: 2014 end-page: 439 ident: b0150 article-title: Effect of residual stress induced by pulsed-laser irradiation on initiation of chloride stress corrosion cracking in stainless steel publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. – volume: 108 start-page: 36 year: 2016 end-page: 45 ident: b0230 article-title: Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. – volume: 57 start-page: 359 year: 2016 end-page: 370 ident: b0320 article-title: Thermodynamically consistent microstructure prediction of additively manufactured materials publication-title: Comput. Mech. – reference: J.P. Kruth, J. Deckers, E. Yasa, R. Wauthle, Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 226(B6) (2012) 980–991. https://doi.org/10.1177/0954405412437085. – volume: 255 start-page: 650 year: 2018 end-page: 655 ident: b0055 article-title: Hybrid additive manufacturing of Al-Ti-6Al-4V functionally graded materials with selective laser melting and cold spraying publication-title: J. Mater. Process. Technol. – volume: 61 start-page: 599 year: 2018 end-page: 615 ident: b0325 article-title: Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process publication-title: Comput. Mech. – volume: 14 start-page: 559 year: 2009 end-page: 565 ident: b0895 article-title: Stainless steel weld metal designed to mitigate residual stresses publication-title: Sci. Technol. Weld. Join. – year: 2016 ident: b0140 article-title: Characterization of feedstock in the powder bed fusion process: sources of variation in particle size distribution and the factors that influence them publication-title: International Solid Freeform Fabrication Symposium Austin, Texas, USA – volume: 31 start-page: 957 year: 2015 end-page: 968 ident: b0225 article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory publication-title: Mater. Sci. Technol. – volume: 98 start-page: 23 year: 2018 end-page: 32 ident: b0350 article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel publication-title: Opt. Laser Technol. – volume: 18 start-page: 1544 year: 2016 end-page: 1549 ident: b0065 article-title: Manufacturing of Ti-6Al-4V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining publication-title: Adv. Eng. Mater. – volume: 1–4 start-page: 99 year: 2014 end-page: 109 ident: b0365 article-title: Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study publication-title: Addit. Manuf. – volume: 118 start-page: 13 year: 2016 end-page: 18 ident: b0740 article-title: Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting publication-title: Scr. Mater. – volume: 124 year: 2020 ident: b0875 article-title: Laser finishing of 3D printed parts produced by material extrusion publication-title: Opt. Lasers Eng. – volume: 528 start-page: 2288 year: 2011 end-page: 2298 ident: b0530 article-title: Residual stresses in laser direct metal deposited Waspaloy publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. – reference: P. Hanzl, M. Zetek, T. Baksa, T. Kroupa, The Influence of processing parameters on the mechanical properties of SLM parts, in: 25th Daaam International Symposium on Intelligent Manufacturing and Automation, 2014 100 (2015) 1405–1413. https://doi.org/10.1016/j.proeng.2015.01.510. – volume: 12 start-page: 1 year: 2016 end-page: 15 ident: b0105 article-title: Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation publication-title: Addit. Manuf. – volume: 26 start-page: 2869 year: 2017 end-page: 2877 ident: b0175 article-title: Study on the quality and performance of CoCrMo alloy parts manufactured by selective laser melting publication-title: J. Mater. Eng. Perform. – volume: 13 year: 2019 ident: b0500 article-title: Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography publication-title: Res. Phys. – volume: 39 start-page: 843 year: 2012 end-page: 852 ident: b0470 article-title: Multiphysical simulation of laser material processing publication-title: Laser Assisted Net Shape Eng. 7 (Lane 2012) – reference: R. Baskett, Effects of Support Structure Geometry on SLM Induced Residual Stresses in Overhanging Features (2017). – volume: 541 start-page: 177 year: 2012 end-page: 185 ident: b0790 article-title: Heat treatment of Ti-6Al-4V produced by Selective Laser Melting: microstructure and mechanical properties publication-title: J. Alloy. Compd. – volume: 689 start-page: 1 year: 2017 end-page: 10 ident: b0805 article-title: Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. – volume: 705 start-page: 20 year: 2017 end-page: 31 ident: b0600 article-title: Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment publication-title: Mater. Sci. Eng., A – volume: 16 start-page: 90 year: 2017 end-page: 97 ident: b0850 article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening publication-title: Addit. Manuf. – volume: 19 start-page: 39 year: 2018 end-page: 50 ident: b0880 article-title: On the machinability of directed energy deposited Ti-6Al-4V publication-title: Addit. Manuf. – volume: 67 start-page: 318 year: 2014 end-page: 330 ident: b0455 article-title: Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method publication-title: Comput. Math. Appl. – volume: 14 start-page: 92 year: 2012 end-page: 97 ident: b0170 article-title: Analysis of fracture toughness and crack propagation of Ti-6Al-4V produced by selective laser melting publication-title: Adv. Eng. Mater. – volume: 99 start-page: 91 year: 2018 end-page: 100 ident: b0290 article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts publication-title: Opt. Laser Technol. – volume: 51 start-page: 61 year: 2015 end-page: 73 ident: b0075 article-title: Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. – volume: 55 start-page: 1400 year: 2017 end-page: 1418 ident: b0845 article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes publication-title: Int. J. Prod. Res. – reference: W. Xing, D. Ouyang, N. Li, L. Liu, Estimation of Residual Stress in Selective Laser Melting of a Zr-Based Amorphous Alloy, Materials (Basel) 11(8) (2018) 1480-. https://doi.org/10.3390/ma11081480. – volume: 131 year: 2009 ident: b0900 article-title: The Effects of filler metal transformation temperature on residual stresses in a high strength steel weld publication-title: J. Press. Vessel Technol.-Trans. ASME – volume: 90 start-page: 71 year: 2017 end-page: 79 ident: b0425 article-title: Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks publication-title: Opt. Laser Technol. – volume: 554–557 start-page: 1828 year: 2013 end-page: 1834 ident: b0920 article-title: Investigation of residual stresses induced during the selective laser melting process publication-title: Key Eng. Mater. – volume: 695 start-page: 211 year: 2017 end-page: 220 ident: b0760 article-title: In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti-6Al-4V publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. – volume: 127 start-page: 120 year: 2017 end-page: 130 ident: b0180 article-title: Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water publication-title: Corros. Sci. – volume: 43 start-page: 51 year: 2003 end-page: 60 ident: b0665 article-title: Sensing, modeling and control for laser-based additive manufacturing publication-title: Int. J. Mach. Tools Manuf – volume: 12 start-page: 50 year: 2018 ident: b0300 article-title: Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modeling and experimental approaches publication-title: Materials – volume: 725 start-page: 419 year: 2018 end-page: 427 ident: b0940 article-title: Selective laser melting of high strength and toughness stainless steel parts: The roles of laser hatch style and part placement strategy publication-title: Mater. Sci. Eng., A – volume: 16 start-page: 204 year: 2011 end-page: 208 ident: b0200 article-title: A perspective on residual stresses in welding publication-title: Sci. Technol. Weld. Join. – volume: 17 start-page: 355 year: 2001 end-page: 365 ident: b0525 article-title: Residual stress part 1 – measurement techniques publication-title: Mater. Sci. Technol. – start-page: 109 year: 2013 end-page: 138 ident: b0545 article-title: The contour method, practical residual stress measurement publication-title: Methods – reference: J.C.H. Erik R. Denlinger, Pan Michaleris, T.A. Palmer, Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys, J. Mater. Process. Technol. 215 (2015) 123–131. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2014.07.030. – year: 2015 ident: b0750 article-title: Influence of preheating and oxygen content on Selective Laser Melting of Ti-6Al-4V publication-title: Proceedings of the 16th RAPDASA Conference – volume: 12 start-page: 240 year: 2016 end-page: 251 ident: b0360 article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting publication-title: Addit. Manuf. – volume: 238 start-page: 437 year: 2016 end-page: 445 ident: b0915 article-title: Changing the alloy composition of Al7075 for better processability by selective laser melting publication-title: J. Mater. Process. Technol. – volume: 136 year: 2014 ident: b0830 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng.-Trans. ASME – volume: 12 start-page: 254 year: 2006 end-page: 265 ident: b0090 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. – volume: 3 start-page: 675 year: 2017 end-page: 684 ident: b0440 article-title: A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing publication-title: Engineering – year: 2012 ident: b0610 article-title: Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing – volume: 528 start-page: 7423 year: 2011 end-page: 7431 ident: b0635 article-title: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti-6Al-4V porous structures publication-title: Mater. Sci. Eng., A – volume: 136 year: 2014 ident: b0735 article-title: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating publication-title: J. Manuf. Sci. Eng.-Trans. ASME – volume: 399 start-page: 72 year: 2005 end-page: 83 ident: b0550 article-title: Residual stresses in LENS ® components using neutron diffraction and contour method publication-title: Mater. Sci. Eng., A – volume: 48 start-page: 300 year: 2013 end-page: 307 ident: b0165 article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int. J. Fatigue – volume: 46 start-page: 93 year: 2016 end-page: 123 ident: b0515 article-title: Multiscale modeling of powder bed-based additive manufacturing publication-title: Annu. Rev. Mater. Res. – reference: M. Mohammad, R. Prahalada, Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach, J. Manuf. Sci. Eng. 140(9) (2018) 091002. – volume: 2 start-page: 13 year: 2018 ident: b0655 article-title: Quantitative scanning laue diffraction microscopy: application to the study of 3D printed nickel-based superalloys publication-title: Quantum Beam Sci. – reference: B. Vrancken, Study of residual stresses in selective laser melting, KU Leuven, 2016. – volume: 141 start-page: 1 year: 2019 ident: b0630 article-title: A study of keyhole porosity in selective laser melting: single-track scanning with micro-CT analysis publication-title: J. Manuf. Sci. Eng.-Trans. ASME – volume: 15 start-page: 1 year: 1999 end-page: 34 ident: b0265 article-title: On the formulation of coupled thermoplastic problems with phase-change publication-title: Int. J. Plast. – volume: 124 start-page: 37 year: 2016 end-page: 48 ident: b0460 article-title: A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing publication-title: Comput. Mater. Sci. – volume: 9 start-page: 112 year: 2016 ident: b0700 article-title: Residual stress analysis based on acoustic and optical methods publication-title: Materials (Basel) – volume: 42a start-page: 3190 year: 2011 end-page: 3199 ident: b0730 article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater. Sci. – year: 2018 ident: b0930 article-title: Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting publication-title: Adv. Mater. Sci. Eng. – start-page: p. MTh3B.2 year: 2012 ident: b0020 article-title: Laser additive manufacturing of aerospace large metallic structural components: state of the arts and challenges, international photonics and optoelectronics meetings publication-title: Opt. Soc. Am, Wuhan – volume: 122 start-page: 74 year: 2019 end-page: 88 ident: b0570 article-title: In-situ monitoring and deformation characterization by optical techniques; part I: Laser-aided direct metal deposition for additive manufacturing publication-title: Opt. Lasers Eng. – volume: 53 start-page: 195 year: 2004 end-page: 198 ident: b0190 article-title: Residual stress within metallic model made by selective laser melting process publication-title: Cirp Ann.-Manuf. Technol. – volume: 46 start-page: 147 year: 2014 end-page: 155 ident: b0375 article-title: Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures publication-title: Intermetallics – volume: 16 start-page: 204 issue: 3 year: 2011 ident: 10.1016/j.optlastec.2020.106283_b0200 article-title: A perspective on residual stresses in welding publication-title: Sci. Technol. Weld. Join. doi: 10.1179/136217111X12978476537783 – volume: 98 start-page: 1 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0625 article-title: 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT publication-title: Acta Materialia doi: 10.1016/j.actamat.2015.07.014 – volume: 590 start-page: 433 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0150 article-title: Effect of residual stress induced by pulsed-laser irradiation on initiation of chloride stress corrosion cracking in stainless steel publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. doi: 10.1016/j.msea.2013.10.066 – volume: 11 start-page: 8 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0050 article-title: Multi-material selective laser melting of Fe/Al-12Si components publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2017.01.002 – volume: 554–557 start-page: 1828 issue: 2013 year: 2013 ident: 10.1016/j.optlastec.2020.106283_b0920 article-title: Investigation of residual stresses induced during the selective laser melting process publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.554-557.1828 – volume: 120 start-page: 15 issue: 4 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0185 article-title: On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2014.03.008 – volume: 4 start-page: 235 issue: 2 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0840 article-title: Process monitoring and inspection systems in metal additive manufacturing: status and applications publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. doi: 10.1007/s40684-017-0029-7 – volume: 15 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.optlastec.2020.106283_b0265 article-title: On the formulation of coupled thermoplastic problems with phase-change publication-title: Int. J. Plast. doi: 10.1016/S0749-6419(98)00055-2 – volume: 5 start-page: 61 issue: 1 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0465 article-title: Metal additive-manufacturing process and residual stress modeling publication-title: Integr. Mater. Manuf. Innov. doi: 10.1186/s40192-016-0047-2 – volume: 56 start-page: 379 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0310 article-title: Numerical model based reliability estimation of selective laser melting process publication-title: Physics Procedia doi: 10.1016/j.phpro.2014.08.135 – year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0565 article-title: 3D residual stresses in selective laser melted Hastelloy X publication-title: Icrs – volume: 57 start-page: 359 issue: 3 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0320 article-title: Thermodynamically consistent microstructure prediction of additively manufactured materials publication-title: Comput. Mech. doi: 10.1007/s00466-015-1243-1 – volume: 120 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0800 article-title: Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105725 – volume: 114 start-page: 33 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0615 article-title: Denudation of metal powder layers in laser powder bed fusion processes publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.05.017 – volume: 378 start-page: 34 issue: 1–2 year: 2004 ident: 10.1016/j.optlastec.2020.106283_b0885 article-title: Developments in martensitic and bainitic steels: role of the shape deformation publication-title: Mater. Sci. Eng A-Struct. Mater. Propert. Microstruct. Process. doi: 10.1016/j.msea.2003.10.328 – volume: 211 start-page: 978 issue: 6 year: 2011 ident: 10.1016/j.optlastec.2020.106283_b0450 article-title: Mesoscopic simulation of selective beam melting processes publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2010.12.016 – volume: 112 start-page: 30 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0030 article-title: Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.11.021 – volume: 725 start-page: 419 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0940 article-title: Selective laser melting of high strength and toughness stainless steel parts: The roles of laser hatch style and part placement strategy publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2018.04.046 – volume: 26 issue: 1 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0745 article-title: Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting publication-title: J. Laser Appl. doi: 10.2351/1.4828755 – volume: 255 start-page: 650 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0055 article-title: Hybrid additive manufacturing of Al-Ti-6Al-4V functionally graded materials with selective laser melting and cold spraying publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.01.015 – ident: 10.1016/j.optlastec.2020.106283_b0355 doi: 10.1016/j.procir.2014.10.023 – volume: 91 start-page: 1255 issue: 1–4 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0690 article-title: Experimental validation and characterization of a real-time metrology system for photopolymerization-based stereolithographic additive manufacturing process publication-title: Int. J. Adv. Manuf. Technol. – ident: 10.1016/j.optlastec.2020.106283_b0755 doi: 10.1016/j.phpro.2016.08.092 – volume: 205 start-page: 2393 issue: 7 year: 2010 ident: 10.1016/j.optlastec.2020.106283_b0590 article-title: Residual stress evaluation at the micrometer scale: Aanalysis of thin coatings by FIB milling and digital image correlation publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2010.09.033 – volume: 105 start-page: 75 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0025 article-title: The development of TiNi-based negative Poisson's ratio structure using selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.12.017 – ident: 10.1016/j.optlastec.2020.106283_b0725 doi: 10.1016/j.proeng.2015.01.510 – volume: 14 start-page: 349 issue: 4 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0955 article-title: A comprehensive study on variability of relative density in selective laser melting of Ti-6Al-4V publication-title: Virt. Phys. Prototyp. doi: 10.1080/17452759.2019.1614198 – ident: 10.1016/j.optlastec.2020.106283_b0560 doi: 10.1177/0954405412437085 – volume: 49 start-page: 645 issue: 5 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0510 article-title: Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing publication-title: J. Nanjing Univ. Aeronaut. Astronaut. – volume: 28 issue: 1 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0695 article-title: Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/28/1/015001 – volume: 317 start-page: 59 issue: 1 year: 2001 ident: 10.1016/j.optlastec.2020.106283_b0210 article-title: Thermal stresses and deposition patterns in layered manufacturing publication-title: Mater. Sci. Eng., A doi: 10.1016/S0921-5093(01)01179-0 – volume: 528 start-page: 2288 issue: 6 year: 2011 ident: 10.1016/j.optlastec.2020.106283_b0530 article-title: Residual stresses in laser direct metal deposited Waspaloy publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. doi: 10.1016/j.msea.2010.12.010 – year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0060 article-title: Loading-unloading cycles of 3D-printing built bi-material structures with ceramic and elastomer – start-page: 1269 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0770 article-title: Preheating of selective laser melted Ti- 6Al-4V: microstructure and mechanical properties – volume: 73 start-page: 151 issue: 3 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0445 article-title: A multi-scale multi-physics modeling framework of laser powder bed fusion additive manufacturing process publication-title: Met. Powder Rep. doi: 10.1016/j.mprp.2018.01.003 – volume: 69 start-page: 368 issue: Complete year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0070 article-title: Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2017.01.043 – volume: 153–154 start-page: 119 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0520 article-title: In situ measurements and thermo-mechanical simulation of Ti–6Al–4V laser solid forming processes publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.01.043 – volume: 16 start-page: 90 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0850 article-title: Tailoring residual stress profile of Selective Laser Melted parts by Laser Shock Peening publication-title: Addit. Manuf. – volume: 5 start-page: 617 year: 2010 ident: 10.1016/j.optlastec.2020.106283_b0680 article-title: Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies publication-title: Phys. Procedia doi: 10.1016/j.phpro.2010.08.089 – volume: 3 start-page: 675 issue: 5 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0440 article-title: A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing publication-title: Engineering doi: 10.1016/J.ENG.2017.05.011 – volume: 141 start-page: 1 issue: 7 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0630 article-title: A study of keyhole porosity in selective laser melting: single-track scanning with micro-CT analysis publication-title: J. Manuf. Sci. Eng.-Trans. ASME doi: 10.1115/1.4043622 – volume: 17 start-page: 355 issue: 4 year: 2001 ident: 10.1016/j.optlastec.2020.106283_b0525 article-title: Residual stress part 1 – measurement techniques publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101509980 – volume: 31 start-page: 957 issue: 8 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0225 article-title: Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory publication-title: Mater. Sci. Technol. doi: 10.1179/1743284714Y.0000000728 – volume: 63 start-page: 856 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0405 article-title: Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.07.006 – volume: 1–4 start-page: 99 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0365 article-title: Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study publication-title: Addit. Manuf. – volume: 150 start-page: 67 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0555 article-title: Effect of laser remelting on deposition quality, residual stress, microstructure, and mechanical property of selective laser melting processed Ti-5Al-2.5 Sn alloy publication-title: Mater. Char. doi: 10.1016/j.matchar.2019.02.010 – volume: 122 start-page: 74 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0570 article-title: In-situ monitoring and deformation characterization by optical techniques; part I: Laser-aided direct metal deposition for additive manufacturing publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2019.05.020 – volume: 149 start-page: 616 issue: 1–3 year: 2004 ident: 10.1016/j.optlastec.2020.106283_b0720 article-title: Selective laser melting of iron-based powder publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2003.11.051 – volume: 12 start-page: 159 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0330 article-title: Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting publication-title: Addit. Manuf. – volume: 107 start-page: 59 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0795 article-title: The influence of pre-heat treatment on laser welding of T-joints of workpieces made of selective laser melting steel and cold rolled stainless steel publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.05.031 – volume: 41 start-page: 881 year: 2013 ident: 10.1016/j.optlastec.2020.106283_b0475 article-title: Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method publication-title: Phys. Procedia doi: 10.1016/j.phpro.2013.03.162 – volume: 7 start-page: 3602 issue: 1 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0580 article-title: Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction publication-title: Sci. Rep. doi: 10.1038/s41598-017-03761-2 – volume: 24 start-page: 670 issue: 3 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0080 article-title: Development of productivity estimation model for mass-customized production by selective laser melting publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-06-2017-0120 – ident: 10.1016/j.optlastec.2020.106283_b0620 doi: 10.1115/1.4040264 – volume: 528 start-page: 7423 issue: 24 year: 2011 ident: 10.1016/j.optlastec.2020.106283_b0635 article-title: Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti-6Al-4V porous structures publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.06.045 – start-page: 1 year: 2003 ident: 10.1016/j.optlastec.2020.106283_b0205 – volume: 97 start-page: 2621 issue: 5–8 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0285 article-title: Residual stress development in selective laser-melted Ti-6Al-4V: a parametric thermal modelling approach publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-2104-9 – volume: 363 start-page: 849 issue: 6429 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0585 article-title: Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging publication-title: Science doi: 10.1126/science.aav4687 – volume: 50 start-page: 1042 issue: 2 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0045 article-title: Additive manufacturing of a steel-ceramic multi-material by selective laser melting publication-title: Metallurg. Mater. Trans. B-Process Metall. Mater. Process. Sci. doi: 10.1007/s11663-019-01523-1 – volume: 39 start-page: 843 year: 2012 ident: 10.1016/j.optlastec.2020.106283_b0470 article-title: Multiphysical simulation of laser material processing publication-title: Laser Assisted Net Shape Eng. 7 (Lane 2012) – volume: 124 start-page: 37 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0460 article-title: A coupled Cellular Automaton-Lattice Boltzmann model for grain structure simulation during additive manufacturing publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.07.005 – ident: 10.1016/j.optlastec.2020.106283_b0235 – volume: 16 start-page: 355 issue: 3 year: 2007 ident: 10.1016/j.optlastec.2020.106283_b0250 article-title: Modeling the influence of process parameters and additional heat sources on residual stresses in laser cladding publication-title: J. Therm. Spray Technol. doi: 10.1007/s11666-007-9026-7 – volume: 55 start-page: 187 issue: 1 year: 2006 ident: 10.1016/j.optlastec.2020.106283_b0220 article-title: Fundamentals of selective laser melting of alloyed steel powders publication-title: Cirp Ann.-Manuf. Technol. doi: 10.1016/S0007-8506(07)60395-3 – ident: 10.1016/j.optlastec.2020.106283_b0685 – volume: 10 start-page: 67 issue: 2 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0135 article-title: Evaluation of residual stress in stainless steel 316L and Ti-6Al-4V samples produced by selective laser melting publication-title: Virt. Phys. Prototyp. doi: 10.1080/17452759.2015.1026045 – year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0750 article-title: Influence of preheating and oxygen content on Selective Laser Melting of Ti-6Al-4V – volume: 22 start-page: 1 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0415 article-title: Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation publication-title: Addit. Manuf. – volume: 136 issue: 6 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0830 article-title: A review on process monitoring and control in metal-based additive manufacturing publication-title: J. Manuf. Sci. Eng.-Trans. ASME doi: 10.1115/1.4028540 – volume: 14 start-page: 92 issue: 1–2 year: 2012 ident: 10.1016/j.optlastec.2020.106283_b0170 article-title: Analysis of fracture toughness and crack propagation of Ti-6Al-4V produced by selective laser melting publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201100233 – volume: 15 start-page: 87 issue: 1 year: 2020 ident: 10.1016/j.optlastec.2020.106283_b0505 article-title: Microstructure modelling for metallic additive manufacturing: a review publication-title: Virt. Phys. Prototyp. doi: 10.1080/17452759.2019.1677345 – start-page: 17 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0015 – volume: 541 start-page: 177 year: 2012 ident: 10.1016/j.optlastec.2020.106283_b0790 article-title: Heat treatment of Ti-6Al-4V produced by Selective Laser Melting: microstructure and mechanical properties publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2012.07.022 – volume: 90 start-page: 71 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0425 article-title: Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2016.11.002 – volume: 6 start-page: 39 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0820 article-title: Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti-6Al-4V publication-title: Addit. Manuf. – volume: 79 start-page: 81 issue: 1–4 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0130 article-title: Effect of curvature radius on the residual stress of thin-walled parts in laser direct forming publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-6769-4 – volume: 16 start-page: 36 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0605 article-title: Effect of process parameters on tribological performance of 316L stainless steel parts fabricated by selective laser melting publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2018.04.003 – volume: 46 start-page: 93 issue: 1 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0515 article-title: Multiscale modeling of powder bed-based additive manufacturing publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032158 – ident: 10.1016/j.optlastec.2020.106283_b0935 doi: 10.1016/j.jmatprotec.2014.07.030 – volume: 19 start-page: 39 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0880 article-title: On the machinability of directed energy deposited Ti-6Al-4V publication-title: Addit. Manuf. – volume: 108 start-page: 36 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0230 article-title: Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 – volume: 24 start-page: 877 issue: 8 year: 2002 ident: 10.1016/j.optlastec.2020.106283_b0855 article-title: An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel publication-title: Int. J. Fatigue doi: 10.1016/S0142-1123(01)00205-5 – volume: 36 start-page: 564 issue: 6 year: 2013 ident: 10.1016/j.optlastec.2020.106283_b0270 article-title: Thermo-mechanics and microstructure evolution in manufacturing simulations publication-title: J. Therm. Stresses doi: 10.1080/01495739.2013.784121 – volume: 245 start-page: 207 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0340 article-title: Study on deformation restraining of metal structure fabricated by selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.02.017 – volume: 67 start-page: 318 issue: 2 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0455 article-title: Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2013.10.001 – volume: 9 start-page: 2788 issue: 1 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0040 article-title: Adding chemically selective subtraction to multi-material 3D additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-018-05234-0 – volume: 2 start-page: 13 issue: 2 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0655 article-title: Quantitative scanning laue diffraction microscopy: application to the study of 3D printed nickel-based superalloys publication-title: Quantum Beam Sci. doi: 10.3390/qubs2020013 – volume: 128 start-page: 662 issue: 7 year: 2006 ident: 10.1016/j.optlastec.2020.106283_b0245 article-title: Modeling and experimental verification of transient/residual stresses and microstructure formation in multi-layer laser aided DMD process publication-title: J. Heat Transf.-Trans. ASME doi: 10.1115/1.2194037 – volume: 96 start-page: 72 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0480 article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.004 – volume: 18 start-page: 1544 issue: 9 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0065 article-title: Manufacturing of Ti-6Al-4V micro-implantable parts using hybrid selective laser melting and micro-electrical discharge machining publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201600172 – volume: 197 start-page: 408 issue: 1–3 year: 2008 ident: 10.1016/j.optlastec.2020.106283_b0085 article-title: Thermo-mechanical models of steel solidification based on two elastic visco-plastic constitutive laws publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.06.060 – volume: 399 start-page: 72 issue: 1 year: 2005 ident: 10.1016/j.optlastec.2020.106283_b0550 article-title: Residual stresses in LENS ® components using neutron diffraction and contour method publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2005.02.019 – volume: 45a start-page: 6260 issue: 13 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0430 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater.Sci. doi: 10.1007/s11661-014-2549-x – year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0435 – volume: 12 start-page: 50 issue: 1 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0300 article-title: Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modeling and experimental approaches publication-title: Materials doi: 10.3390/ma12010050 – year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0835 – volume: 57 start-page: 6006 issue: 20 year: 2009 ident: 10.1016/j.optlastec.2020.106283_b0305 article-title: A pragmatic model for selective laser melting with evaporation publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.08.027 – volume: 229 start-page: 703 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0345 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.10.022 – volume: 4 start-page: 35 issue: 1 year: 2010 ident: 10.1016/j.optlastec.2020.106283_b0110 article-title: Investigations on residual stresses and deformations in selective laser melting publication-title: Prod. Eng. Res. Devel. doi: 10.1007/s11740-009-0192-y – volume: 46 start-page: 147 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0375 article-title: Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures publication-title: Intermetallics doi: 10.1016/j.intermet.2013.11.012 – volume: 5 start-page: 386 issue: 6 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0950 article-title: Is the energy density a reliable parameter for materials synthesis by selective laser melting? publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2017.1299808 – volume: 33 start-page: 82 issue: 1 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0710 article-title: Residual stresses comparison determined by short-wavelength X-ray diffraction and neutron diffraction for 7075 aluminum alloy publication-title: J. Nondestr. Eval. – volume: 689 start-page: 1 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0805 article-title: Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. doi: 10.1016/j.msea.2017.02.038 – start-page: 115 year: 2009 ident: 10.1016/j.optlastec.2020.106283_b0255 article-title: Calculation of stresses in two-and three-dimensional structures generated by induction assisted laser cladding publication-title: Proc. LIM – volume: 50 start-page: 3315 issue: 12 year: 2011 ident: 10.1016/j.optlastec.2020.106283_b0315 article-title: Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.06.023 – volume: 792 start-page: 574 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0945 article-title: Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.04.017 – volume: 136 issue: 6 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0735 article-title: Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating publication-title: J. Manuf. Sci. Eng.-Trans. ASME doi: 10.1115/1.4028513 – volume: 102 start-page: 2441 issue: 5–8 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0335 article-title: Evaluation of the impact of scanning strategies on residual stresses in selective laser melting publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-019-03396-9 – volume: 43 start-page: 51 issue: 1 year: 2003 ident: 10.1016/j.optlastec.2020.106283_b0665 article-title: Sensing, modeling and control for laser-based additive manufacturing publication-title: Int. J. Mach. Tools Manuf doi: 10.1016/S0890-6955(02)00163-3 – volume: 94 start-page: 59 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0155 article-title: Reduction of micro-cracking in nickel superalloys processed by Selective Laser Melting: a fundamental alloy design approach publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.04.035 – ident: 10.1016/j.optlastec.2020.106283_b0860 doi: 10.3390/ma12030455 – volume: 61 start-page: 599 issue: 5 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0325 article-title: Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process publication-title: Comput. Mech. doi: 10.1007/s00466-017-1528-7 – volume: 42a start-page: 3190 issue: 10 year: 2011 ident: 10.1016/j.optlastec.2020.106283_b0730 article-title: As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting publication-title: Metallurg. Mater. Trans. A-Phys. Metall. Mater. Sci. doi: 10.1007/s11661-011-0731-y – volume: 28 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.optlastec.2020.106283_b0785 article-title: Metal fabrication by additive manufacturing using laser and electron beam melting technologies publication-title: J. Mater. Sci. Technol. doi: 10.1016/S1005-0302(12)60016-4 – volume: 769 year: 2020 ident: 10.1016/j.optlastec.2020.106283_b0815 article-title: Effect of solution heat treatment on microstructure and mechanical properties of laser powder bed fusion produced cobalt-28chromium-6molybdenum publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2019.138511 – volume: 9 start-page: 112 issue: 2 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0700 article-title: Residual stress analysis based on acoustic and optical methods publication-title: Materials (Basel) doi: 10.3390/ma9020112 – volume: 695 start-page: 211 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0760 article-title: In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti-6Al-4V publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. doi: 10.1016/j.msea.2017.04.033 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0865 article-title: Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting publication-title: Metals doi: 10.3390/met9010103 – volume: 10 start-page: 348 issue: 4 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0660 article-title: An assessment of subsurface residual stress analysis in SLM Ti-6Al-4V publication-title: Materials doi: 10.3390/ma10040348 – ident: 10.1016/j.optlastec.2020.106283_b0035 doi: 10.1117/12.2253600 – volume: 21 start-page: 284 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0275 article-title: A semi-analytical thermal modelling approach for selective laser melting publication-title: Addit. Manuf. – volume: 137 start-page: 65 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0395 article-title: Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting publication-title: Optik doi: 10.1016/j.ijleo.2017.02.060 – volume: 140 issue: 4 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0535 article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting publication-title: J. Manuf. Sci. Engi.-Trans. ASME – volume: 55 start-page: 1400 issue: 5 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0845 article-title: A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1223378 – volume: 22 start-page: 416 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0120 article-title: A pragmatic part scale model for residual stress and distortion prediction in powder bed fusion publication-title: Addit. Manuf. – year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0140 article-title: Characterization of feedstock in the powder bed fusion process: sources of variation in particle size distribution and the factors that influence them – volume: 667 start-page: 42 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0595 article-title: Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting publication-title: Mater. Sci. Eng. A-Struct. Mater. Propert. Microstruct. Process. doi: 10.1016/j.msea.2016.04.086 – ident: 10.1016/j.optlastec.2020.106283_b0160 doi: 10.1016/j.ijfatigue.2018.06.038 – volume: 118 start-page: 13 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0740 article-title: Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.02.022 – volume: 53 start-page: 195 issue: 1 year: 2004 ident: 10.1016/j.optlastec.2020.106283_b0190 article-title: Residual stress within metallic model made by selective laser melting process publication-title: Cirp Ann.-Manuf. Technol. doi: 10.1016/S0007-8506(07)60677-5 – volume: 66 start-page: 305 issue: 1 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0870 article-title: Modification using magnetic field-assisted finishing of the surface roughness and residual stress of additively manufactured components publication-title: Cirp Ann.-Manuf. Technol. doi: 10.1016/j.cirp.2017.04.084 – volume: 15 start-page: 393 issue: 5 year: 2010 ident: 10.1016/j.optlastec.2020.106283_b0905 article-title: Effect of low transformation temperature weld filler metal on welding residual stress publication-title: Sci. Technol. Weld. Join. doi: 10.1179/136217110X12714217309614 – volume: 2 issue: 4 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0010 article-title: Review of selective laser melting: materials and applications publication-title: Appl. Phys. Rev. doi: 10.1063/1.4935926 – start-page: 109 year: 2013 ident: 10.1016/j.optlastec.2020.106283_b0545 article-title: The contour method, practical residual stress measurement publication-title: Methods – volume: 52 start-page: 28 issue: 5 year: 2000 ident: 10.1016/j.optlastec.2020.106283_b0005 article-title: Producing titanium aerospace components from powder using laser forming publication-title: Jom-J. Miner. Met. Mater. Soc. doi: 10.1007/s11837-000-0028-x – volume: 12 start-page: 240 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0360 article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting publication-title: Addit. Manuf. – volume: 26 issue: 1 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0485 article-title: Matching time and spatial scales of rapid solidification: Dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations publication-title: Modell. Simul. Mater. Sci. Eng doi: 10.1088/1361-651X/aa9a5b – volume: 89 issue: 5 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0575 article-title: An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5017236 – ident: #cr-split#-10.1016/j.optlastec.2020.106283_b0095.2 doi: 10.1016/j.phpro.2011.03.032 – volume: 74 start-page: 5 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0780 article-title: Application of base plate preheating during selective laser melting publication-title: Procedia CIRP doi: 10.1016/j.procir.2018.08.002 – volume: 25 start-page: 325 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0385 article-title: New aspects about the search for the most relevant parameters optimizing SLM materials publication-title: Addit. Manuf. – volume: 12 start-page: 254 issue: 5 year: 2006 ident: 10.1016/j.optlastec.2020.106283_b0090 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. doi: 10.1108/13552540610707013 – volume: 199 start-page: 41 issue: 1–3 year: 2008 ident: 10.1016/j.optlastec.2020.106283_b0400 article-title: Finite element modeling of electron beam welding of a large complex Al alloy structure by parallel computations publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.07.045 – volume: 13 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0500 article-title: Kinetic Monte Carlo simulation of sintering behavior of additively manufactured stainless steel powder particles using reconstructed microstructures from synchrotron X-ray microtomography publication-title: Res. Phys. – volume: 140 issue: 9 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0675 article-title: Sensor-based build condition monitoring in laser powder bed fusion additive manufacturing process using a spectral graph theoretic approach publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4040264 – ident: 10.1016/j.optlastec.2020.106283_b0260 – volume: 56 start-page: 265 issue: 2 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0495 article-title: Multiscale modeling of electron beam and substrate interaction: a new heat source model publication-title: Comput. Mech. doi: 10.1007/s00466-015-1170-1 – year: 2012 ident: 10.1016/j.optlastec.2020.106283_b0610 – volume: 70 start-page: 1844 issue: 9 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0650 article-title: Micron-level layer-wise surface profilometry to detect porosity defects in powder bed fusion of inconel 718 publication-title: JOM doi: 10.1007/s11837-018-3025-7 – volume: 705 start-page: 20 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0600 article-title: Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2017.08.058 – ident: 10.1016/j.optlastec.2020.106283_b0925 – volume: 99 start-page: 91 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0290 article-title: Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2017.08.015 – volume: 170 start-page: 342 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0380 article-title: Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting publication-title: Optik doi: 10.1016/j.ijleo.2018.05.128 – volume: 98 start-page: 23 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0350 article-title: Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2017.07.034 – volume: 7 start-page: 83 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0125 article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718 publication-title: Addit. Manuf. – volume: 21 start-page: 333 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0645 article-title: Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality publication-title: Addit. Manuf. – volume: 51 start-page: 61 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0075 article-title: Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.06.024 – volume: 755 start-page: 246 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0145 article-title: An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti-6Al-4V publication-title: Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. doi: 10.1016/j.msea.2019.04.023 – start-page: 1 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0705 article-title: Defects monitoring of laser metal deposition using acoustic emission sensor publication-title: Int. J. Adv. Manuf. Technol. – volume: 17 start-page: 366 issue: 4 year: 2013 ident: 10.1016/j.optlastec.2020.106283_b0215 article-title: Residual stress. Part 2 – nature and origins publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101510087 – ident: 10.1016/j.optlastec.2020.106283_b0410 doi: 10.3390/ma11081480 – volume: 14 start-page: 559 issue: 6 year: 2009 ident: 10.1016/j.optlastec.2020.106283_b0895 article-title: Stainless steel weld metal designed to mitigate residual stresses publication-title: Sci. Technol. Weld. Join. doi: 10.1179/136217109X437178 – volume: 131 issue: 4 year: 2009 ident: 10.1016/j.optlastec.2020.106283_b0900 article-title: The Effects of filler metal transformation temperature on residual stresses in a high strength steel weld publication-title: J. Press. Vessel Technol.-Trans. ASME doi: 10.1115/1.3122036 – volume: 30 start-page: 1650255 issue: 19 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0810 article-title: Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984916502559 – volume: 23 start-page: 1009 issue: 9 year: 2007 ident: 10.1016/j.optlastec.2020.106283_b0890 article-title: Welding residual stresses in ferritic power plant steels publication-title: Mater. Sci. Technol. doi: 10.1179/174328407X213116 – volume: 7 start-page: 12 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0115 article-title: AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting publication-title: Addit. Manuf. – volume: 26 start-page: 2869 issue: 6 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0175 article-title: Study on the quality and performance of CoCrMo alloy parts manufactured by selective laser melting publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-017-2716-5 – volume: 75 start-page: 197 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0100 article-title: Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2015.07.009 – volume: 124 year: 2020 ident: 10.1016/j.optlastec.2020.106283_b0875 article-title: Laser finishing of 3D printed parts produced by material extrusion publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2019.105801 – volume: 136 start-page: 24 year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0280 article-title: Modeling temperature and residual stress fields in selective laser melting publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.12.001 – volume: 5 start-page: 24 issue: 2 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0910 article-title: Customised alloy blends for in-situ Al339 alloy formation using anchorless selective laser melting publication-title: Technologies doi: 10.3390/technologies5020024 – volume: 12 start-page: 1 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0105 article-title: Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation publication-title: Addit. Manuf. – volume: 39 start-page: 858 issue: 4 year: 2007 ident: 10.1016/j.optlastec.2020.106283_b0240 article-title: Temperature gradient mechanism in laser forming of thin plates publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2005.12.006 – volume: 117 start-page: 221 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0390 article-title: Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.01.044 – ident: 10.1016/j.optlastec.2020.106283_b0540 – volume: 23 start-page: 187 issue: 2 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0715 article-title: S51 Influence of cold compression on the residual stresses in 7449 forgings publication-title: Powder Diffr. doi: 10.1154/1.2951814 – volume: 12 issue: 6 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0765 article-title: Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti-6Al-4V processed by selective laser melting publication-title: Materials (Basel) doi: 10.3390/ma12060930 – ident: 10.1016/j.optlastec.2020.106283_b0670 – volume: 102 start-page: 47 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0640 article-title: XCT analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by Selective Electron Beam Melting publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.02.008 – ident: #cr-split#-10.1016/j.optlastec.2020.106283_b0095.1 doi: 10.1016/j.phpro.2011.03.032 – volume: 238 start-page: 437 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0915 article-title: Changing the alloy composition of Al7075 for better processability by selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.08.003 – volume: 214 start-page: 1852 issue: 9 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0370 article-title: Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.04.002 – volume: 122 start-page: 151 year: 2019 ident: 10.1016/j.optlastec.2020.106283_b0490 article-title: Progress in numerical simulation of the laser cladding process publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2019.05.026 – volume: 87 start-page: 29 issue: 87 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0195 article-title: Residual stress via the contour method in compact tension specimens produced via selective laser melting publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.05.016 – year: 2018 ident: 10.1016/j.optlastec.2020.106283_b0930 article-title: Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting publication-title: Adv. Mater. Sci. Eng. – volume: 21 start-page: 159 issue: 2 year: 2015 ident: 10.1016/j.optlastec.2020.106283_b0825 article-title: A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-12-2014-0177 – volume: 127 start-page: 120 year: 2017 ident: 10.1016/j.optlastec.2020.106283_b0180 article-title: Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.08.023 – volume: 214 start-page: 2627 issue: 11 year: 2014 ident: 10.1016/j.optlastec.2020.106283_b0295 article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.06.001 – start-page: p. MTh3B.2 year: 2012 ident: 10.1016/j.optlastec.2020.106283_b0020 article-title: Laser additive manufacturing of aerospace large metallic structural components: state of the arts and challenges, international photonics and optoelectronics meetings publication-title: Opt. Soc. Am, Wuhan – volume: 48 start-page: 300 year: 2013 ident: 10.1016/j.optlastec.2020.106283_b0165 article-title: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2012.11.011 – year: 2008 ident: 10.1016/j.optlastec.2020.106283_b0775 article-title: Rapid manufacturing of aluminium parts for serial production via selective laser melting (SLM) – volume: 84 start-page: 9 year: 2016 ident: 10.1016/j.optlastec.2020.106283_b0420 article-title: Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2016.04.009 |
SSID | ssj0004653 |
Score | 2.623941 |
SecondaryResourceType | review_article |
Snippet | •The research on residual stress arising in additive manufacturing by SLM are reviewed.•The advantages and disadvantages of mainstream research methods are... The undesirable residual stress accumulated in the parts during the melting and solidification of the metal powder layer by layer retards the further... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106283 |
SubjectTerms | Adjusting Characterizing Laser beam melting Metal powders Modeling Rapid prototyping Residual stress SLM Solidification |
Title | Review on residual stress in selective laser melting additive manufacturing of alloy parts |
URI | https://dx.doi.org/10.1016/j.optlastec.2020.106283 https://www.proquest.com/docview/2441310211 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jIuhBdCpO58jBa11_pF3rbQzHVNzJwfASkiyByezK1h28-Lf7XtqOTZAd7K2hKeUl-d576fu-EHInUYRqakJHQazgMKVcWHPTwInjSMQSPDIzuA_5OoqGY_Y8CSc10q-4MFhWWWJ_gekWrcuWTmnNTjabIccX4DdJfAxBUPcOGeysi_r599_eFjeyVKIMAG_g6Z0ar0WWQ4yaa9Qy9LE18uPgLw_1C6utAxqckpMycqS94uPOSE2nDXK8pSfYIIe2nlOtzsl7sedPFymFfNoSrmhBC6GzlK7s4TeAcxS-Sy_pp55j9TPF4iLb_CnSNVIeLIeRLgzF3_NfNAPLrC7IePD41h865TEKjmJhnDsiCZRrzDSUMmFTN_SN8KTUlmIaeLoLCUesMA0C3w_OCQAH0jAZCWbgEkkYXJJ6ukj1FaG6C_lZVwsmtcdCE0nhSl-oSDHtGZXIJokq03FVaozjURdzXhWTffCNzTnanBc2bxJ30zErZDb2d3moxobvzBgOzmB_51Y1mrxctCsOkY4X4FHn3vV_3n1DjvCuKERrkXq-XOtbiFxy2bZTs00Oek8vw9EPPe3vYQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oRNSD-InTqTl4LfYj7VpvYyhT504K4iUkWQKTrRtbd_C_9702HSqIB3tMeSW8JO8jfb_fA7hSREI1tLGnMVbwuNY-nrlh5KVpIlOFHplbuod8GiS9F_7wGr-uQbfGwlBZpbP9lU0vrbUbuXbavJ6NRoTxRfObZSGFIMR7tw4bxE6Fm32jc__YG3yBRzoyyghNDgp8K_OazgoMUwtDdIYhjSZhGv3mpH6Y69IH3e3BrgseWaea3z6smfwAdr5QCh7AZlnSqReH8FZd-7NpzjClLjFXrEKGsFHOFmX_GzR1DOdl5mxixlQAzai-qByeyHxJqIcSxsimltEf-g82Q-UsjuDl7va52_NcJwVP8zgtPJlF2rd2GCuV8aEfh1YGSpkSZRoFpo05R6opE0L3j_4JbQ5mYiqR3OIjszg6hkY-zc0JMNPGFK1tJFcm4LFNlPRVKHWiuQmszlQTklp1Qjuacep2MRZ1Pdm7WOlckM5FpfMm-CvBWcW08bfITb024tumEegP_hZu1asp3LldCAx2goi6nQen__n2JWz1np_6on8_eDyDbXpT1aW1oFHMl-YcA5lCXbiN-glvOPIS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+residual+stress+in+selective+laser+melting+additive+manufacturing+of+alloy+parts&rft.jtitle=Optics+and+laser+technology&rft.au=Fang%2C+Ze-Chen&rft.au=Wu%2C+Zhi-Lin&rft.au=Huang%2C+Chen-Guang&rft.au=Wu%2C+Chen-Wu&rft.date=2020-09-01&rft.pub=Elsevier+BV&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=129&rft.spage=1&rft_id=info:doi/10.1016%2Fj.optlastec.2020.106283&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |