Artificial Intelligence–Based Consumer Health Informatics Application: Scoping Review

There is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow pat...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical Internet research Vol. 25; no. 1; p. e47260
Main Authors Asan, Onur, Choi, Euiji, Wang, Xiaomei
Format Journal Article
LanguageEnglish
Published Canada Gunther Eysenbach MD MPH, Associate Professor 30.08.2023
JMIR Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow patients to be the primary consumers of health technology and decision makers for their own health. This study aimed to review and analyze papers on AI-based consumer health informatics (CHI) for successful future patient-centered care. We searched for all peer-reviewed papers in PubMed published in English before July 2022. Research on an AI-based CHI tool or system that reports patient outcomes or perceptions was identified for the scoping review. We identified 20 papers that met our inclusion criteria. The eligible studies were summarized and discussed with respect to the role of the AI-based CHI system, patient outcomes, and patient perceptions. The AI-based CHI systems identified included systems in mobile health (13/20, 65%), robotics (5/20, 25%), and telemedicine (2/20, 10%). All the systems aimed to provide patients with personalized health care. Patient outcomes and perceptions across various clinical disciplines were discussed, demonstrating the potential of an AI-based CHI system to benefit patients. This scoping review showed the trend in AI-based CHI systems and their impact on patient outcomes as well as patients' perceptions of these systems. Future studies should also explore how clinicians and health care professionals perceive these consumer-based systems and integrate them into the overall workflow.
AbstractList Background:There is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow patients to be the primary consumers of health technology and decision makers for their own health.Objective:This study aimed to review and analyze papers on AI-based consumer health informatics (CHI) for successful future patient-centered care.Methods:We searched for all peer-reviewed papers in PubMed published in English before July 2022. Research on an AI-based CHI tool or system that reports patient outcomes or perceptions was identified for the scoping review.Results:We identified 20 papers that met our inclusion criteria. The eligible studies were summarized and discussed with respect to the role of the AI-based CHI system, patient outcomes, and patient perceptions. The AI-based CHI systems identified included systems in mobile health (13/20, 65%), robotics (5/20, 25%), and telemedicine (2/20, 10%). All the systems aimed to provide patients with personalized health care. Patient outcomes and perceptions across various clinical disciplines were discussed, demonstrating the potential of an AI-based CHI system to benefit patients.Conclusions:This scoping review showed the trend in AI-based CHI systems and their impact on patient outcomes as well as patients’ perceptions of these systems. Future studies should also explore how clinicians and health care professionals perceive these consumer-based systems and integrate them into the overall workflow.
BackgroundThere is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow patients to be the primary consumers of health technology and decision makers for their own health. ObjectiveThis study aimed to review and analyze papers on AI-based consumer health informatics (CHI) for successful future patient-centered care. MethodsWe searched for all peer-reviewed papers in PubMed published in English before July 2022. Research on an AI-based CHI tool or system that reports patient outcomes or perceptions was identified for the scoping review. ResultsWe identified 20 papers that met our inclusion criteria. The eligible studies were summarized and discussed with respect to the role of the AI-based CHI system, patient outcomes, and patient perceptions. The AI-based CHI systems identified included systems in mobile health (13/20, 65%), robotics (5/20, 25%), and telemedicine (2/20, 10%). All the systems aimed to provide patients with personalized health care. Patient outcomes and perceptions across various clinical disciplines were discussed, demonstrating the potential of an AI-based CHI system to benefit patients. ConclusionsThis scoping review showed the trend in AI-based CHI systems and their impact on patient outcomes as well as patients’ perceptions of these systems. Future studies should also explore how clinicians and health care professionals perceive these consumer-based systems and integrate them into the overall workflow.
There is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow patients to be the primary consumers of health technology and decision makers for their own health. This study aimed to review and analyze papers on AI-based consumer health informatics (CHI) for successful future patient-centered care. We searched for all peer-reviewed papers in PubMed published in English before July 2022. Research on an AI-based CHI tool or system that reports patient outcomes or perceptions was identified for the scoping review. We identified 20 papers that met our inclusion criteria. The eligible studies were summarized and discussed with respect to the role of the AI-based CHI system, patient outcomes, and patient perceptions. The AI-based CHI systems identified included systems in mobile health (13/20, 65%), robotics (5/20, 25%), and telemedicine (2/20, 10%). All the systems aimed to provide patients with personalized health care. Patient outcomes and perceptions across various clinical disciplines were discussed, demonstrating the potential of an AI-based CHI system to benefit patients. This scoping review showed the trend in AI-based CHI systems and their impact on patient outcomes as well as patients' perceptions of these systems. Future studies should also explore how clinicians and health care professionals perceive these consumer-based systems and integrate them into the overall workflow.
There is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow patients to be the primary consumers of health technology and decision makers for their own health.BACKGROUNDThere is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more approachable and accessible to patients. Therefore, it is critical to research patient perceptions and outcomes because this trend will allow patients to be the primary consumers of health technology and decision makers for their own health.This study aimed to review and analyze papers on AI-based consumer health informatics (CHI) for successful future patient-centered care.OBJECTIVEThis study aimed to review and analyze papers on AI-based consumer health informatics (CHI) for successful future patient-centered care.We searched for all peer-reviewed papers in PubMed published in English before July 2022. Research on an AI-based CHI tool or system that reports patient outcomes or perceptions was identified for the scoping review.METHODSWe searched for all peer-reviewed papers in PubMed published in English before July 2022. Research on an AI-based CHI tool or system that reports patient outcomes or perceptions was identified for the scoping review.We identified 20 papers that met our inclusion criteria. The eligible studies were summarized and discussed with respect to the role of the AI-based CHI system, patient outcomes, and patient perceptions. The AI-based CHI systems identified included systems in mobile health (13/20, 65%), robotics (5/20, 25%), and telemedicine (2/20, 10%). All the systems aimed to provide patients with personalized health care. Patient outcomes and perceptions across various clinical disciplines were discussed, demonstrating the potential of an AI-based CHI system to benefit patients.RESULTSWe identified 20 papers that met our inclusion criteria. The eligible studies were summarized and discussed with respect to the role of the AI-based CHI system, patient outcomes, and patient perceptions. The AI-based CHI systems identified included systems in mobile health (13/20, 65%), robotics (5/20, 25%), and telemedicine (2/20, 10%). All the systems aimed to provide patients with personalized health care. Patient outcomes and perceptions across various clinical disciplines were discussed, demonstrating the potential of an AI-based CHI system to benefit patients.This scoping review showed the trend in AI-based CHI systems and their impact on patient outcomes as well as patients' perceptions of these systems. Future studies should also explore how clinicians and health care professionals perceive these consumer-based systems and integrate them into the overall workflow.CONCLUSIONSThis scoping review showed the trend in AI-based CHI systems and their impact on patient outcomes as well as patients' perceptions of these systems. Future studies should also explore how clinicians and health care professionals perceive these consumer-based systems and integrate them into the overall workflow.
Author Choi, Euiji
Wang, Xiaomei
Asan, Onur
AuthorAffiliation 1 School of Systems and Enterprises Stevens Institute of Technology Hoboken, NJ United States
3 Department of Industrial Engieering University of Louisville Louisville, KY United States
2 Department of Computer Science Stevens Institute of Technology Hoboken, NJ United States
AuthorAffiliation_xml – name: 2 Department of Computer Science Stevens Institute of Technology Hoboken, NJ United States
– name: 3 Department of Industrial Engieering University of Louisville Louisville, KY United States
– name: 1 School of Systems and Enterprises Stevens Institute of Technology Hoboken, NJ United States
Author_xml – sequence: 1
  givenname: Onur
  orcidid: 0000-0002-9239-3723
  surname: Asan
  fullname: Asan, Onur
– sequence: 2
  givenname: Euiji
  orcidid: 0000-0002-3715-4877
  surname: Choi
  fullname: Choi, Euiji
– sequence: 3
  givenname: Xiaomei
  orcidid: 0000-0002-3432-0227
  surname: Wang
  fullname: Wang, Xiaomei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37647122$$D View this record in MEDLINE/PubMed
BookMark eNpdkt1qFDEUx4NU7Id9BRkQQZDVJJOZJN7IuqhdKAh-4GU4kzmzzTKTTJPZine-g2_ok5jdbaXbqxySHz_-55yckiMfPBJyzuhrznT9Rkhe00fkhIlSzZSS7OhefUxOU1pTyqnQ7Ak5LmUtJOP8hPyYx8l1zjroi6WfsO_dCr3Fv7__vIeEbbEIPm0GjMUFQj9dZagLcYDJ2VTMx7F3NtfBvy2-2jA6vyq-4I3Dn0_J4w76hOe35xn5_vHDt8XF7PLzp-VifjmzolLTTCvNeEOlRexAtcAkB1l3FQgl0Iq6qRvLoBQlKApcKaqEaCtd06YqJUBbnpHl3tsGWJsxugHiLxPAmd1FiCsDuUPbo6ENV3lKHGXDhYAOGpCdsqg0NAJBZ9e7vWvcNAO2Fv0UoT-QHr54d2VW4cYwWlFa1jIbXt4aYrjeYJrM4JLNQwWPYZMMV5XatqzLjD5_gK7DJvo8K8M1kzXXtNpGenY_0v8sdwvMwKs9YGNIKWJnrJt2G8kJXZ-jme33MLvvkekXD-g74SH3DwPpuP8
CitedBy_id crossref_primary_10_3390_jpm13091379
crossref_primary_10_1016_j_infoh_2024_05_001
crossref_primary_10_2196_57406
Cites_doi 10.1016/B978-0-12-818438-7.00002-2
10.1148/ryai.2020190208
10.1177/193229681000400126
10.1080/10400435.2019.1593260
10.1080/10400435.2012.715113
10.3389/fgene.2022.902542
10.1016/j.metabol.2017.01.011
10.1007/978-3-319-96906-0_2
10.1016/j.jbi.2013.03.003
10.1016/j.joca.2020.02.831
10.1109/compsac48688.2020.0-172
10.3390/ijerph19010127
10.1080/14670100.2020.1757840
10.1007/978-3-030-16391-4_11
10.15265/IY-2017-016
10.1001/jamanetworkopen.2020.37107
10.2196/19796
10.1109/ojse.2023.3265430
10.1038/s41746-020-0221-y
10.2196/19713
10.1007/s10461-020-03054-2
10.1177/1357633X13519036
10.1377/hlthaff.2018.05125
10.1016/j.imu.2021.100550
10.24083/apjhm.v17i1.861
10.2196/29933
10.1377/hlthaff.2010.0503
10.1038/s42256-019-0048-x
10.1109/ACCESS.2017.2694446
10.4103/jfmpc.jfmpc_440_19
10.1161/STROKEAHA.119.028101
10.3390/app11167248
10.1146/annurev.publhealth.20.1.125
10.1093/jamia/ocu031
10.1145/3380851.3418616
10.2196/15154
10.1016/j.ijmedinf.2017.02.002
10.1093/tbm/iby016
10.2139/ssrn.3469423
10.1038/s41551-018-0305-z
10.1016/j.arth.2019.05.021
10.1109/icorr.2019.8779524
10.2196/36910
10.1177/14604582211011215
10.2139/ssrn.3607616
10.1186/1471-2318-8-28
10.3389/fmed.2020.00027
10.1136/bmj.320.7251.1713
10.1109/JBHI.2017.2709333
10.1021/acsbiomaterials.0c01459
10.1177/1039856220924321
10.1007/s11517-011-0809-0
10.1108/he-08-2022-0067
10.7326/M18-0850
10.1111/cts.12884
10.1109/intelse.2016.7475168
10.1007/s00393-021-01100-5
10.1053/j.gastro.2020.02.036
10.1001/jama.2018.18932
10.2174/1389202922666210705124359
10.1109/RBME.2018.2822301
10.2196/mhealth.8127
10.2196/17530
10.3390/s21175787
10.4103/ijo.IJO_1840_21
10.1097/APO.0000000000000525
10.1186/s12966-021-01224-6
10.3349/ymj.2022.63.S34
10.15265/IYS-2016-s005
10.1016/j.ajo.2018.08.005
10.1007/s13042-020-01096-5
10.1177/1049732314528809
ContentType Journal Article
Copyright Onur Asan, Euiji Choi, Xiaomei Wang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 30.08.2023.
2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Onur Asan, Euiji Choi, Xiaomei Wang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 30.08.2023. 2023
Copyright_xml – notice: Onur Asan, Euiji Choi, Xiaomei Wang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 30.08.2023.
– notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Onur Asan, Euiji Choi, Xiaomei Wang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 30.08.2023. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QJ
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CNYFK
COVID
DWQXO
E3H
F2A
FYUFA
GHDGH
K9.
KB0
M0S
M1O
NAPCQ
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
7X8
5PM
DOA
DOI 10.2196/47260
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Nursing & Allied Health Database (ProQuest)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Library & Information Science Collection
Coronavirus Research Database
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Library Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central China
ProQuest Central
ProQuest Library Science
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Library & Information Science Collection
ProQuest Central (New)
Social Science Premium Collection
ProQuest One Social Sciences
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Library & Information Science
EISSN 1438-8871
ExternalDocumentID oai_doaj_org_article_0b284722e7b244afaba7f8ce89ab4ea9
PMC10500367
37647122
10_2196_47260
Genre Journal Article
Scoping Review
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
.4I
.DC
29L
2WC
36B
53G
5GY
5VS
77K
7RV
7X7
8FI
8FJ
AAFWJ
AAKPC
AAWTL
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
CNYFK
CS3
DIK
DU5
DWQXO
E3Z
EAP
EBD
EBS
EJD
ELW
EMB
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
ICO
IEA
IHR
INH
ISN
ITC
KQ8
M1O
M48
NAPCQ
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
RNS
RPM
SJN
SV3
TR2
UKHRP
XSB
ACUHS
CGR
CUY
CVF
ECM
EIF
NPM
PPXIY
PRQQA
3V.
7QJ
7XB
8FK
AZQEC
COVID
E3H
F2A
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c458t-98912b07ceefa8da172a76f5a484ec46b6bc1a343a80a2880844d5960b537aad3
IEDL.DBID M48
ISSN 1438-8871
1439-4456
IngestDate Wed Aug 27 01:30:37 EDT 2025
Thu Aug 21 18:36:43 EDT 2025
Tue Aug 05 09:52:32 EDT 2025
Fri Jul 25 04:49:05 EDT 2025
Mon Jul 21 06:02:29 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
Tue Jul 01 02:06:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords digital health
mobile health
mobile phone
mHealth
patient outcomes
consumer informatics
machine learning
personalized health care
artificial intelligence
Language English
License Onur Asan, Euiji Choi, Xiaomei Wang. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 30.08.2023.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-98912b07ceefa8da172a76f5a484ec46b6bc1a343a80a2880844d5960b537aad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3432-0227
0000-0002-9239-3723
0000-0002-3715-4877
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/47260
PMID 37647122
PQID 2917629059
PQPubID 2033121
ParticipantIDs doaj_primary_oai_doaj_org_article_0b284722e7b244afaba7f8ce89ab4ea9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10500367
proquest_miscellaneous_2858989193
proquest_journals_2917629059
pubmed_primary_37647122
crossref_citationtrail_10_2196_47260
crossref_primary_10_2196_47260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-30
PublicationDateYYYYMMDD 2023-08-30
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-30
  day: 30
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle Journal of medical Internet research
PublicationTitleAlternate J Med Internet Res
PublicationYear 2023
Publisher Gunther Eysenbach MD MPH, Associate Professor
JMIR Publications
Publisher_xml – name: Gunther Eysenbach MD MPH, Associate Professor
– name: JMIR Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Gibbons, MC (ref37) 2009
ref51
ref50
Bohr, A (ref9) 2020
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Robles-Bykbaev, V (ref46) 2015; 216
ref49
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref78
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
Gibbons, M (ref8) 2019
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
ref65
Bulla, C (ref38) 2020; 3
ref28
ref27
ref29
Yong, PL (ref66) 2010
ref60
ref62
ref61
References_xml – start-page: 25
  year: 2020
  ident: ref9
  publication-title: Artificial Intelligence in Healthcare
  doi: 10.1016/B978-0-12-818438-7.00002-2
– ident: ref16
  doi: 10.1148/ryai.2020190208
– ident: ref42
  doi: 10.1177/193229681000400126
– ident: ref54
  doi: 10.1080/10400435.2019.1593260
– ident: ref44
  doi: 10.1080/10400435.2012.715113
– ident: ref19
  doi: 10.3389/fgene.2022.902542
– ident: ref62
  doi: 10.1016/j.metabol.2017.01.011
– start-page: 25
  year: 2019
  ident: ref8
  publication-title: Consumer Informatics and Digital Health: Solutions for Health and Health Care
  doi: 10.1007/978-3-319-96906-0_2
– ident: ref45
  doi: 10.1016/j.jbi.2013.03.003
– ident: ref51
  doi: 10.1016/j.joca.2020.02.831
– ident: ref40
  doi: 10.1109/compsac48688.2020.0-172
– year: 2010
  ident: ref66
  publication-title: The Healthcare Imperative: Lowering Costs and Improving Outcomes: Workshop Series Summary
– ident: ref77
  doi: 10.3390/ijerph19010127
– ident: ref52
  doi: 10.1080/14670100.2020.1757840
– ident: ref64
  doi: 10.1007/978-3-030-16391-4_11
– ident: ref4
  doi: 10.15265/IY-2017-016
– ident: ref55
  doi: 10.1001/jamanetworkopen.2020.37107
– ident: ref7
  doi: 10.2196/19796
– ident: ref76
  doi: 10.1109/ojse.2023.3265430
– ident: ref75
  doi: 10.1038/s41746-020-0221-y
– ident: ref30
  doi: 10.2196/19713
– ident: ref56
  doi: 10.1007/s10461-020-03054-2
– ident: ref33
  doi: 10.1177/1357633X13519036
– ident: ref73
  doi: 10.1377/hlthaff.2018.05125
– ident: ref70
  doi: 10.1016/j.imu.2021.100550
– ident: ref28
  doi: 10.24083/apjhm.v17i1.861
– ident: ref58
  doi: 10.2196/29933
– ident: ref1
  doi: 10.1377/hlthaff.2010.0503
– ident: ref74
  doi: 10.1038/s42256-019-0048-x
– ident: ref15
  doi: 10.1109/ACCESS.2017.2694446
– ident: ref61
  doi: 10.4103/jfmpc.jfmpc_440_19
– ident: ref14
  doi: 10.1161/STROKEAHA.119.028101
– ident: ref22
  doi: 10.3390/app11167248
– ident: ref71
  doi: 10.1146/annurev.publhealth.20.1.125
– ident: ref2
  doi: 10.1093/jamia/ocu031
– ident: ref31
  doi: 10.1145/3380851.3418616
– ident: ref35
  doi: 10.2196/15154
– ident: ref72
  doi: 10.1016/j.ijmedinf.2017.02.002
– ident: ref48
  doi: 10.1093/tbm/iby016
– ident: ref68
  doi: 10.2139/ssrn.3469423
– ident: ref13
  doi: 10.1038/s41551-018-0305-z
– ident: ref50
  doi: 10.1016/j.arth.2019.05.021
– ident: ref49
  doi: 10.1109/icorr.2019.8779524
– ident: ref12
– ident: ref20
  doi: 10.2196/36910
– start-page: 1
  issue: 188
  year: 2009
  ident: ref37
  publication-title: Evid Rep Technol Assess (Full Rep)
– ident: ref29
  doi: 10.1177/14604582211011215
– ident: ref67
  doi: 10.2139/ssrn.3607616
– ident: ref41
  doi: 10.1186/1471-2318-8-28
– ident: ref11
  doi: 10.3389/fmed.2020.00027
– volume: 3
  start-page: 1
  issue: 2
  year: 2020
  ident: ref38
  publication-title: Res Appl Web Dev Des
– ident: ref36
  doi: 10.1136/bmj.320.7251.1713
– ident: ref47
  doi: 10.1109/JBHI.2017.2709333
– ident: ref26
  doi: 10.1021/acsbiomaterials.0c01459
– ident: ref57
  doi: 10.1177/1039856220924321
– ident: ref43
  doi: 10.1007/s11517-011-0809-0
– ident: ref6
  doi: 10.1108/he-08-2022-0067
– ident: ref32
  doi: 10.7326/M18-0850
– ident: ref65
  doi: 10.1111/cts.12884
– ident: ref23
  doi: 10.1109/intelse.2016.7475168
– ident: ref25
  doi: 10.1007/s00393-021-01100-5
– ident: ref17
  doi: 10.1053/j.gastro.2020.02.036
– ident: ref34
  doi: 10.1001/jama.2018.18932
– ident: ref63
  doi: 10.2174/1389202922666210705124359
– ident: ref24
  doi: 10.1109/RBME.2018.2822301
– ident: ref21
  doi: 10.2196/mhealth.8127
– ident: ref53
  doi: 10.2196/17530
– ident: ref5
  doi: 10.3390/s21175787
– volume: 216
  start-page: 50
  year: 2015
  ident: ref46
  publication-title: Stud Health Technol Inform
– ident: ref60
  doi: 10.4103/ijo.IJO_1840_21
– ident: ref27
  doi: 10.1097/APO.0000000000000525
– ident: ref39
  doi: 10.1186/s12966-021-01224-6
– ident: ref59
  doi: 10.3349/ymj.2022.63.S34
– ident: ref3
  doi: 10.15265/IYS-2016-s005
– ident: ref18
  doi: 10.1016/j.ajo.2018.08.005
– ident: ref69
  doi: 10.1007/s13042-020-01096-5
– ident: ref78
  doi: 10.1177/1049732314528809
– ident: ref10
SSID ssj0020491
Score 2.4217026
SecondaryResourceType review_article
Snippet There is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it more...
Background:There is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making...
BackgroundThere is no doubt that the recent surge in artificial intelligence (AI) research will change the trajectory of next-generation health care, making it...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e47260
SubjectTerms Artificial Intelligence
Biomedical Technology
Chatbots
Clinical decision making
Clinical outcomes
Computers
Consumer Health Informatics
Consumers
Decision makers
Emotions
Global health
Health informatics
Health status
Humans
Knowledge
Librarians
Literature reviews
Machine learning
Medical personnel
Medical technology
Natural language processing
Patient-centered care
Patients
Perceptions
Personal health
Precision medicine
Review
Robotics
Subject heading schemes
Telemedicine
Vision systems
Web portals
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTt0wEB0hFldIFaI8SlpAroTYRSSO4zjdcVERrQQrEOyi8UtFQrkILnv-oX_Il3TsmPtAlbrpNnYsxzOTOWN7zgAcGuEaw9Hl3DU-F9KIvEXr87LyYcdNGhWrNVxcyvNr8fO2vl0o9RXuhA30wMPCHRc6_EA5DaXJE6FHjY1XxqkWtXAYU_fI570FUynUItxbjuBDuOhMKnZMA0QOyrnniQT9f0OV7y9HLnibsw1YTzCRnQzT-wgrrt-E_ZRkwI5YyiIKq8qSeW7C6CIdlG_BTXhzIIdgPxZYN19ffo_Jb1l2mlIv2ZCHNB_QPLGT-aH2Nxo9plSx4RBhG67Pvl-dnuephkJuRK2meavakuuiIV_oUVkkvIKN9DUKJZwRUkttSqxEhapATsashLA1hTW6rhpEW-3Aaj_p3S4wrq23ErGV3oqGBFGUygrbuqKuHQH1jCSf1rcziWA81Lm47yjQCGLoohgyOJh1exgYNd53GAfhzBoDAXZ8QGrRJbXo_qUWGey9ibZLVvnUcYpNJW8JUWbwddZM9hQOSbB3k2fqo-pQUZNwbQafBk2YzYR-xuTLOX2pWtKRpakut_R3vyJnN8HYQP3TfP4fH_cF1kLV-7i1XezB6vTx2e0TNprqg2gGfwA7FRJK
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Library Science Database
  dbid: M1O
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSqkikeBEvqQkRC3tInjOA6Xqq2oCtLChYreovEjgEDZ0t29cOp_6D_klzB2vNnuCnHgGjvRRPP6xuOZAXhlhKsMR5dyV7WpkEakNdo2zYvWn7hJo8K0htEHeXYu3l-UF_HAbRKvVc5tYjDUdmz8GfkBp7hC8prQwOHlz9RPjfLZ1ThC4y7cI6AsvGKO8o9DwEXoN1-HDX_dmQTtQFQ8dKJc-J_Qpv9v2HL1iuQtn3P6EJo5tf1Vk-_7s6neN79WGjn-_-88ggcRjrKjXn4ewx3XbcJuLGZgr1msVvLcY9EMbML6KCbkn8Bn_2bfhIK9u9Xd8_f1zTH5R8tOYokn6-udFh80E3a0SJ6_oa-H0i3WJyuewvnp208nZ2mc1ZAaUappWqs65zqryOe2qCwSLsJKtiUKJZwRUkttcixEgSpDTkZDCWFLCp90WVSItngGa924c8-BcW1bKxFr2VpRtaizXFlha5eVpaOAICEJixxsTGxk7udp_GgooPGMbgKjE9gbtl32nTtWNxx79g-LvtF2eDC--tJEvW0y7f03J0nWBISQqMGqVcapGrVwWCewM-dvE7V_0iyYm8DLYZn01idjsHPjGe1RpZ_cSfg5ga1e1gZKyOgTZuD0p2pJCpdIXV7pvn0NvcEJLvsWQ9WLf9O1Dfc5obVwOJ7twNr0auZ2CV1N9V5QoT-dHSuY
  priority: 102
  providerName: ProQuest
Title Artificial Intelligence–Based Consumer Health Informatics Application: Scoping Review
URI https://www.ncbi.nlm.nih.gov/pubmed/37647122
https://www.proquest.com/docview/2917629059
https://www.proquest.com/docview/2858989193
https://pubmed.ncbi.nlm.nih.gov/PMC10500367
https://doaj.org/article/0b284722e7b244afaba7f8ce89ab4ea9
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fa9RAEB9sC0UoovVPo21YQXyLJptNdiOI9EpLFa6KeNi3sH9VKDm9XkHf_A5-Qz-Js5tteikFX_KQ3Q27OzOZ3-zszAA808xyTaXNqOUuY7VmWSONy4rS-RO3WotQrWF6Uh_P2LvTauU2YdzA8xtNO19ParY4e_Hzx683KPCv_TVmZKCXjCMoX4MNVEbcFzGYssGRQBEAB5uLoVyjPBWbsDUaNlJHIWv_TVDz-o3JFRV0dBfuROxI9nti34NbttuGvRh5QJ6TGFrkt5pEmd2GzWn0nt-Hz35knzGCvF1Jxfn3958JKjNDDmI8JumDk64-qM_J_pWn-xV-PcRZkd6z8ABmR4efDo6zWFgh06wSy6wRTUFVzlFBOimMxG2TvHaVZIJZzWpVK13IkpVS5JKihAvGTIW2jqpKLqUpH8J6N-_sDhCqjDO1lE3tDONOqrwQhpnG5lVlEb0nyA5xf1sds4774hdnLVofngxtIEMC6dDte59m43qHiSfO0OizYocX88WXNgpZmyuvbCmynULUInE2kjuhrWikYlY2Cexekra95LSWosFa0wZhZgJPh2YUMu85kZ2dX2AfUfkymwh2E3jUc8IwE_xDo4KnuFIx4pHRVMct3bevIZE3YlufD4g__t_qn8BtX-Y-nGXnu7C-XFzYPQRDS5XCGj_lKWxMDk8-fEzDkQI-p8X7NAjCP6JhD5w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrVSQEILyF2iLkYBb1MRxHAcJoW5ptUu7K4Ra0VvwXwAJZUt3K8SNd-A9eCiehLHjzXYrxK3X2LGczGfPNx7PDMAzzWyhqbQxtUUdM65ZXEpTx2lWuxM3roWv1jAa88Exe3uSn6zA73ksjLtWOd8T_UZtJtqdkW9TtCs4LZENvD79FruqUc67Oi-h0cLiwP74jibb9NXwDcr3OaX7e0e7gzhUFYg1y8UsLkWZUpUUqB1qKYxEDS4LXueSCWY144orncqMZVIkkiK8BWMmR6Kv8qyQ0mQ47jVYZRlPaA9W-3vjd-87Ew_5droGN90Fa4T2Niuoz3250Hi-MMC_2OzlS5kXtNz-bbgV6CnZafF0B1Zssw6bIbiBvCAheslJk4RtYR3WRsFBfxc-uDfbpBRkeCHb55-fv_qoLw3ZDSGfpI1_Wgyop2Rn4Ux_iaP7UC7SOi_uwfGV_OX70GsmjX0IhCpTGy5lyWvDilqqJBWGmdImeW7RQIgQceH_VjokNnf1Nb5WaOA4MVReDBFsdd1O20welzv0nXC6Rpd42z-YnH2qwjquEuX0OUVkKyRGEmcji1poK0qpmJVlBBtz0VZhN5hWC-xG8LRrxnXsnDOysZNz7CNyV8kT-XQED1okdDNBJYAcguKXiiWMLE11uaX58tnnCkf67FIOFY_-P68ncH1wNDqsDofjg8dwgyKT8wfnyQb0ZmfndhOZ10xtBbgT-HjVK-wvSe9GrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTqqQEILxL7ANIwFvURPHiR0khNZt1cpYNSEm9pb5L5uE0rF2QrzxHfg2fBw-CefEbdcJ8bbX2LGc3M--3_l8dwAvNbNcU2ljarmLWaFZXErj4jRz_sSt0KKp1nAwKvaO2Pvj_HgFfs9iYfy1ytme2GzUZqz9GXmPol1R0BLZQM-FaxGHO4N3599iX0HKe1pn5TRaiOzbH9_RfJu8He6grF9ROtj9tL0XhwoDsWa5mMalKFOqEo6awklhJGpzyQuXSyaY1axQhdKpzFgmRSIpQl0wZnIk_SrPuJQmw3FvwSr3VlEHVvu7o8OPc3MPuXfahTv-sjXCvMc4bfJgLrRfUyTgX8z2-gXNKxpvcA_uBqpKtlps3YcVW6_BRgh0IK9JiGTykiVhi1iD7kFw1j-Az_7NNkEFGV7J_Pnn568-6k5DtkP4J2ljoRYD6gnZWjjW3-DoTVgXaR0ZD-HoRv7yI-jU49o-AUKVcaaQsiycYdxJlaTCMFPaJM8tGgsRoi_830qHJOe-1sbXCo0dL4aqEUMEm_Nu521Wj-sd-l4480afhLt5ML74UoU1XSXK63aKKFdIkiTORnIntBWlVMzKMoL1mWirsDNMqgWOI3gxb8Y17R01srbjS-wjcl_VE7l1BI9bJMxnggoB-QTFLxVLGFma6nJLfXba5A1HKu3TD_Gn_5_Xc-jiyqo-DEf7z-A2RVLXnKEn69CZXlzaDSRhU7UZ0E7g5KYX2F8qiUri
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence%E2%80%93Based+Consumer+Health+Informatics+Application%3A+Scoping+Review&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Asan%2C+Onur&rft.au=Choi%2C+Euiji&rft.au=Wang%2C+Xiaomei&rft.date=2023-08-30&rft.issn=1438-8871&rft.eissn=1438-8871&rft.volume=25&rft.spage=e47260&rft_id=info:doi/10.2196%2F47260&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_47260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon