Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models

Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel stat...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 8; p. e1017
Main Authors Abdul-Hadi, Alaa M., Abdulrazzaq Naser, Marwah, Alsabah, Muntadher, Abdulhussain, Sadiq H., Mahmmod, Basheera M.
Format Journal Article
LanguageEnglish
Published San Diego PeerJ, Inc 21.06.2022
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.1017

Cover

Abstract Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered.
AbstractList Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered.
Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered.Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered.
ArticleNumber e1017
Author Abdul-Hadi, Alaa M.
Mahmmod, Basheera M.
Abdulrazzaq Naser, Marwah
Abdulhussain, Sadiq H.
Alsabah, Muntadher
Author_xml – sequence: 1
  givenname: Alaa M.
  surname: Abdul-Hadi
  fullname: Abdul-Hadi, Alaa M.
  organization: Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq
– sequence: 2
  givenname: Marwah
  surname: Abdulrazzaq Naser
  fullname: Abdulrazzaq Naser, Marwah
  organization: Department of Architectural Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq
– sequence: 3
  givenname: Muntadher
  surname: Alsabah
  fullname: Alsabah, Muntadher
  organization: Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom
– sequence: 4
  givenname: Sadiq H.
  surname: Abdulhussain
  fullname: Abdulhussain, Sadiq H.
  organization: Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq
– sequence: 5
  givenname: Basheera M.
  surname: Mahmmod
  fullname: Mahmmod, Basheera M.
  organization: Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq
BookMark eNp1kk1vFCEYxyemxr7Yo_dJvGwPU4GZ4eViYlqrm7SpBz0TYJ6pbBhYYdi0X8FPXXa3UdtELvA8_PnxvB1XBz54qKp3GJ0zhtmHNUBcNSadY4TZq-qItIw2vRDk4J_zYXWa0gohhHtclnhTHbY9Zz3tyFH1-xvEMcRJeQM1bJTLarbB12Gsxwi_MnjzUA92Y9PWO-S1g_t6cXV5eVZPKiW7gXrKbrbFX1u_zvNfM-R5ay9ulje3Z3X2A8RCGkeI4OfahBjB7T-bwgAuva1ej8olOH3aT6ofV5-_X3xtrm-_LC8-XTem6_ncCCQM5207KDVSxgXWI2ei66juDRGMY0Co57TjjLZMMEIZENWRnhNqkBLQnlTLPXcIaiXX0U4qPsigrNw5QryTKs7WOJAFBcjwUbdYd2bQSrdGUYY7pjuiNSusj3vWOusJBlMyi8o9gz6_8fanvAsbKUjpDGsLYPEEiKFUO81yssmAc8pDyEkSWlLDtPS3SN-_kK5Cjr6UqqhKITgVXBRVs1eZGFKKMP4JBiO5HRq5GxppktwOTdG3L_TGzru2lHit-8-rR2UHyo8
CitedBy_id crossref_primary_10_3390_electronics12112494
crossref_primary_10_3390_telecom5010010
crossref_primary_10_3390_s24020321
crossref_primary_10_1109_ACCESS_2023_3275964
Cites_doi 10.1109/ACCESS.2017.2705561
10.1007/s11235-021-00873-z
10.1007/s11277-021-08482-4
10.1109/MCOM.2016.7402270
10.1109/TIT.2012.2191700
10.1109/TIT.2003.809594
10.1109/TCOMM.2013.020413.110848
10.7717/peerj-cs.682
10.1109/JSTSP.2014.2313020
10.1002/ett.3563
10.1109/ACSSC.2017.8335182
10.1109/TCOMM.2017.2691700
10.1109/TVT.2019.2915823
10.1109/TSP.2015.2463260
10.1017/CBO9780511807213
10.1109/TCOMM.2015.2508809
10.1002/ett.4438
10.1109/JSAC.2013.130205
10.1109/TIT.2004.833345
10.18178/ijfcc.2017.6.1.483
10.1109/JSAC.1987.1146536
10.1002/dac.5011
10.1109/TNSE.2017.2754101
10.1109/TWC.2018.2821667
10.1109/TIT.2013.2269476
10.1109/TWC.2017.2674659
10.1109/TIT.2016.2615627
10.1109/OJCOMS.2020.3010270
10.1007/978-981-16-3637-0_11
10.1017/9781139049276
10.1109/MWC.001.1900157
10.31026/j.eng.2016.01.06
10.1109/JSAC.2013.130206
10.1109/TSP.2014.2324991
10.1109/4234.951380
10.1109/TWC.2006.1576533
10.1109/MSP.2011.2178495
10.1017/CBO9781316799895
10.1109/TCOMM.2013.032713.120408
10.1155/2019/3518691
10.1109/TVT.2015.2475284
10.1109/JSTSP.2014.2327572
10.1109/MWC.001.1900333
10.1038/s41928-019-0355-6
10.1109/COMST.2016.2532458
10.1109/TWC.2011.060711.101155
10.1109/JSAC.2017.2687998
10.1109/9780470545287
10.1109/ACCESS.2020.3000302
10.1109/TCOMM.2017.2676088
10.1109/ACCESS.2021.3124812
10.3390/electronics9122155
10.1109/LSP.2014.2364180
10.1109/TVT.2004.827164
ContentType Journal Article
Copyright 2022 Abdul-Hadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Abdul-Hadi et al.
2022 Abdul-Hadi et al. 2022 Abdul-Hadi et al.
Copyright_xml – notice: 2022 Abdul-Hadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Abdul-Hadi et al.
– notice: 2022 Abdul-Hadi et al. 2022 Abdul-Hadi et al.
DBID AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj-cs.1017
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Text complet a ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
UniTN - DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_e00e0c8fb31b4cdbab3ca67147b42bb7
PMC9299273
10_7717_peerj_cs_1017
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c458t-909c8833daaf67891bf879446b5c29781e0058648763797267e2a425826c0a9e3
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Wed Aug 27 01:30:53 EDT 2025
Thu Aug 21 13:57:04 EDT 2025
Fri Sep 05 07:43:11 EDT 2025
Fri Jul 25 22:55:10 EDT 2025
Tue Jul 01 02:28:52 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-909c8833daaf67891bf879446b5c29781e0058648763797267e2a425826c0a9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/e00e0c8fb31b4cdbab3ca67147b42bb7
PMID 35875642
PQID 2678986989
PQPubID 2045934
ParticipantIDs doaj_primary_oai_doaj_org_article_e00e0c8fb31b4cdbab3ca67147b42bb7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299273
proquest_miscellaneous_2694416101
proquest_journals_2678986989
crossref_primary_10_7717_peerj_cs_1017
crossref_citationtrail_10_7717_peerj_cs_1017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-21
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-21
  day: 21
PublicationDecade 2020
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ. Computer science
PublicationYear 2022
Publisher PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ, Inc
– name: PeerJ Inc
References De Carvalho (10.7717/peerj-cs.1017/ref-24) 2020; 27
Gao (10.7717/peerj-cs.1017/ref-26) 2012
Mostafa (10.7717/peerj-cs.1017/ref-48) 2021; 120
Björnson (10.7717/peerj-cs.1017/ref-15) 2017; Vol. 11
Agiwal (10.7717/peerj-cs.1017/ref-3) 2016; 18
Björnson (10.7717/peerj-cs.1017/ref-14) 2016; 54
Alsabah (10.7717/peerj-cs.1017/ref-8) 2020
Han (10.7717/peerj-cs.1017/ref-29) 2018
Alsabah (10.7717/peerj-cs.1017/ref-10) 2020; 8
Gao (10.7717/peerj-cs.1017/ref-28) 2015; 63
Abdulwahhab (10.7717/peerj-cs.1017/ref-1) 2016; 22
Liu (10.7717/peerj-cs.1017/ref-41) 2017; 35
Albdran (10.7717/peerj-cs.1017/ref-4) 2016
Jakes (10.7717/peerj-cs.1017/ref-36) 1994
Naser (10.7717/peerj-cs.1017/ref-50) 2020; 9
Albdran (10.7717/peerj-cs.1017/ref-5) 2017
Kay (10.7717/peerj-cs.1017/ref-39) 1993
Noh (10.7717/peerj-cs.1017/ref-54) 2014; 8
Wallace (10.7717/peerj-cs.1017/ref-65) 2001
Hochwald (10.7717/peerj-cs.1017/ref-33) 2004; 50
Chen (10.7717/peerj-cs.1017/ref-19) 2020; 27
Xie (10.7717/peerj-cs.1017/ref-67) 2018; 17
Nam (10.7717/peerj-cs.1017/ref-49) 2017; 63
Amadid (10.7717/peerj-cs.1017/ref-13) 2022; 79
Chowdhury (10.7717/peerj-cs.1017/ref-21) 2020; 1
Marzetta (10.7717/peerj-cs.1017/ref-45) 2016
Dang (10.7717/peerj-cs.1017/ref-23) 2020; 3
Hassibi (10.7717/peerj-cs.1017/ref-31) 2003; 49
Loyka (10.7717/peerj-cs.1017/ref-42) 2001; 5
Mi (10.7717/peerj-cs.1017/ref-46) 2017; 65
Adhikary (10.7717/peerj-cs.1017/ref-2) 2013; 59
So (10.7717/peerj-cs.1017/ref-60) 2015; 22
Petersen (10.7717/peerj-cs.1017/ref-56) 2008; 7
Ngo (10.7717/peerj-cs.1017/ref-52) 2013; 61
Choi (10.7717/peerj-cs.1017/ref-20) 2014; 8
Marshall (10.7717/peerj-cs.1017/ref-44) 1979; Vol. 143
IMT (10.7717/peerj-cs.1017/ref-35) 2015
Han (10.7717/peerj-cs.1017/ref-30) 2017; 65
Shepard (10.7717/peerj-cs.1017/ref-59) 2012
Wagner (10.7717/peerj-cs.1017/ref-64) 2012; 58
Ngo (10.7717/peerj-cs.1017/ref-51) 2011
Zuo (10.7717/peerj-cs.1017/ref-71) 2016; 65
Jose (10.7717/peerj-cs.1017/ref-37) 2011; 10
Hoydis (10.7717/peerj-cs.1017/ref-34) 2013; 31
Björnson (10.7717/peerj-cs.1017/ref-16) 2013
Heath Jr (10.7717/peerj-cs.1017/ref-32) 2018
Kaltenberger (10.7717/peerj-cs.1017/ref-38) 2010
Rao (10.7717/peerj-cs.1017/ref-57) 2014; 62
Amadid (10.7717/peerj-cs.1017/ref-11) 2022
Chen (10.7717/peerj-cs.1017/ref-18) 2017
Fakhri (10.7717/peerj-cs.1017/ref-25) 2017; 5
Molisch (10.7717/peerj-cs.1017/ref-47) 2012; Vol. 34
Alsabah (10.7717/peerj-cs.1017/ref-9) 2021; 9
Li (10.7717/peerj-cs.1017/ref-40) 2019; 68
Payami (10.7717/peerj-cs.1017/ref-55) 2012
Yang (10.7717/peerj-cs.1017/ref-68) 2013; 31
Weichselberger (10.7717/peerj-cs.1017/ref-66) 2006; 5
Amadid (10.7717/peerj-cs.1017/ref-12) 2022; 35
Vieira (10.7717/peerj-cs.1017/ref-63) 2017; 16
Zheng (10.7717/peerj-cs.1017/ref-70) 2019; 2019
Ngo (10.7717/peerj-cs.1017/ref-53) 2013; 61
Yu (10.7717/peerj-cs.1017/ref-69) 2004; 53
Gao (10.7717/peerj-cs.1017/ref-27) 2016; 64
Croisfelt Rodrigues (10.7717/peerj-cs.1017/ref-22) 2019; 30
Ali (10.7717/peerj-cs.1017/ref-6) 2021; 7
Aljiznawi (10.7717/peerj-cs.1017/ref-7) 2017; 6
Boulouird (10.7717/peerj-cs.1017/ref-17) 2022; vol. 237
Malkowsky (10.7717/peerj-cs.1017/ref-43) 2017; 5
Rusek (10.7717/peerj-cs.1017/ref-58) 2013; 30
Stein (10.7717/peerj-cs.1017/ref-61) 1987; 5
Tse (10.7717/peerj-cs.1017/ref-62) 2005
References_xml – volume: 5
  start-page: 9073
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-43
  article-title: The worlds first real-time testbed for massive MIMO: design, implementation, and validation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2705561
– start-page: 1
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-5
  article-title: Spectral and energy efficiency for massive MIMO systems using exponential correlation model
– volume: Vol. 34
  volume-title: Wireless communications
  year: 2012
  ident: 10.7717/peerj-cs.1017/ref-47
– volume: 79
  start-page: 323
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.1017/ref-13
  article-title: Channel estimation in massive MIMO-based wireless network using spatially correlated channel-based three-dimensional array
  publication-title: Telecommunication Systems
  doi: 10.1007/s11235-021-00873-z
– volume: 120
  start-page: 633
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.1017/ref-48
  article-title: Complex regularized zero forcing precoding for massive MIMO systems
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-021-08482-4
– volume: 54
  start-page: 114
  issue: 2
  year: 2016
  ident: 10.7717/peerj-cs.1017/ref-14
  article-title: Massive MIMO: ten myths and one critical question
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.2016.7402270
– start-page: 295
  year: 2012
  ident: 10.7717/peerj-cs.1017/ref-26
  article-title: Measured propagation characteristics for very-large MIMO at 2.6 GHz
– start-page: 80
  year: 2016
  ident: 10.7717/peerj-cs.1017/ref-4
  article-title: Effect of exponential correlation model on channel estimation for massive MIMO
– volume-title: Fundamentals of statistical signal processing: estimation theory
  year: 1993
  ident: 10.7717/peerj-cs.1017/ref-39
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.1017/ref-29
  article-title: Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications
– volume: 58
  start-page: 4509
  issue: 7
  year: 2012
  ident: 10.7717/peerj-cs.1017/ref-64
  article-title: Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2012.2191700
– volume: 49
  start-page: 951
  issue: 4
  year: 2003
  ident: 10.7717/peerj-cs.1017/ref-31
  article-title: How much training is needed in multiple-antenna wireless links?
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2003.809594
– volume: 61
  start-page: 1436
  issue: 4
  year: 2013
  ident: 10.7717/peerj-cs.1017/ref-52
  article-title: Energy and spectral efficiency of very large multiuser MIMO systems
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2013.020413.110848
– volume: 7
  start-page: e682
  year: 2021
  ident: 10.7717/peerj-cs.1017/ref-6
  article-title: Channel state information estimation for 5G wireless communication systems: recurrent neural networks approach
  publication-title: PeerJ Computer Science
  doi: 10.7717/peerj-cs.682
– volume: 8
  start-page: 802
  issue: 5
  year: 2014
  ident: 10.7717/peerj-cs.1017/ref-20
  article-title: Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2014.2313020
– volume: 30
  start-page: e3563
  issue: 5
  year: 2019
  ident: 10.7717/peerj-cs.1017/ref-22
  article-title: Exponential spatial correlation with large-scale fading variations in massive MIMO channel estimation
  publication-title: Transactions on Emerging Telecommunications Technologies
  doi: 10.1002/ett.3563
– year: 2017
  ident: 10.7717/peerj-cs.1017/ref-18
  article-title: Scaling up distributed massive MIMO: why and how
  doi: 10.1109/ACSSC.2017.8335182
– volume: 65
  start-page: 2852
  issue: 7
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-30
  article-title: Compressed sensing-aided downlink channel training for FDD massive MIMO systems
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2017.2691700
– start-page: 1
  year: 2013
  ident: 10.7717/peerj-cs.1017/ref-16
  article-title: Hardware impairments in large-scale MISO systems: energy efficiency, estimation, and capacity limits
– volume: 68
  start-page: 6670
  issue: 7
  year: 2019
  ident: 10.7717/peerj-cs.1017/ref-40
  article-title: On hybrid pilot for channel estimation in massive MIMO uplink
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2019.2915823
– volume: 63
  start-page: 6169
  issue: 23
  year: 2015
  ident: 10.7717/peerj-cs.1017/ref-28
  article-title: Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2015.2463260
– volume-title: Fundamentals of wireless communication
  year: 2005
  ident: 10.7717/peerj-cs.1017/ref-62
  doi: 10.1017/CBO9780511807213
– volume: 64
  start-page: 601
  issue: 2
  year: 2016
  ident: 10.7717/peerj-cs.1017/ref-27
  article-title: Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2015.2508809
– start-page: e4438
  year: 2022
  ident: 10.7717/peerj-cs.1017/ref-11
  article-title: On channel estimation and spectral efficiency for cell-free massive MIMO with multi-antenna access points considering spatially correlated channels
  publication-title: Transactions on Emerging Telecommunications Technologies
  doi: 10.1002/ett.4438
– volume: 31
  start-page: 160
  issue: 2
  year: 2013
  ident: 10.7717/peerj-cs.1017/ref-34
  article-title: Massive MIMO in the UL/DL of cellular networks: how many antennas do we need?
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2013.130205
– start-page: 2038
  year: 2001
  ident: 10.7717/peerj-cs.1017/ref-65
  article-title: Measured characteristics of the MIMO wireless channel
– volume: 50
  start-page: 1893
  issue: 9
  year: 2004
  ident: 10.7717/peerj-cs.1017/ref-33
  article-title: Multiple-antenna channel hardening and its implications for rate feedback and scheduling
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2004.833345
– volume: Vol. 143
  volume-title: Inequalities: theory of majorization and its applications
  year: 1979
  ident: 10.7717/peerj-cs.1017/ref-44
– volume: 6
  start-page: 27
  issue: 1
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-7
  article-title: Quality of service (qos) for 5g networks
  publication-title: International Journal of Future Computer and Communication
  doi: 10.18178/ijfcc.2017.6.1.483
– volume: 5
  start-page: 68
  issue: 2
  year: 1987
  ident: 10.7717/peerj-cs.1017/ref-61
  article-title: Fading channel issues in system engineering
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.1987.1146536
– volume: 35
  start-page: e5011
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.1017/ref-12
  article-title: On channel estimation in cell-free massive MIMO for spatially correlated channels with correlated shadowing under Rician fading
  publication-title: International Journal of Communication Systems
  doi: 10.1002/dac.5011
– start-page: 2370
  year: 2015
  ident: 10.7717/peerj-cs.1017/ref-35
  article-title: IMT traffic estimates for the years 2020 to 2030
  publication-title: Report ITU
– volume: 5
  start-page: 261
  issue: 4
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-25
  article-title: A resource allocation mechanism for cloud radio access network based on cell differentiation and integration concept
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2017.2754101
– volume: 17
  start-page: 4206
  issue: 6
  year: 2018
  ident: 10.7717/peerj-cs.1017/ref-67
  article-title: Channel estimation for TDD/FDD massive MIMO systems with channel covariance computing
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2018.2821667
– volume: 59
  start-page: 6441
  issue: 10
  year: 2013
  ident: 10.7717/peerj-cs.1017/ref-2
  article-title: Joint spatial division and multiplexing: the large-scale array regime
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2013.2269476
– volume: 16
  start-page: 3042
  issue: 5
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-63
  article-title: Reciprocity calibration for massive MIMO: proposal, modeling, and validation
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2017.2674659
– volume: 63
  start-page: 336
  issue: 1
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-49
  article-title: On the role of transmit correlation diversity in multiuser MIMO systems
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2016.2615627
– start-page: 3464
  year: 2011
  ident: 10.7717/peerj-cs.1017/ref-51
  article-title: Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models
– volume: 1
  start-page: 957
  year: 2020
  ident: 10.7717/peerj-cs.1017/ref-21
  article-title: 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions
  publication-title: IEEE Open Journal of the Communications Society
  doi: 10.1109/OJCOMS.2020.3010270
– start-page: 53
  year: 2012
  ident: 10.7717/peerj-cs.1017/ref-59
  article-title: Argos: practical many-antenna base stations
– volume: vol. 237
  volume-title: Networking, intelligent systems and security. Smart innovation, systems and technologies
  year: 2022
  ident: 10.7717/peerj-cs.1017/ref-17
  article-title: Channel estimation in massive mimo systems for spatially correlated channels with pilot contamination
  doi: 10.1007/978-981-16-3637-0_11
– volume-title: Foundations of MIMO communication
  year: 2018
  ident: 10.7717/peerj-cs.1017/ref-32
  doi: 10.1017/9781139049276
– start-page: 1
  volume-title: Future network & mobile summit, Florence, Italy
  year: 2010
  ident: 10.7717/peerj-cs.1017/ref-38
  article-title: Relative channel reciprocity calibration in MIMO/TDD systems
– volume: 27
  start-page: 74
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.1017/ref-24
  article-title: Non-stationarities in extra-large-scale massive MIMO
  publication-title: IEEE Wireless Communications
  doi: 10.1109/MWC.001.1900157
– volume: 22
  start-page: 83
  issue: 1
  year: 2016
  ident: 10.7717/peerj-cs.1017/ref-1
  article-title: Mobile position estimation using artificial neural network in CDMA cellular systems
  publication-title: Journal of Engineering
  doi: 10.31026/j.eng.2016.01.06
– volume: 31
  start-page: 172
  issue: 2
  year: 2013
  ident: 10.7717/peerj-cs.1017/ref-68
  article-title: Performance of conjugate and zero-forcing beamforming in large-scale antenna systems
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2013.130206
– year: 2020
  ident: 10.7717/peerj-cs.1017/ref-8
  article-title: Downlink training sequence design based on achievable sum rate maximisation in FDD massive MIMO systems
  publication-title: PhD thesis
– start-page: 433
  year: 2012
  ident: 10.7717/peerj-cs.1017/ref-55
  article-title: Channel measurements and analysis for very large array systems at 2.6 GHz
– volume: 62
  start-page: 3261
  issue: 12
  year: 2014
  ident: 10.7717/peerj-cs.1017/ref-57
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2014.2324991
– volume: 5
  start-page: 369
  issue: 9
  year: 2001
  ident: 10.7717/peerj-cs.1017/ref-42
  article-title: Channel capacity of MIMO architecture using the exponential correlation matrix
  publication-title: IEEE Communications Letters
  doi: 10.1109/4234.951380
– volume: 5
  start-page: 90
  issue: 1
  year: 2006
  ident: 10.7717/peerj-cs.1017/ref-66
  article-title: A stochastic MIMO channel model with joint correlation of both link ends
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2006.1576533
– volume: 30
  start-page: 40
  issue: 1
  year: 2013
  ident: 10.7717/peerj-cs.1017/ref-58
  article-title: Scaling Up MIMO: opportunities and challenges with very large arrays
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2011.2178495
– volume-title: Fundamentals of massive MIMO
  year: 2016
  ident: 10.7717/peerj-cs.1017/ref-45
  doi: 10.1017/CBO9781316799895
– volume: 61
  start-page: 2350
  issue: 6
  year: 2013
  ident: 10.7717/peerj-cs.1017/ref-53
  article-title: The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2013.032713.120408
– volume: 2019
  start-page: 3518691
  year: 2019
  ident: 10.7717/peerj-cs.1017/ref-70
  article-title: Zero-forcing precoding in the measured massive MIMO downlink: how many antennas are needed?
  publication-title: International Journal of Antennas and Propagation
  doi: 10.1155/2019/3518691
– volume: 65
  start-page: 6301
  issue: 8
  year: 2016
  ident: 10.7717/peerj-cs.1017/ref-71
  article-title: Multicell multiuser massive MIMO transmission with downlink training and pilot contamination precoding
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2015.2475284
– volume: 8
  start-page: 787
  issue: 5
  year: 2014
  ident: 10.7717/peerj-cs.1017/ref-54
  article-title: Pilot beam pattern design for channel estimation in massive MIMO systems
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2014.2327572
– volume: 27
  start-page: 218
  issue: 2
  year: 2020
  ident: 10.7717/peerj-cs.1017/ref-19
  article-title: Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed
  publication-title: IEEE Wireless Communications
  doi: 10.1109/MWC.001.1900333
– volume: 3
  start-page: 20
  issue: 1
  year: 2020
  ident: 10.7717/peerj-cs.1017/ref-23
  article-title: What should 6G be?
  publication-title: Nature Electronics
  doi: 10.1038/s41928-019-0355-6
– volume: Vol. 11
  start-page: 154
  volume-title: Foundations and trends® in signal processing
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-15
  article-title: Massive MIMO networks: spectral, energy, and hardware efficiency
– volume: 18
  start-page: 1617
  issue: 3
  year: 2016
  ident: 10.7717/peerj-cs.1017/ref-3
  article-title: Next generation 5G wireless networks: a comprehensive survey
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2016.2532458
– volume: 10
  start-page: 2640
  issue: 8
  year: 2011
  ident: 10.7717/peerj-cs.1017/ref-37
  article-title: Pilot Contamination and precoding in multi-cell TDD systems
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2011.060711.101155
– volume: 35
  start-page: 1222
  issue: 6
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-41
  article-title: 3-D-MIMO with massive antennas paves the way to 5G enhanced mobile broadband: from system design to field trials
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2017.2687998
– volume-title: Microwave mobile communications
  year: 1994
  ident: 10.7717/peerj-cs.1017/ref-36
  doi: 10.1109/9780470545287
– volume: 8
  start-page: 108731
  year: 2020
  ident: 10.7717/peerj-cs.1017/ref-10
  article-title: Non-iterative downlink training sequence design based on sum rate maximization in FDD massive MIMO systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3000302
– volume: 65
  start-page: 3734
  issue: 9
  year: 2017
  ident: 10.7717/peerj-cs.1017/ref-46
  article-title: Massive MIMO performance with imperfect channel reciprocity and channel estimation error
  publication-title: IEEE Transactions on Communications
  doi: 10.1109/TCOMM.2017.2676088
– volume: 9
  start-page: 148191
  year: 2021
  ident: 10.7717/peerj-cs.1017/ref-9
  article-title: 6G wireless communications networks: a comprehensive survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3124812
– volume: 9
  start-page: 2155
  issue: 12
  year: 2020
  ident: 10.7717/peerj-cs.1017/ref-50
  article-title: Downlink training design for fdd massive MIMO systems in the presence of colored noise
  publication-title: Electronics
  doi: 10.3390/electronics9122155
– volume: 22
  start-page: 549
  issue: 5
  year: 2015
  ident: 10.7717/peerj-cs.1017/ref-60
  article-title: Pilot signal design for massive MIMO systems: a received signal-to-noise-ratio-based approach
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2014.2364180
– volume: 7
  start-page: 1704
  issue: 15
  year: 2008
  ident: 10.7717/peerj-cs.1017/ref-56
  article-title: The matrix cookbook
  publication-title: University of Denmark
– volume: 53
  start-page: 655
  issue: 3
  year: 2004
  ident: 10.7717/peerj-cs.1017/ref-69
  article-title: Modeling of wide-band MIMO radio channels based on NLoS indoor measurements
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2004.827164
SSID ssj0001511119
Score 2.2212512
Snippet Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e1017
SubjectTerms Algorithms
Antennas
Communications networks
Computer Networks and Communications
Correlation analysis
Correlation model
Eigenvectors
Frequency division duplexing
Frequency-division-duplex
Hardening
Massive-MIMO
MIMO communication
Network Science and Online Social Networks
Performance evaluation
Training
Wireless communications
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKuXABSkEstJWREGoloubhOPGpainbgrSFA5V6i_xKHyrJkmQl-Av8amYcZ0MOcHRsJY7n4bE9_j5C3jLBtOGJQkPisEDhZSDiNA_K2Jg0wboST3QXF_z8kn2-Sq_8hlvr0yoHn-gctak17pEfxuBVRY50h0fLHwGyRuHpqqfQeEAeRjDToJ7n87NxjyVFhyB6aM0MFi6HS2ubu0C3Dl5oMhU5xP5JmDlNkvxr1pk_JY99uEiPe_lukQ1bPSNPBioG6i1zm_z-Ol4AoCOCN61LWjZ9tvQvilevcHOMmtXy3v6k-_PT0wP6HcJncHl0SC2ktxW8fCzWqw7L-4tPiy8HFO-cNXSgVemoRnaPPp-OOlad9jm5nH_89uE88DQLgWZp3gUiFBoph42UJQ5ypMocrJRxleoYIbEscg9yhth1mchAEDaWYOqwMNGhFDZ5QTarurIvCbWJSlyUqTLFZJhJzkPNjM6F4Qaezsj7YcQL7THIkQrjvoC1CAqocAIqdIupZ9mMvFs3X_bgG_9qeILiWzdCzGz3oG6uC2-CBfyGDXVeqiRSoIRKqkRLnkUM-horBS_ZGYRfeENui1HtZuTNuhpMEM9VZGXrFbaB0YLIOYxmJJsozaRD05rq9saBeUN4KiCEfPX_j78mj2K8dxHyII52yGbXrOwuREOd2nMq_wdughBT
  priority: 102
  providerName: ProQuest
Title Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models
URI https://www.proquest.com/docview/2678986989
https://www.proquest.com/docview/2694416101
https://pubmed.ncbi.nlm.nih.gov/PMC9299273
https://doaj.org/article/e00e0c8fb31b4cdbab3ca67147b42bb7
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BuXDhjQiUlZEQaiWiOo5jx0dKuxSkLRWiUm9R7DiiqGRXu1kJ_gK_mhkn2d0cEBeOfiRyPB57Jp75PoDX0khXqdSSIil0UFQdG5HlcS2qKkupraYb3dm5OruUn66yqx2qL4oJ6-CBu4k78px77vLaponFR21pU1cqnUhtpbA25JFzw3ecqS4_mLYC04FqanRZjhbeL7_HbhWAhUaHUMDqHxmY4_DInfNm-gDu9YYie9cN8CHc8s0juD-QMLBeJx_D74tt6D_bYnezec3qZRcn_YtR0hX9FmPVenHjf7KD6cnJIfuBhjNudmwIKmTXDb58W5yvWyofzD7OPh8yyjZbsoFQpWWOeD26SDoW-HRWT-Byevr1_VncEyzETmZ5GxtuHJENV2VZ46FlElvnqJ9S2cwJAsPyxDqoJKHWaaOF0l6UqOTokjheGp8-hb1m3vhnwHxq02BfWpRLyXWpFHeycrmpVIW1EbwdZrxwPfo4kWDcFOiFkICKIKDCrSjoTEfwZtN90cFu_K3jMYlv04nQskMFrqGiX0PFv9ZQBPuD8ItehVeFoBnJiV8zglebZlQ-ulEpGz9fUx-cLbSZeRKBHi2a0YDGLc31twDjjYapQePx-f_4ghdwV1BeBlexSPZhr12u_Uu0llo7gdv59MME7hyfnl98mQQ1-QPmjRx7
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuvBELBYwEqJWImofjxAeEKNvVLu0uFWql3tLYcaCoJMsmK-hf4MfwG5nJY0MOcOsxseUknkc-2zPzAbzgkutEeIoMSeACRaSWdP3QSt0k8T1qS-lEdzYXkxP-4dQ_3YDfbS4MhVW2PrFy1EmuaY9810WvKkOiO3y7-G4RaxSdrrYUGrVaHJjLH7hkK95MRyjfl6473j9-P7EaVgFLcz8sLWlLTQy7SRynNKaj0hCVkgvla5cqQBmi2hOcSrUFMsDnGjdGzUYcru1YGg_HvQabnDJaB7C5tz8_-tTt6vjkgmRdzDPApdLuwpjlV0sXVUGj3s-v4gjoAdt-WOZf_7nxbbjZAFT2rtaoO7BhsrtwqyV_YI0vuAe_jrqUA9bVDGd5ytJlHZ99ySjZi7bjWLJaXJifbHs8Gu2wbwjY0cmyNpiRnWc4eHeZr0q63p5NZx93GGW5LVlL5FIyTXwidQQfq3h8ivtwciUieACDLM_MQ2DGU16Fa1WgeGwHsRC25okOZSISvDuE1-2MR7qpek7kGxcRrn5IQFEloEgXFOwWDOHVuvuiLvfxr457JL51J6rSXd3Il5-jxugj_Axj6zBVnqNQ7VWsPB2LwOH4rq5SOMhWK_yocR1F1Cn6EJ6vm9Ho6SQnzky-oj44W4jVbWcIQU9pei_Ub8nOv1TlwxEQSwStj_7_8GdwfXI8O4wOp_ODx3DDpawPW1iuswWDcrkyTxCLleppYwAMzq7a5v4AmNZLfA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuvBFbChgJUCsRbeIkTnxACFhCl7KlByr1FmLHoUUlWZKsoH-Bn8SvYyaPDTnArcfEluNkHvlsz8wH8MSTnk6Fq8iQBC5QRGZJ7odWxtPUd6ktoxPdxYHYO_LeH_vHG_C7z4WhsMreJzaOOi007ZFPOXpVGRLd4TTrwiIOZ9HL5XeLGKTopLWn02hVZN-c_8DlW_ViPkNZP-U8evvpzZ7VMQxY2vPD2pK21MS2myZJRuM7KgtRQT2hfM2pGpQh2j3hUdm2QAY4B8MT1HLE5NpOpHFx3EtwOaBGylKP3g37Oz45I9mW9Qxw0TRdGlN-tXTVlDYa_QYbtoARxB0HaP71x4tuwLUOqrJXrW7dhA2T34LrPQ0E67zCbfh1OCQfsKF6OCsylpVtpPY5o7Qv2phj6Wp5Zn6ynWg222XfELqju2V9WCM7zXHw4bJY1XS9s5gvPu4yyncrWU_pUjNNzCJtLB9rGH2qO3B0IQK4C5t5kZt7wIyr3AbhqkB5iR0kQtjaS3UoU5Hi3Qk87794rLv650TDcRbjOogEFDcCinVFYW_BBJ6tuy_bwh__6viaxLfuRPW6mxtF-SXuzD_G1zC2DjPlOgoNQCXK1YkIHA_nypXCQbZ74cedE6niQeUn8HjdjOZPZzpJbooV9cGvhajddiYQjJRmNKFxS3560hQSR2gsEb5u_f_hj-AKWlr8YX6wfx-uckr_sIXFnW3YrMuVeYCgrFYPG-1n8Pmize0PIshOTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+frequency+division+duplex+%28FDD%29+massive+multiple+input+multiple+output+%28MIMO%29+under+different+correlation+models&rft.jtitle=PeerJ.+Computer+science&rft.au=Abdul-Hadi%2C+Alaa+M.&rft.au=Abdulrazzaq+Naser%2C+Marwah&rft.au=Alsabah%2C+Muntadher&rft.au=Abdulhussain%2C+Sadiq+H.&rft.date=2022-06-21&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=8&rft_id=info:doi/10.7717%2Fpeerj-cs.1017&rft_id=info%3Apmid%2F35875642&rft.externalDocID=PMC9299273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon