Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models
Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel stat...
Saved in:
Published in | PeerJ. Computer science Vol. 8; p. e1017 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
San Diego
PeerJ, Inc
21.06.2022
PeerJ Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2376-5992 2376-5992 |
DOI | 10.7717/peerj-cs.1017 |
Cover
Abstract | Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered. |
---|---|
AbstractList | Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered. Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered.Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless communications networks. However, for massive-MIMO systems to realize their maximum potential gain, sufficiently accurate downlink (DL) channel state information (CSI) with low overhead to meet the short coherence time (CT) is required. Therefore, this article aims to overcome the technical challenge of DL CSI estimation in a frequency-division-duplex (FDD) massive-MIMO with short CT considering five different physical correlation models. To this end, the statistical structure of the massive-MIMO channel, which is captured by the physical correlation is exploited to find sufficiently accurate DL CSI estimation. Specifically, to reduce the DL CSI estimation overhead, the training sequence is designed based on the eigenvectors of the transmit correlation matrix. To this end, the achievable sum rate (ASR) maximization and the mean square error (MSE) of CSI estimation with short CT are investigated using the proposed training sequence design. Furthermore, this article examines the effect of channel hardening in an FDD massive-MIMO system. The results demonstrate that in high correlation scenarios, a large loss in channel hardening is obtained. The results reveal that increasing the correlation level reduces the MSE but does not increase the ASR. However, exploiting the spatial correction structure is still very essential for the FDD massive-MIMO systems under limited CT. This finding holds for all the physical correlation models considered. |
ArticleNumber | e1017 |
Author | Abdul-Hadi, Alaa M. Mahmmod, Basheera M. Abdulrazzaq Naser, Marwah Abdulhussain, Sadiq H. Alsabah, Muntadher |
Author_xml | – sequence: 1 givenname: Alaa M. surname: Abdul-Hadi fullname: Abdul-Hadi, Alaa M. organization: Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq – sequence: 2 givenname: Marwah surname: Abdulrazzaq Naser fullname: Abdulrazzaq Naser, Marwah organization: Department of Architectural Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq – sequence: 3 givenname: Muntadher surname: Alsabah fullname: Alsabah, Muntadher organization: Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom – sequence: 4 givenname: Sadiq H. surname: Abdulhussain fullname: Abdulhussain, Sadiq H. organization: Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq – sequence: 5 givenname: Basheera M. surname: Mahmmod fullname: Mahmmod, Basheera M. organization: Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad, Iraq |
BookMark | eNp1kk1vFCEYxyemxr7Yo_dJvGwPU4GZ4eViYlqrm7SpBz0TYJ6pbBhYYdi0X8FPXXa3UdtELvA8_PnxvB1XBz54qKp3GJ0zhtmHNUBcNSadY4TZq-qItIw2vRDk4J_zYXWa0gohhHtclnhTHbY9Zz3tyFH1-xvEMcRJeQM1bJTLarbB12Gsxwi_MnjzUA92Y9PWO-S1g_t6cXV5eVZPKiW7gXrKbrbFX1u_zvNfM-R5ay9ulje3Z3X2A8RCGkeI4OfahBjB7T-bwgAuva1ej8olOH3aT6ofV5-_X3xtrm-_LC8-XTem6_ncCCQM5207KDVSxgXWI2ei66juDRGMY0Co57TjjLZMMEIZENWRnhNqkBLQnlTLPXcIaiXX0U4qPsigrNw5QryTKs7WOJAFBcjwUbdYd2bQSrdGUYY7pjuiNSusj3vWOusJBlMyi8o9gz6_8fanvAsbKUjpDGsLYPEEiKFUO81yssmAc8pDyEkSWlLDtPS3SN-_kK5Cjr6UqqhKITgVXBRVs1eZGFKKMP4JBiO5HRq5GxppktwOTdG3L_TGzru2lHit-8-rR2UHyo8 |
CitedBy_id | crossref_primary_10_3390_electronics12112494 crossref_primary_10_3390_telecom5010010 crossref_primary_10_3390_s24020321 crossref_primary_10_1109_ACCESS_2023_3275964 |
Cites_doi | 10.1109/ACCESS.2017.2705561 10.1007/s11235-021-00873-z 10.1007/s11277-021-08482-4 10.1109/MCOM.2016.7402270 10.1109/TIT.2012.2191700 10.1109/TIT.2003.809594 10.1109/TCOMM.2013.020413.110848 10.7717/peerj-cs.682 10.1109/JSTSP.2014.2313020 10.1002/ett.3563 10.1109/ACSSC.2017.8335182 10.1109/TCOMM.2017.2691700 10.1109/TVT.2019.2915823 10.1109/TSP.2015.2463260 10.1017/CBO9780511807213 10.1109/TCOMM.2015.2508809 10.1002/ett.4438 10.1109/JSAC.2013.130205 10.1109/TIT.2004.833345 10.18178/ijfcc.2017.6.1.483 10.1109/JSAC.1987.1146536 10.1002/dac.5011 10.1109/TNSE.2017.2754101 10.1109/TWC.2018.2821667 10.1109/TIT.2013.2269476 10.1109/TWC.2017.2674659 10.1109/TIT.2016.2615627 10.1109/OJCOMS.2020.3010270 10.1007/978-981-16-3637-0_11 10.1017/9781139049276 10.1109/MWC.001.1900157 10.31026/j.eng.2016.01.06 10.1109/JSAC.2013.130206 10.1109/TSP.2014.2324991 10.1109/4234.951380 10.1109/TWC.2006.1576533 10.1109/MSP.2011.2178495 10.1017/CBO9781316799895 10.1109/TCOMM.2013.032713.120408 10.1155/2019/3518691 10.1109/TVT.2015.2475284 10.1109/JSTSP.2014.2327572 10.1109/MWC.001.1900333 10.1038/s41928-019-0355-6 10.1109/COMST.2016.2532458 10.1109/TWC.2011.060711.101155 10.1109/JSAC.2017.2687998 10.1109/9780470545287 10.1109/ACCESS.2020.3000302 10.1109/TCOMM.2017.2676088 10.1109/ACCESS.2021.3124812 10.3390/electronics9122155 10.1109/LSP.2014.2364180 10.1109/TVT.2004.827164 |
ContentType | Journal Article |
Copyright | 2022 Abdul-Hadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Abdul-Hadi et al. 2022 Abdul-Hadi et al. 2022 Abdul-Hadi et al. |
Copyright_xml | – notice: 2022 Abdul-Hadi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Abdul-Hadi et al. – notice: 2022 Abdul-Hadi et al. 2022 Abdul-Hadi et al. |
DBID | AAYXX CITATION 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj-cs.1017 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Text complet a ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) UniTN - DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_e00e0c8fb31b4cdbab3ca67147b42bb7 PMC9299273 10_7717_peerj_cs_1017 |
GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. 7XB 8AL 8FK JQ2 M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c458t-909c8833daaf67891bf879446b5c29781e0058648763797267e2a425826c0a9e3 |
IEDL.DBID | DOA |
ISSN | 2376-5992 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Thu Aug 21 13:57:04 EDT 2025 Fri Sep 05 07:43:11 EDT 2025 Fri Jul 25 22:55:10 EDT 2025 Tue Jul 01 02:28:52 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-909c8833daaf67891bf879446b5c29781e0058648763797267e2a425826c0a9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/e00e0c8fb31b4cdbab3ca67147b42bb7 |
PMID | 35875642 |
PQID | 2678986989 |
PQPubID | 2045934 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e00e0c8fb31b4cdbab3ca67147b42bb7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299273 proquest_miscellaneous_2694416101 proquest_journals_2678986989 crossref_primary_10_7717_peerj_cs_1017 crossref_citationtrail_10_7717_peerj_cs_1017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-21 |
PublicationDateYYYYMMDD | 2022-06-21 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | San Diego |
PublicationPlace_xml | – name: San Diego – name: San Diego, USA |
PublicationTitle | PeerJ. Computer science |
PublicationYear | 2022 |
Publisher | PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ, Inc – name: PeerJ Inc |
References | De Carvalho (10.7717/peerj-cs.1017/ref-24) 2020; 27 Gao (10.7717/peerj-cs.1017/ref-26) 2012 Mostafa (10.7717/peerj-cs.1017/ref-48) 2021; 120 Björnson (10.7717/peerj-cs.1017/ref-15) 2017; Vol. 11 Agiwal (10.7717/peerj-cs.1017/ref-3) 2016; 18 Björnson (10.7717/peerj-cs.1017/ref-14) 2016; 54 Alsabah (10.7717/peerj-cs.1017/ref-8) 2020 Han (10.7717/peerj-cs.1017/ref-29) 2018 Alsabah (10.7717/peerj-cs.1017/ref-10) 2020; 8 Gao (10.7717/peerj-cs.1017/ref-28) 2015; 63 Abdulwahhab (10.7717/peerj-cs.1017/ref-1) 2016; 22 Liu (10.7717/peerj-cs.1017/ref-41) 2017; 35 Albdran (10.7717/peerj-cs.1017/ref-4) 2016 Jakes (10.7717/peerj-cs.1017/ref-36) 1994 Naser (10.7717/peerj-cs.1017/ref-50) 2020; 9 Albdran (10.7717/peerj-cs.1017/ref-5) 2017 Kay (10.7717/peerj-cs.1017/ref-39) 1993 Noh (10.7717/peerj-cs.1017/ref-54) 2014; 8 Wallace (10.7717/peerj-cs.1017/ref-65) 2001 Hochwald (10.7717/peerj-cs.1017/ref-33) 2004; 50 Chen (10.7717/peerj-cs.1017/ref-19) 2020; 27 Xie (10.7717/peerj-cs.1017/ref-67) 2018; 17 Nam (10.7717/peerj-cs.1017/ref-49) 2017; 63 Amadid (10.7717/peerj-cs.1017/ref-13) 2022; 79 Chowdhury (10.7717/peerj-cs.1017/ref-21) 2020; 1 Marzetta (10.7717/peerj-cs.1017/ref-45) 2016 Dang (10.7717/peerj-cs.1017/ref-23) 2020; 3 Hassibi (10.7717/peerj-cs.1017/ref-31) 2003; 49 Loyka (10.7717/peerj-cs.1017/ref-42) 2001; 5 Mi (10.7717/peerj-cs.1017/ref-46) 2017; 65 Adhikary (10.7717/peerj-cs.1017/ref-2) 2013; 59 So (10.7717/peerj-cs.1017/ref-60) 2015; 22 Petersen (10.7717/peerj-cs.1017/ref-56) 2008; 7 Ngo (10.7717/peerj-cs.1017/ref-52) 2013; 61 Choi (10.7717/peerj-cs.1017/ref-20) 2014; 8 Marshall (10.7717/peerj-cs.1017/ref-44) 1979; Vol. 143 IMT (10.7717/peerj-cs.1017/ref-35) 2015 Han (10.7717/peerj-cs.1017/ref-30) 2017; 65 Shepard (10.7717/peerj-cs.1017/ref-59) 2012 Wagner (10.7717/peerj-cs.1017/ref-64) 2012; 58 Ngo (10.7717/peerj-cs.1017/ref-51) 2011 Zuo (10.7717/peerj-cs.1017/ref-71) 2016; 65 Jose (10.7717/peerj-cs.1017/ref-37) 2011; 10 Hoydis (10.7717/peerj-cs.1017/ref-34) 2013; 31 Björnson (10.7717/peerj-cs.1017/ref-16) 2013 Heath Jr (10.7717/peerj-cs.1017/ref-32) 2018 Kaltenberger (10.7717/peerj-cs.1017/ref-38) 2010 Rao (10.7717/peerj-cs.1017/ref-57) 2014; 62 Amadid (10.7717/peerj-cs.1017/ref-11) 2022 Chen (10.7717/peerj-cs.1017/ref-18) 2017 Fakhri (10.7717/peerj-cs.1017/ref-25) 2017; 5 Molisch (10.7717/peerj-cs.1017/ref-47) 2012; Vol. 34 Alsabah (10.7717/peerj-cs.1017/ref-9) 2021; 9 Li (10.7717/peerj-cs.1017/ref-40) 2019; 68 Payami (10.7717/peerj-cs.1017/ref-55) 2012 Yang (10.7717/peerj-cs.1017/ref-68) 2013; 31 Weichselberger (10.7717/peerj-cs.1017/ref-66) 2006; 5 Amadid (10.7717/peerj-cs.1017/ref-12) 2022; 35 Vieira (10.7717/peerj-cs.1017/ref-63) 2017; 16 Zheng (10.7717/peerj-cs.1017/ref-70) 2019; 2019 Ngo (10.7717/peerj-cs.1017/ref-53) 2013; 61 Yu (10.7717/peerj-cs.1017/ref-69) 2004; 53 Gao (10.7717/peerj-cs.1017/ref-27) 2016; 64 Croisfelt Rodrigues (10.7717/peerj-cs.1017/ref-22) 2019; 30 Ali (10.7717/peerj-cs.1017/ref-6) 2021; 7 Aljiznawi (10.7717/peerj-cs.1017/ref-7) 2017; 6 Boulouird (10.7717/peerj-cs.1017/ref-17) 2022; vol. 237 Malkowsky (10.7717/peerj-cs.1017/ref-43) 2017; 5 Rusek (10.7717/peerj-cs.1017/ref-58) 2013; 30 Stein (10.7717/peerj-cs.1017/ref-61) 1987; 5 Tse (10.7717/peerj-cs.1017/ref-62) 2005 |
References_xml | – volume: 5 start-page: 9073 year: 2017 ident: 10.7717/peerj-cs.1017/ref-43 article-title: The worlds first real-time testbed for massive MIMO: design, implementation, and validation publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2705561 – start-page: 1 year: 2017 ident: 10.7717/peerj-cs.1017/ref-5 article-title: Spectral and energy efficiency for massive MIMO systems using exponential correlation model – volume: Vol. 34 volume-title: Wireless communications year: 2012 ident: 10.7717/peerj-cs.1017/ref-47 – volume: 79 start-page: 323 issue: 3 year: 2022 ident: 10.7717/peerj-cs.1017/ref-13 article-title: Channel estimation in massive MIMO-based wireless network using spatially correlated channel-based three-dimensional array publication-title: Telecommunication Systems doi: 10.1007/s11235-021-00873-z – volume: 120 start-page: 633 issue: 1 year: 2021 ident: 10.7717/peerj-cs.1017/ref-48 article-title: Complex regularized zero forcing precoding for massive MIMO systems publication-title: Wireless Personal Communications doi: 10.1007/s11277-021-08482-4 – volume: 54 start-page: 114 issue: 2 year: 2016 ident: 10.7717/peerj-cs.1017/ref-14 article-title: Massive MIMO: ten myths and one critical question publication-title: IEEE Communications Magazine doi: 10.1109/MCOM.2016.7402270 – start-page: 295 year: 2012 ident: 10.7717/peerj-cs.1017/ref-26 article-title: Measured propagation characteristics for very-large MIMO at 2.6 GHz – start-page: 80 year: 2016 ident: 10.7717/peerj-cs.1017/ref-4 article-title: Effect of exponential correlation model on channel estimation for massive MIMO – volume-title: Fundamentals of statistical signal processing: estimation theory year: 1993 ident: 10.7717/peerj-cs.1017/ref-39 – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.1017/ref-29 article-title: Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications – volume: 58 start-page: 4509 issue: 7 year: 2012 ident: 10.7717/peerj-cs.1017/ref-64 article-title: Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2012.2191700 – volume: 49 start-page: 951 issue: 4 year: 2003 ident: 10.7717/peerj-cs.1017/ref-31 article-title: How much training is needed in multiple-antenna wireless links? publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2003.809594 – volume: 61 start-page: 1436 issue: 4 year: 2013 ident: 10.7717/peerj-cs.1017/ref-52 article-title: Energy and spectral efficiency of very large multiuser MIMO systems publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2013.020413.110848 – volume: 7 start-page: e682 year: 2021 ident: 10.7717/peerj-cs.1017/ref-6 article-title: Channel state information estimation for 5G wireless communication systems: recurrent neural networks approach publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.682 – volume: 8 start-page: 802 issue: 5 year: 2014 ident: 10.7717/peerj-cs.1017/ref-20 article-title: Downlink training techniques for FDD massive MIMO systems: open-loop and closed-loop training with memory publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2014.2313020 – volume: 30 start-page: e3563 issue: 5 year: 2019 ident: 10.7717/peerj-cs.1017/ref-22 article-title: Exponential spatial correlation with large-scale fading variations in massive MIMO channel estimation publication-title: Transactions on Emerging Telecommunications Technologies doi: 10.1002/ett.3563 – year: 2017 ident: 10.7717/peerj-cs.1017/ref-18 article-title: Scaling up distributed massive MIMO: why and how doi: 10.1109/ACSSC.2017.8335182 – volume: 65 start-page: 2852 issue: 7 year: 2017 ident: 10.7717/peerj-cs.1017/ref-30 article-title: Compressed sensing-aided downlink channel training for FDD massive MIMO systems publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2017.2691700 – start-page: 1 year: 2013 ident: 10.7717/peerj-cs.1017/ref-16 article-title: Hardware impairments in large-scale MISO systems: energy efficiency, estimation, and capacity limits – volume: 68 start-page: 6670 issue: 7 year: 2019 ident: 10.7717/peerj-cs.1017/ref-40 article-title: On hybrid pilot for channel estimation in massive MIMO uplink publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2019.2915823 – volume: 63 start-page: 6169 issue: 23 year: 2015 ident: 10.7717/peerj-cs.1017/ref-28 article-title: Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2015.2463260 – volume-title: Fundamentals of wireless communication year: 2005 ident: 10.7717/peerj-cs.1017/ref-62 doi: 10.1017/CBO9780511807213 – volume: 64 start-page: 601 issue: 2 year: 2016 ident: 10.7717/peerj-cs.1017/ref-27 article-title: Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2015.2508809 – start-page: e4438 year: 2022 ident: 10.7717/peerj-cs.1017/ref-11 article-title: On channel estimation and spectral efficiency for cell-free massive MIMO with multi-antenna access points considering spatially correlated channels publication-title: Transactions on Emerging Telecommunications Technologies doi: 10.1002/ett.4438 – volume: 31 start-page: 160 issue: 2 year: 2013 ident: 10.7717/peerj-cs.1017/ref-34 article-title: Massive MIMO in the UL/DL of cellular networks: how many antennas do we need? publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2013.130205 – start-page: 2038 year: 2001 ident: 10.7717/peerj-cs.1017/ref-65 article-title: Measured characteristics of the MIMO wireless channel – volume: 50 start-page: 1893 issue: 9 year: 2004 ident: 10.7717/peerj-cs.1017/ref-33 article-title: Multiple-antenna channel hardening and its implications for rate feedback and scheduling publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2004.833345 – volume: Vol. 143 volume-title: Inequalities: theory of majorization and its applications year: 1979 ident: 10.7717/peerj-cs.1017/ref-44 – volume: 6 start-page: 27 issue: 1 year: 2017 ident: 10.7717/peerj-cs.1017/ref-7 article-title: Quality of service (qos) for 5g networks publication-title: International Journal of Future Computer and Communication doi: 10.18178/ijfcc.2017.6.1.483 – volume: 5 start-page: 68 issue: 2 year: 1987 ident: 10.7717/peerj-cs.1017/ref-61 article-title: Fading channel issues in system engineering publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.1987.1146536 – volume: 35 start-page: e5011 issue: 1 year: 2022 ident: 10.7717/peerj-cs.1017/ref-12 article-title: On channel estimation in cell-free massive MIMO for spatially correlated channels with correlated shadowing under Rician fading publication-title: International Journal of Communication Systems doi: 10.1002/dac.5011 – start-page: 2370 year: 2015 ident: 10.7717/peerj-cs.1017/ref-35 article-title: IMT traffic estimates for the years 2020 to 2030 publication-title: Report ITU – volume: 5 start-page: 261 issue: 4 year: 2017 ident: 10.7717/peerj-cs.1017/ref-25 article-title: A resource allocation mechanism for cloud radio access network based on cell differentiation and integration concept publication-title: IEEE Transactions on Network Science and Engineering doi: 10.1109/TNSE.2017.2754101 – volume: 17 start-page: 4206 issue: 6 year: 2018 ident: 10.7717/peerj-cs.1017/ref-67 article-title: Channel estimation for TDD/FDD massive MIMO systems with channel covariance computing publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2018.2821667 – volume: 59 start-page: 6441 issue: 10 year: 2013 ident: 10.7717/peerj-cs.1017/ref-2 article-title: Joint spatial division and multiplexing: the large-scale array regime publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2013.2269476 – volume: 16 start-page: 3042 issue: 5 year: 2017 ident: 10.7717/peerj-cs.1017/ref-63 article-title: Reciprocity calibration for massive MIMO: proposal, modeling, and validation publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2017.2674659 – volume: 63 start-page: 336 issue: 1 year: 2017 ident: 10.7717/peerj-cs.1017/ref-49 article-title: On the role of transmit correlation diversity in multiuser MIMO systems publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2016.2615627 – start-page: 3464 year: 2011 ident: 10.7717/peerj-cs.1017/ref-51 article-title: Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models – volume: 1 start-page: 957 year: 2020 ident: 10.7717/peerj-cs.1017/ref-21 article-title: 6G wireless communication systems: applications, requirements, technologies, challenges, and research directions publication-title: IEEE Open Journal of the Communications Society doi: 10.1109/OJCOMS.2020.3010270 – start-page: 53 year: 2012 ident: 10.7717/peerj-cs.1017/ref-59 article-title: Argos: practical many-antenna base stations – volume: vol. 237 volume-title: Networking, intelligent systems and security. Smart innovation, systems and technologies year: 2022 ident: 10.7717/peerj-cs.1017/ref-17 article-title: Channel estimation in massive mimo systems for spatially correlated channels with pilot contamination doi: 10.1007/978-981-16-3637-0_11 – volume-title: Foundations of MIMO communication year: 2018 ident: 10.7717/peerj-cs.1017/ref-32 doi: 10.1017/9781139049276 – start-page: 1 volume-title: Future network & mobile summit, Florence, Italy year: 2010 ident: 10.7717/peerj-cs.1017/ref-38 article-title: Relative channel reciprocity calibration in MIMO/TDD systems – volume: 27 start-page: 74 issue: 4 year: 2020 ident: 10.7717/peerj-cs.1017/ref-24 article-title: Non-stationarities in extra-large-scale massive MIMO publication-title: IEEE Wireless Communications doi: 10.1109/MWC.001.1900157 – volume: 22 start-page: 83 issue: 1 year: 2016 ident: 10.7717/peerj-cs.1017/ref-1 article-title: Mobile position estimation using artificial neural network in CDMA cellular systems publication-title: Journal of Engineering doi: 10.31026/j.eng.2016.01.06 – volume: 31 start-page: 172 issue: 2 year: 2013 ident: 10.7717/peerj-cs.1017/ref-68 article-title: Performance of conjugate and zero-forcing beamforming in large-scale antenna systems publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2013.130206 – year: 2020 ident: 10.7717/peerj-cs.1017/ref-8 article-title: Downlink training sequence design based on achievable sum rate maximisation in FDD massive MIMO systems publication-title: PhD thesis – start-page: 433 year: 2012 ident: 10.7717/peerj-cs.1017/ref-55 article-title: Channel measurements and analysis for very large array systems at 2.6 GHz – volume: 62 start-page: 3261 issue: 12 year: 2014 ident: 10.7717/peerj-cs.1017/ref-57 article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2014.2324991 – volume: 5 start-page: 369 issue: 9 year: 2001 ident: 10.7717/peerj-cs.1017/ref-42 article-title: Channel capacity of MIMO architecture using the exponential correlation matrix publication-title: IEEE Communications Letters doi: 10.1109/4234.951380 – volume: 5 start-page: 90 issue: 1 year: 2006 ident: 10.7717/peerj-cs.1017/ref-66 article-title: A stochastic MIMO channel model with joint correlation of both link ends publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2006.1576533 – volume: 30 start-page: 40 issue: 1 year: 2013 ident: 10.7717/peerj-cs.1017/ref-58 article-title: Scaling Up MIMO: opportunities and challenges with very large arrays publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2011.2178495 – volume-title: Fundamentals of massive MIMO year: 2016 ident: 10.7717/peerj-cs.1017/ref-45 doi: 10.1017/CBO9781316799895 – volume: 61 start-page: 2350 issue: 6 year: 2013 ident: 10.7717/peerj-cs.1017/ref-53 article-title: The multicell multiuser MIMO uplink with very large antenna arrays and a finite-dimensional channel publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2013.032713.120408 – volume: 2019 start-page: 3518691 year: 2019 ident: 10.7717/peerj-cs.1017/ref-70 article-title: Zero-forcing precoding in the measured massive MIMO downlink: how many antennas are needed? publication-title: International Journal of Antennas and Propagation doi: 10.1155/2019/3518691 – volume: 65 start-page: 6301 issue: 8 year: 2016 ident: 10.7717/peerj-cs.1017/ref-71 article-title: Multicell multiuser massive MIMO transmission with downlink training and pilot contamination precoding publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2015.2475284 – volume: 8 start-page: 787 issue: 5 year: 2014 ident: 10.7717/peerj-cs.1017/ref-54 article-title: Pilot beam pattern design for channel estimation in massive MIMO systems publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2014.2327572 – volume: 27 start-page: 218 issue: 2 year: 2020 ident: 10.7717/peerj-cs.1017/ref-19 article-title: Vision, requirements, and technology trend of 6G: how to tackle the challenges of system coverage, capacity, user data-rate and movement speed publication-title: IEEE Wireless Communications doi: 10.1109/MWC.001.1900333 – volume: 3 start-page: 20 issue: 1 year: 2020 ident: 10.7717/peerj-cs.1017/ref-23 article-title: What should 6G be? publication-title: Nature Electronics doi: 10.1038/s41928-019-0355-6 – volume: Vol. 11 start-page: 154 volume-title: Foundations and trends® in signal processing year: 2017 ident: 10.7717/peerj-cs.1017/ref-15 article-title: Massive MIMO networks: spectral, energy, and hardware efficiency – volume: 18 start-page: 1617 issue: 3 year: 2016 ident: 10.7717/peerj-cs.1017/ref-3 article-title: Next generation 5G wireless networks: a comprehensive survey publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2016.2532458 – volume: 10 start-page: 2640 issue: 8 year: 2011 ident: 10.7717/peerj-cs.1017/ref-37 article-title: Pilot Contamination and precoding in multi-cell TDD systems publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2011.060711.101155 – volume: 35 start-page: 1222 issue: 6 year: 2017 ident: 10.7717/peerj-cs.1017/ref-41 article-title: 3-D-MIMO with massive antennas paves the way to 5G enhanced mobile broadband: from system design to field trials publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2017.2687998 – volume-title: Microwave mobile communications year: 1994 ident: 10.7717/peerj-cs.1017/ref-36 doi: 10.1109/9780470545287 – volume: 8 start-page: 108731 year: 2020 ident: 10.7717/peerj-cs.1017/ref-10 article-title: Non-iterative downlink training sequence design based on sum rate maximization in FDD massive MIMO systems publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3000302 – volume: 65 start-page: 3734 issue: 9 year: 2017 ident: 10.7717/peerj-cs.1017/ref-46 article-title: Massive MIMO performance with imperfect channel reciprocity and channel estimation error publication-title: IEEE Transactions on Communications doi: 10.1109/TCOMM.2017.2676088 – volume: 9 start-page: 148191 year: 2021 ident: 10.7717/peerj-cs.1017/ref-9 article-title: 6G wireless communications networks: a comprehensive survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3124812 – volume: 9 start-page: 2155 issue: 12 year: 2020 ident: 10.7717/peerj-cs.1017/ref-50 article-title: Downlink training design for fdd massive MIMO systems in the presence of colored noise publication-title: Electronics doi: 10.3390/electronics9122155 – volume: 22 start-page: 549 issue: 5 year: 2015 ident: 10.7717/peerj-cs.1017/ref-60 article-title: Pilot signal design for massive MIMO systems: a received signal-to-noise-ratio-based approach publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2014.2364180 – volume: 7 start-page: 1704 issue: 15 year: 2008 ident: 10.7717/peerj-cs.1017/ref-56 article-title: The matrix cookbook publication-title: University of Denmark – volume: 53 start-page: 655 issue: 3 year: 2004 ident: 10.7717/peerj-cs.1017/ref-69 article-title: Modeling of wide-band MIMO radio channels based on NLoS indoor measurements publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2004.827164 |
SSID | ssj0001511119 |
Score | 2.2212512 |
Snippet | Massive multiple-input multiple-output (massive-MIMO) is considered as the key technology to meet the huge demands of data rates in the future wireless... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e1017 |
SubjectTerms | Algorithms Antennas Communications networks Computer Networks and Communications Correlation analysis Correlation model Eigenvectors Frequency division duplexing Frequency-division-duplex Hardening Massive-MIMO MIMO communication Network Science and Online Social Networks Performance evaluation Training Wireless communications |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKuXABSkEstJWREGoloubhOPGpainbgrSFA5V6i_xKHyrJkmQl-Av8amYcZ0MOcHRsJY7n4bE9_j5C3jLBtOGJQkPisEDhZSDiNA_K2Jg0wboST3QXF_z8kn2-Sq_8hlvr0yoHn-gctak17pEfxuBVRY50h0fLHwGyRuHpqqfQeEAeRjDToJ7n87NxjyVFhyB6aM0MFi6HS2ubu0C3Dl5oMhU5xP5JmDlNkvxr1pk_JY99uEiPe_lukQ1bPSNPBioG6i1zm_z-Ol4AoCOCN61LWjZ9tvQvilevcHOMmtXy3v6k-_PT0wP6HcJncHl0SC2ktxW8fCzWqw7L-4tPiy8HFO-cNXSgVemoRnaPPp-OOlad9jm5nH_89uE88DQLgWZp3gUiFBoph42UJQ5ypMocrJRxleoYIbEscg9yhth1mchAEDaWYOqwMNGhFDZ5QTarurIvCbWJSlyUqTLFZJhJzkPNjM6F4Qaezsj7YcQL7THIkQrjvoC1CAqocAIqdIupZ9mMvFs3X_bgG_9qeILiWzdCzGz3oG6uC2-CBfyGDXVeqiRSoIRKqkRLnkUM-horBS_ZGYRfeENui1HtZuTNuhpMEM9VZGXrFbaB0YLIOYxmJJsozaRD05rq9saBeUN4KiCEfPX_j78mj2K8dxHyII52yGbXrOwuREOd2nMq_wdughBT priority: 102 providerName: ProQuest |
Title | Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models |
URI | https://www.proquest.com/docview/2678986989 https://www.proquest.com/docview/2694416101 https://pubmed.ncbi.nlm.nih.gov/PMC9299273 https://doaj.org/article/e00e0c8fb31b4cdbab3ca67147b42bb7 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BuXDhjQiUlZEQaiWiOo5jx0dKuxSkLRWiUm9R7DiiqGRXu1kJ_gK_mhkn2d0cEBeOfiRyPB57Jp75PoDX0khXqdSSIil0UFQdG5HlcS2qKkupraYb3dm5OruUn66yqx2qL4oJ6-CBu4k78px77vLaponFR21pU1cqnUhtpbA25JFzw3ecqS4_mLYC04FqanRZjhbeL7_HbhWAhUaHUMDqHxmY4_DInfNm-gDu9YYie9cN8CHc8s0juD-QMLBeJx_D74tt6D_bYnezec3qZRcn_YtR0hX9FmPVenHjf7KD6cnJIfuBhjNudmwIKmTXDb58W5yvWyofzD7OPh8yyjZbsoFQpWWOeD26SDoW-HRWT-Byevr1_VncEyzETmZ5GxtuHJENV2VZ46FlElvnqJ9S2cwJAsPyxDqoJKHWaaOF0l6UqOTokjheGp8-hb1m3vhnwHxq02BfWpRLyXWpFHeycrmpVIW1EbwdZrxwPfo4kWDcFOiFkICKIKDCrSjoTEfwZtN90cFu_K3jMYlv04nQskMFrqGiX0PFv9ZQBPuD8ItehVeFoBnJiV8zglebZlQ-ulEpGz9fUx-cLbSZeRKBHi2a0YDGLc31twDjjYapQePx-f_4ghdwV1BeBlexSPZhr12u_Uu0llo7gdv59MME7hyfnl98mQQ1-QPmjRx7 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuvBELBYwEqJWImofjxAeEKNvVLu0uFWql3tLYcaCoJMsmK-hf4MfwG5nJY0MOcOsxseUknkc-2zPzAbzgkutEeIoMSeACRaSWdP3QSt0k8T1qS-lEdzYXkxP-4dQ_3YDfbS4MhVW2PrFy1EmuaY9810WvKkOiO3y7-G4RaxSdrrYUGrVaHJjLH7hkK95MRyjfl6473j9-P7EaVgFLcz8sLWlLTQy7SRynNKaj0hCVkgvla5cqQBmi2hOcSrUFMsDnGjdGzUYcru1YGg_HvQabnDJaB7C5tz8_-tTt6vjkgmRdzDPApdLuwpjlV0sXVUGj3s-v4gjoAdt-WOZf_7nxbbjZAFT2rtaoO7BhsrtwqyV_YI0vuAe_jrqUA9bVDGd5ytJlHZ99ySjZi7bjWLJaXJifbHs8Gu2wbwjY0cmyNpiRnWc4eHeZr0q63p5NZx93GGW5LVlL5FIyTXwidQQfq3h8ivtwciUieACDLM_MQ2DGU16Fa1WgeGwHsRC25okOZSISvDuE1-2MR7qpek7kGxcRrn5IQFEloEgXFOwWDOHVuvuiLvfxr457JL51J6rSXd3Il5-jxugj_Axj6zBVnqNQ7VWsPB2LwOH4rq5SOMhWK_yocR1F1Cn6EJ6vm9Ho6SQnzky-oj44W4jVbWcIQU9pei_Ub8nOv1TlwxEQSwStj_7_8GdwfXI8O4wOp_ODx3DDpawPW1iuswWDcrkyTxCLleppYwAMzq7a5v4AmNZLfA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuvBFbChgJUCsRbeIkTnxACFhCl7KlByr1FmLHoUUlWZKsoH-Bn8SvYyaPDTnArcfEluNkHvlsz8wH8MSTnk6Fq8iQBC5QRGZJ7odWxtPUd6ktoxPdxYHYO_LeH_vHG_C7z4WhsMreJzaOOi007ZFPOXpVGRLd4TTrwiIOZ9HL5XeLGKTopLWn02hVZN-c_8DlW_ViPkNZP-U8evvpzZ7VMQxY2vPD2pK21MS2myZJRuM7KgtRQT2hfM2pGpQh2j3hUdm2QAY4B8MT1HLE5NpOpHFx3EtwOaBGylKP3g37Oz45I9mW9Qxw0TRdGlN-tXTVlDYa_QYbtoARxB0HaP71x4tuwLUOqrJXrW7dhA2T34LrPQ0E67zCbfh1OCQfsKF6OCsylpVtpPY5o7Qv2phj6Wp5Zn6ynWg222XfELqju2V9WCM7zXHw4bJY1XS9s5gvPu4yyncrWU_pUjNNzCJtLB9rGH2qO3B0IQK4C5t5kZt7wIyr3AbhqkB5iR0kQtjaS3UoU5Hi3Qk87794rLv650TDcRbjOogEFDcCinVFYW_BBJ6tuy_bwh__6viaxLfuRPW6mxtF-SXuzD_G1zC2DjPlOgoNQCXK1YkIHA_nypXCQbZ74cedE6niQeUn8HjdjOZPZzpJbooV9cGvhajddiYQjJRmNKFxS3560hQSR2gsEb5u_f_hj-AKWlr8YX6wfx-uckr_sIXFnW3YrMuVeYCgrFYPG-1n8Pmize0PIshOTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+frequency+division+duplex+%28FDD%29+massive+multiple+input+multiple+output+%28MIMO%29+under+different+correlation+models&rft.jtitle=PeerJ.+Computer+science&rft.au=Abdul-Hadi%2C+Alaa+M.&rft.au=Abdulrazzaq+Naser%2C+Marwah&rft.au=Alsabah%2C+Muntadher&rft.au=Abdulhussain%2C+Sadiq+H.&rft.date=2022-06-21&rft.pub=PeerJ+Inc&rft.eissn=2376-5992&rft.volume=8&rft_id=info:doi/10.7717%2Fpeerj-cs.1017&rft_id=info%3Apmid%2F35875642&rft.externalDocID=PMC9299273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |