Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier

This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection...

Full description

Saved in:
Bibliographic Details
Published inMechanism and machine theory Vol. 46; no. 2; pp. 183 - 200
Main Authors Xu, Qingsong, Li, Yangmin
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection than the ordinary bridge-type amplifier. An analytical model for amplification ratio calculation is established based on the Euler–Bernoulli beam theory because other simple theoretical approaches cannot predict the ratio properly. The reason why those approaches fail is discovered by resorting to the elastic model. The input stiffness and resonance frequency of the amplifier are also analytically modeled and verified by finite-element analysis (FEA). The derived models are utilized to optimize the amplifier structure through particle swarm optimization (PSO) to obtain a large resonance frequency subject to other performance constraints. The performances of the fabricated amplifier with optimized parameters are confirmed by both FEA simulation and experimental studies. Because an output displacement over 1 mm is achieved by the designed amplifier, it is employable to develop micro/nanopositioning stages with a cubic millimeter sized workspace. [Display omitted] ►The analytical models of a compound bridge-type displacement amplifier are established. ►It is found that the compliances of connecting arms of the amplifier have a great influence on the amplification ratio. ►A prototype of the amplifier is fabricated by the wire-EDM process. ►The relationship between the output and input displacements of the amplifier is almost linear.
AbstractList This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection than the ordinary bridge-type amplifier. An analytical model for amplification ratio calculation is established based on the Euler–Bernoulli beam theory because other simple theoretical approaches cannot predict the ratio properly. The reason why those approaches fail is discovered by resorting to the elastic model. The input stiffness and resonance frequency of the amplifier are also analytically modeled and verified by finite-element analysis (FEA). The derived models are utilized to optimize the amplifier structure through particle swarm optimization (PSO) to obtain a large resonance frequency subject to other performance constraints. The performances of the fabricated amplifier with optimized parameters are confirmed by both FEA simulation and experimental studies. Because an output displacement over 1 mm is achieved by the designed amplifier, it is employable to develop micro/nanopositioning stages with a cubic millimeter sized workspace. [Display omitted] ►The analytical models of a compound bridge-type displacement amplifier are established. ►It is found that the compliances of connecting arms of the amplifier have a great influence on the amplification ratio. ►A prototype of the amplifier is fabricated by the wire-EDM process. ►The relationship between the output and input displacements of the amplifier is almost linear.
This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection than the ordinary bridge-type amplifier. An analytical model for amplification ratio calculation is established based on the Euler-Bernoulli beam theory because other simple theoretical approaches cannot predict the ratio properly. The reason why those approaches fail is discovered by resorting to the elastic model. The input stiffness and resonance frequency of the amplifier are also analytically modeled and verified by finite-element analysis (FEA). The derived models are utilized to optimize the amplifier structure through particle swarm optimization (PSO) to obtain a large resonance frequency subject to other performance constraints. The performances of the fabricated amplifier with optimized parameters are confirmed by both FEA simulation and experimental studies. Because an output displacement over 1 mm is achieved by the designed amplifier, it is employable to develop micro/nanopositioning stages with a cubic millimeter sized workspace.
Author Xu, Qingsong
Li, Yangmin
Author_xml – sequence: 1
  givenname: Qingsong
  surname: Xu
  fullname: Xu, Qingsong
– sequence: 2
  givenname: Yangmin
  surname: Li
  fullname: Li, Yangmin
  email: ymli@umac.mo
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23651891$$DView record in Pascal Francis
BookMark eNqNUcFu1DAQtVCR2Bb-IQcQF7LYsZPYEpdSUVqpEheQuFmz9qTrlWMH21tp-Xq83XKAU0-jefPmjf3eOTkLMSAhbxldM8qGj7v1jGY7g9mWLcZ0WHe0jqhaUzq-ICsmR95ypdQZWVGqRMuY-PmKnOe8o5XRC74i28sA_lCcAd_M0aJ34f5DE5fiZvcbiouhgWCbgrnUSROnBhoT5yXuK7pJzt5jWw4LPoLeQSiNdXnxYHDG2sARnRym1-TlBD7jm6d6QX5cf_l-ddPefft6e3V51xrRy9JKy6UxQlHJqYLOdBKBccVgI5mdzDBAJ0bBeuQ9mI0dJZ3EgKMasONSqA2_IO9PukuKv_b12Xp22aD3EDDus5Z9P3aM90NlvntiQq7fnxIE47JekpshHXTHh55JxSrv84lnUsw54aSNK4_WlATOa0b1MQ290_-moY9paKp09bqKfPpP5O-dZ65fn9axWvdQ7dTZOAwGrUtoirbRPU_oD1HmtLU
CODEN MHMTAS
CitedBy_id crossref_primary_10_1063_5_0162246
crossref_primary_10_1109_TMECH_2017_2693996
crossref_primary_10_3390_machines11040450
crossref_primary_10_1007_s12541_015_0292_x
crossref_primary_10_1080_00150193_2019_1611099
crossref_primary_10_1016_j_precisioneng_2024_01_006
crossref_primary_10_1088_1742_6596_1303_1_012063
crossref_primary_10_1007_s00542_015_2485_8
crossref_primary_10_1016_j_mechmachtheory_2017_07_011
crossref_primary_10_1109_ACCESS_2019_2948085
crossref_primary_10_3233_JAE_162153
crossref_primary_10_1177_0954406214535925
crossref_primary_10_1109_JSEN_2012_2218282
crossref_primary_10_1016_j_cma_2022_115161
crossref_primary_10_1115_1_4065521
crossref_primary_10_3390_a8030424
crossref_primary_10_3390_mi12060686
crossref_primary_10_1016_j_precisioneng_2012_07_010
crossref_primary_10_3390_act7010005
crossref_primary_10_1016_j_mechmachtheory_2022_104965
crossref_primary_10_3390_mi15010052
crossref_primary_10_4028_www_scientific_net_AMM_618_593
crossref_primary_10_1088_1361_665X_aad5ae
crossref_primary_10_1007_s12541_022_00619_0
crossref_primary_10_1016_j_mechmachtheory_2017_11_002
crossref_primary_10_1016_j_precisioneng_2024_11_003
crossref_primary_10_1007_s00542_018_4078_9
crossref_primary_10_1139_tcsme_2017_0149
crossref_primary_10_1016_j_sna_2021_113002
crossref_primary_10_1007_s00542_016_2854_y
crossref_primary_10_1109_TASE_2018_2875711
crossref_primary_10_1177_0954406218802945
crossref_primary_10_1016_j_sna_2017_12_030
crossref_primary_10_1016_j_mechmachtheory_2021_104566
crossref_primary_10_3390_mi14122229
crossref_primary_10_1007_s11081_019_09469_8
crossref_primary_10_1016_j_sna_2019_06_043
crossref_primary_10_1109_TMECH_2017_2698139
crossref_primary_10_1109_TASE_2012_2198918
crossref_primary_10_1016_j_mechmachtheory_2013_07_016
crossref_primary_10_1115_1_4065257
crossref_primary_10_1051_meca_2021003
crossref_primary_10_1063_5_0101420
crossref_primary_10_1155_2019_5461725
crossref_primary_10_3390_s19163455
crossref_primary_10_3390_mi9110578
crossref_primary_10_1007_s00542_019_04313_6
crossref_primary_10_1155_2021_5599624
crossref_primary_10_1063_1_4932963
crossref_primary_10_1080_15376494_2023_2243674
crossref_primary_10_1109_TASE_2017_2733553
crossref_primary_10_1109_TIE_2017_2677318
crossref_primary_10_1109_TIE_2020_3032921
crossref_primary_10_3390_act11120368
crossref_primary_10_1016_j_mechmachtheory_2021_104658
crossref_primary_10_1016_j_sna_2020_112066
crossref_primary_10_1063_5_0047420
crossref_primary_10_1016_j_mechmachtheory_2014_12_013
crossref_primary_10_1063_1_4803187
crossref_primary_10_1088_1361_665X_ad8c06
crossref_primary_10_1016_j_sna_2016_08_011
crossref_primary_10_1016_j_measurement_2014_01_020
crossref_primary_10_1007_s12541_015_0228_5
crossref_primary_10_1088_1757_899X_1018_1_012002
crossref_primary_10_1016_j_mechmachtheory_2018_10_005
crossref_primary_10_1007_s12541_018_0158_0
crossref_primary_10_1016_j_mechmachtheory_2019_01_007
crossref_primary_10_1016_j_mechmachtheory_2024_105799
crossref_primary_10_1007_s12541_015_0289_5
crossref_primary_10_1016_j_precisioneng_2017_10_002
crossref_primary_10_1155_2022_2956191
crossref_primary_10_1016_j_sna_2017_09_010
crossref_primary_10_1109_TIE_2019_2935933
crossref_primary_10_3233_JIFS_169894
crossref_primary_10_1115_1_4053113
crossref_primary_10_32604_cmc_2022_029484
crossref_primary_10_1088_1742_6596_1303_1_012053
crossref_primary_10_1088_1361_6439_ad5a19
crossref_primary_10_3390_mi12111304
crossref_primary_10_1016_j_ymssp_2017_07_010
crossref_primary_10_3390_machines10090792
crossref_primary_10_1007_s00366_020_00963_7
crossref_primary_10_1007_s00542_018_4202_x
crossref_primary_10_1007_s10033_017_0138_9
crossref_primary_10_1016_j_mechmachtheory_2022_105083
crossref_primary_10_1016_j_ymssp_2019_106569
crossref_primary_10_1016_j_mechmachtheory_2022_105085
crossref_primary_10_1016_j_precisioneng_2018_04_017
crossref_primary_10_1088_1742_6596_2601_1_012021
crossref_primary_10_1016_j_precisioneng_2020_04_001
crossref_primary_10_3390_s20236826
crossref_primary_10_1146_annurev_control_053018_023755
crossref_primary_10_1177_1045389X16642536
crossref_primary_10_1177_1687814020911470
crossref_primary_10_1007_s00521_021_05717_0
crossref_primary_10_1016_j_mechmachtheory_2023_105308
crossref_primary_10_1088_1361_665X_ad8823
crossref_primary_10_1115_1_4026949
crossref_primary_10_1063_5_0127014
crossref_primary_10_1109_TMECH_2014_2360316
crossref_primary_10_1177_09544062241312880
crossref_primary_10_1115_1_4045679
crossref_primary_10_1115_1_4024979
crossref_primary_10_1088_1361_665X_ab35c5
crossref_primary_10_1088_2631_7990_ad9366
crossref_primary_10_1016_j_ymssp_2015_12_007
crossref_primary_10_1007_s11465_023_0772_0
crossref_primary_10_1016_j_ijmecsci_2025_109957
crossref_primary_10_1109_TIE_2018_2885716
crossref_primary_10_1109_TIE_2013_2257139
crossref_primary_10_1007_s00542_018_4064_2
crossref_primary_10_1016_j_ymssp_2018_10_007
crossref_primary_10_1155_2022_9151146
crossref_primary_10_1016_j_precisioneng_2021_09_001
crossref_primary_10_1063_1_4720410
crossref_primary_10_1088_1361_6439_aca4dc
crossref_primary_10_1088_0964_1726_25_9_095005
crossref_primary_10_1016_j_sna_2016_09_030
crossref_primary_10_3390_mi11111024
crossref_primary_10_1016_j_sna_2016_05_015
crossref_primary_10_1109_JSEN_2018_2820221
crossref_primary_10_3390_mi11111015
crossref_primary_10_1088_0964_1726_25_12_125004
crossref_primary_10_1088_1361_6501_ab1984
crossref_primary_10_1016_j_sna_2019_111808
crossref_primary_10_1016_j_mechmachtheory_2020_104069
crossref_primary_10_1007_s12008_024_02098_1
crossref_primary_10_1088_1361_665X_aa8102
crossref_primary_10_1016_j_precisioneng_2024_04_014
crossref_primary_10_1063_1_4907551
crossref_primary_10_1109_TMECH_2016_2604242
crossref_primary_10_1007_s40997_018_0213_6
crossref_primary_10_1016_j_mechmachtheory_2018_04_008
crossref_primary_10_1016_j_mechmachtheory_2024_105900
crossref_primary_10_3390_s22113987
crossref_primary_10_1088_0964_1726_25_11_115033
crossref_primary_10_3390_mi13101636
crossref_primary_10_1007_s13369_020_04587_3
crossref_primary_10_1016_j_precisioneng_2021_09_014
crossref_primary_10_1016_j_cad_2021_103001
crossref_primary_10_1016_j_sna_2024_115899
crossref_primary_10_1016_j_ymssp_2019_106473
crossref_primary_10_3390_mi14040713
crossref_primary_10_1016_j_mechmachtheory_2016_01_005
crossref_primary_10_1109_TMECH_2021_3052806
crossref_primary_10_1063_1_5091672
crossref_primary_10_3390_s17092154
crossref_primary_10_1088_1748_3190_aba8ab
crossref_primary_10_1016_j_precisioneng_2024_08_012
crossref_primary_10_1016_j_ijsolstr_2024_112847
crossref_primary_10_3390_mi14081502
crossref_primary_10_1088_0964_1726_24_6_065007
crossref_primary_10_1109_TMECH_2019_2942645
crossref_primary_10_1109_ACCESS_2020_3037827
crossref_primary_10_1016_j_mechmachtheory_2016_10_009
crossref_primary_10_1007_s12541_020_00358_0
crossref_primary_10_1016_j_mechmachtheory_2019_04_015
crossref_primary_10_1115_1_4051891
crossref_primary_10_1155_2016_5602142
crossref_primary_10_3390_machines10100848
crossref_primary_10_1016_j_asoc_2020_106486
crossref_primary_10_1007_s12541_024_00990_0
crossref_primary_10_1155_2021_6622655
crossref_primary_10_1088_1361_6439_ab9007
crossref_primary_10_1063_1_4918295
crossref_primary_10_1080_14484846_2020_1786653
crossref_primary_10_1016_j_advengsoft_2024_103790
crossref_primary_10_3390_math11020280
crossref_primary_10_3390_mi13010021
crossref_primary_10_1016_j_ymssp_2022_109470
crossref_primary_10_1109_JMEMS_2020_2965260
crossref_primary_10_1142_S0219455423500815
crossref_primary_10_5194_ms_12_837_2021
crossref_primary_10_1051_matecconf_20167701040
crossref_primary_10_11648_j_ijmea_20241204_11
crossref_primary_10_1016_j_precisioneng_2023_06_012
crossref_primary_10_1088_1742_6596_1303_1_012016
crossref_primary_10_1016_j_mechmachtheory_2023_105347
crossref_primary_10_1088_1361_665X_ad1316
crossref_primary_10_1155_2020_3418904
crossref_primary_10_1080_01691864_2017_1362996
crossref_primary_10_1016_j_physrep_2024_09_001
crossref_primary_10_1016_j_sna_2019_111666
crossref_primary_10_1088_0964_1726_25_7_075022
Cites_doi 10.1109/TRO.2009.2014130
10.1016/j.ymssp.2008.06.007
10.1109/TRO.2005.855989
10.1016/j.precisioneng.2007.05.002
10.1016/j.mechmachtheory.2009.12.006
10.1063/1.1148842
10.1088/0964-1726/18/3/035005
10.1115/1.2885192
10.1016/j.sna.2004.05.027
10.1007/s00170-005-0303-7
10.1016/j.precisioneng.2008.10.003
10.1016/j.compstruc.2003.07.003
10.1088/0964-1726/7/1/012
10.1017/S0263574708004530
10.1088/0964-1726/14/1/022
10.1088/0957-4484/19/31/315501
10.1007/s00542-005-0525-5
10.1115/1.2965600
10.1016/j.ymssp.2008.12.003
10.1177/1045389X05053913
10.1016/j.sna.2005.12.028
10.1016/0141-6359(95)00056-9
10.1016/j.mechmachtheory.2009.06.002
ContentType Journal Article
Copyright 2010 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7TA
7TB
8FD
FR3
H8D
JG9
JQ2
L7M
L~C
L~D
DOI 10.1016/j.mechmachtheory.2010.09.007
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-3999
EndPage 200
ExternalDocumentID 23651891
10_1016_j_mechmachtheory_2010_09_007
S0094114X10001722
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
TN5
TWZ
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7TA
7TB
8FD
FR3
H8D
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c458t-8d38cc4908309a2c28ea1391ab81dfc66a247415e35acbd780f46e796e23849b3
IEDL.DBID .~1
ISSN 0094-114X
IngestDate Thu Jul 10 20:19:44 EDT 2025
Mon Jul 21 09:17:54 EDT 2025
Tue Jul 01 01:48:17 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
Fri Feb 23 02:34:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Flexure hinges
Optimum design
Compliant mechanisms
Finite-element analysis
Mechanical amplifier
Piezoelectric actuation
Compliant mechanism
Positioning
Evolutionary algorithm
Mechanical drive
Bernoulli Euler model
Amplifier
Experimental study
Modeling
Particle swarm optimization
Finite element method
Nanometer scale
Resonance frequency
Piezoelectricity
Actuator
Workspace
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-8d38cc4908309a2c28ea1391ab81dfc66a247415e35acbd780f46e796e23849b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 855721356
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_855721356
pascalfrancis_primary_23651891
crossref_citationtrail_10_1016_j_mechmachtheory_2010_09_007
crossref_primary_10_1016_j_mechmachtheory_2010_09_007
elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2010_09_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-01
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Mechanism and machine theory
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ma, Yao, Wang, Zhong (bb0095) 2006; 132
Chang, Du (bb0055) 1998; 69
Xu, Li (bb0140) 2009; 27
Yue, Gao, Zhao, Ge (bb0020) 2010; 45
Kao, Fung (bb0065) 2009; 23
Li, Xu (bb0050) 2009; 44
Xu, King (bb0025) 1996; 19
Li, Xu (bb0110) 2009; 25
Birge (bb0145) 2003
Mottard, St-Amant (bb0125) 2009; 18
Kang, Wen, Dagalakis, Gorman (bb0035) 2005; 21
Smith (bb0135) 2000
Zubir, Shirinzadeh (bb0045) 2009; 33
Pokines, Garcia (bb0075) 1998; 7
Teo, Chen, Yang, Lin (bb0015) 2008; 19
Ouyang, Zhang, Gupta (bb0040) 2008; 130
Ishii, Thumme, Horie (bb0070) 2005; 11
Kim, Kim, Kwak (bb0085) 2004; 116
Garcia, Nam, Lobontiu (bb0090) 2005; 16
Lobontiu, Garcia (bb0080) 2003; 81
Yong, Lu, Handley (bb0130) 2008; 32
Zhou, Henson (bb0100) 2007; 32
Awtar, Slocum (bb0005) 2005
DiBiasio, Culpepper, Panas, Howell, Magleby (bb0010) 2008; 130
Choi, Lee (bb0105) 2003
(bb0115) 2010
Howell (bb0120) 2001
Tian, Shirinzadeh, Zhang, Alici (bb0060) 2009; 23
Choi, Han, Lee (bb0030) 2005; 14
Garcia (10.1016/j.mechmachtheory.2010.09.007_bb0090) 2005; 16
Birge (10.1016/j.mechmachtheory.2010.09.007_bb0145) 2003
Awtar (10.1016/j.mechmachtheory.2010.09.007_bb0005) 2005
Choi (10.1016/j.mechmachtheory.2010.09.007_bb0030) 2005; 14
Ishii (10.1016/j.mechmachtheory.2010.09.007_bb0070) 2005; 11
Mottard (10.1016/j.mechmachtheory.2010.09.007_bb0125) 2009; 18
Zhou (10.1016/j.mechmachtheory.2010.09.007_bb0100) 2007; 32
Tian (10.1016/j.mechmachtheory.2010.09.007_bb0060) 2009; 23
Pokines (10.1016/j.mechmachtheory.2010.09.007_bb0075) 1998; 7
Lobontiu (10.1016/j.mechmachtheory.2010.09.007_bb0080) 2003; 81
Xu (10.1016/j.mechmachtheory.2010.09.007_bb0140) 2009; 27
Li (10.1016/j.mechmachtheory.2010.09.007_bb0050) 2009; 44
Kao (10.1016/j.mechmachtheory.2010.09.007_bb0065) 2009; 23
Yong (10.1016/j.mechmachtheory.2010.09.007_bb0130) 2008; 32
Kang (10.1016/j.mechmachtheory.2010.09.007_bb0035) 2005; 21
Yue (10.1016/j.mechmachtheory.2010.09.007_bb0020) 2010; 45
Teo (10.1016/j.mechmachtheory.2010.09.007_bb0015) 2008; 19
Kim (10.1016/j.mechmachtheory.2010.09.007_bb0085) 2004; 116
Smith (10.1016/j.mechmachtheory.2010.09.007_bb0135) 2000
Ma (10.1016/j.mechmachtheory.2010.09.007_bb0095) 2006; 132
DiBiasio (10.1016/j.mechmachtheory.2010.09.007_bb0010) 2008; 130
Choi (10.1016/j.mechmachtheory.2010.09.007_bb0105) 2003
Zubir (10.1016/j.mechmachtheory.2010.09.007_bb0045) 2009; 33
Li (10.1016/j.mechmachtheory.2010.09.007_bb0110) 2009; 25
Howell (10.1016/j.mechmachtheory.2010.09.007_bb0120) 2001
Chang (10.1016/j.mechmachtheory.2010.09.007_bb0055) 1998; 69
Xu (10.1016/j.mechmachtheory.2010.09.007_bb0025) 1996; 19
Ouyang (10.1016/j.mechmachtheory.2010.09.007_bb0040) 2008; 130
References_xml – volume: 19
  start-page: 315501
  year: 2008
  ident: bb0015
  article-title: A flexure-based electromagnetic linear actuator
  publication-title: Nanotechnology
– volume: 14
  start-page: 222
  year: 2005
  end-page: 230
  ident: bb0030
  article-title: Fine motion control of a moving stage using a piezoactuator associated with a displacement amplifier
  publication-title: Smart Mater. Struct.
– volume: 44
  start-page: 2127
  year: 2009
  end-page: 2152
  ident: bb0050
  article-title: Modeling and performance evaluation of a flexure-based XY parallel micromanipulator
  publication-title: Mech. Mach. Theory
– volume: 32
  start-page: 63
  year: 2008
  end-page: 70
  ident: bb0130
  article-title: Review of circular flexure hinge design equations and derivation of empirical formulations
  publication-title: Precis. Eng.
– start-page: 53
  year: 2003
  end-page: 56
  ident: bb0105
  article-title: Ultra-precision stage with linear parallel compliant mechanism using 4-PP flexural joints
  publication-title: Proc. of 11th Int. Conf. on Mechatronics Technology, Ulsan, Korea
– volume: 7
  start-page: 105
  year: 1998
  end-page: 112
  ident: bb0075
  article-title: A smart material microamplification mechanism fabricated using LIGA
  publication-title: Smart Mater. Struct.
– volume: 19
  start-page: 4
  year: 1996
  end-page: 10
  ident: bb0025
  article-title: Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations
  publication-title: Precis. Eng.
– volume: 45
  start-page: 756
  year: 2010
  end-page: 771
  ident: bb0020
  article-title: Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator
  publication-title: Mech. Mach. Theory
– year: 2001
  ident: bb0120
  publication-title: Compliant Mechanisms
– volume: 23
  start-page: 1652
  year: 2009
  end-page: 1661
  ident: bb0065
  article-title: Using the modified PSO method to identify a Scott–Russell mechanism actuated by a piezoelectric element
  publication-title: Mech. Syst. Signal Proc.
– volume: 81
  start-page: 2797
  year: 2003
  end-page: 2810
  ident: bb0080
  article-title: Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms
  publication-title: Comput. Struct.
– volume: 18
  start-page: 035005
  year: 2009
  ident: bb0125
  article-title: Analysis of flexural hinge orientation for amplified piezo-driven actuators
  publication-title: Smart Mater. Struct.
– volume: 21
  start-page: 1179
  year: 2005
  end-page: 1185
  ident: bb0035
  article-title: Analysis and design of parallel mechanisms with flexure joints
  publication-title: IEEE Trans. Robot.
– year: 2010
  ident: bb0115
– volume: 11
  start-page: 991
  year: 2005
  end-page: 996
  ident: bb0070
  article-title: Dynamic characteristic of miniature molding pantograph mechanisms for surface mount systems
  publication-title: Microsyst. Technol.
– volume: 27
  start-page: 67
  year: 2009
  end-page: 78
  ident: bb0140
  article-title: Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization
  publication-title: Robotica
– volume: 116
  start-page: 530
  year: 2004
  end-page: 538
  ident: bb0085
  article-title: Development and optimization of 3-D bridge-type hinge mechanisms
  publication-title: Sens. Actuator A Phys.
– volume: 130
  start-page: 042308
  year: 2008
  ident: bb0010
  article-title: Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube-based compliant parallel-guiding mechanism
  publication-title: J. Mech. Des.
– volume: 25
  start-page: 645
  year: 2009
  end-page: 657
  ident: bb0110
  article-title: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator
  publication-title: IEEE Trans. Robot.
– volume: 33
  start-page: 362
  year: 2009
  end-page: 370
  ident: bb0045
  article-title: Development of a high precision flexure-based microgripper
  publication-title: Precis. Eng.
– volume: 132
  start-page: 730
  year: 2006
  end-page: 736
  ident: bb0095
  article-title: Analysis of the displacement amplification ratio of bridge-type flexure hinge
  publication-title: Sens. Actuator A Phys.
– volume: 69
  start-page: 1785
  year: 1998
  end-page: 1791
  ident: bb0055
  article-title: A precision piezodriven micropositioner mechanism with large travel range
  publication-title: Rev. Sci. Instrum.
– volume: 23
  start-page: 957
  year: 2009
  end-page: 978
  ident: bb0060
  article-title: Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation
  publication-title: Mech. Syst. Signal Proc.
– start-page: 89
  year: 2005
  end-page: 99
  ident: bb0005
  article-title: Design of parallel kinematic XY flexure mechanisms
  publication-title: Proc. of ASME Design Engineering Technical Conf. & Computers and Information in Engineering Conf., Long Beach, CA, USA
– start-page: 182
  year: 2003
  end-page: 186
  ident: bb0145
  article-title: PSOt — a particle swarm optimization toolbox for use with Matlab
  publication-title: Proc. of IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA
– volume: 32
  start-page: 1
  year: 2007
  end-page: 7
  ident: bb0100
  article-title: Analysis of a diamond-shaped mechanical amplifier for a piezo actuator
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 130
  start-page: 104501
  year: 2008
  ident: bb0040
  article-title: A new compliant mechanical amplifier based on a symmetric five-bar topology
  publication-title: J. Mech. Des.
– volume: 16
  start-page: 1039
  year: 2005
  end-page: 1049
  ident: bb0090
  article-title: Design, modeling, and initial experiments on microscale amplification device
  publication-title: J. Intell. Mater. Syst. Struct.
– year: 2000
  ident: bb0135
  publication-title: Flexures: Elements of Elastic Mechanisms
– volume: 25
  start-page: 645
  issue: 3
  year: 2009
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0110
  article-title: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2009.2014130
– year: 2001
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0120
– volume: 23
  start-page: 957
  issue: 3
  year: 2009
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0060
  article-title: Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2008.06.007
– year: 2000
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0135
– start-page: 182
  year: 2003
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0145
  article-title: PSOt — a particle swarm optimization toolbox for use with Matlab
– volume: 21
  start-page: 1179
  issue: 6
  year: 2005
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0035
  article-title: Analysis and design of parallel mechanisms with flexure joints
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2005.855989
– volume: 32
  start-page: 63
  issue: 2
  year: 2008
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0130
  article-title: Review of circular flexure hinge design equations and derivation of empirical formulations
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2007.05.002
– volume: 45
  start-page: 756
  issue: 5
  year: 2010
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0020
  article-title: Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2009.12.006
– volume: 69
  start-page: 1785
  issue: 4
  year: 1998
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0055
  article-title: A precision piezodriven micropositioner mechanism with large travel range
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1148842
– volume: 18
  start-page: 035005
  issue: 3
  year: 2009
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0125
  article-title: Analysis of flexural hinge orientation for amplified piezo-driven actuators
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/18/3/035005
– volume: 130
  start-page: 042308
  issue: 4
  year: 2008
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0010
  article-title: Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube-based compliant parallel-guiding mechanism
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2885192
– volume: 116
  start-page: 530
  issue: 3
  year: 2004
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0085
  article-title: Development and optimization of 3-D bridge-type hinge mechanisms
  publication-title: Sens. Actuator A Phys.
  doi: 10.1016/j.sna.2004.05.027
– volume: 32
  start-page: 1
  issue: 1–2
  year: 2007
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0100
  article-title: Analysis of a diamond-shaped mechanical amplifier for a piezo actuator
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0303-7
– volume: 33
  start-page: 362
  issue: 4
  year: 2009
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0045
  article-title: Development of a high precision flexure-based microgripper
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2008.10.003
– volume: 81
  start-page: 2797
  issue: 32
  year: 2003
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0080
  article-title: Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2003.07.003
– start-page: 89
  year: 2005
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0005
  article-title: Design of parallel kinematic XY flexure mechanisms
– volume: 7
  start-page: 105
  issue: 1
  year: 1998
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0075
  article-title: A smart material microamplification mechanism fabricated using LIGA
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/7/1/012
– volume: 27
  start-page: 67
  issue: 1
  year: 2009
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0140
  article-title: Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization
  publication-title: Robotica
  doi: 10.1017/S0263574708004530
– volume: 14
  start-page: 222
  issue: 1
  year: 2005
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0030
  article-title: Fine motion control of a moving stage using a piezoactuator associated with a displacement amplifier
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/14/1/022
– volume: 19
  start-page: 315501
  issue: 31
  year: 2008
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0015
  article-title: A flexure-based electromagnetic linear actuator
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/31/315501
– volume: 11
  start-page: 991
  issue: 8–10
  year: 2005
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0070
  article-title: Dynamic characteristic of miniature molding pantograph mechanisms for surface mount systems
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-005-0525-5
– volume: 130
  start-page: 104501
  issue: 10
  year: 2008
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0040
  article-title: A new compliant mechanical amplifier based on a symmetric five-bar topology
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2965600
– volume: 23
  start-page: 1652
  issue: 5
  year: 2009
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0065
  article-title: Using the modified PSO method to identify a Scott–Russell mechanism actuated by a piezoelectric element
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2008.12.003
– volume: 16
  start-page: 1039
  issue: 11–12
  year: 2005
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0090
  article-title: Design, modeling, and initial experiments on microscale amplification device
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X05053913
– volume: 132
  start-page: 730
  issue: 2
  year: 2006
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0095
  article-title: Analysis of the displacement amplification ratio of bridge-type flexure hinge
  publication-title: Sens. Actuator A Phys.
  doi: 10.1016/j.sna.2005.12.028
– volume: 19
  start-page: 4
  issue: 1
  year: 1996
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0025
  article-title: Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations
  publication-title: Precis. Eng.
  doi: 10.1016/0141-6359(95)00056-9
– start-page: 53
  year: 2003
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0105
  article-title: Ultra-precision stage with linear parallel compliant mechanism using 4-PP flexural joints
– volume: 44
  start-page: 2127
  issue: 12
  year: 2009
  ident: 10.1016/j.mechmachtheory.2010.09.007_bb0050
  article-title: Modeling and performance evaluation of a flexure-based XY parallel micromanipulator
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2009.06.002
SSID ssj0007543
Score 2.4191895
Snippet This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 183
SubjectTerms Amplification
Amplifiers
Applied sciences
Compliant mechanisms
Displacement
Drives
Exact sciences and technology
Finite element method
Finite-element analysis
Flexure hinges
Linkage mechanisms, cams
Mathematical analysis
Mathematical models
Mechanical amplifier
Mechanical engineering. Machine design
Nanostructure
Optimization
Optimum design
Piezoelectric actuation
Precision engineering, watch making
Stiffness
Title Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier
URI https://dx.doi.org/10.1016/j.mechmachtheory.2010.09.007
https://www.proquest.com/docview/855721356
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB5EQVpEqm3pqT3y4KOr-yPJbvBBRCpXpT5VuLeQzWZ7J97e0bt78MW_3ZlsVj2kIPR12M2GzOzMMPnmG4BDWSZlLkQW0Q0vteRUkbFZHFVlgoIYA66iRuFfN3Jwy6-GYrgGF10vDMEqg-9vfbr31kFyEk7zZDYeU4-v4pjNDxNP-pKSH-Y8Jys_fnyBeeQiIOcUj-jpTTh8wXhNnB1NjB35psGHAPQiAsv8X2Fqa2bmeHh1O_XijQP3UenyE2yHdJKdtzvegTXX7MLHVySDn2HkeUd8yZr5uTcoPWJTdBWT0IPJTFOxBdFtNH_YtGaGEdCc5i2xtp8rokIta9HnqAlWjecey0WVRWZIWuO2v8Dt5Y_fF4MozFeILBfFIiqqrLCWbv6yWJnUpoUzmBAmpsQktrZSmpRTwuEyYWxZ5UVcc-lyJR3Gea7K7CusN9PGfQMmDeYtqFwR44JGpkoQKVAR86qSzvG6B6fdcWobyMdpBsa97lBmd3pVGZqUoWOlURk9EM9vz1oSjne-d9ZpTq8YlcZ48c4V-isKf_58mkmRFCrpAessQOOPSbctpnHT5VwXgs4gE3Lvv3exDx_aUjahaA5gffF36b5jLrQo-97Y-7Bx_vN6cPMEZvENQQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hkEorhEofIjxSHziyZR-2dy0OVYWK0hY4gZSb5fV6SSqyiZpw6KW_nRmvNzSqkJC4jtZey2PPjMbffANwJMukzIXIInrhpZKcKjI2i6OqTFAQo8NVVCh8eSUHN_zHUAzX4KyrhSFYZbD9rU331jpITsJunszGY6rxVRyj-WHiSV9StMMbHK8vtTH4_PcR55GLAJ1TPKLPX8HRI8hr4uxoYuzIVw3-CUgvYrDMn_JTWzMzx92r27YX_1lw75bO38J2iCfZ13bJO7Dmmnfw5h-Wwfcw8sQjPmfNfOMblB6zKdqKSSjCZKap2IL4NppbNq2ZYYQ0p4ZLrC3oiihTy1r4OaqCVeO5B3NRapEZkta47A9wc_7t-mwQhQYLkeWiWERFlRXW0tNfFiuT2rRwBiPCxJQYxdZWSpNyijhcJowtq7yIay5drqRDR89VmX2E9WbauF1g0mDggtoVMU5oZKoEsQIVMa8q6Ryve3Dabae2gX2cmmDc6Q5m9kuvKkOTMnSsNCqjB2I5etaycDxz3JdOc3rlVGl0GM-cob-i8OXv00yKpFBJD1h3AjTeTHpuMY2b3s91IWgPMiH3XryKT7A5uL680Bffr37uw-s2r02QmgNYX_y-d4cYGC3Kvj_4D2sIDs8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+modeling%2C+optimization+and+testing+of+a+compound+bridge-type+compliant+displacement+amplifier&rft.jtitle=Mechanism+and+machine+theory&rft.au=QINGSONG+XU&rft.au=YANGMIN+LI&rft.date=2011-02-01&rft.pub=Elsevier&rft.issn=0094-114X&rft.volume=46&rft.issue=2&rft.spage=183&rft.epage=200&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2010.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=23651891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon