Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier
This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection...
Saved in:
Published in | Mechanism and machine theory Vol. 46; no. 2; pp. 183 - 200 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.02.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection than the ordinary bridge-type amplifier. An analytical model for amplification ratio calculation is established based on the Euler–Bernoulli beam theory because other simple theoretical approaches cannot predict the ratio properly. The reason why those approaches fail is discovered by resorting to the elastic model. The input stiffness and resonance frequency of the amplifier are also analytically modeled and verified by finite-element analysis (FEA). The derived models are utilized to optimize the amplifier structure through particle swarm optimization (PSO) to obtain a large resonance frequency subject to other performance constraints. The performances of the fabricated amplifier with optimized parameters are confirmed by both FEA simulation and experimental studies. Because an output displacement over 1
mm is achieved by the designed amplifier, it is employable to develop micro/nanopositioning stages with a cubic millimeter sized workspace.
[Display omitted]
►The analytical models of a compound bridge-type displacement amplifier are established. ►It is found that the compliances of connecting arms of the amplifier have a great influence on the amplification ratio. ►A prototype of the amplifier is fabricated by the wire-EDM process. ►The relationship between the output and input displacements of the amplifier is almost linear. |
---|---|
AbstractList | This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection than the ordinary bridge-type amplifier. An analytical model for amplification ratio calculation is established based on the Euler–Bernoulli beam theory because other simple theoretical approaches cannot predict the ratio properly. The reason why those approaches fail is discovered by resorting to the elastic model. The input stiffness and resonance frequency of the amplifier are also analytically modeled and verified by finite-element analysis (FEA). The derived models are utilized to optimize the amplifier structure through particle swarm optimization (PSO) to obtain a large resonance frequency subject to other performance constraints. The performances of the fabricated amplifier with optimized parameters are confirmed by both FEA simulation and experimental studies. Because an output displacement over 1
mm is achieved by the designed amplifier, it is employable to develop micro/nanopositioning stages with a cubic millimeter sized workspace.
[Display omitted]
►The analytical models of a compound bridge-type displacement amplifier are established. ►It is found that the compliances of connecting arms of the amplifier have a great influence on the amplification ratio. ►A prototype of the amplifier is fabricated by the wire-EDM process. ►The relationship between the output and input displacements of the amplifier is almost linear. This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large amplification ratio and compact size, the CBT amplifier has a larger lateral stiffness and is more suitable for actuator isolation and protection than the ordinary bridge-type amplifier. An analytical model for amplification ratio calculation is established based on the Euler-Bernoulli beam theory because other simple theoretical approaches cannot predict the ratio properly. The reason why those approaches fail is discovered by resorting to the elastic model. The input stiffness and resonance frequency of the amplifier are also analytically modeled and verified by finite-element analysis (FEA). The derived models are utilized to optimize the amplifier structure through particle swarm optimization (PSO) to obtain a large resonance frequency subject to other performance constraints. The performances of the fabricated amplifier with optimized parameters are confirmed by both FEA simulation and experimental studies. Because an output displacement over 1 mm is achieved by the designed amplifier, it is employable to develop micro/nanopositioning stages with a cubic millimeter sized workspace. |
Author | Xu, Qingsong Li, Yangmin |
Author_xml | – sequence: 1 givenname: Qingsong surname: Xu fullname: Xu, Qingsong – sequence: 2 givenname: Yangmin surname: Li fullname: Li, Yangmin email: ymli@umac.mo |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23651891$$DView record in Pascal Francis |
BookMark | eNqNUcFu1DAQtVCR2Bb-IQcQF7LYsZPYEpdSUVqpEheQuFmz9qTrlWMH21tp-Xq83XKAU0-jefPmjf3eOTkLMSAhbxldM8qGj7v1jGY7g9mWLcZ0WHe0jqhaUzq-ICsmR95ypdQZWVGqRMuY-PmKnOe8o5XRC74i28sA_lCcAd_M0aJ34f5DE5fiZvcbiouhgWCbgrnUSROnBhoT5yXuK7pJzt5jWw4LPoLeQSiNdXnxYHDG2sARnRym1-TlBD7jm6d6QX5cf_l-ddPefft6e3V51xrRy9JKy6UxQlHJqYLOdBKBccVgI5mdzDBAJ0bBeuQ9mI0dJZ3EgKMasONSqA2_IO9PukuKv_b12Xp22aD3EDDus5Z9P3aM90NlvntiQq7fnxIE47JekpshHXTHh55JxSrv84lnUsw54aSNK4_WlATOa0b1MQ290_-moY9paKp09bqKfPpP5O-dZ65fn9axWvdQ7dTZOAwGrUtoirbRPU_oD1HmtLU |
CODEN | MHMTAS |
CitedBy_id | crossref_primary_10_1063_5_0162246 crossref_primary_10_1109_TMECH_2017_2693996 crossref_primary_10_3390_machines11040450 crossref_primary_10_1007_s12541_015_0292_x crossref_primary_10_1080_00150193_2019_1611099 crossref_primary_10_1016_j_precisioneng_2024_01_006 crossref_primary_10_1088_1742_6596_1303_1_012063 crossref_primary_10_1007_s00542_015_2485_8 crossref_primary_10_1016_j_mechmachtheory_2017_07_011 crossref_primary_10_1109_ACCESS_2019_2948085 crossref_primary_10_3233_JAE_162153 crossref_primary_10_1177_0954406214535925 crossref_primary_10_1109_JSEN_2012_2218282 crossref_primary_10_1016_j_cma_2022_115161 crossref_primary_10_1115_1_4065521 crossref_primary_10_3390_a8030424 crossref_primary_10_3390_mi12060686 crossref_primary_10_1016_j_precisioneng_2012_07_010 crossref_primary_10_3390_act7010005 crossref_primary_10_1016_j_mechmachtheory_2022_104965 crossref_primary_10_3390_mi15010052 crossref_primary_10_4028_www_scientific_net_AMM_618_593 crossref_primary_10_1088_1361_665X_aad5ae crossref_primary_10_1007_s12541_022_00619_0 crossref_primary_10_1016_j_mechmachtheory_2017_11_002 crossref_primary_10_1016_j_precisioneng_2024_11_003 crossref_primary_10_1007_s00542_018_4078_9 crossref_primary_10_1139_tcsme_2017_0149 crossref_primary_10_1016_j_sna_2021_113002 crossref_primary_10_1007_s00542_016_2854_y crossref_primary_10_1109_TASE_2018_2875711 crossref_primary_10_1177_0954406218802945 crossref_primary_10_1016_j_sna_2017_12_030 crossref_primary_10_1016_j_mechmachtheory_2021_104566 crossref_primary_10_3390_mi14122229 crossref_primary_10_1007_s11081_019_09469_8 crossref_primary_10_1016_j_sna_2019_06_043 crossref_primary_10_1109_TMECH_2017_2698139 crossref_primary_10_1109_TASE_2012_2198918 crossref_primary_10_1016_j_mechmachtheory_2013_07_016 crossref_primary_10_1115_1_4065257 crossref_primary_10_1051_meca_2021003 crossref_primary_10_1063_5_0101420 crossref_primary_10_1155_2019_5461725 crossref_primary_10_3390_s19163455 crossref_primary_10_3390_mi9110578 crossref_primary_10_1007_s00542_019_04313_6 crossref_primary_10_1155_2021_5599624 crossref_primary_10_1063_1_4932963 crossref_primary_10_1080_15376494_2023_2243674 crossref_primary_10_1109_TASE_2017_2733553 crossref_primary_10_1109_TIE_2017_2677318 crossref_primary_10_1109_TIE_2020_3032921 crossref_primary_10_3390_act11120368 crossref_primary_10_1016_j_mechmachtheory_2021_104658 crossref_primary_10_1016_j_sna_2020_112066 crossref_primary_10_1063_5_0047420 crossref_primary_10_1016_j_mechmachtheory_2014_12_013 crossref_primary_10_1063_1_4803187 crossref_primary_10_1088_1361_665X_ad8c06 crossref_primary_10_1016_j_sna_2016_08_011 crossref_primary_10_1016_j_measurement_2014_01_020 crossref_primary_10_1007_s12541_015_0228_5 crossref_primary_10_1088_1757_899X_1018_1_012002 crossref_primary_10_1016_j_mechmachtheory_2018_10_005 crossref_primary_10_1007_s12541_018_0158_0 crossref_primary_10_1016_j_mechmachtheory_2019_01_007 crossref_primary_10_1016_j_mechmachtheory_2024_105799 crossref_primary_10_1007_s12541_015_0289_5 crossref_primary_10_1016_j_precisioneng_2017_10_002 crossref_primary_10_1155_2022_2956191 crossref_primary_10_1016_j_sna_2017_09_010 crossref_primary_10_1109_TIE_2019_2935933 crossref_primary_10_3233_JIFS_169894 crossref_primary_10_1115_1_4053113 crossref_primary_10_32604_cmc_2022_029484 crossref_primary_10_1088_1742_6596_1303_1_012053 crossref_primary_10_1088_1361_6439_ad5a19 crossref_primary_10_3390_mi12111304 crossref_primary_10_1016_j_ymssp_2017_07_010 crossref_primary_10_3390_machines10090792 crossref_primary_10_1007_s00366_020_00963_7 crossref_primary_10_1007_s00542_018_4202_x crossref_primary_10_1007_s10033_017_0138_9 crossref_primary_10_1016_j_mechmachtheory_2022_105083 crossref_primary_10_1016_j_ymssp_2019_106569 crossref_primary_10_1016_j_mechmachtheory_2022_105085 crossref_primary_10_1016_j_precisioneng_2018_04_017 crossref_primary_10_1088_1742_6596_2601_1_012021 crossref_primary_10_1016_j_precisioneng_2020_04_001 crossref_primary_10_3390_s20236826 crossref_primary_10_1146_annurev_control_053018_023755 crossref_primary_10_1177_1045389X16642536 crossref_primary_10_1177_1687814020911470 crossref_primary_10_1007_s00521_021_05717_0 crossref_primary_10_1016_j_mechmachtheory_2023_105308 crossref_primary_10_1088_1361_665X_ad8823 crossref_primary_10_1115_1_4026949 crossref_primary_10_1063_5_0127014 crossref_primary_10_1109_TMECH_2014_2360316 crossref_primary_10_1177_09544062241312880 crossref_primary_10_1115_1_4045679 crossref_primary_10_1115_1_4024979 crossref_primary_10_1088_1361_665X_ab35c5 crossref_primary_10_1088_2631_7990_ad9366 crossref_primary_10_1016_j_ymssp_2015_12_007 crossref_primary_10_1007_s11465_023_0772_0 crossref_primary_10_1016_j_ijmecsci_2025_109957 crossref_primary_10_1109_TIE_2018_2885716 crossref_primary_10_1109_TIE_2013_2257139 crossref_primary_10_1007_s00542_018_4064_2 crossref_primary_10_1016_j_ymssp_2018_10_007 crossref_primary_10_1155_2022_9151146 crossref_primary_10_1016_j_precisioneng_2021_09_001 crossref_primary_10_1063_1_4720410 crossref_primary_10_1088_1361_6439_aca4dc crossref_primary_10_1088_0964_1726_25_9_095005 crossref_primary_10_1016_j_sna_2016_09_030 crossref_primary_10_3390_mi11111024 crossref_primary_10_1016_j_sna_2016_05_015 crossref_primary_10_1109_JSEN_2018_2820221 crossref_primary_10_3390_mi11111015 crossref_primary_10_1088_0964_1726_25_12_125004 crossref_primary_10_1088_1361_6501_ab1984 crossref_primary_10_1016_j_sna_2019_111808 crossref_primary_10_1016_j_mechmachtheory_2020_104069 crossref_primary_10_1007_s12008_024_02098_1 crossref_primary_10_1088_1361_665X_aa8102 crossref_primary_10_1016_j_precisioneng_2024_04_014 crossref_primary_10_1063_1_4907551 crossref_primary_10_1109_TMECH_2016_2604242 crossref_primary_10_1007_s40997_018_0213_6 crossref_primary_10_1016_j_mechmachtheory_2018_04_008 crossref_primary_10_1016_j_mechmachtheory_2024_105900 crossref_primary_10_3390_s22113987 crossref_primary_10_1088_0964_1726_25_11_115033 crossref_primary_10_3390_mi13101636 crossref_primary_10_1007_s13369_020_04587_3 crossref_primary_10_1016_j_precisioneng_2021_09_014 crossref_primary_10_1016_j_cad_2021_103001 crossref_primary_10_1016_j_sna_2024_115899 crossref_primary_10_1016_j_ymssp_2019_106473 crossref_primary_10_3390_mi14040713 crossref_primary_10_1016_j_mechmachtheory_2016_01_005 crossref_primary_10_1109_TMECH_2021_3052806 crossref_primary_10_1063_1_5091672 crossref_primary_10_3390_s17092154 crossref_primary_10_1088_1748_3190_aba8ab crossref_primary_10_1016_j_precisioneng_2024_08_012 crossref_primary_10_1016_j_ijsolstr_2024_112847 crossref_primary_10_3390_mi14081502 crossref_primary_10_1088_0964_1726_24_6_065007 crossref_primary_10_1109_TMECH_2019_2942645 crossref_primary_10_1109_ACCESS_2020_3037827 crossref_primary_10_1016_j_mechmachtheory_2016_10_009 crossref_primary_10_1007_s12541_020_00358_0 crossref_primary_10_1016_j_mechmachtheory_2019_04_015 crossref_primary_10_1115_1_4051891 crossref_primary_10_1155_2016_5602142 crossref_primary_10_3390_machines10100848 crossref_primary_10_1016_j_asoc_2020_106486 crossref_primary_10_1007_s12541_024_00990_0 crossref_primary_10_1155_2021_6622655 crossref_primary_10_1088_1361_6439_ab9007 crossref_primary_10_1063_1_4918295 crossref_primary_10_1080_14484846_2020_1786653 crossref_primary_10_1016_j_advengsoft_2024_103790 crossref_primary_10_3390_math11020280 crossref_primary_10_3390_mi13010021 crossref_primary_10_1016_j_ymssp_2022_109470 crossref_primary_10_1109_JMEMS_2020_2965260 crossref_primary_10_1142_S0219455423500815 crossref_primary_10_5194_ms_12_837_2021 crossref_primary_10_1051_matecconf_20167701040 crossref_primary_10_11648_j_ijmea_20241204_11 crossref_primary_10_1016_j_precisioneng_2023_06_012 crossref_primary_10_1088_1742_6596_1303_1_012016 crossref_primary_10_1016_j_mechmachtheory_2023_105347 crossref_primary_10_1088_1361_665X_ad1316 crossref_primary_10_1155_2020_3418904 crossref_primary_10_1080_01691864_2017_1362996 crossref_primary_10_1016_j_physrep_2024_09_001 crossref_primary_10_1016_j_sna_2019_111666 crossref_primary_10_1088_0964_1726_25_7_075022 |
Cites_doi | 10.1109/TRO.2009.2014130 10.1016/j.ymssp.2008.06.007 10.1109/TRO.2005.855989 10.1016/j.precisioneng.2007.05.002 10.1016/j.mechmachtheory.2009.12.006 10.1063/1.1148842 10.1088/0964-1726/18/3/035005 10.1115/1.2885192 10.1016/j.sna.2004.05.027 10.1007/s00170-005-0303-7 10.1016/j.precisioneng.2008.10.003 10.1016/j.compstruc.2003.07.003 10.1088/0964-1726/7/1/012 10.1017/S0263574708004530 10.1088/0964-1726/14/1/022 10.1088/0957-4484/19/31/315501 10.1007/s00542-005-0525-5 10.1115/1.2965600 10.1016/j.ymssp.2008.12.003 10.1177/1045389X05053913 10.1016/j.sna.2005.12.028 10.1016/0141-6359(95)00056-9 10.1016/j.mechmachtheory.2009.06.002 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 7TA 7TB 8FD FR3 H8D JG9 JQ2 L7M L~C L~D |
DOI | 10.1016/j.mechmachtheory.2010.09.007 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-3999 |
EndPage | 200 |
ExternalDocumentID | 23651891 10_1016_j_mechmachtheory_2010_09_007 S0094114X10001722 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K T9H TN5 TWZ WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 7TA 7TB 8FD FR3 H8D JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c458t-8d38cc4908309a2c28ea1391ab81dfc66a247415e35acbd780f46e796e23849b3 |
IEDL.DBID | .~1 |
ISSN | 0094-114X |
IngestDate | Thu Jul 10 20:19:44 EDT 2025 Mon Jul 21 09:17:54 EDT 2025 Tue Jul 01 01:48:17 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 Fri Feb 23 02:34:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Flexure hinges Optimum design Compliant mechanisms Finite-element analysis Mechanical amplifier Piezoelectric actuation Compliant mechanism Positioning Evolutionary algorithm Mechanical drive Bernoulli Euler model Amplifier Experimental study Modeling Particle swarm optimization Finite element method Nanometer scale Resonance frequency Piezoelectricity Actuator Workspace |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-8d38cc4908309a2c28ea1391ab81dfc66a247415e35acbd780f46e796e23849b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 855721356 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_855721356 pascalfrancis_primary_23651891 crossref_citationtrail_10_1016_j_mechmachtheory_2010_09_007 crossref_primary_10_1016_j_mechmachtheory_2010_09_007 elsevier_sciencedirect_doi_10_1016_j_mechmachtheory_2010_09_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-01 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Mechanism and machine theory |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Ma, Yao, Wang, Zhong (bb0095) 2006; 132 Chang, Du (bb0055) 1998; 69 Xu, Li (bb0140) 2009; 27 Yue, Gao, Zhao, Ge (bb0020) 2010; 45 Kao, Fung (bb0065) 2009; 23 Li, Xu (bb0050) 2009; 44 Xu, King (bb0025) 1996; 19 Li, Xu (bb0110) 2009; 25 Birge (bb0145) 2003 Mottard, St-Amant (bb0125) 2009; 18 Kang, Wen, Dagalakis, Gorman (bb0035) 2005; 21 Smith (bb0135) 2000 Zubir, Shirinzadeh (bb0045) 2009; 33 Pokines, Garcia (bb0075) 1998; 7 Teo, Chen, Yang, Lin (bb0015) 2008; 19 Ouyang, Zhang, Gupta (bb0040) 2008; 130 Ishii, Thumme, Horie (bb0070) 2005; 11 Kim, Kim, Kwak (bb0085) 2004; 116 Garcia, Nam, Lobontiu (bb0090) 2005; 16 Lobontiu, Garcia (bb0080) 2003; 81 Yong, Lu, Handley (bb0130) 2008; 32 Zhou, Henson (bb0100) 2007; 32 Awtar, Slocum (bb0005) 2005 DiBiasio, Culpepper, Panas, Howell, Magleby (bb0010) 2008; 130 Choi, Lee (bb0105) 2003 (bb0115) 2010 Howell (bb0120) 2001 Tian, Shirinzadeh, Zhang, Alici (bb0060) 2009; 23 Choi, Han, Lee (bb0030) 2005; 14 Garcia (10.1016/j.mechmachtheory.2010.09.007_bb0090) 2005; 16 Birge (10.1016/j.mechmachtheory.2010.09.007_bb0145) 2003 Awtar (10.1016/j.mechmachtheory.2010.09.007_bb0005) 2005 Choi (10.1016/j.mechmachtheory.2010.09.007_bb0030) 2005; 14 Ishii (10.1016/j.mechmachtheory.2010.09.007_bb0070) 2005; 11 Mottard (10.1016/j.mechmachtheory.2010.09.007_bb0125) 2009; 18 Zhou (10.1016/j.mechmachtheory.2010.09.007_bb0100) 2007; 32 Tian (10.1016/j.mechmachtheory.2010.09.007_bb0060) 2009; 23 Pokines (10.1016/j.mechmachtheory.2010.09.007_bb0075) 1998; 7 Lobontiu (10.1016/j.mechmachtheory.2010.09.007_bb0080) 2003; 81 Xu (10.1016/j.mechmachtheory.2010.09.007_bb0140) 2009; 27 Li (10.1016/j.mechmachtheory.2010.09.007_bb0050) 2009; 44 Kao (10.1016/j.mechmachtheory.2010.09.007_bb0065) 2009; 23 Yong (10.1016/j.mechmachtheory.2010.09.007_bb0130) 2008; 32 Kang (10.1016/j.mechmachtheory.2010.09.007_bb0035) 2005; 21 Yue (10.1016/j.mechmachtheory.2010.09.007_bb0020) 2010; 45 Teo (10.1016/j.mechmachtheory.2010.09.007_bb0015) 2008; 19 Kim (10.1016/j.mechmachtheory.2010.09.007_bb0085) 2004; 116 Smith (10.1016/j.mechmachtheory.2010.09.007_bb0135) 2000 Ma (10.1016/j.mechmachtheory.2010.09.007_bb0095) 2006; 132 DiBiasio (10.1016/j.mechmachtheory.2010.09.007_bb0010) 2008; 130 Choi (10.1016/j.mechmachtheory.2010.09.007_bb0105) 2003 Zubir (10.1016/j.mechmachtheory.2010.09.007_bb0045) 2009; 33 Li (10.1016/j.mechmachtheory.2010.09.007_bb0110) 2009; 25 Howell (10.1016/j.mechmachtheory.2010.09.007_bb0120) 2001 Chang (10.1016/j.mechmachtheory.2010.09.007_bb0055) 1998; 69 Xu (10.1016/j.mechmachtheory.2010.09.007_bb0025) 1996; 19 Ouyang (10.1016/j.mechmachtheory.2010.09.007_bb0040) 2008; 130 |
References_xml | – volume: 19 start-page: 315501 year: 2008 ident: bb0015 article-title: A flexure-based electromagnetic linear actuator publication-title: Nanotechnology – volume: 14 start-page: 222 year: 2005 end-page: 230 ident: bb0030 article-title: Fine motion control of a moving stage using a piezoactuator associated with a displacement amplifier publication-title: Smart Mater. Struct. – volume: 44 start-page: 2127 year: 2009 end-page: 2152 ident: bb0050 article-title: Modeling and performance evaluation of a flexure-based XY parallel micromanipulator publication-title: Mech. Mach. Theory – volume: 32 start-page: 63 year: 2008 end-page: 70 ident: bb0130 article-title: Review of circular flexure hinge design equations and derivation of empirical formulations publication-title: Precis. Eng. – start-page: 53 year: 2003 end-page: 56 ident: bb0105 article-title: Ultra-precision stage with linear parallel compliant mechanism using 4-PP flexural joints publication-title: Proc. of 11th Int. Conf. on Mechatronics Technology, Ulsan, Korea – volume: 7 start-page: 105 year: 1998 end-page: 112 ident: bb0075 article-title: A smart material microamplification mechanism fabricated using LIGA publication-title: Smart Mater. Struct. – volume: 19 start-page: 4 year: 1996 end-page: 10 ident: bb0025 article-title: Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations publication-title: Precis. Eng. – volume: 45 start-page: 756 year: 2010 end-page: 771 ident: bb0020 article-title: Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator publication-title: Mech. Mach. Theory – year: 2001 ident: bb0120 publication-title: Compliant Mechanisms – volume: 23 start-page: 1652 year: 2009 end-page: 1661 ident: bb0065 article-title: Using the modified PSO method to identify a Scott–Russell mechanism actuated by a piezoelectric element publication-title: Mech. Syst. Signal Proc. – volume: 81 start-page: 2797 year: 2003 end-page: 2810 ident: bb0080 article-title: Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms publication-title: Comput. Struct. – volume: 18 start-page: 035005 year: 2009 ident: bb0125 article-title: Analysis of flexural hinge orientation for amplified piezo-driven actuators publication-title: Smart Mater. Struct. – volume: 21 start-page: 1179 year: 2005 end-page: 1185 ident: bb0035 article-title: Analysis and design of parallel mechanisms with flexure joints publication-title: IEEE Trans. Robot. – year: 2010 ident: bb0115 – volume: 11 start-page: 991 year: 2005 end-page: 996 ident: bb0070 article-title: Dynamic characteristic of miniature molding pantograph mechanisms for surface mount systems publication-title: Microsyst. Technol. – volume: 27 start-page: 67 year: 2009 end-page: 78 ident: bb0140 article-title: Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization publication-title: Robotica – volume: 116 start-page: 530 year: 2004 end-page: 538 ident: bb0085 article-title: Development and optimization of 3-D bridge-type hinge mechanisms publication-title: Sens. Actuator A Phys. – volume: 130 start-page: 042308 year: 2008 ident: bb0010 article-title: Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube-based compliant parallel-guiding mechanism publication-title: J. Mech. Des. – volume: 25 start-page: 645 year: 2009 end-page: 657 ident: bb0110 article-title: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator publication-title: IEEE Trans. Robot. – volume: 33 start-page: 362 year: 2009 end-page: 370 ident: bb0045 article-title: Development of a high precision flexure-based microgripper publication-title: Precis. Eng. – volume: 132 start-page: 730 year: 2006 end-page: 736 ident: bb0095 article-title: Analysis of the displacement amplification ratio of bridge-type flexure hinge publication-title: Sens. Actuator A Phys. – volume: 69 start-page: 1785 year: 1998 end-page: 1791 ident: bb0055 article-title: A precision piezodriven micropositioner mechanism with large travel range publication-title: Rev. Sci. Instrum. – volume: 23 start-page: 957 year: 2009 end-page: 978 ident: bb0060 article-title: Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation publication-title: Mech. Syst. Signal Proc. – start-page: 89 year: 2005 end-page: 99 ident: bb0005 article-title: Design of parallel kinematic XY flexure mechanisms publication-title: Proc. of ASME Design Engineering Technical Conf. & Computers and Information in Engineering Conf., Long Beach, CA, USA – start-page: 182 year: 2003 end-page: 186 ident: bb0145 article-title: PSOt — a particle swarm optimization toolbox for use with Matlab publication-title: Proc. of IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA – volume: 32 start-page: 1 year: 2007 end-page: 7 ident: bb0100 article-title: Analysis of a diamond-shaped mechanical amplifier for a piezo actuator publication-title: Int. J. Adv. Manuf. Technol. – volume: 130 start-page: 104501 year: 2008 ident: bb0040 article-title: A new compliant mechanical amplifier based on a symmetric five-bar topology publication-title: J. Mech. Des. – volume: 16 start-page: 1039 year: 2005 end-page: 1049 ident: bb0090 article-title: Design, modeling, and initial experiments on microscale amplification device publication-title: J. Intell. Mater. Syst. Struct. – year: 2000 ident: bb0135 publication-title: Flexures: Elements of Elastic Mechanisms – volume: 25 start-page: 645 issue: 3 year: 2009 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0110 article-title: Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2009.2014130 – year: 2001 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0120 – volume: 23 start-page: 957 issue: 3 year: 2009 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0060 article-title: Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation publication-title: Mech. Syst. Signal Proc. doi: 10.1016/j.ymssp.2008.06.007 – year: 2000 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0135 – start-page: 182 year: 2003 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0145 article-title: PSOt — a particle swarm optimization toolbox for use with Matlab – volume: 21 start-page: 1179 issue: 6 year: 2005 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0035 article-title: Analysis and design of parallel mechanisms with flexure joints publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2005.855989 – volume: 32 start-page: 63 issue: 2 year: 2008 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0130 article-title: Review of circular flexure hinge design equations and derivation of empirical formulations publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2007.05.002 – volume: 45 start-page: 756 issue: 5 year: 2010 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0020 article-title: Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2009.12.006 – volume: 69 start-page: 1785 issue: 4 year: 1998 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0055 article-title: A precision piezodriven micropositioner mechanism with large travel range publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148842 – volume: 18 start-page: 035005 issue: 3 year: 2009 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0125 article-title: Analysis of flexural hinge orientation for amplified piezo-driven actuators publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/18/3/035005 – volume: 130 start-page: 042308 issue: 4 year: 2008 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0010 article-title: Comparison of molecular simulation and pseudo-rigid-body model predictions for a carbon nanotube-based compliant parallel-guiding mechanism publication-title: J. Mech. Des. doi: 10.1115/1.2885192 – volume: 116 start-page: 530 issue: 3 year: 2004 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0085 article-title: Development and optimization of 3-D bridge-type hinge mechanisms publication-title: Sens. Actuator A Phys. doi: 10.1016/j.sna.2004.05.027 – volume: 32 start-page: 1 issue: 1–2 year: 2007 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0100 article-title: Analysis of a diamond-shaped mechanical amplifier for a piezo actuator publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-0303-7 – volume: 33 start-page: 362 issue: 4 year: 2009 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0045 article-title: Development of a high precision flexure-based microgripper publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2008.10.003 – volume: 81 start-page: 2797 issue: 32 year: 2003 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0080 article-title: Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2003.07.003 – start-page: 89 year: 2005 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0005 article-title: Design of parallel kinematic XY flexure mechanisms – volume: 7 start-page: 105 issue: 1 year: 1998 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0075 article-title: A smart material microamplification mechanism fabricated using LIGA publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/7/1/012 – volume: 27 start-page: 67 issue: 1 year: 2009 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0140 article-title: Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization publication-title: Robotica doi: 10.1017/S0263574708004530 – volume: 14 start-page: 222 issue: 1 year: 2005 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0030 article-title: Fine motion control of a moving stage using a piezoactuator associated with a displacement amplifier publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/14/1/022 – volume: 19 start-page: 315501 issue: 31 year: 2008 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0015 article-title: A flexure-based electromagnetic linear actuator publication-title: Nanotechnology doi: 10.1088/0957-4484/19/31/315501 – volume: 11 start-page: 991 issue: 8–10 year: 2005 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0070 article-title: Dynamic characteristic of miniature molding pantograph mechanisms for surface mount systems publication-title: Microsyst. Technol. doi: 10.1007/s00542-005-0525-5 – volume: 130 start-page: 104501 issue: 10 year: 2008 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0040 article-title: A new compliant mechanical amplifier based on a symmetric five-bar topology publication-title: J. Mech. Des. doi: 10.1115/1.2965600 – volume: 23 start-page: 1652 issue: 5 year: 2009 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0065 article-title: Using the modified PSO method to identify a Scott–Russell mechanism actuated by a piezoelectric element publication-title: Mech. Syst. Signal Proc. doi: 10.1016/j.ymssp.2008.12.003 – volume: 16 start-page: 1039 issue: 11–12 year: 2005 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0090 article-title: Design, modeling, and initial experiments on microscale amplification device publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X05053913 – volume: 132 start-page: 730 issue: 2 year: 2006 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0095 article-title: Analysis of the displacement amplification ratio of bridge-type flexure hinge publication-title: Sens. Actuator A Phys. doi: 10.1016/j.sna.2005.12.028 – volume: 19 start-page: 4 issue: 1 year: 1996 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0025 article-title: Flexure hinges for piezoactuator displacement amplifiers: flexibility, accuracy, and stress considerations publication-title: Precis. Eng. doi: 10.1016/0141-6359(95)00056-9 – start-page: 53 year: 2003 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0105 article-title: Ultra-precision stage with linear parallel compliant mechanism using 4-PP flexural joints – volume: 44 start-page: 2127 issue: 12 year: 2009 ident: 10.1016/j.mechmachtheory.2010.09.007_bb0050 article-title: Modeling and performance evaluation of a flexure-based XY parallel micromanipulator publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2009.06.002 |
SSID | ssj0007543 |
Score | 2.4191895 |
Snippet | This paper investigates a flexure-based compound bridge-type (CBT) displacement amplifier for piezoelectric drives. In addition to the advantages of large... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 183 |
SubjectTerms | Amplification Amplifiers Applied sciences Compliant mechanisms Displacement Drives Exact sciences and technology Finite element method Finite-element analysis Flexure hinges Linkage mechanisms, cams Mathematical analysis Mathematical models Mechanical amplifier Mechanical engineering. Machine design Nanostructure Optimization Optimum design Piezoelectric actuation Precision engineering, watch making Stiffness |
Title | Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier |
URI | https://dx.doi.org/10.1016/j.mechmachtheory.2010.09.007 https://www.proquest.com/docview/855721356 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB5EQVpEqm3pqT3y4KOr-yPJbvBBRCpXpT5VuLeQzWZ7J97e0bt78MW_3ZlsVj2kIPR12M2GzOzMMPnmG4BDWSZlLkQW0Q0vteRUkbFZHFVlgoIYA66iRuFfN3Jwy6-GYrgGF10vDMEqg-9vfbr31kFyEk7zZDYeU4-v4pjNDxNP-pKSH-Y8Jys_fnyBeeQiIOcUj-jpTTh8wXhNnB1NjB35psGHAPQiAsv8X2Fqa2bmeHh1O_XijQP3UenyE2yHdJKdtzvegTXX7MLHVySDn2HkeUd8yZr5uTcoPWJTdBWT0IPJTFOxBdFtNH_YtGaGEdCc5i2xtp8rokIta9HnqAlWjecey0WVRWZIWuO2v8Dt5Y_fF4MozFeILBfFIiqqrLCWbv6yWJnUpoUzmBAmpsQktrZSmpRTwuEyYWxZ5UVcc-lyJR3Gea7K7CusN9PGfQMmDeYtqFwR44JGpkoQKVAR86qSzvG6B6fdcWobyMdpBsa97lBmd3pVGZqUoWOlURk9EM9vz1oSjne-d9ZpTq8YlcZ48c4V-isKf_58mkmRFCrpAessQOOPSbctpnHT5VwXgs4gE3Lvv3exDx_aUjahaA5gffF36b5jLrQo-97Y-7Bx_vN6cPMEZvENQQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hkEorhEofIjxSHziyZR-2dy0OVYWK0hY4gZSb5fV6SSqyiZpw6KW_nRmvNzSqkJC4jtZey2PPjMbffANwJMukzIXIInrhpZKcKjI2i6OqTFAQo8NVVCh8eSUHN_zHUAzX4KyrhSFYZbD9rU331jpITsJunszGY6rxVRyj-WHiSV9StMMbHK8vtTH4_PcR55GLAJ1TPKLPX8HRI8hr4uxoYuzIVw3-CUgvYrDMn_JTWzMzx92r27YX_1lw75bO38J2iCfZ13bJO7Dmmnfw5h-Wwfcw8sQjPmfNfOMblB6zKdqKSSjCZKap2IL4NppbNq2ZYYQ0p4ZLrC3oiihTy1r4OaqCVeO5B3NRapEZkta47A9wc_7t-mwQhQYLkeWiWERFlRXW0tNfFiuT2rRwBiPCxJQYxdZWSpNyijhcJowtq7yIay5drqRDR89VmX2E9WbauF1g0mDggtoVMU5oZKoEsQIVMa8q6Ryve3Dabae2gX2cmmDc6Q5m9kuvKkOTMnSsNCqjB2I5etaycDxz3JdOc3rlVGl0GM-cob-i8OXv00yKpFBJD1h3AjTeTHpuMY2b3s91IWgPMiH3XryKT7A5uL680Bffr37uw-s2r02QmgNYX_y-d4cYGC3Kvj_4D2sIDs8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+modeling%2C+optimization+and+testing+of+a+compound+bridge-type+compliant+displacement+amplifier&rft.jtitle=Mechanism+and+machine+theory&rft.au=QINGSONG+XU&rft.au=YANGMIN+LI&rft.date=2011-02-01&rft.pub=Elsevier&rft.issn=0094-114X&rft.volume=46&rft.issue=2&rft.spage=183&rft.epage=200&rft_id=info:doi/10.1016%2Fj.mechmachtheory.2010.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=23651891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-114X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-114X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-114X&client=summon |