Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species
[Display omitted] •Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many taxa but few genes (e.g. supermatrix).•Here, we demonstrate the potential to combine these two approaches, using published data from squamate r...
Saved in:
Published in | Molecular phylogenetics and evolution Vol. 94; no. Pt B; pp. 537 - 547 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many taxa but few genes (e.g. supermatrix).•Here, we demonstrate the potential to combine these two approaches, using published data from squamate reptiles.•The tree from the combined analysis more closely resembles the higher-level phylogeny based on many genes and few taxa.•We provide a time-calibrated tree for squamate reptiles based on 52 genes and 4162 species.
Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies. |
---|---|
AbstractList | Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies. [Display omitted] •Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many taxa but few genes (e.g. supermatrix).•Here, we demonstrate the potential to combine these two approaches, using published data from squamate reptiles.•The tree from the combined analysis more closely resembles the higher-level phylogeny based on many genes and few taxa.•We provide a time-calibrated tree for squamate reptiles based on 52 genes and 4162 species. Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies. |
Author | Wiens, John J. Zheng, Yuchi |
Author_xml | – sequence: 1 givenname: Yuchi surname: Zheng fullname: Zheng, Yuchi email: zhengyc@cib.ac.cn organization: Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China – sequence: 2 givenname: John J. surname: Wiens fullname: Wiens, John J. email: wiensj@email.arizona.edu organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-088, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26475614$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1TAQhi1URC_wBEjIyyKRg53EdrxggY7KRarEBtaWY09aHxI7tZ2Kw9P0UfFpShcs6MrWzPeNNPOfoiMfPCD0mpINJZS_32320wy3m5pQViobQuQzdEKJZJVktDk6_BmrhCTNMTpNaUcIpUyyF-i45q1gnLYn6G4bpt5556_wfL0fwxX4MDmDtbc4LTPESefofmE9zzFocw3p3X1P4-wmqIweXR91Bvuo7_EQIk43iy4q4AhzdiMkfD663zratI72-iekt7jXqajBY1bj4sLabSmvcZrBOEgv0fNBjwlePbxn6Meni-_bL9Xlt89ftx8vK9OyLled6GFoB6kth5r2kgnWc2AMOitsb-UAoue8I521DdhaiK6xMOiOC85lK0xzhs7XuWXPmwVSVpNLBsZRewhLUrSrWVvzum2eRkXTtV1DJS_omwd06Sewao5u0nGv_gZQgGYFTAwpRRgeEUrUIWa1U_cxq0PMh2KJuVjyH8u4rLMLPkftxifcD6sL5Zq3DqJK5c7egHURTFY2uP_6fwDOEcaT |
CitedBy_id | crossref_primary_10_3389_fevo_2022_969581 crossref_primary_10_1016_j_ympev_2016_07_003 crossref_primary_10_1111_evo_14409 crossref_primary_10_1111_jzs_12180 crossref_primary_10_1186_s12862_023_02113_1 crossref_primary_10_1093_icb_icz006 crossref_primary_10_1098_rspb_2024_1653 crossref_primary_10_3390_toxins9080242 crossref_primary_10_7868_S0042132418050058 crossref_primary_10_1098_rsbl_2019_0498 crossref_primary_10_1038_s42003_022_04261_4 crossref_primary_10_1093_molbev_msac052 crossref_primary_10_2994_SAJH_D_19_00120_1 crossref_primary_10_1093_zoolinnean_zlab099 crossref_primary_10_1098_rsos_182228 crossref_primary_10_1093_zoolinnean_zlz114 crossref_primary_10_1093_icb_icz010 crossref_primary_10_1371_journal_pone_0244150 crossref_primary_10_3390_toxins11020069 crossref_primary_10_1111_jbi_14304 crossref_primary_10_1111_jbi_14547 crossref_primary_10_1670_19_071 crossref_primary_10_1098_rspb_2020_1994 crossref_primary_10_1038_s41598_019_54573_5 crossref_primary_10_1093_zoolinnean_zlz001 crossref_primary_10_1093_zoolinnean_zlae133 crossref_primary_10_1643_h2020163 crossref_primary_10_3390_toxins13020124 crossref_primary_10_1016_j_jprot_2017_08_016 crossref_primary_10_1111_jbi_13438 crossref_primary_10_1016_j_isci_2020_101834 crossref_primary_10_1126_science_abe7941 crossref_primary_10_1111_jbi_14536 crossref_primary_10_1016_j_cub_2016_09_020 crossref_primary_10_1080_14772000_2025_2454011 crossref_primary_10_1098_rsos_230968 crossref_primary_10_3897_fr_27_109123 crossref_primary_10_1111_jzo_12914 crossref_primary_10_3897_zookeys_774_25332 crossref_primary_10_1080_14772000_2024_2383215 crossref_primary_10_1111_brv_12593 crossref_primary_10_1111_nph_15011 crossref_primary_10_1111_jeb_13097 crossref_primary_10_1080_21564574_2022_2062459 crossref_primary_10_1080_02724634_2023_2211646 crossref_primary_10_1371_journal_pone_0212683 crossref_primary_10_1038_s41598_019_41290_2 crossref_primary_10_1002_ece3_4548 crossref_primary_10_1002_jmor_21094 crossref_primary_10_7717_peerj_9016 crossref_primary_10_1080_21564574_2024_2357758 crossref_primary_10_1016_j_jnc_2021_125957 crossref_primary_10_3390_genes13050726 crossref_primary_10_1007_s00360_017_1128_z crossref_primary_10_1038_s41467_022_34217_5 crossref_primary_10_1098_rspb_2021_1391 crossref_primary_10_1002_dvg_23077 crossref_primary_10_1002_dvg_23078 crossref_primary_10_3897_fr_26_100059 crossref_primary_10_1655_HERPMONOGRAPHS_D_18_00005_1 crossref_primary_10_1080_24750263_2024_2376594 crossref_primary_10_1111_ddi_13616 crossref_primary_10_3390_ani13132180 crossref_primary_10_1111_cla_12460 crossref_primary_10_1186_s12862_021_01912_8 crossref_primary_10_3389_fgene_2020_556267 crossref_primary_10_1159_000538906 crossref_primary_10_3390_ijms20112782 crossref_primary_10_1080_23802359_2020_1787257 crossref_primary_10_1098_rspb_2022_0180 crossref_primary_10_1016_j_ympev_2019_04_002 crossref_primary_10_1111_joa_12952 crossref_primary_10_1093_zoolinnean_zlac024 crossref_primary_10_1371_journal_pone_0202339 crossref_primary_10_1093_molbev_msae255 crossref_primary_10_1080_14772000_2017_1401562 crossref_primary_10_1002_ece3_3356 crossref_primary_10_1016_j_cub_2021_05_040 crossref_primary_10_1093_gbe_evy157 crossref_primary_10_3390_cells9102268 crossref_primary_10_1098_rsos_170685 crossref_primary_10_1111_1365_2656_13997 crossref_primary_10_1093_biolinnean_blx104 crossref_primary_10_3390_ijms26031167 crossref_primary_10_3390_genes10121020 crossref_primary_10_1002_jcb_29925 crossref_primary_10_1038_s41598_024_60215_2 crossref_primary_10_1155_2017_8934285 crossref_primary_10_1016_j_ympev_2018_03_036 crossref_primary_10_1080_14772019_2023_2281494 crossref_primary_10_1016_j_chom_2017_07_019 crossref_primary_10_1163_15685381_00003078 crossref_primary_10_1093_zoolinnean_zlz168 crossref_primary_10_1080_14772019_2022_2068386 crossref_primary_10_1093_zoolinnean_zlaa094 crossref_primary_10_1016_j_geobios_2020_07_005 crossref_primary_10_1093_icb_icz020 crossref_primary_10_1093_zoolinnean_zlaa090 crossref_primary_10_1111_1749_4877_12808 crossref_primary_10_1111_jeb_14097 crossref_primary_10_1038_s41598_024_66451_w crossref_primary_10_1643_h2021058 crossref_primary_10_1111_brv_12788 crossref_primary_10_1098_rsbl_2020_0356 crossref_primary_10_3390_cells9112386 crossref_primary_10_1111_joa_12509 crossref_primary_10_1186_s12862_023_02180_4 crossref_primary_10_1016_j_annpal_2020_102407 crossref_primary_10_1645_24_33 crossref_primary_10_1016_j_toxicon_2024_108055 crossref_primary_10_1111_cla_12223 crossref_primary_10_1007_s10709_020_00107_1 crossref_primary_10_1590_1678_9199_jvatitd_2019_0041 crossref_primary_10_3390_ani12162015 crossref_primary_10_1093_icb_icz151 crossref_primary_10_1002_ece3_10791 crossref_primary_10_1073_pnas_2303844120 crossref_primary_10_1093_gbe_evz221 crossref_primary_10_1002_jmor_21051 crossref_primary_10_1002_ar_25448 crossref_primary_10_3390_d16090548 crossref_primary_10_1016_j_ympev_2020_107012 crossref_primary_10_1038_s41559_017_0240_5 crossref_primary_10_1007_s11538_022_01072_w crossref_primary_10_1111_evo_13543 crossref_primary_10_1371_journal_pone_0161070 crossref_primary_10_1111_evo_13305 crossref_primary_10_1093_sysbio_syw102 crossref_primary_10_1016_j_ympev_2018_10_023 crossref_primary_10_1111_jzo_12771 crossref_primary_10_1002_jmor_20708 crossref_primary_10_1111_joa_13295 crossref_primary_10_1111_zoj_12487 crossref_primary_10_1073_pnas_2318622122 crossref_primary_10_1038_s41598_017_09415_7 crossref_primary_10_1111_jbi_14823 crossref_primary_10_1016_j_zool_2017_11_007 crossref_primary_10_1093_zoolinnean_zlae073 crossref_primary_10_1111_jbi_13861 crossref_primary_10_1093_biolinnean_bly086 crossref_primary_10_3390_genes10070487 crossref_primary_10_1038_s41598_022_18649_z crossref_primary_10_1098_rspb_2017_0268 crossref_primary_10_1111_jeb_14123 crossref_primary_10_1080_14772000_2024_2319289 crossref_primary_10_3390_toxins13060427 crossref_primary_10_69905_b6360e77 crossref_primary_10_3897_vz_74_e110674 crossref_primary_10_1111_2041_210X_13603 crossref_primary_10_1242_dev_200345 crossref_primary_10_3390_genes9010005 crossref_primary_10_1111_zsc_12506 crossref_primary_10_1016_j_ympev_2018_10_022 crossref_primary_10_3389_fcell_2020_00572 crossref_primary_10_1007_s00239_024_10176_x crossref_primary_10_1111_geb_13812 crossref_primary_10_3390_ijms232415838 crossref_primary_10_1016_j_geobios_2023_06_007 crossref_primary_10_7717_peerj_17595 crossref_primary_10_1016_j_ympev_2017_11_004 crossref_primary_10_1111_jeb_13364 crossref_primary_10_1007_s00441_016_2506_7 crossref_primary_10_1093_zoolinnean_zlae096 crossref_primary_10_1007_s10592_024_01622_w crossref_primary_10_1111_jeb_13248 crossref_primary_10_1038_s41467_025_57547_6 crossref_primary_10_1371_journal_pone_0194680 crossref_primary_10_1093_molbev_msz263 crossref_primary_10_5852_ejt_2021_764_1473 crossref_primary_10_1093_biolinnean_blz077 crossref_primary_10_5252_geodiversitas2019v41a16 crossref_primary_10_1038_s41598_020_78939_2 crossref_primary_10_1093_molbev_msz024 crossref_primary_10_1016_j_ympev_2019_106725 crossref_primary_10_1093_biolinnean_blz190 crossref_primary_10_1086_687202 crossref_primary_10_1007_s00435_016_0338_3 crossref_primary_10_1111_jbi_13706 crossref_primary_10_1111_jeb_13373 crossref_primary_10_1016_j_ympev_2017_11_014 crossref_primary_10_1016_j_ympev_2017_11_013 crossref_primary_10_1111_geb_13808 crossref_primary_10_1002_jmor_20832 crossref_primary_10_3390_genes12111822 crossref_primary_10_1643_t2021090 crossref_primary_10_1098_rsos_171830 crossref_primary_10_1126_sciadv_abq8274 crossref_primary_10_1098_rstb_2020_0102 crossref_primary_10_1093_biolinnean_bly097 crossref_primary_10_1093_jhered_esad016 crossref_primary_10_1371_journal_pone_0202729 crossref_primary_10_1655_0733_1347_35_1_28 crossref_primary_10_1016_j_ympev_2020_107064 crossref_primary_10_1111_bij_12897 crossref_primary_10_1016_j_ympev_2023_107747 crossref_primary_10_1093_biolinnean_blz136 crossref_primary_10_1093_molbev_msz125 crossref_primary_10_3390_genes11060698 crossref_primary_10_1002_evl3_72 crossref_primary_10_1098_rsbl_2020_0735 crossref_primary_10_1098_rsbl_2018_0064 crossref_primary_10_3897_vz_71_e75967 crossref_primary_10_1093_zoolinnean_zlad074 crossref_primary_10_1007_s12549_024_00619_0 crossref_primary_10_1111_geb_12773 crossref_primary_10_1086_721091 crossref_primary_10_3390_toxins12100638 crossref_primary_10_1016_j_jprot_2020_103882 crossref_primary_10_1093_beheco_arx128 crossref_primary_10_1111_ele_13536 crossref_primary_10_1126_science_adh2449 crossref_primary_10_1002_ece3_3525 crossref_primary_10_18563_pv_44_1_e1 crossref_primary_10_1038_s41467_021_25136_y crossref_primary_10_1098_rsos_201273 crossref_primary_10_1111_bij_12751 crossref_primary_10_7717_peerj_11728 crossref_primary_10_1016_j_ympev_2021_107169 crossref_primary_10_1111_1365_2435_14557 crossref_primary_10_1002_jmor_70019 crossref_primary_10_1016_j_ympev_2017_10_013 crossref_primary_10_3390_genes14010099 crossref_primary_10_1080_14772000_2021_1953185 crossref_primary_10_3390_genes15060664 crossref_primary_10_1016_j_jprot_2020_103778 crossref_primary_10_1093_zoolinnean_zly002 crossref_primary_10_1111_mec_14717 crossref_primary_10_7717_peerj_11722 crossref_primary_10_7717_peerj_11602 crossref_primary_10_1002_ar_25288 crossref_primary_10_1016_j_jcz_2021_03_004 crossref_primary_10_1371_journal_pone_0233680 crossref_primary_10_1038_s41598_022_05735_5 crossref_primary_10_1080_09397140_2020_1711622 crossref_primary_10_1093_gbe_evad182 crossref_primary_10_2298_GABP240317010D crossref_primary_10_1111_ele_12783 crossref_primary_10_1186_s13059_018_1550_x crossref_primary_10_1016_j_jcz_2020_05_005 crossref_primary_10_1093_sysbio_syab075 crossref_primary_10_7717_peerj_4274 crossref_primary_10_1163_15685381_bja10114 crossref_primary_10_1177_0309133318765084 crossref_primary_10_1007_s00114_016_1422_8 crossref_primary_10_7554_eLife_44455 crossref_primary_10_1038_s41559_021_01555_4 crossref_primary_10_1038_s41598_018_28749_4 crossref_primary_10_1016_j_ympev_2022_107548 crossref_primary_10_1080_07352689_2019_1650517 crossref_primary_10_1111_jzo_13216 crossref_primary_10_1002_jmor_21629 crossref_primary_10_1080_14772000_2024_2338064 crossref_primary_10_1098_rspb_2018_2575 crossref_primary_10_1111_1755_0998_12681 crossref_primary_10_1093_jeb_voaf003 crossref_primary_10_1007_s12640_021_00413_2 crossref_primary_10_26515_rzsi_v119_i3_2019_143339 crossref_primary_10_1371_journal_pone_0216148 crossref_primary_10_1093_gbe_evae018 crossref_primary_10_1016_j_cretres_2016_12_001 crossref_primary_10_1111_jeb_13679 crossref_primary_10_3897_fr_27_e109123 crossref_primary_10_1186_s12917_017_1193_2 crossref_primary_10_1016_j_ympev_2022_107432 crossref_primary_10_1007_s11692_023_09618_z crossref_primary_10_1111_ele_13850 crossref_primary_10_1016_j_ympev_2021_107241 crossref_primary_10_1073_pnas_1820967116 crossref_primary_10_1111_1365_2656_14170 crossref_primary_10_3897_zookeys_1124_87861 crossref_primary_10_1038_s41437_020_0300_5 crossref_primary_10_1093_biolinnean_blaa076 crossref_primary_10_1093_biolinnean_blab164 crossref_primary_10_1111_ecog_04024 crossref_primary_10_1111_jeb_13886 crossref_primary_10_1002_dvdy_307 crossref_primary_10_1134_S2079086422050024 crossref_primary_10_1098_rspb_2020_2139 crossref_primary_10_1093_evolut_qpad101 crossref_primary_10_1002_evl3_249 crossref_primary_10_1111_jbi_15061 crossref_primary_10_1016_j_ympev_2016_03_006 crossref_primary_10_1016_j_zool_2021_125926 crossref_primary_10_1016_j_semcdb_2020_04_004 crossref_primary_10_1038_s41586_018_0093_3 crossref_primary_10_1002_ecs2_4718 crossref_primary_10_3390_genes14010178 crossref_primary_10_3897_zse_99_95923 crossref_primary_10_1111_jeb_13891 crossref_primary_10_1098_rsos_200317 crossref_primary_10_1093_biolinnean_blac023 crossref_primary_10_1111_joa_13102 crossref_primary_10_3390_ani15050743 crossref_primary_10_1016_j_ympev_2023_107839 crossref_primary_10_1186_s12862_017_1115_8 crossref_primary_10_1111_zsc_12565 crossref_primary_10_1098_rsbl_2017_0393 crossref_primary_10_3390_toxins17010019 crossref_primary_10_11646_zootaxa_5067_3_1 crossref_primary_10_1111_ele_12620 crossref_primary_10_3390_toxins11050255 crossref_primary_10_1016_j_ympev_2020_106807 crossref_primary_10_1600_036364420X16033963649282 crossref_primary_10_1093_biolinnean_blad052 crossref_primary_10_1126_sciadv_adi6765 crossref_primary_10_1016_j_ympev_2023_107907 crossref_primary_10_1016_j_ympev_2021_107109 crossref_primary_10_1016_j_ympev_2024_108272 crossref_primary_10_1111_geb_13355 crossref_primary_10_1016_j_gene_2022_146999 crossref_primary_10_1016_j_ympev_2019_01_015 crossref_primary_10_1016_j_ympev_2024_108274 crossref_primary_10_1186_s40851_016_0056_1 crossref_primary_10_1111_jbi_14070 crossref_primary_10_1016_j_ympev_2021_107345 crossref_primary_10_1038_s41559_018_0632_1 crossref_primary_10_1186_s12862_019_1501_5 crossref_primary_10_1242_jeb_229229 crossref_primary_10_1002_jmor_20979 crossref_primary_10_1002_jmor_20619 crossref_primary_10_2994_SAJH_D_16_00038_1 crossref_primary_10_1071_ZO23007 crossref_primary_10_1101_gr_240952_118 crossref_primary_10_1098_rsos_221139 crossref_primary_10_1080_02724634_2019_1622129 crossref_primary_10_3390_ani14030421 crossref_primary_10_1111_jeb_13236 crossref_primary_10_1016_j_ympev_2022_107635 crossref_primary_10_3390_genes10110934 crossref_primary_10_1080_02724634_2023_2184696 crossref_primary_10_14411_fp_2024_020 crossref_primary_10_3390_genes15040429 crossref_primary_10_1093_molbev_msaa003 crossref_primary_10_1111_1755_0998_13780 crossref_primary_10_1371_journal_pone_0216273 crossref_primary_10_3390_life10120342 crossref_primary_10_1016_j_ympev_2016_04_015 crossref_primary_10_3897_herpetozoa_34_e69176 crossref_primary_10_1111_geb_13694 crossref_primary_10_1111_zsc_12635 crossref_primary_10_1086_695495 crossref_primary_10_3389_fphys_2018_01630 crossref_primary_10_3390_jof9010099 crossref_primary_10_5852_cr_palevol2024v23a24 crossref_primary_10_69905_1rfh8x74 crossref_primary_10_3897_vz_73_e101372 crossref_primary_10_1111_jzs_12210 crossref_primary_10_1186_s12862_020_01690_9 crossref_primary_10_1002_ar_23944 crossref_primary_10_1002_jmor_20996 crossref_primary_10_1038_s41467_019_11943_x crossref_primary_10_1098_rstb_2020_0426 crossref_primary_10_1007_s13127_019_00393_4 crossref_primary_10_1093_gigascience_giac024 crossref_primary_10_1098_rsos_150277 crossref_primary_10_1086_719014 crossref_primary_10_1093_molbev_msab359 crossref_primary_10_1093_zoolinnean_zlaa151 crossref_primary_10_1134_S2079086419020026 crossref_primary_10_1111_evo_14482 crossref_primary_10_1111_zsc_12295 crossref_primary_10_1111_ecog_02343 crossref_primary_10_1242_jeb_175661 crossref_primary_10_24188_recia_v10_n1_2018_570 crossref_primary_10_1111_syen_12590 crossref_primary_10_3099_MCZ48_1 crossref_primary_10_1098_rspb_2017_0921 crossref_primary_10_1016_j_ympev_2022_107700 crossref_primary_10_1038_s41598_023_33244_6 crossref_primary_10_1098_rsos_172012 crossref_primary_10_1111_jbi_14392 crossref_primary_10_1093_biolinnean_blab119 crossref_primary_10_1098_rspb_2020_0823 crossref_primary_10_2174_1568026619666190802143252 crossref_primary_10_3390_genes15030371 crossref_primary_10_3390_genes9050239 crossref_primary_10_1111_brv_13141 crossref_primary_10_1002_jmor_21226 crossref_primary_10_1002_jmor_21347 crossref_primary_10_1093_biolinnean_blaa021 crossref_primary_10_1093_evlett_qrad008 crossref_primary_10_1186_s12983_020_00369_7 crossref_primary_10_1111_joa_12872 crossref_primary_10_1038_s41598_020_72509_2 crossref_primary_10_7554_eLife_66511 crossref_primary_10_1111_evo_13284 crossref_primary_10_1093_gbe_evac116 crossref_primary_10_1080_02724634_2022_2160644 crossref_primary_10_3390_genes13071185 crossref_primary_10_1080_14772019_2021_1894612 crossref_primary_10_1111_jbi_14380 crossref_primary_10_1111_brv_13028 crossref_primary_10_1098_rspb_2021_0200 crossref_primary_10_1111_jzs_12361 crossref_primary_10_1126_science_abb4305 crossref_primary_10_1111_zsc_12273 crossref_primary_10_1111_syen_12372 crossref_primary_10_1002_ar_24686 crossref_primary_10_1016_j_cub_2017_06_010 crossref_primary_10_12688_openreseurope_13795_2 crossref_primary_10_1242_jeb_242244 crossref_primary_10_1093_zoolinnean_zlz098 crossref_primary_10_3390_ijms25158464 crossref_primary_10_1016_j_cell_2023_05_030 crossref_primary_10_1038_s41598_019_44192_5 crossref_primary_10_1016_j_ympev_2017_07_014 crossref_primary_10_1093_zoolinnean_zlac001 crossref_primary_10_1016_j_sjbs_2021_04_055 crossref_primary_10_1093_icb_icaa015 crossref_primary_10_1098_rsos_221513 crossref_primary_10_1002_jez_b_22857 crossref_primary_10_1111_evo_13062 crossref_primary_10_1371_journal_pone_0178139 crossref_primary_10_1002_jmor_21495 crossref_primary_10_1038_s41437_018_0179_6 crossref_primary_10_7717_peerj_4404 crossref_primary_10_1093_sysbio_syab038 crossref_primary_10_1080_15627020_2024_2376119 crossref_primary_10_1098_rsos_240064 crossref_primary_10_1371_journal_pone_0192834 crossref_primary_10_1038_s41559_019_0945_8 crossref_primary_10_1098_rspb_2020_0613 crossref_primary_10_1093_biolinnean_blaa058 crossref_primary_10_1655_0733_1347_31_4_178 crossref_primary_10_1093_sysbio_syaa064 crossref_primary_10_1093_sysbio_syab031 crossref_primary_10_1098_rsos_160462 crossref_primary_10_1134_S1062359022040033 crossref_primary_10_1093_sysbio_syac003 crossref_primary_10_1111_jzs_12262 crossref_primary_10_3390_jdb9030032 crossref_primary_10_1016_j_jcz_2020_06_008 crossref_primary_10_1111_1749_4877_12506 crossref_primary_10_1098_rspb_2019_0910 crossref_primary_10_1038_s41598_024_55431_9 crossref_primary_10_1098_rspb_2016_2111 crossref_primary_10_1111_cla_12166 crossref_primary_10_1002_ece3_8885 crossref_primary_10_1126_sciadv_adc8875 crossref_primary_10_1002_ar_24892 crossref_primary_10_1016_j_ympev_2020_106781 crossref_primary_10_69905_v867s883 crossref_primary_10_1016_j_ympev_2019_106589 crossref_primary_10_1016_j_jtherbio_2022_103432 crossref_primary_10_1098_rsbl_2017_0293 crossref_primary_10_1186_s13358_024_00332_7 crossref_primary_10_1206_3986_1 crossref_primary_10_1093_zoolinnean_zlaa136 crossref_primary_10_1371_journal_pone_0218851 crossref_primary_10_1002_dvdy_72 crossref_primary_10_1093_gbe_evz196 crossref_primary_10_1002_jmor_21457 crossref_primary_10_1016_j_cretres_2023_105717 crossref_primary_10_3099_MCZ49_1 crossref_primary_10_1111_joa_13312 crossref_primary_10_1080_08912963_2024_2344789 crossref_primary_10_1111_evo_13378 crossref_primary_10_1016_j_ympev_2024_108104 crossref_primary_10_1080_21564574_2018_1423578 crossref_primary_10_1007_s00435_016_0332_9 crossref_primary_10_1016_j_cretres_2023_105606 crossref_primary_10_1098_rsos_201961 crossref_primary_10_1111_mec_15126 crossref_primary_10_1093_molbev_msad109 crossref_primary_10_1670_21_068 crossref_primary_10_1002_ece3_10032 crossref_primary_10_1002_jez_2349 crossref_primary_10_1093_sysbio_syac014 crossref_primary_10_1111_ede_12221 crossref_primary_10_1016_j_ympev_2017_08_017 crossref_primary_10_1002_ar_24630 crossref_primary_10_1002_jmor_21692 |
Cites_doi | 10.1093/sysbio/syq010 10.1111/ele.12168 10.1371/journal.pone.0039429 10.1038/nature06614 10.1093/bioinformatics/btl446 10.1126/science.1253451 10.1016/j.ympev.2014.08.023 10.1016/j.ympev.2014.10.004 10.1038/18592 10.1080/10635150390218330 10.1080/10635150500234583 10.1186/1471-2148-13-93 10.1371/journal.pone.0042925 10.1186/1741-7007-10-65 10.1017/S0952836904005278 10.1016/j.ympev.2014.08.006 10.1038/nature10382 10.1093/oxfordjournals.molbev.a026201 10.1038/nature11631 10.1093/sysbio/syr025 10.1093/oxfordjournals.molbev.a003974 10.1080/106351598260680 10.1098/rsbl.2007.0531 10.1080/10635150390197046 10.1111/j.1096-0031.2010.00329.x 10.1080/106351598260996 10.1093/sysbio/syv058 10.1016/j.ympev.2012.08.018 10.1371/journal.pbio.0040088 10.1093/molbev/msu080 10.1080/10635150500234625 10.1016/j.ympev.2015.02.002 10.1093/molbev/msu200 10.1371/journal.pone.0118199 10.1186/1471-2148-7-214 10.1093/molbev/mss020 10.1038/nature09864 10.1098/rsbl.2012.0703 10.1038/nature10526 10.1093/bioinformatics/btu033 10.1016/j.ympev.2010.08.024 10.1093/molbev/msh182 10.1093/bioinformatics/bts492 10.1073/pnas.191248498 10.1080/10635150802429642 10.1016/j.ympev.2011.06.012 10.1093/molbev/mss208 10.1080/10635150290102339 10.1093/sysbio/syr079 10.1038/nature08742 10.1093/molbev/msv026 10.1080/10635150600755453 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ympev.2015.10.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-9513 |
EndPage | 547 |
ExternalDocumentID | 26475614 10_1016_j_ympev_2015_10_009 S1055790315003127 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W K-O KOM LG5 LW8 LX2 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 UNMZH WUQ XJT XPP XSW YK3 ZCG ZKB ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c458t-87bef4f9ad6e21b9575b6e55e8d7dbd9fe7b66808dd3ed27783defa86766947c3 |
IEDL.DBID | .~1 |
ISSN | 1055-7903 |
IngestDate | Fri Jul 11 09:14:20 EDT 2025 Tue Aug 05 09:42:46 EDT 2025 Mon Jul 21 05:55:13 EDT 2025 Tue Jul 01 00:44:23 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Fri Feb 23 02:26:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Missing data Squamata Phylogeny Phylogenomic Supermatrix |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-87bef4f9ad6e21b9575b6e55e8d7dbd9fe7b66808dd3ed27783defa86766947c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26475614 |
PQID | 1738483196 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1825426243 proquest_miscellaneous_1738483196 pubmed_primary_26475614 crossref_primary_10_1016_j_ympev_2015_10_009 crossref_citationtrail_10_1016_j_ympev_2015_10_009 elsevier_sciencedirect_doi_10_1016_j_ympev_2015_10_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 2016-01-00 2016-Jan 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular phylogenetics and evolution |
PublicationTitleAlternate | Mol Phylogenet Evol |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Gamble, Greenbaum, Jackman, Russell, Bauer (b0040) 2012; 7 Reeder, Townsend, Mulcahy, Noonan, Wood, Sites, Wiens (b0145) 2015; 10 Poe, Swofford (b0105) 1999; 398 Poe (b0110) 2003; 52 Stanley, Bauer, Jackman, Branch, Mouton (b0205) 2011; 58 Lanfear, Calcott, Ho, Guindon (b0090) 2012; 29 Drummond, Ho, Phillips, Rambaut (b0025) 2006; 4 Philippe, Snell, Bapteste, Lopez, Holland, Casane (b0115) 2004; 21 Zheng, Wiens (b0270) 2015; 85 Uetz, P., Hošek, J. (Eds.), 2015. The Reptile Database. Wiens (b0240) 2003; 52 Stamatakis, Hoover, Rougemont (b0190) 2008; 57 Lambert, Reeder, Wiens (b0085) 2015; 82 Dunn, Hejnol, Matus, Pang, Browne, Smith, Seaver, Rouse, Obst, Edgecombe, Sørensen, Haddock, Schmidt-Rhaesa, Okusu, Kristensen, Wheeler, Martindale, Giribet (b0030) 2008; 452 Graybeal (b0045) 1998; 47 Wiens, Tiu (b0255) 2012; 7 Heath, Hedtke, Hillis (b0055) 2008; 46 Kocot, Cannon, Todt, Citarella, Kohn, Meyer, Santos, Schander, Moroz, Leib, Halanych (b0080) 2011; 477 . Wiens (b0245) 2005; 54 Pyron, Wiens (b0120) 2011; 61 Struck, Paul, Hill, Hartmann, Hösel, Kube, Lieb, Meyer, Tiedemann, Purschke (b0215) 2011; 471 Chiari, Cahais, Galtier, Delsuc (b0010) 2012; 10 Stamatakis, A., 2014b. The RAxML v8.1.X Manual. Mulcahy, Noonan, Moss, Townsend, Reeder, Sites, Wiens (b0100) 2012; 65 Drummond, Rambaut (b0020) 2007; 7 Lawson, Slowinski, Burbrink (b0095) 2004; 263 Wiens, Fetzner, Parkinson, Reeder (b0260) 2005; 54 Jetz, Thomas, Joy, Hartmann, Mooers (b0065) 2012; 491 Zwickl, Hillis (b0275) 2002; 51 Roure, Baurain, Philippe (b0160) 2013; 30 Anisimova, Gascuel (b0005) 2006; 55 Regier, Shultz, Zwick, Hussey, Ball, Wetzer, Martin, Cunningham (b0150) 2010; 463 Pyron, Burbrink (b0130) 2014; 17 Smith, Wilson, Goetz, Feehery, Andrade, Rouse, Giribet, Dunn (b0180) 2012; 480 Guindon, Dufayard, Lefort, Anisimova, Hordijk, Gascuel (b0050) 2010; 59 Kainer, Lanfear (b0075) 2015; 32 Rannala, Huelsenbeck, Yang, Nielsen (b0140) 1998; 47 Wiens, Morrill (b0250) 2011; 60 Vaidya, Lohman, Meier (b0225) 2011; 27 Vidal, Azvolinsky, Cruaud, Hedges (b0230) 2007; 4 Rosenberg, Kumar (b0155) 2001; 98 Smith, O’Meara (b0175) 2012; 28 Streicher, J.W., Schulte, J.A., Wiens, J.J., 2015. How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in iguanian lizards. Syst. Biol. (in press). Jiang, Chen, Wang, Li, Wiens (b0070) 2014; 80 Filipski, Murillo, Freydenzon, Tamura, Kumar (b0035) 2014; 31 Stamatakis (b0195) 2014; 30 (accessed 09.11.14). Wiens, Hutter, Mulcahy, Noonan, Townsend, Sites, Reeder (b0265) 2012; 8 Pyron, Burbrink, Wiens (b0125) 2013; 13 Sanderson (b0165) 2002; 19 Weigert, Helm, Meyer, Nickel, Arendt, Hausdorf, Santos, Halanych, Purschke, Bleidorn, Struck (b0235) 2014; 31 Jarvis, Mirarab, Aberer, Li, Houde, Li (b0060) 2014; 346 Cho, Zwick, Regier, Mitter, Cummings, Yao, Du, Zhao, Kawahara, Weller, Davis, Baixeras, Brown, Parr (b0015) 2011; 60 (accessed 18.02.15). Pyron, Hendry, Chou, Lemmon, Lemmon, Burbrink (b0135) 2014; 81 Stamatakis (b0185) 2006; 22 Shimodaira, Hasegawa (b0170) 1999; 16 Rosenberg (10.1016/j.ympev.2015.10.009_b0155) 2001; 98 Gamble (10.1016/j.ympev.2015.10.009_b0040) 2012; 7 10.1016/j.ympev.2015.10.009_b0220 Kainer (10.1016/j.ympev.2015.10.009_b0075) 2015; 32 Struck (10.1016/j.ympev.2015.10.009_b0215) 2011; 471 Kocot (10.1016/j.ympev.2015.10.009_b0080) 2011; 477 Wiens (10.1016/j.ympev.2015.10.009_b0250) 2011; 60 Zwickl (10.1016/j.ympev.2015.10.009_b0275) 2002; 51 Dunn (10.1016/j.ympev.2015.10.009_b0030) 2008; 452 Philippe (10.1016/j.ympev.2015.10.009_b0115) 2004; 21 Stamatakis (10.1016/j.ympev.2015.10.009_b0190) 2008; 57 Smith (10.1016/j.ympev.2015.10.009_b0180) 2012; 480 Graybeal (10.1016/j.ympev.2015.10.009_b0045) 1998; 47 Vaidya (10.1016/j.ympev.2015.10.009_b0225) 2011; 27 Anisimova (10.1016/j.ympev.2015.10.009_b0005) 2006; 55 Vidal (10.1016/j.ympev.2015.10.009_b0230) 2007; 4 Wiens (10.1016/j.ympev.2015.10.009_b0265) 2012; 8 Weigert (10.1016/j.ympev.2015.10.009_b0235) 2014; 31 Mulcahy (10.1016/j.ympev.2015.10.009_b0100) 2012; 65 Heath (10.1016/j.ympev.2015.10.009_b0055) 2008; 46 Roure (10.1016/j.ympev.2015.10.009_b0160) 2013; 30 Lawson (10.1016/j.ympev.2015.10.009_b0095) 2004; 263 Zheng (10.1016/j.ympev.2015.10.009_b0270) 2015; 85 Pyron (10.1016/j.ympev.2015.10.009_b0120) 2011; 61 Wiens (10.1016/j.ympev.2015.10.009_b0260) 2005; 54 Wiens (10.1016/j.ympev.2015.10.009_b0255) 2012; 7 Lambert (10.1016/j.ympev.2015.10.009_b0085) 2015; 82 10.1016/j.ympev.2015.10.009_b0200 Shimodaira (10.1016/j.ympev.2015.10.009_b0170) 1999; 16 Chiari (10.1016/j.ympev.2015.10.009_b0010) 2012; 10 Poe (10.1016/j.ympev.2015.10.009_b0110) 2003; 52 Stanley (10.1016/j.ympev.2015.10.009_b0205) 2011; 58 Wiens (10.1016/j.ympev.2015.10.009_b0245) 2005; 54 Drummond (10.1016/j.ympev.2015.10.009_b0025) 2006; 4 Guindon (10.1016/j.ympev.2015.10.009_b0050) 2010; 59 Filipski (10.1016/j.ympev.2015.10.009_b0035) 2014; 31 Wiens (10.1016/j.ympev.2015.10.009_b0240) 2003; 52 Lanfear (10.1016/j.ympev.2015.10.009_b0090) 2012; 29 10.1016/j.ympev.2015.10.009_b0210 Jetz (10.1016/j.ympev.2015.10.009_b0065) 2012; 491 Rannala (10.1016/j.ympev.2015.10.009_b0140) 1998; 47 Reeder (10.1016/j.ympev.2015.10.009_b0145) 2015; 10 Smith (10.1016/j.ympev.2015.10.009_b0175) 2012; 28 Pyron (10.1016/j.ympev.2015.10.009_b0130) 2014; 17 Poe (10.1016/j.ympev.2015.10.009_b0105) 1999; 398 Stamatakis (10.1016/j.ympev.2015.10.009_b0185) 2006; 22 Pyron (10.1016/j.ympev.2015.10.009_b0125) 2013; 13 Stamatakis (10.1016/j.ympev.2015.10.009_b0195) 2014; 30 Sanderson (10.1016/j.ympev.2015.10.009_b0165) 2002; 19 Drummond (10.1016/j.ympev.2015.10.009_b0020) 2007; 7 Cho (10.1016/j.ympev.2015.10.009_b0015) 2011; 60 Regier (10.1016/j.ympev.2015.10.009_b0150) 2010; 463 Jarvis (10.1016/j.ympev.2015.10.009_b0060) 2014; 346 Pyron (10.1016/j.ympev.2015.10.009_b0135) 2014; 81 Jiang (10.1016/j.ympev.2015.10.009_b0070) 2014; 80 |
References_xml | – volume: 46 start-page: 239 year: 2008 end-page: 257 ident: b0055 article-title: Taxon sampling and the accuracy of phylogenetic analyses publication-title: J. Syst. Evol. – volume: 22 start-page: 2688 year: 2006 end-page: 2690 ident: b0185 article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics – volume: 480 start-page: 364 year: 2012 end-page: 367 ident: b0180 article-title: Resolving the evolutionary relationships of molluscs with phylogenomic tools publication-title: Nature – volume: 4 start-page: 115 year: 2007 end-page: 118 ident: b0230 article-title: Origin of tropical American burrowing reptiles by transatlantic rafting publication-title: Biol. Lett. – volume: 32 start-page: 1611 year: 2015 end-page: 1627 ident: b0075 article-title: The effects of partitioning on phylogenetic inference publication-title: Mol. Biol. Evol. – volume: 463 start-page: 1079 year: 2010 end-page: 1083 ident: b0150 article-title: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences publication-title: Nature – volume: 54 start-page: 731 year: 2005 end-page: 742 ident: b0245 article-title: Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? publication-title: Syst. Biol. – volume: 82 start-page: 146 year: 2015 end-page: 155 ident: b0085 article-title: When do species tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny publication-title: Mol. Phylogenet. Evol. – reference: > (accessed 18.02.15). – volume: 47 start-page: 702 year: 1998 end-page: 710 ident: b0140 article-title: Taxon sampling and the accuracy of large phylogenies publication-title: Syst. Biol. – reference: Stamatakis, A., 2014b. The RAxML v8.1.X Manual. < – volume: 54 start-page: 719 year: 2005 end-page: 748 ident: b0260 article-title: Hylid frog phylogeny and sampling strategies for speciose clades publication-title: Syst. Biol. – volume: 263 start-page: 285 year: 2004 end-page: 294 ident: b0095 article-title: A molecular approach to discerning the phylogenetic placement of the enigmatic snake publication-title: J. Zool. – reference: Streicher, J.W., Schulte, J.A., Wiens, J.J., 2015. How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in iguanian lizards. Syst. Biol. (in press). – volume: 7 start-page: 214 year: 2007 ident: b0020 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC Evol. Biol. – volume: 51 start-page: 588 year: 2002 end-page: 589 ident: b0275 article-title: Increased taxon sampling greatly reduces phylogenetic error publication-title: Syst. Biol. – volume: 16 start-page: 1114 year: 1999 end-page: 1116 ident: b0170 article-title: Multiple comparisons of log-likelihoods with applications to phylogenetic inference publication-title: Mol. Biol. Evol. – reference: Uetz, P., Hošek, J. (Eds.), 2015. The Reptile Database. < – volume: 57 start-page: 758 year: 2008 end-page: 771 ident: b0190 article-title: A rapid bootstrap algorithm for the RAxML web servers publication-title: Syst. Biol. – volume: 491 start-page: 444 year: 2012 end-page: 448 ident: b0065 article-title: Global diversity of birds in space and time publication-title: Nature – volume: 60 start-page: 782 year: 2011 end-page: 796 ident: b0015 article-title: Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? publication-title: Syst. Biol. – volume: 398 start-page: 299 year: 1999 end-page: 300 ident: b0105 article-title: Taxon sampling revisited publication-title: Nature – volume: 30 start-page: 197 year: 2013 end-page: 214 ident: b0160 article-title: Impact of missing data on phylogenies inferred from empirical phylogenomic data sets publication-title: Mol. Biol. Evol. – volume: 471 start-page: 95 year: 2011 end-page: 98 ident: b0215 article-title: Phylogenomic analyses unravel annelid evolution publication-title: Nature – volume: 28 start-page: 2689 year: 2012 end-page: 2690 ident: b0175 article-title: TreePL: divergence time estimation using penalized likelihood for large phylogenies publication-title: Bioinformatics – volume: 52 start-page: 423 year: 2003 end-page: 428 ident: b0110 article-title: Evaluation of the strategy of long branch subdivision to improve accuracy of phylogenetic methods publication-title: Syst. Biol. – volume: 29 start-page: 1695 year: 2012 end-page: 1701 ident: b0090 article-title: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses publication-title: Mol. Biol. Evol. – volume: 65 start-page: 974 year: 2012 end-page: 991 ident: b0100 article-title: Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles publication-title: Mol. Phylogenet. Evol. – volume: 7 start-page: e42925 year: 2012 ident: b0255 article-title: Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling publication-title: PLoS ONE – volume: 80 start-page: 308 year: 2014 end-page: 318 ident: b0070 article-title: Should genes with missing data be excluded from phylogenetic analyses? publication-title: Mol. Phylogenet. Evol. – volume: 8 start-page: 1043 year: 2012 end-page: 1046 ident: b0265 article-title: Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species publication-title: Biol. Lett. – volume: 452 start-page: 745 year: 2008 end-page: 749 ident: b0030 article-title: Broad phylogenomic sampling improves resolution of the animal tree of life publication-title: Nature – volume: 61 start-page: 543 year: 2011 end-page: 583 ident: b0120 article-title: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians publication-title: Mol. Phylogenet. Evol. – volume: 30 start-page: 1312 year: 2014 end-page: 1313 ident: b0195 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics – volume: 17 start-page: 13 year: 2014 end-page: 21 ident: b0130 article-title: Early origin of viviparity and multiple reversions to oviparity in squamate reptiles publication-title: Ecol. Lett. – volume: 4 start-page: e88 year: 2006 ident: b0025 article-title: Relaxed phylogenetics and dating with confidence publication-title: PLoS Biol. – volume: 10 start-page: e0118199 year: 2015 ident: b0145 article-title: Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa publication-title: PLoS ONE – volume: 47 start-page: 9 year: 1998 end-page: 17 ident: b0045 article-title: Is it better to add taxa or characters to a difficult phylogenetic problem? publication-title: Syst. Biol. – volume: 27 start-page: 171 year: 2011 end-page: 180 ident: b0225 article-title: SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information publication-title: Cladistics – volume: 477 start-page: 452 year: 2011 end-page: 456 ident: b0080 article-title: Phylogenomics reveals deep molluscan relationships publication-title: Nature – reference: > (accessed 09.11.14). – volume: 13 start-page: 93 year: 2013 ident: b0125 article-title: A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes publication-title: BMC Evol. Biol. – volume: 58 start-page: 53 year: 2011 end-page: 70 ident: b0205 article-title: Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizards (Squamata: Cordylidae) publication-title: Mol. Phylogenet. Evol. – volume: 21 start-page: 1740 year: 2004 end-page: 1752 ident: b0115 article-title: Phylogenomics of eukaryotes: impact of missing data on large alignments publication-title: Mol. Biol. Evol. – volume: 19 start-page: 101 year: 2002 end-page: 109 ident: b0165 article-title: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach publication-title: Mol. Biol. Evol. – volume: 60 start-page: 719 year: 2011 end-page: 731 ident: b0250 article-title: Missing data in phylogenetic analysis: reconciling results from simulations and empirical data publication-title: Syst. Biol. – volume: 81 start-page: 221 year: 2014 end-page: 231 ident: b0135 article-title: Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia) publication-title: Mol. Phylogenet. Evol. – volume: 10 start-page: 65 year: 2012 ident: b0010 article-title: Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria) publication-title: BMC Biol. – volume: 98 start-page: 10751 year: 2001 end-page: 10756 ident: b0155 article-title: Incomplete taxon sampling is not a problem for phylogenetic inference publication-title: Proc. Natl. Acad. Sci. U.S.A. – reference: . – volume: 7 start-page: e39429 year: 2012 ident: b0040 article-title: Repeated origin and loss of adhesive toepads in geckos publication-title: PLoS ONE – volume: 31 start-page: 2542 year: 2014 end-page: 2550 ident: b0035 article-title: Prospects for building large timetrees using molecular data with incomplete gene coverage among species publication-title: Mol. Biol. Evol. – volume: 55 start-page: 539 year: 2006 end-page: 552 ident: b0005 article-title: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative publication-title: Syst. Biol. – volume: 59 start-page: 307 year: 2010 end-page: 321 ident: b0050 article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 publication-title: Syst. Biol. – volume: 52 start-page: 528 year: 2003 end-page: 538 ident: b0240 article-title: Missing data, incomplete taxa, and phylogenetic accuracy publication-title: Syst. Biol. – volume: 85 start-page: 41 year: 2015 end-page: 49 ident: b0270 article-title: Do missing data influence the accuracy of divergence-time estimation with BEAST? publication-title: Mol. Phylogenet. Evol. – volume: 346 start-page: 1320 year: 2014 end-page: 1331 ident: b0060 article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds publication-title: Science – volume: 31 start-page: 1391 year: 2014 end-page: 1401 ident: b0235 article-title: Illuminating the base of the annelid tree using transcriptomics publication-title: Mol. Biol. Evol. – volume: 59 start-page: 307 year: 2010 ident: 10.1016/j.ympev.2015.10.009_b0050 article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0 publication-title: Syst. Biol. doi: 10.1093/sysbio/syq010 – volume: 17 start-page: 13 year: 2014 ident: 10.1016/j.ympev.2015.10.009_b0130 article-title: Early origin of viviparity and multiple reversions to oviparity in squamate reptiles publication-title: Ecol. Lett. doi: 10.1111/ele.12168 – volume: 7 start-page: e39429 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0040 article-title: Repeated origin and loss of adhesive toepads in geckos publication-title: PLoS ONE doi: 10.1371/journal.pone.0039429 – volume: 452 start-page: 745 year: 2008 ident: 10.1016/j.ympev.2015.10.009_b0030 article-title: Broad phylogenomic sampling improves resolution of the animal tree of life publication-title: Nature doi: 10.1038/nature06614 – volume: 22 start-page: 2688 year: 2006 ident: 10.1016/j.ympev.2015.10.009_b0185 article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 – volume: 346 start-page: 1320 year: 2014 ident: 10.1016/j.ympev.2015.10.009_b0060 article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds publication-title: Science doi: 10.1126/science.1253451 – volume: 81 start-page: 221 year: 2014 ident: 10.1016/j.ympev.2015.10.009_b0135 article-title: Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia) publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2014.08.023 – volume: 82 start-page: 146 year: 2015 ident: 10.1016/j.ympev.2015.10.009_b0085 article-title: When do species tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2014.10.004 – volume: 398 start-page: 299 year: 1999 ident: 10.1016/j.ympev.2015.10.009_b0105 article-title: Taxon sampling revisited publication-title: Nature doi: 10.1038/18592 – volume: 52 start-page: 528 year: 2003 ident: 10.1016/j.ympev.2015.10.009_b0240 article-title: Missing data, incomplete taxa, and phylogenetic accuracy publication-title: Syst. Biol. doi: 10.1080/10635150390218330 – volume: 54 start-page: 731 year: 2005 ident: 10.1016/j.ympev.2015.10.009_b0245 article-title: Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? publication-title: Syst. Biol. doi: 10.1080/10635150500234583 – volume: 13 start-page: 93 year: 2013 ident: 10.1016/j.ympev.2015.10.009_b0125 article-title: A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-13-93 – volume: 7 start-page: e42925 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0255 article-title: Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling publication-title: PLoS ONE doi: 10.1371/journal.pone.0042925 – volume: 10 start-page: 65 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0010 article-title: Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria) publication-title: BMC Biol. doi: 10.1186/1741-7007-10-65 – volume: 263 start-page: 285 year: 2004 ident: 10.1016/j.ympev.2015.10.009_b0095 article-title: A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia publication-title: J. Zool. doi: 10.1017/S0952836904005278 – volume: 80 start-page: 308 year: 2014 ident: 10.1016/j.ympev.2015.10.009_b0070 article-title: Should genes with missing data be excluded from phylogenetic analyses? publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2014.08.006 – volume: 477 start-page: 452 year: 2011 ident: 10.1016/j.ympev.2015.10.009_b0080 article-title: Phylogenomics reveals deep molluscan relationships publication-title: Nature doi: 10.1038/nature10382 – volume: 16 start-page: 1114 year: 1999 ident: 10.1016/j.ympev.2015.10.009_b0170 article-title: Multiple comparisons of log-likelihoods with applications to phylogenetic inference publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026201 – volume: 491 start-page: 444 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0065 article-title: Global diversity of birds in space and time publication-title: Nature doi: 10.1038/nature11631 – volume: 46 start-page: 239 year: 2008 ident: 10.1016/j.ympev.2015.10.009_b0055 article-title: Taxon sampling and the accuracy of phylogenetic analyses publication-title: J. Syst. Evol. – ident: 10.1016/j.ympev.2015.10.009_b0200 – volume: 60 start-page: 719 year: 2011 ident: 10.1016/j.ympev.2015.10.009_b0250 article-title: Missing data in phylogenetic analysis: reconciling results from simulations and empirical data publication-title: Syst. Biol. doi: 10.1093/sysbio/syr025 – volume: 19 start-page: 101 year: 2002 ident: 10.1016/j.ympev.2015.10.009_b0165 article-title: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a003974 – volume: 47 start-page: 702 year: 1998 ident: 10.1016/j.ympev.2015.10.009_b0140 article-title: Taxon sampling and the accuracy of large phylogenies publication-title: Syst. Biol. doi: 10.1080/106351598260680 – volume: 4 start-page: 115 year: 2007 ident: 10.1016/j.ympev.2015.10.009_b0230 article-title: Origin of tropical American burrowing reptiles by transatlantic rafting publication-title: Biol. Lett. doi: 10.1098/rsbl.2007.0531 – volume: 52 start-page: 423 year: 2003 ident: 10.1016/j.ympev.2015.10.009_b0110 article-title: Evaluation of the strategy of long branch subdivision to improve accuracy of phylogenetic methods publication-title: Syst. Biol. doi: 10.1080/10635150390197046 – volume: 27 start-page: 171 year: 2011 ident: 10.1016/j.ympev.2015.10.009_b0225 article-title: SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information publication-title: Cladistics doi: 10.1111/j.1096-0031.2010.00329.x – volume: 47 start-page: 9 year: 1998 ident: 10.1016/j.ympev.2015.10.009_b0045 article-title: Is it better to add taxa or characters to a difficult phylogenetic problem? publication-title: Syst. Biol. doi: 10.1080/106351598260996 – ident: 10.1016/j.ympev.2015.10.009_b0210 doi: 10.1093/sysbio/syv058 – volume: 65 start-page: 974 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0100 article-title: Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2012.08.018 – volume: 4 start-page: e88 year: 2006 ident: 10.1016/j.ympev.2015.10.009_b0025 article-title: Relaxed phylogenetics and dating with confidence publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040088 – volume: 31 start-page: 1391 year: 2014 ident: 10.1016/j.ympev.2015.10.009_b0235 article-title: Illuminating the base of the annelid tree using transcriptomics publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu080 – volume: 54 start-page: 719 year: 2005 ident: 10.1016/j.ympev.2015.10.009_b0260 article-title: Hylid frog phylogeny and sampling strategies for speciose clades publication-title: Syst. Biol. doi: 10.1080/10635150500234625 – volume: 85 start-page: 41 year: 2015 ident: 10.1016/j.ympev.2015.10.009_b0270 article-title: Do missing data influence the accuracy of divergence-time estimation with BEAST? publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2015.02.002 – volume: 31 start-page: 2542 year: 2014 ident: 10.1016/j.ympev.2015.10.009_b0035 article-title: Prospects for building large timetrees using molecular data with incomplete gene coverage among species publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu200 – ident: 10.1016/j.ympev.2015.10.009_b0220 – volume: 10 start-page: e0118199 year: 2015 ident: 10.1016/j.ympev.2015.10.009_b0145 article-title: Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa publication-title: PLoS ONE doi: 10.1371/journal.pone.0118199 – volume: 7 start-page: 214 year: 2007 ident: 10.1016/j.ympev.2015.10.009_b0020 article-title: BEAST: Bayesian evolutionary analysis by sampling trees publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-7-214 – volume: 29 start-page: 1695 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0090 article-title: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss020 – volume: 471 start-page: 95 year: 2011 ident: 10.1016/j.ympev.2015.10.009_b0215 article-title: Phylogenomic analyses unravel annelid evolution publication-title: Nature doi: 10.1038/nature09864 – volume: 8 start-page: 1043 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0265 article-title: Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species publication-title: Biol. Lett. doi: 10.1098/rsbl.2012.0703 – volume: 480 start-page: 364 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0180 article-title: Resolving the evolutionary relationships of molluscs with phylogenomic tools publication-title: Nature doi: 10.1038/nature10526 – volume: 30 start-page: 1312 year: 2014 ident: 10.1016/j.ympev.2015.10.009_b0195 article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 58 start-page: 53 year: 2011 ident: 10.1016/j.ympev.2015.10.009_b0205 article-title: Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizards (Squamata: Cordylidae) publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2010.08.024 – volume: 21 start-page: 1740 year: 2004 ident: 10.1016/j.ympev.2015.10.009_b0115 article-title: Phylogenomics of eukaryotes: impact of missing data on large alignments publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh182 – volume: 28 start-page: 2689 year: 2012 ident: 10.1016/j.ympev.2015.10.009_b0175 article-title: TreePL: divergence time estimation using penalized likelihood for large phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts492 – volume: 98 start-page: 10751 year: 2001 ident: 10.1016/j.ympev.2015.10.009_b0155 article-title: Incomplete taxon sampling is not a problem for phylogenetic inference publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.191248498 – volume: 57 start-page: 758 year: 2008 ident: 10.1016/j.ympev.2015.10.009_b0190 article-title: A rapid bootstrap algorithm for the RAxML web servers publication-title: Syst. Biol. doi: 10.1080/10635150802429642 – volume: 61 start-page: 543 year: 2011 ident: 10.1016/j.ympev.2015.10.009_b0120 article-title: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2011.06.012 – volume: 30 start-page: 197 year: 2013 ident: 10.1016/j.ympev.2015.10.009_b0160 article-title: Impact of missing data on phylogenies inferred from empirical phylogenomic data sets publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss208 – volume: 51 start-page: 588 year: 2002 ident: 10.1016/j.ympev.2015.10.009_b0275 article-title: Increased taxon sampling greatly reduces phylogenetic error publication-title: Syst. Biol. doi: 10.1080/10635150290102339 – volume: 60 start-page: 782 year: 2011 ident: 10.1016/j.ympev.2015.10.009_b0015 article-title: Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)? publication-title: Syst. Biol. doi: 10.1093/sysbio/syr079 – volume: 463 start-page: 1079 year: 2010 ident: 10.1016/j.ympev.2015.10.009_b0150 article-title: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences publication-title: Nature doi: 10.1038/nature08742 – volume: 32 start-page: 1611 year: 2015 ident: 10.1016/j.ympev.2015.10.009_b0075 article-title: The effects of partitioning on phylogenetic inference publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msv026 – volume: 55 start-page: 539 year: 2006 ident: 10.1016/j.ympev.2015.10.009_b0005 article-title: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative publication-title: Syst. Biol. doi: 10.1080/10635150600755453 |
SSID | ssj0011595 |
Score | 2.6317713 |
Snippet | [Display omitted]
•Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many... Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 537 |
SubjectTerms | Animals data collection genes Likelihood Functions lizards Lizards - classification Lizards - genetics loci Missing data Phylogenomic Phylogeny Sequence Analysis, DNA snakes Snakes - classification Snakes - genetics Squamata Supermatrix |
Title | Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species |
URI | https://dx.doi.org/10.1016/j.ympev.2015.10.009 https://www.ncbi.nlm.nih.gov/pubmed/26475614 https://www.proquest.com/docview/1738483196 https://www.proquest.com/docview/1825426243 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWqokpcUKEFAm3lShxA6jbE6689VhFVSqGqgEq9rez1LApUmzSboObCb-Gndsa7G6mH5sApiteOLM945s1mZh5j74IoB7IY-MSiL0ow3oDEukwl1hsf0uC9BCpO_nqhR1fy87W63mDDrhaG0ipb29_Y9Git25F-e5r96Xjc_07UjiYjlgLSTEEV5VIa0vLjv6s0DwQ8kXmFJic0u-s8FHO8lghN_1B-lzqOKV7ZY97pMfQZvdDpNnvWwkd-0uzwOduA6gXbaggllzvsH15vHykfOB4fjkGsOuauCrxeTMkKz2fjO951Eof6KD5znDjmE5QXRc8IQlfLlxxRLa9vFw6XAp9REswN1Pw9pYPNQt38dOV-Q_2Bk0sMfFJxJfhPMqLxKYIxwamiE4PyXXZ1-unHcJS0HAxJIZWdo7H0UMoyc0GDGPgM0Z3XoBTYYIIPWQnGa6LvCCGFIIyxaYDSWW20zqQp0pdss5pU8JrxQmBwR_hG-UJKJ20hPjoVlJepyIwoekx0Z58XbYNy4sm4ybtMtF95FFhOAqNBFFiPHa0WTZv-HOun606o-QM1y9GDrF942KlAjheQ_lVxFUwWdT4wqZWWLNmaORSHCy1k2mOvGv1Z7RYRqaF2rG_-d2tv2VP81r4X2mOb89kC9hEpzf1BvAoH7MnJ8NuXS_o8Ox9d3ANWmBY_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6FMN6GfZu9tSAHTagbhpZLx-LYkW6trmsBXozJIseshVOGidF82_6U0fKdoAdmsOukmgIIkV-tPhg7EsQ5VAWQ59YtEUJ-huQWJepxHrjQxq8l0DJyedjPbqUP67U1RY76nJhKKyy1f2NTo_auh0ZtKc5mE0mg5_U2tFk1KWAJFOYR2ybqlOpHts-PDkdjdePCWixVXz0VFSd8SDtig_FMK8VotNbCvFS-zHKK3vIQD0EQKMhOn7GnrYIkh82m3zOtqB6wR43PSVXL9k93nAfuz5wPEEcg5h4zF0VeL2ckSJezCd3vCsmDvVenHOc2swnyDJyoBGHrslXHIEtr2-WDkmBzykO5hpq_pUiwuahbj5duT9Qf-NkFQOfVlwJ_ov0aJxFPCY4JXWiX_6KXR5_vzgaJW0bhqSQyi5QX3ooZZm5oEEMfYYAz2tQCmwwwYesBOM1dfAIIYUgjLFpgNJZbbTOpCnS16xXTSvYZbwQ6N8RxFG-kNJJW4gDp4LyMhWZEUWfie7s86KtUU6tMq7zLhjtdx4ZlhPDaBAZ1md7a6JZU6Jj83LdMTX_R9JyNCKbCT93IpDjHaSHFVfBdFnnQ5NaaUmZbVhDrrjQQqZ99qaRn_VuEZQaqsj69n-39ok9GV2cn-VnJ-PTd2wHZ9rfRO9ZbzFfwgcETgv_sb0YfwEUuBdb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+phylogenomic+and+supermatrix+approaches%2C+and+a+time-calibrated+phylogeny+for+squamate+reptiles+%28lizards+and+snakes%29+based+on+52+genes+and+4162+species&rft.jtitle=Molecular+phylogenetics+and+evolution&rft.au=Zheng%2C+Yuchi&rft.au=Wiens%2C+John+J.&rft.date=2016-01-01&rft.issn=1055-7903&rft.volume=94&rft.spage=537&rft.epage=547&rft_id=info:doi/10.1016%2Fj.ympev.2015.10.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ympev_2015_10_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7903&client=summon |