Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species

[Display omitted] •Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many taxa but few genes (e.g. supermatrix).•Here, we demonstrate the potential to combine these two approaches, using published data from squamate r...

Full description

Saved in:
Bibliographic Details
Published inMolecular phylogenetics and evolution Vol. 94; no. Pt B; pp. 537 - 547
Main Authors Zheng, Yuchi, Wiens, John J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many taxa but few genes (e.g. supermatrix).•Here, we demonstrate the potential to combine these two approaches, using published data from squamate reptiles.•The tree from the combined analysis more closely resembles the higher-level phylogeny based on many genes and few taxa.•We provide a time-calibrated tree for squamate reptiles based on 52 genes and 4162 species. Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies.
AbstractList Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies.
[Display omitted] •Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many taxa but few genes (e.g. supermatrix).•Here, we demonstrate the potential to combine these two approaches, using published data from squamate reptiles.•The tree from the combined analysis more closely resembles the higher-level phylogeny based on many genes and few taxa.•We provide a time-calibrated tree for squamate reptiles based on 52 genes and 4162 species. Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii) sample many species for fewer loci (e.g. supermatrix approach). In theory, these approaches can be combined to simultaneously resolve both higher-level relationships (with many genes) and species-level relationships (with many taxa). However, fundamental questions remain unanswered about this combined approach. First, will higher-level relationships more closely resemble those estimated from many genes or those from many taxa? Second, will branch support increase for higher-level relationships (relative to the estimate from many taxa)? Here, we address these questions in squamate reptiles. We combined two recently published datasets, one based on 44 genes for 161 species, and one based on 12 genes for 4161 species. The likelihood-based tree from the combined matrix (52 genes, 4162 species) shared more higher-level clades with the 44-gene tree (90% vs. 77% shared). Branch support for higher level-relationships was marginally higher than in the 12-gene tree, but lower than in the 44-gene tree. Relationships were apparently not obscured by the abundant missing data (92% overall). We provide a time-calibrated phylogeny based on extensive sampling of genes and taxa as a resource for comparative studies.
Author Wiens, John J.
Zheng, Yuchi
Author_xml – sequence: 1
  givenname: Yuchi
  surname: Zheng
  fullname: Zheng, Yuchi
  email: zhengyc@cib.ac.cn
  organization: Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
– sequence: 2
  givenname: John J.
  surname: Wiens
  fullname: Wiens, John J.
  email: wiensj@email.arizona.edu
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-088, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26475614$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1TAQhi1URC_wBEjIyyKRg53EdrxggY7KRarEBtaWY09aHxI7tZ2Kw9P0UfFpShcs6MrWzPeNNPOfoiMfPCD0mpINJZS_32320wy3m5pQViobQuQzdEKJZJVktDk6_BmrhCTNMTpNaUcIpUyyF-i45q1gnLYn6G4bpt5556_wfL0fwxX4MDmDtbc4LTPESefofmE9zzFocw3p3X1P4-wmqIweXR91Bvuo7_EQIk43iy4q4AhzdiMkfD663zratI72-iekt7jXqajBY1bj4sLabSmvcZrBOEgv0fNBjwlePbxn6Meni-_bL9Xlt89ftx8vK9OyLled6GFoB6kth5r2kgnWc2AMOitsb-UAoue8I521DdhaiK6xMOiOC85lK0xzhs7XuWXPmwVSVpNLBsZRewhLUrSrWVvzum2eRkXTtV1DJS_omwd06Sewao5u0nGv_gZQgGYFTAwpRRgeEUrUIWa1U_cxq0PMh2KJuVjyH8u4rLMLPkftxifcD6sL5Zq3DqJK5c7egHURTFY2uP_6fwDOEcaT
CitedBy_id crossref_primary_10_3389_fevo_2022_969581
crossref_primary_10_1016_j_ympev_2016_07_003
crossref_primary_10_1111_evo_14409
crossref_primary_10_1111_jzs_12180
crossref_primary_10_1186_s12862_023_02113_1
crossref_primary_10_1093_icb_icz006
crossref_primary_10_1098_rspb_2024_1653
crossref_primary_10_3390_toxins9080242
crossref_primary_10_7868_S0042132418050058
crossref_primary_10_1098_rsbl_2019_0498
crossref_primary_10_1038_s42003_022_04261_4
crossref_primary_10_1093_molbev_msac052
crossref_primary_10_2994_SAJH_D_19_00120_1
crossref_primary_10_1093_zoolinnean_zlab099
crossref_primary_10_1098_rsos_182228
crossref_primary_10_1093_zoolinnean_zlz114
crossref_primary_10_1093_icb_icz010
crossref_primary_10_1371_journal_pone_0244150
crossref_primary_10_3390_toxins11020069
crossref_primary_10_1111_jbi_14304
crossref_primary_10_1111_jbi_14547
crossref_primary_10_1670_19_071
crossref_primary_10_1098_rspb_2020_1994
crossref_primary_10_1038_s41598_019_54573_5
crossref_primary_10_1093_zoolinnean_zlz001
crossref_primary_10_1093_zoolinnean_zlae133
crossref_primary_10_1643_h2020163
crossref_primary_10_3390_toxins13020124
crossref_primary_10_1016_j_jprot_2017_08_016
crossref_primary_10_1111_jbi_13438
crossref_primary_10_1016_j_isci_2020_101834
crossref_primary_10_1126_science_abe7941
crossref_primary_10_1111_jbi_14536
crossref_primary_10_1016_j_cub_2016_09_020
crossref_primary_10_1080_14772000_2025_2454011
crossref_primary_10_1098_rsos_230968
crossref_primary_10_3897_fr_27_109123
crossref_primary_10_1111_jzo_12914
crossref_primary_10_3897_zookeys_774_25332
crossref_primary_10_1080_14772000_2024_2383215
crossref_primary_10_1111_brv_12593
crossref_primary_10_1111_nph_15011
crossref_primary_10_1111_jeb_13097
crossref_primary_10_1080_21564574_2022_2062459
crossref_primary_10_1080_02724634_2023_2211646
crossref_primary_10_1371_journal_pone_0212683
crossref_primary_10_1038_s41598_019_41290_2
crossref_primary_10_1002_ece3_4548
crossref_primary_10_1002_jmor_21094
crossref_primary_10_7717_peerj_9016
crossref_primary_10_1080_21564574_2024_2357758
crossref_primary_10_1016_j_jnc_2021_125957
crossref_primary_10_3390_genes13050726
crossref_primary_10_1007_s00360_017_1128_z
crossref_primary_10_1038_s41467_022_34217_5
crossref_primary_10_1098_rspb_2021_1391
crossref_primary_10_1002_dvg_23077
crossref_primary_10_1002_dvg_23078
crossref_primary_10_3897_fr_26_100059
crossref_primary_10_1655_HERPMONOGRAPHS_D_18_00005_1
crossref_primary_10_1080_24750263_2024_2376594
crossref_primary_10_1111_ddi_13616
crossref_primary_10_3390_ani13132180
crossref_primary_10_1111_cla_12460
crossref_primary_10_1186_s12862_021_01912_8
crossref_primary_10_3389_fgene_2020_556267
crossref_primary_10_1159_000538906
crossref_primary_10_3390_ijms20112782
crossref_primary_10_1080_23802359_2020_1787257
crossref_primary_10_1098_rspb_2022_0180
crossref_primary_10_1016_j_ympev_2019_04_002
crossref_primary_10_1111_joa_12952
crossref_primary_10_1093_zoolinnean_zlac024
crossref_primary_10_1371_journal_pone_0202339
crossref_primary_10_1093_molbev_msae255
crossref_primary_10_1080_14772000_2017_1401562
crossref_primary_10_1002_ece3_3356
crossref_primary_10_1016_j_cub_2021_05_040
crossref_primary_10_1093_gbe_evy157
crossref_primary_10_3390_cells9102268
crossref_primary_10_1098_rsos_170685
crossref_primary_10_1111_1365_2656_13997
crossref_primary_10_1093_biolinnean_blx104
crossref_primary_10_3390_ijms26031167
crossref_primary_10_3390_genes10121020
crossref_primary_10_1002_jcb_29925
crossref_primary_10_1038_s41598_024_60215_2
crossref_primary_10_1155_2017_8934285
crossref_primary_10_1016_j_ympev_2018_03_036
crossref_primary_10_1080_14772019_2023_2281494
crossref_primary_10_1016_j_chom_2017_07_019
crossref_primary_10_1163_15685381_00003078
crossref_primary_10_1093_zoolinnean_zlz168
crossref_primary_10_1080_14772019_2022_2068386
crossref_primary_10_1093_zoolinnean_zlaa094
crossref_primary_10_1016_j_geobios_2020_07_005
crossref_primary_10_1093_icb_icz020
crossref_primary_10_1093_zoolinnean_zlaa090
crossref_primary_10_1111_1749_4877_12808
crossref_primary_10_1111_jeb_14097
crossref_primary_10_1038_s41598_024_66451_w
crossref_primary_10_1643_h2021058
crossref_primary_10_1111_brv_12788
crossref_primary_10_1098_rsbl_2020_0356
crossref_primary_10_3390_cells9112386
crossref_primary_10_1111_joa_12509
crossref_primary_10_1186_s12862_023_02180_4
crossref_primary_10_1016_j_annpal_2020_102407
crossref_primary_10_1645_24_33
crossref_primary_10_1016_j_toxicon_2024_108055
crossref_primary_10_1111_cla_12223
crossref_primary_10_1007_s10709_020_00107_1
crossref_primary_10_1590_1678_9199_jvatitd_2019_0041
crossref_primary_10_3390_ani12162015
crossref_primary_10_1093_icb_icz151
crossref_primary_10_1002_ece3_10791
crossref_primary_10_1073_pnas_2303844120
crossref_primary_10_1093_gbe_evz221
crossref_primary_10_1002_jmor_21051
crossref_primary_10_1002_ar_25448
crossref_primary_10_3390_d16090548
crossref_primary_10_1016_j_ympev_2020_107012
crossref_primary_10_1038_s41559_017_0240_5
crossref_primary_10_1007_s11538_022_01072_w
crossref_primary_10_1111_evo_13543
crossref_primary_10_1371_journal_pone_0161070
crossref_primary_10_1111_evo_13305
crossref_primary_10_1093_sysbio_syw102
crossref_primary_10_1016_j_ympev_2018_10_023
crossref_primary_10_1111_jzo_12771
crossref_primary_10_1002_jmor_20708
crossref_primary_10_1111_joa_13295
crossref_primary_10_1111_zoj_12487
crossref_primary_10_1073_pnas_2318622122
crossref_primary_10_1038_s41598_017_09415_7
crossref_primary_10_1111_jbi_14823
crossref_primary_10_1016_j_zool_2017_11_007
crossref_primary_10_1093_zoolinnean_zlae073
crossref_primary_10_1111_jbi_13861
crossref_primary_10_1093_biolinnean_bly086
crossref_primary_10_3390_genes10070487
crossref_primary_10_1038_s41598_022_18649_z
crossref_primary_10_1098_rspb_2017_0268
crossref_primary_10_1111_jeb_14123
crossref_primary_10_1080_14772000_2024_2319289
crossref_primary_10_3390_toxins13060427
crossref_primary_10_69905_b6360e77
crossref_primary_10_3897_vz_74_e110674
crossref_primary_10_1111_2041_210X_13603
crossref_primary_10_1242_dev_200345
crossref_primary_10_3390_genes9010005
crossref_primary_10_1111_zsc_12506
crossref_primary_10_1016_j_ympev_2018_10_022
crossref_primary_10_3389_fcell_2020_00572
crossref_primary_10_1007_s00239_024_10176_x
crossref_primary_10_1111_geb_13812
crossref_primary_10_3390_ijms232415838
crossref_primary_10_1016_j_geobios_2023_06_007
crossref_primary_10_7717_peerj_17595
crossref_primary_10_1016_j_ympev_2017_11_004
crossref_primary_10_1111_jeb_13364
crossref_primary_10_1007_s00441_016_2506_7
crossref_primary_10_1093_zoolinnean_zlae096
crossref_primary_10_1007_s10592_024_01622_w
crossref_primary_10_1111_jeb_13248
crossref_primary_10_1038_s41467_025_57547_6
crossref_primary_10_1371_journal_pone_0194680
crossref_primary_10_1093_molbev_msz263
crossref_primary_10_5852_ejt_2021_764_1473
crossref_primary_10_1093_biolinnean_blz077
crossref_primary_10_5252_geodiversitas2019v41a16
crossref_primary_10_1038_s41598_020_78939_2
crossref_primary_10_1093_molbev_msz024
crossref_primary_10_1016_j_ympev_2019_106725
crossref_primary_10_1093_biolinnean_blz190
crossref_primary_10_1086_687202
crossref_primary_10_1007_s00435_016_0338_3
crossref_primary_10_1111_jbi_13706
crossref_primary_10_1111_jeb_13373
crossref_primary_10_1016_j_ympev_2017_11_014
crossref_primary_10_1016_j_ympev_2017_11_013
crossref_primary_10_1111_geb_13808
crossref_primary_10_1002_jmor_20832
crossref_primary_10_3390_genes12111822
crossref_primary_10_1643_t2021090
crossref_primary_10_1098_rsos_171830
crossref_primary_10_1126_sciadv_abq8274
crossref_primary_10_1098_rstb_2020_0102
crossref_primary_10_1093_biolinnean_bly097
crossref_primary_10_1093_jhered_esad016
crossref_primary_10_1371_journal_pone_0202729
crossref_primary_10_1655_0733_1347_35_1_28
crossref_primary_10_1016_j_ympev_2020_107064
crossref_primary_10_1111_bij_12897
crossref_primary_10_1016_j_ympev_2023_107747
crossref_primary_10_1093_biolinnean_blz136
crossref_primary_10_1093_molbev_msz125
crossref_primary_10_3390_genes11060698
crossref_primary_10_1002_evl3_72
crossref_primary_10_1098_rsbl_2020_0735
crossref_primary_10_1098_rsbl_2018_0064
crossref_primary_10_3897_vz_71_e75967
crossref_primary_10_1093_zoolinnean_zlad074
crossref_primary_10_1007_s12549_024_00619_0
crossref_primary_10_1111_geb_12773
crossref_primary_10_1086_721091
crossref_primary_10_3390_toxins12100638
crossref_primary_10_1016_j_jprot_2020_103882
crossref_primary_10_1093_beheco_arx128
crossref_primary_10_1111_ele_13536
crossref_primary_10_1126_science_adh2449
crossref_primary_10_1002_ece3_3525
crossref_primary_10_18563_pv_44_1_e1
crossref_primary_10_1038_s41467_021_25136_y
crossref_primary_10_1098_rsos_201273
crossref_primary_10_1111_bij_12751
crossref_primary_10_7717_peerj_11728
crossref_primary_10_1016_j_ympev_2021_107169
crossref_primary_10_1111_1365_2435_14557
crossref_primary_10_1002_jmor_70019
crossref_primary_10_1016_j_ympev_2017_10_013
crossref_primary_10_3390_genes14010099
crossref_primary_10_1080_14772000_2021_1953185
crossref_primary_10_3390_genes15060664
crossref_primary_10_1016_j_jprot_2020_103778
crossref_primary_10_1093_zoolinnean_zly002
crossref_primary_10_1111_mec_14717
crossref_primary_10_7717_peerj_11722
crossref_primary_10_7717_peerj_11602
crossref_primary_10_1002_ar_25288
crossref_primary_10_1016_j_jcz_2021_03_004
crossref_primary_10_1371_journal_pone_0233680
crossref_primary_10_1038_s41598_022_05735_5
crossref_primary_10_1080_09397140_2020_1711622
crossref_primary_10_1093_gbe_evad182
crossref_primary_10_2298_GABP240317010D
crossref_primary_10_1111_ele_12783
crossref_primary_10_1186_s13059_018_1550_x
crossref_primary_10_1016_j_jcz_2020_05_005
crossref_primary_10_1093_sysbio_syab075
crossref_primary_10_7717_peerj_4274
crossref_primary_10_1163_15685381_bja10114
crossref_primary_10_1177_0309133318765084
crossref_primary_10_1007_s00114_016_1422_8
crossref_primary_10_7554_eLife_44455
crossref_primary_10_1038_s41559_021_01555_4
crossref_primary_10_1038_s41598_018_28749_4
crossref_primary_10_1016_j_ympev_2022_107548
crossref_primary_10_1080_07352689_2019_1650517
crossref_primary_10_1111_jzo_13216
crossref_primary_10_1002_jmor_21629
crossref_primary_10_1080_14772000_2024_2338064
crossref_primary_10_1098_rspb_2018_2575
crossref_primary_10_1111_1755_0998_12681
crossref_primary_10_1093_jeb_voaf003
crossref_primary_10_1007_s12640_021_00413_2
crossref_primary_10_26515_rzsi_v119_i3_2019_143339
crossref_primary_10_1371_journal_pone_0216148
crossref_primary_10_1093_gbe_evae018
crossref_primary_10_1016_j_cretres_2016_12_001
crossref_primary_10_1111_jeb_13679
crossref_primary_10_3897_fr_27_e109123
crossref_primary_10_1186_s12917_017_1193_2
crossref_primary_10_1016_j_ympev_2022_107432
crossref_primary_10_1007_s11692_023_09618_z
crossref_primary_10_1111_ele_13850
crossref_primary_10_1016_j_ympev_2021_107241
crossref_primary_10_1073_pnas_1820967116
crossref_primary_10_1111_1365_2656_14170
crossref_primary_10_3897_zookeys_1124_87861
crossref_primary_10_1038_s41437_020_0300_5
crossref_primary_10_1093_biolinnean_blaa076
crossref_primary_10_1093_biolinnean_blab164
crossref_primary_10_1111_ecog_04024
crossref_primary_10_1111_jeb_13886
crossref_primary_10_1002_dvdy_307
crossref_primary_10_1134_S2079086422050024
crossref_primary_10_1098_rspb_2020_2139
crossref_primary_10_1093_evolut_qpad101
crossref_primary_10_1002_evl3_249
crossref_primary_10_1111_jbi_15061
crossref_primary_10_1016_j_ympev_2016_03_006
crossref_primary_10_1016_j_zool_2021_125926
crossref_primary_10_1016_j_semcdb_2020_04_004
crossref_primary_10_1038_s41586_018_0093_3
crossref_primary_10_1002_ecs2_4718
crossref_primary_10_3390_genes14010178
crossref_primary_10_3897_zse_99_95923
crossref_primary_10_1111_jeb_13891
crossref_primary_10_1098_rsos_200317
crossref_primary_10_1093_biolinnean_blac023
crossref_primary_10_1111_joa_13102
crossref_primary_10_3390_ani15050743
crossref_primary_10_1016_j_ympev_2023_107839
crossref_primary_10_1186_s12862_017_1115_8
crossref_primary_10_1111_zsc_12565
crossref_primary_10_1098_rsbl_2017_0393
crossref_primary_10_3390_toxins17010019
crossref_primary_10_11646_zootaxa_5067_3_1
crossref_primary_10_1111_ele_12620
crossref_primary_10_3390_toxins11050255
crossref_primary_10_1016_j_ympev_2020_106807
crossref_primary_10_1600_036364420X16033963649282
crossref_primary_10_1093_biolinnean_blad052
crossref_primary_10_1126_sciadv_adi6765
crossref_primary_10_1016_j_ympev_2023_107907
crossref_primary_10_1016_j_ympev_2021_107109
crossref_primary_10_1016_j_ympev_2024_108272
crossref_primary_10_1111_geb_13355
crossref_primary_10_1016_j_gene_2022_146999
crossref_primary_10_1016_j_ympev_2019_01_015
crossref_primary_10_1016_j_ympev_2024_108274
crossref_primary_10_1186_s40851_016_0056_1
crossref_primary_10_1111_jbi_14070
crossref_primary_10_1016_j_ympev_2021_107345
crossref_primary_10_1038_s41559_018_0632_1
crossref_primary_10_1186_s12862_019_1501_5
crossref_primary_10_1242_jeb_229229
crossref_primary_10_1002_jmor_20979
crossref_primary_10_1002_jmor_20619
crossref_primary_10_2994_SAJH_D_16_00038_1
crossref_primary_10_1071_ZO23007
crossref_primary_10_1101_gr_240952_118
crossref_primary_10_1098_rsos_221139
crossref_primary_10_1080_02724634_2019_1622129
crossref_primary_10_3390_ani14030421
crossref_primary_10_1111_jeb_13236
crossref_primary_10_1016_j_ympev_2022_107635
crossref_primary_10_3390_genes10110934
crossref_primary_10_1080_02724634_2023_2184696
crossref_primary_10_14411_fp_2024_020
crossref_primary_10_3390_genes15040429
crossref_primary_10_1093_molbev_msaa003
crossref_primary_10_1111_1755_0998_13780
crossref_primary_10_1371_journal_pone_0216273
crossref_primary_10_3390_life10120342
crossref_primary_10_1016_j_ympev_2016_04_015
crossref_primary_10_3897_herpetozoa_34_e69176
crossref_primary_10_1111_geb_13694
crossref_primary_10_1111_zsc_12635
crossref_primary_10_1086_695495
crossref_primary_10_3389_fphys_2018_01630
crossref_primary_10_3390_jof9010099
crossref_primary_10_5852_cr_palevol2024v23a24
crossref_primary_10_69905_1rfh8x74
crossref_primary_10_3897_vz_73_e101372
crossref_primary_10_1111_jzs_12210
crossref_primary_10_1186_s12862_020_01690_9
crossref_primary_10_1002_ar_23944
crossref_primary_10_1002_jmor_20996
crossref_primary_10_1038_s41467_019_11943_x
crossref_primary_10_1098_rstb_2020_0426
crossref_primary_10_1007_s13127_019_00393_4
crossref_primary_10_1093_gigascience_giac024
crossref_primary_10_1098_rsos_150277
crossref_primary_10_1086_719014
crossref_primary_10_1093_molbev_msab359
crossref_primary_10_1093_zoolinnean_zlaa151
crossref_primary_10_1134_S2079086419020026
crossref_primary_10_1111_evo_14482
crossref_primary_10_1111_zsc_12295
crossref_primary_10_1111_ecog_02343
crossref_primary_10_1242_jeb_175661
crossref_primary_10_24188_recia_v10_n1_2018_570
crossref_primary_10_1111_syen_12590
crossref_primary_10_3099_MCZ48_1
crossref_primary_10_1098_rspb_2017_0921
crossref_primary_10_1016_j_ympev_2022_107700
crossref_primary_10_1038_s41598_023_33244_6
crossref_primary_10_1098_rsos_172012
crossref_primary_10_1111_jbi_14392
crossref_primary_10_1093_biolinnean_blab119
crossref_primary_10_1098_rspb_2020_0823
crossref_primary_10_2174_1568026619666190802143252
crossref_primary_10_3390_genes15030371
crossref_primary_10_3390_genes9050239
crossref_primary_10_1111_brv_13141
crossref_primary_10_1002_jmor_21226
crossref_primary_10_1002_jmor_21347
crossref_primary_10_1093_biolinnean_blaa021
crossref_primary_10_1093_evlett_qrad008
crossref_primary_10_1186_s12983_020_00369_7
crossref_primary_10_1111_joa_12872
crossref_primary_10_1038_s41598_020_72509_2
crossref_primary_10_7554_eLife_66511
crossref_primary_10_1111_evo_13284
crossref_primary_10_1093_gbe_evac116
crossref_primary_10_1080_02724634_2022_2160644
crossref_primary_10_3390_genes13071185
crossref_primary_10_1080_14772019_2021_1894612
crossref_primary_10_1111_jbi_14380
crossref_primary_10_1111_brv_13028
crossref_primary_10_1098_rspb_2021_0200
crossref_primary_10_1111_jzs_12361
crossref_primary_10_1126_science_abb4305
crossref_primary_10_1111_zsc_12273
crossref_primary_10_1111_syen_12372
crossref_primary_10_1002_ar_24686
crossref_primary_10_1016_j_cub_2017_06_010
crossref_primary_10_12688_openreseurope_13795_2
crossref_primary_10_1242_jeb_242244
crossref_primary_10_1093_zoolinnean_zlz098
crossref_primary_10_3390_ijms25158464
crossref_primary_10_1016_j_cell_2023_05_030
crossref_primary_10_1038_s41598_019_44192_5
crossref_primary_10_1016_j_ympev_2017_07_014
crossref_primary_10_1093_zoolinnean_zlac001
crossref_primary_10_1016_j_sjbs_2021_04_055
crossref_primary_10_1093_icb_icaa015
crossref_primary_10_1098_rsos_221513
crossref_primary_10_1002_jez_b_22857
crossref_primary_10_1111_evo_13062
crossref_primary_10_1371_journal_pone_0178139
crossref_primary_10_1002_jmor_21495
crossref_primary_10_1038_s41437_018_0179_6
crossref_primary_10_7717_peerj_4404
crossref_primary_10_1093_sysbio_syab038
crossref_primary_10_1080_15627020_2024_2376119
crossref_primary_10_1098_rsos_240064
crossref_primary_10_1371_journal_pone_0192834
crossref_primary_10_1038_s41559_019_0945_8
crossref_primary_10_1098_rspb_2020_0613
crossref_primary_10_1093_biolinnean_blaa058
crossref_primary_10_1655_0733_1347_31_4_178
crossref_primary_10_1093_sysbio_syaa064
crossref_primary_10_1093_sysbio_syab031
crossref_primary_10_1098_rsos_160462
crossref_primary_10_1134_S1062359022040033
crossref_primary_10_1093_sysbio_syac003
crossref_primary_10_1111_jzs_12262
crossref_primary_10_3390_jdb9030032
crossref_primary_10_1016_j_jcz_2020_06_008
crossref_primary_10_1111_1749_4877_12506
crossref_primary_10_1098_rspb_2019_0910
crossref_primary_10_1038_s41598_024_55431_9
crossref_primary_10_1098_rspb_2016_2111
crossref_primary_10_1111_cla_12166
crossref_primary_10_1002_ece3_8885
crossref_primary_10_1126_sciadv_adc8875
crossref_primary_10_1002_ar_24892
crossref_primary_10_1016_j_ympev_2020_106781
crossref_primary_10_69905_v867s883
crossref_primary_10_1016_j_ympev_2019_106589
crossref_primary_10_1016_j_jtherbio_2022_103432
crossref_primary_10_1098_rsbl_2017_0293
crossref_primary_10_1186_s13358_024_00332_7
crossref_primary_10_1206_3986_1
crossref_primary_10_1093_zoolinnean_zlaa136
crossref_primary_10_1371_journal_pone_0218851
crossref_primary_10_1002_dvdy_72
crossref_primary_10_1093_gbe_evz196
crossref_primary_10_1002_jmor_21457
crossref_primary_10_1016_j_cretres_2023_105717
crossref_primary_10_3099_MCZ49_1
crossref_primary_10_1111_joa_13312
crossref_primary_10_1080_08912963_2024_2344789
crossref_primary_10_1111_evo_13378
crossref_primary_10_1016_j_ympev_2024_108104
crossref_primary_10_1080_21564574_2018_1423578
crossref_primary_10_1007_s00435_016_0332_9
crossref_primary_10_1016_j_cretres_2023_105606
crossref_primary_10_1098_rsos_201961
crossref_primary_10_1111_mec_15126
crossref_primary_10_1093_molbev_msad109
crossref_primary_10_1670_21_068
crossref_primary_10_1002_ece3_10032
crossref_primary_10_1002_jez_2349
crossref_primary_10_1093_sysbio_syac014
crossref_primary_10_1111_ede_12221
crossref_primary_10_1016_j_ympev_2017_08_017
crossref_primary_10_1002_ar_24630
crossref_primary_10_1002_jmor_21692
Cites_doi 10.1093/sysbio/syq010
10.1111/ele.12168
10.1371/journal.pone.0039429
10.1038/nature06614
10.1093/bioinformatics/btl446
10.1126/science.1253451
10.1016/j.ympev.2014.08.023
10.1016/j.ympev.2014.10.004
10.1038/18592
10.1080/10635150390218330
10.1080/10635150500234583
10.1186/1471-2148-13-93
10.1371/journal.pone.0042925
10.1186/1741-7007-10-65
10.1017/S0952836904005278
10.1016/j.ympev.2014.08.006
10.1038/nature10382
10.1093/oxfordjournals.molbev.a026201
10.1038/nature11631
10.1093/sysbio/syr025
10.1093/oxfordjournals.molbev.a003974
10.1080/106351598260680
10.1098/rsbl.2007.0531
10.1080/10635150390197046
10.1111/j.1096-0031.2010.00329.x
10.1080/106351598260996
10.1093/sysbio/syv058
10.1016/j.ympev.2012.08.018
10.1371/journal.pbio.0040088
10.1093/molbev/msu080
10.1080/10635150500234625
10.1016/j.ympev.2015.02.002
10.1093/molbev/msu200
10.1371/journal.pone.0118199
10.1186/1471-2148-7-214
10.1093/molbev/mss020
10.1038/nature09864
10.1098/rsbl.2012.0703
10.1038/nature10526
10.1093/bioinformatics/btu033
10.1016/j.ympev.2010.08.024
10.1093/molbev/msh182
10.1093/bioinformatics/bts492
10.1073/pnas.191248498
10.1080/10635150802429642
10.1016/j.ympev.2011.06.012
10.1093/molbev/mss208
10.1080/10635150290102339
10.1093/sysbio/syr079
10.1038/nature08742
10.1093/molbev/msv026
10.1080/10635150600755453
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ympev.2015.10.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-9513
EndPage 547
ExternalDocumentID 26475614
10_1016_j_ympev_2015_10_009
S1055790315003127
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LW8
LX2
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TN5
UNMZH
WUQ
XJT
XPP
XSW
YK3
ZCG
ZKB
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c458t-87bef4f9ad6e21b9575b6e55e8d7dbd9fe7b66808dd3ed27783defa86766947c3
IEDL.DBID .~1
ISSN 1055-7903
IngestDate Fri Jul 11 09:14:20 EDT 2025
Tue Aug 05 09:42:46 EDT 2025
Mon Jul 21 05:55:13 EDT 2025
Tue Jul 01 00:44:23 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Fri Feb 23 02:26:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Missing data
Squamata
Phylogeny
Phylogenomic
Supermatrix
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-87bef4f9ad6e21b9575b6e55e8d7dbd9fe7b66808dd3ed27783defa86766947c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26475614
PQID 1738483196
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1825426243
proquest_miscellaneous_1738483196
pubmed_primary_26475614
crossref_primary_10_1016_j_ympev_2015_10_009
crossref_citationtrail_10_1016_j_ympev_2015_10_009
elsevier_sciencedirect_doi_10_1016_j_ympev_2015_10_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular phylogenetics and evolution
PublicationTitleAlternate Mol Phylogenet Evol
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gamble, Greenbaum, Jackman, Russell, Bauer (b0040) 2012; 7
Reeder, Townsend, Mulcahy, Noonan, Wood, Sites, Wiens (b0145) 2015; 10
Poe, Swofford (b0105) 1999; 398
Poe (b0110) 2003; 52
Stanley, Bauer, Jackman, Branch, Mouton (b0205) 2011; 58
Lanfear, Calcott, Ho, Guindon (b0090) 2012; 29
Drummond, Ho, Phillips, Rambaut (b0025) 2006; 4
Philippe, Snell, Bapteste, Lopez, Holland, Casane (b0115) 2004; 21
Zheng, Wiens (b0270) 2015; 85
Uetz, P., Hošek, J. (Eds.), 2015. The Reptile Database.
Wiens (b0240) 2003; 52
Stamatakis, Hoover, Rougemont (b0190) 2008; 57
Lambert, Reeder, Wiens (b0085) 2015; 82
Dunn, Hejnol, Matus, Pang, Browne, Smith, Seaver, Rouse, Obst, Edgecombe, Sørensen, Haddock, Schmidt-Rhaesa, Okusu, Kristensen, Wheeler, Martindale, Giribet (b0030) 2008; 452
Graybeal (b0045) 1998; 47
Wiens, Tiu (b0255) 2012; 7
Heath, Hedtke, Hillis (b0055) 2008; 46
Kocot, Cannon, Todt, Citarella, Kohn, Meyer, Santos, Schander, Moroz, Leib, Halanych (b0080) 2011; 477
.
Wiens (b0245) 2005; 54
Pyron, Wiens (b0120) 2011; 61
Struck, Paul, Hill, Hartmann, Hösel, Kube, Lieb, Meyer, Tiedemann, Purschke (b0215) 2011; 471
Chiari, Cahais, Galtier, Delsuc (b0010) 2012; 10
Stamatakis, A., 2014b. The RAxML v8.1.X Manual.
Mulcahy, Noonan, Moss, Townsend, Reeder, Sites, Wiens (b0100) 2012; 65
Drummond, Rambaut (b0020) 2007; 7
Lawson, Slowinski, Burbrink (b0095) 2004; 263
Wiens, Fetzner, Parkinson, Reeder (b0260) 2005; 54
Jetz, Thomas, Joy, Hartmann, Mooers (b0065) 2012; 491
Zwickl, Hillis (b0275) 2002; 51
Roure, Baurain, Philippe (b0160) 2013; 30
Anisimova, Gascuel (b0005) 2006; 55
Regier, Shultz, Zwick, Hussey, Ball, Wetzer, Martin, Cunningham (b0150) 2010; 463
Pyron, Burbrink (b0130) 2014; 17
Smith, Wilson, Goetz, Feehery, Andrade, Rouse, Giribet, Dunn (b0180) 2012; 480
Guindon, Dufayard, Lefort, Anisimova, Hordijk, Gascuel (b0050) 2010; 59
Kainer, Lanfear (b0075) 2015; 32
Rannala, Huelsenbeck, Yang, Nielsen (b0140) 1998; 47
Wiens, Morrill (b0250) 2011; 60
Vaidya, Lohman, Meier (b0225) 2011; 27
Vidal, Azvolinsky, Cruaud, Hedges (b0230) 2007; 4
Rosenberg, Kumar (b0155) 2001; 98
Smith, O’Meara (b0175) 2012; 28
Streicher, J.W., Schulte, J.A., Wiens, J.J., 2015. How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in iguanian lizards. Syst. Biol. (in press).
Jiang, Chen, Wang, Li, Wiens (b0070) 2014; 80
Filipski, Murillo, Freydenzon, Tamura, Kumar (b0035) 2014; 31
Stamatakis (b0195) 2014; 30
(accessed 09.11.14).
Wiens, Hutter, Mulcahy, Noonan, Townsend, Sites, Reeder (b0265) 2012; 8
Pyron, Burbrink, Wiens (b0125) 2013; 13
Sanderson (b0165) 2002; 19
Weigert, Helm, Meyer, Nickel, Arendt, Hausdorf, Santos, Halanych, Purschke, Bleidorn, Struck (b0235) 2014; 31
Jarvis, Mirarab, Aberer, Li, Houde, Li (b0060) 2014; 346
Cho, Zwick, Regier, Mitter, Cummings, Yao, Du, Zhao, Kawahara, Weller, Davis, Baixeras, Brown, Parr (b0015) 2011; 60
(accessed 18.02.15).
Pyron, Hendry, Chou, Lemmon, Lemmon, Burbrink (b0135) 2014; 81
Stamatakis (b0185) 2006; 22
Shimodaira, Hasegawa (b0170) 1999; 16
Rosenberg (10.1016/j.ympev.2015.10.009_b0155) 2001; 98
Gamble (10.1016/j.ympev.2015.10.009_b0040) 2012; 7
10.1016/j.ympev.2015.10.009_b0220
Kainer (10.1016/j.ympev.2015.10.009_b0075) 2015; 32
Struck (10.1016/j.ympev.2015.10.009_b0215) 2011; 471
Kocot (10.1016/j.ympev.2015.10.009_b0080) 2011; 477
Wiens (10.1016/j.ympev.2015.10.009_b0250) 2011; 60
Zwickl (10.1016/j.ympev.2015.10.009_b0275) 2002; 51
Dunn (10.1016/j.ympev.2015.10.009_b0030) 2008; 452
Philippe (10.1016/j.ympev.2015.10.009_b0115) 2004; 21
Stamatakis (10.1016/j.ympev.2015.10.009_b0190) 2008; 57
Smith (10.1016/j.ympev.2015.10.009_b0180) 2012; 480
Graybeal (10.1016/j.ympev.2015.10.009_b0045) 1998; 47
Vaidya (10.1016/j.ympev.2015.10.009_b0225) 2011; 27
Anisimova (10.1016/j.ympev.2015.10.009_b0005) 2006; 55
Vidal (10.1016/j.ympev.2015.10.009_b0230) 2007; 4
Wiens (10.1016/j.ympev.2015.10.009_b0265) 2012; 8
Weigert (10.1016/j.ympev.2015.10.009_b0235) 2014; 31
Mulcahy (10.1016/j.ympev.2015.10.009_b0100) 2012; 65
Heath (10.1016/j.ympev.2015.10.009_b0055) 2008; 46
Roure (10.1016/j.ympev.2015.10.009_b0160) 2013; 30
Lawson (10.1016/j.ympev.2015.10.009_b0095) 2004; 263
Zheng (10.1016/j.ympev.2015.10.009_b0270) 2015; 85
Pyron (10.1016/j.ympev.2015.10.009_b0120) 2011; 61
Wiens (10.1016/j.ympev.2015.10.009_b0260) 2005; 54
Wiens (10.1016/j.ympev.2015.10.009_b0255) 2012; 7
Lambert (10.1016/j.ympev.2015.10.009_b0085) 2015; 82
10.1016/j.ympev.2015.10.009_b0200
Shimodaira (10.1016/j.ympev.2015.10.009_b0170) 1999; 16
Chiari (10.1016/j.ympev.2015.10.009_b0010) 2012; 10
Poe (10.1016/j.ympev.2015.10.009_b0110) 2003; 52
Stanley (10.1016/j.ympev.2015.10.009_b0205) 2011; 58
Wiens (10.1016/j.ympev.2015.10.009_b0245) 2005; 54
Drummond (10.1016/j.ympev.2015.10.009_b0025) 2006; 4
Guindon (10.1016/j.ympev.2015.10.009_b0050) 2010; 59
Filipski (10.1016/j.ympev.2015.10.009_b0035) 2014; 31
Wiens (10.1016/j.ympev.2015.10.009_b0240) 2003; 52
Lanfear (10.1016/j.ympev.2015.10.009_b0090) 2012; 29
10.1016/j.ympev.2015.10.009_b0210
Jetz (10.1016/j.ympev.2015.10.009_b0065) 2012; 491
Rannala (10.1016/j.ympev.2015.10.009_b0140) 1998; 47
Reeder (10.1016/j.ympev.2015.10.009_b0145) 2015; 10
Smith (10.1016/j.ympev.2015.10.009_b0175) 2012; 28
Pyron (10.1016/j.ympev.2015.10.009_b0130) 2014; 17
Poe (10.1016/j.ympev.2015.10.009_b0105) 1999; 398
Stamatakis (10.1016/j.ympev.2015.10.009_b0185) 2006; 22
Pyron (10.1016/j.ympev.2015.10.009_b0125) 2013; 13
Stamatakis (10.1016/j.ympev.2015.10.009_b0195) 2014; 30
Sanderson (10.1016/j.ympev.2015.10.009_b0165) 2002; 19
Drummond (10.1016/j.ympev.2015.10.009_b0020) 2007; 7
Cho (10.1016/j.ympev.2015.10.009_b0015) 2011; 60
Regier (10.1016/j.ympev.2015.10.009_b0150) 2010; 463
Jarvis (10.1016/j.ympev.2015.10.009_b0060) 2014; 346
Pyron (10.1016/j.ympev.2015.10.009_b0135) 2014; 81
Jiang (10.1016/j.ympev.2015.10.009_b0070) 2014; 80
References_xml – volume: 46
  start-page: 239
  year: 2008
  end-page: 257
  ident: b0055
  article-title: Taxon sampling and the accuracy of phylogenetic analyses
  publication-title: J. Syst. Evol.
– volume: 22
  start-page: 2688
  year: 2006
  end-page: 2690
  ident: b0185
  article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
– volume: 480
  start-page: 364
  year: 2012
  end-page: 367
  ident: b0180
  article-title: Resolving the evolutionary relationships of molluscs with phylogenomic tools
  publication-title: Nature
– volume: 4
  start-page: 115
  year: 2007
  end-page: 118
  ident: b0230
  article-title: Origin of tropical American burrowing reptiles by transatlantic rafting
  publication-title: Biol. Lett.
– volume: 32
  start-page: 1611
  year: 2015
  end-page: 1627
  ident: b0075
  article-title: The effects of partitioning on phylogenetic inference
  publication-title: Mol. Biol. Evol.
– volume: 463
  start-page: 1079
  year: 2010
  end-page: 1083
  ident: b0150
  article-title: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences
  publication-title: Nature
– volume: 54
  start-page: 731
  year: 2005
  end-page: 742
  ident: b0245
  article-title: Can incomplete taxa rescue phylogenetic analyses from long-branch attraction?
  publication-title: Syst. Biol.
– volume: 82
  start-page: 146
  year: 2015
  end-page: 155
  ident: b0085
  article-title: When do species tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny
  publication-title: Mol. Phylogenet. Evol.
– reference: > (accessed 18.02.15).
– volume: 47
  start-page: 702
  year: 1998
  end-page: 710
  ident: b0140
  article-title: Taxon sampling and the accuracy of large phylogenies
  publication-title: Syst. Biol.
– reference: Stamatakis, A., 2014b. The RAxML v8.1.X Manual. <
– volume: 54
  start-page: 719
  year: 2005
  end-page: 748
  ident: b0260
  article-title: Hylid frog phylogeny and sampling strategies for speciose clades
  publication-title: Syst. Biol.
– volume: 263
  start-page: 285
  year: 2004
  end-page: 294
  ident: b0095
  article-title: A molecular approach to discerning the phylogenetic placement of the enigmatic snake
  publication-title: J. Zool.
– reference: Streicher, J.W., Schulte, J.A., Wiens, J.J., 2015. How should genes and taxa be sampled for phylogenomic analyses with missing data? An empirical study in iguanian lizards. Syst. Biol. (in press).
– volume: 7
  start-page: 214
  year: 2007
  ident: b0020
  article-title: BEAST: Bayesian evolutionary analysis by sampling trees
  publication-title: BMC Evol. Biol.
– volume: 51
  start-page: 588
  year: 2002
  end-page: 589
  ident: b0275
  article-title: Increased taxon sampling greatly reduces phylogenetic error
  publication-title: Syst. Biol.
– volume: 16
  start-page: 1114
  year: 1999
  end-page: 1116
  ident: b0170
  article-title: Multiple comparisons of log-likelihoods with applications to phylogenetic inference
  publication-title: Mol. Biol. Evol.
– reference: Uetz, P., Hošek, J. (Eds.), 2015. The Reptile Database. <
– volume: 57
  start-page: 758
  year: 2008
  end-page: 771
  ident: b0190
  article-title: A rapid bootstrap algorithm for the RAxML web servers
  publication-title: Syst. Biol.
– volume: 491
  start-page: 444
  year: 2012
  end-page: 448
  ident: b0065
  article-title: Global diversity of birds in space and time
  publication-title: Nature
– volume: 60
  start-page: 782
  year: 2011
  end-page: 796
  ident: b0015
  article-title: Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)?
  publication-title: Syst. Biol.
– volume: 398
  start-page: 299
  year: 1999
  end-page: 300
  ident: b0105
  article-title: Taxon sampling revisited
  publication-title: Nature
– volume: 30
  start-page: 197
  year: 2013
  end-page: 214
  ident: b0160
  article-title: Impact of missing data on phylogenies inferred from empirical phylogenomic data sets
  publication-title: Mol. Biol. Evol.
– volume: 471
  start-page: 95
  year: 2011
  end-page: 98
  ident: b0215
  article-title: Phylogenomic analyses unravel annelid evolution
  publication-title: Nature
– volume: 28
  start-page: 2689
  year: 2012
  end-page: 2690
  ident: b0175
  article-title: TreePL: divergence time estimation using penalized likelihood for large phylogenies
  publication-title: Bioinformatics
– volume: 52
  start-page: 423
  year: 2003
  end-page: 428
  ident: b0110
  article-title: Evaluation of the strategy of long branch subdivision to improve accuracy of phylogenetic methods
  publication-title: Syst. Biol.
– volume: 29
  start-page: 1695
  year: 2012
  end-page: 1701
  ident: b0090
  article-title: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses
  publication-title: Mol. Biol. Evol.
– volume: 65
  start-page: 974
  year: 2012
  end-page: 991
  ident: b0100
  article-title: Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles
  publication-title: Mol. Phylogenet. Evol.
– volume: 7
  start-page: e42925
  year: 2012
  ident: b0255
  article-title: Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling
  publication-title: PLoS ONE
– volume: 80
  start-page: 308
  year: 2014
  end-page: 318
  ident: b0070
  article-title: Should genes with missing data be excluded from phylogenetic analyses?
  publication-title: Mol. Phylogenet. Evol.
– volume: 8
  start-page: 1043
  year: 2012
  end-page: 1046
  ident: b0265
  article-title: Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species
  publication-title: Biol. Lett.
– volume: 452
  start-page: 745
  year: 2008
  end-page: 749
  ident: b0030
  article-title: Broad phylogenomic sampling improves resolution of the animal tree of life
  publication-title: Nature
– volume: 61
  start-page: 543
  year: 2011
  end-page: 583
  ident: b0120
  article-title: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians
  publication-title: Mol. Phylogenet. Evol.
– volume: 30
  start-page: 1312
  year: 2014
  end-page: 1313
  ident: b0195
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
– volume: 17
  start-page: 13
  year: 2014
  end-page: 21
  ident: b0130
  article-title: Early origin of viviparity and multiple reversions to oviparity in squamate reptiles
  publication-title: Ecol. Lett.
– volume: 4
  start-page: e88
  year: 2006
  ident: b0025
  article-title: Relaxed phylogenetics and dating with confidence
  publication-title: PLoS Biol.
– volume: 10
  start-page: e0118199
  year: 2015
  ident: b0145
  article-title: Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa
  publication-title: PLoS ONE
– volume: 47
  start-page: 9
  year: 1998
  end-page: 17
  ident: b0045
  article-title: Is it better to add taxa or characters to a difficult phylogenetic problem?
  publication-title: Syst. Biol.
– volume: 27
  start-page: 171
  year: 2011
  end-page: 180
  ident: b0225
  article-title: SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information
  publication-title: Cladistics
– volume: 477
  start-page: 452
  year: 2011
  end-page: 456
  ident: b0080
  article-title: Phylogenomics reveals deep molluscan relationships
  publication-title: Nature
– reference: > (accessed 09.11.14).
– volume: 13
  start-page: 93
  year: 2013
  ident: b0125
  article-title: A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes
  publication-title: BMC Evol. Biol.
– volume: 58
  start-page: 53
  year: 2011
  end-page: 70
  ident: b0205
  article-title: Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizards (Squamata: Cordylidae)
  publication-title: Mol. Phylogenet. Evol.
– volume: 21
  start-page: 1740
  year: 2004
  end-page: 1752
  ident: b0115
  article-title: Phylogenomics of eukaryotes: impact of missing data on large alignments
  publication-title: Mol. Biol. Evol.
– volume: 19
  start-page: 101
  year: 2002
  end-page: 109
  ident: b0165
  article-title: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach
  publication-title: Mol. Biol. Evol.
– volume: 60
  start-page: 719
  year: 2011
  end-page: 731
  ident: b0250
  article-title: Missing data in phylogenetic analysis: reconciling results from simulations and empirical data
  publication-title: Syst. Biol.
– volume: 81
  start-page: 221
  year: 2014
  end-page: 231
  ident: b0135
  article-title: Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia)
  publication-title: Mol. Phylogenet. Evol.
– volume: 10
  start-page: 65
  year: 2012
  ident: b0010
  article-title: Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria)
  publication-title: BMC Biol.
– volume: 98
  start-page: 10751
  year: 2001
  end-page: 10756
  ident: b0155
  article-title: Incomplete taxon sampling is not a problem for phylogenetic inference
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– reference: .
– volume: 7
  start-page: e39429
  year: 2012
  ident: b0040
  article-title: Repeated origin and loss of adhesive toepads in geckos
  publication-title: PLoS ONE
– volume: 31
  start-page: 2542
  year: 2014
  end-page: 2550
  ident: b0035
  article-title: Prospects for building large timetrees using molecular data with incomplete gene coverage among species
  publication-title: Mol. Biol. Evol.
– volume: 55
  start-page: 539
  year: 2006
  end-page: 552
  ident: b0005
  article-title: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative
  publication-title: Syst. Biol.
– volume: 59
  start-page: 307
  year: 2010
  end-page: 321
  ident: b0050
  article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0
  publication-title: Syst. Biol.
– volume: 52
  start-page: 528
  year: 2003
  end-page: 538
  ident: b0240
  article-title: Missing data, incomplete taxa, and phylogenetic accuracy
  publication-title: Syst. Biol.
– volume: 85
  start-page: 41
  year: 2015
  end-page: 49
  ident: b0270
  article-title: Do missing data influence the accuracy of divergence-time estimation with BEAST?
  publication-title: Mol. Phylogenet. Evol.
– volume: 346
  start-page: 1320
  year: 2014
  end-page: 1331
  ident: b0060
  article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds
  publication-title: Science
– volume: 31
  start-page: 1391
  year: 2014
  end-page: 1401
  ident: b0235
  article-title: Illuminating the base of the annelid tree using transcriptomics
  publication-title: Mol. Biol. Evol.
– volume: 59
  start-page: 307
  year: 2010
  ident: 10.1016/j.ympev.2015.10.009_b0050
  article-title: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syq010
– volume: 17
  start-page: 13
  year: 2014
  ident: 10.1016/j.ympev.2015.10.009_b0130
  article-title: Early origin of viviparity and multiple reversions to oviparity in squamate reptiles
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12168
– volume: 7
  start-page: e39429
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0040
  article-title: Repeated origin and loss of adhesive toepads in geckos
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0039429
– volume: 452
  start-page: 745
  year: 2008
  ident: 10.1016/j.ympev.2015.10.009_b0030
  article-title: Broad phylogenomic sampling improves resolution of the animal tree of life
  publication-title: Nature
  doi: 10.1038/nature06614
– volume: 22
  start-page: 2688
  year: 2006
  ident: 10.1016/j.ympev.2015.10.009_b0185
  article-title: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl446
– volume: 346
  start-page: 1320
  year: 2014
  ident: 10.1016/j.ympev.2015.10.009_b0060
  article-title: Whole-genome analyses resolve early branches in the tree of life of modern birds
  publication-title: Science
  doi: 10.1126/science.1253451
– volume: 81
  start-page: 221
  year: 2014
  ident: 10.1016/j.ympev.2015.10.009_b0135
  article-title: Effectiveness of phylogenomic data and coalescent species-tree methods for resolving difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia)
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2014.08.023
– volume: 82
  start-page: 146
  year: 2015
  ident: 10.1016/j.ympev.2015.10.009_b0085
  article-title: When do species tree and concatenated estimates disagree? An empirical analysis with higher-level scincid lizard phylogeny
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2014.10.004
– volume: 398
  start-page: 299
  year: 1999
  ident: 10.1016/j.ympev.2015.10.009_b0105
  article-title: Taxon sampling revisited
  publication-title: Nature
  doi: 10.1038/18592
– volume: 52
  start-page: 528
  year: 2003
  ident: 10.1016/j.ympev.2015.10.009_b0240
  article-title: Missing data, incomplete taxa, and phylogenetic accuracy
  publication-title: Syst. Biol.
  doi: 10.1080/10635150390218330
– volume: 54
  start-page: 731
  year: 2005
  ident: 10.1016/j.ympev.2015.10.009_b0245
  article-title: Can incomplete taxa rescue phylogenetic analyses from long-branch attraction?
  publication-title: Syst. Biol.
  doi: 10.1080/10635150500234583
– volume: 13
  start-page: 93
  year: 2013
  ident: 10.1016/j.ympev.2015.10.009_b0125
  article-title: A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-13-93
– volume: 7
  start-page: e42925
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0255
  article-title: Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0042925
– volume: 10
  start-page: 65
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0010
  article-title: Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria)
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-10-65
– volume: 263
  start-page: 285
  year: 2004
  ident: 10.1016/j.ympev.2015.10.009_b0095
  article-title: A molecular approach to discerning the phylogenetic placement of the enigmatic snake Xenophidion schaeferi among the Alethinophidia
  publication-title: J. Zool.
  doi: 10.1017/S0952836904005278
– volume: 80
  start-page: 308
  year: 2014
  ident: 10.1016/j.ympev.2015.10.009_b0070
  article-title: Should genes with missing data be excluded from phylogenetic analyses?
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2014.08.006
– volume: 477
  start-page: 452
  year: 2011
  ident: 10.1016/j.ympev.2015.10.009_b0080
  article-title: Phylogenomics reveals deep molluscan relationships
  publication-title: Nature
  doi: 10.1038/nature10382
– volume: 16
  start-page: 1114
  year: 1999
  ident: 10.1016/j.ympev.2015.10.009_b0170
  article-title: Multiple comparisons of log-likelihoods with applications to phylogenetic inference
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026201
– volume: 491
  start-page: 444
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0065
  article-title: Global diversity of birds in space and time
  publication-title: Nature
  doi: 10.1038/nature11631
– volume: 46
  start-page: 239
  year: 2008
  ident: 10.1016/j.ympev.2015.10.009_b0055
  article-title: Taxon sampling and the accuracy of phylogenetic analyses
  publication-title: J. Syst. Evol.
– ident: 10.1016/j.ympev.2015.10.009_b0200
– volume: 60
  start-page: 719
  year: 2011
  ident: 10.1016/j.ympev.2015.10.009_b0250
  article-title: Missing data in phylogenetic analysis: reconciling results from simulations and empirical data
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syr025
– volume: 19
  start-page: 101
  year: 2002
  ident: 10.1016/j.ympev.2015.10.009_b0165
  article-title: Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a003974
– volume: 47
  start-page: 702
  year: 1998
  ident: 10.1016/j.ympev.2015.10.009_b0140
  article-title: Taxon sampling and the accuracy of large phylogenies
  publication-title: Syst. Biol.
  doi: 10.1080/106351598260680
– volume: 4
  start-page: 115
  year: 2007
  ident: 10.1016/j.ympev.2015.10.009_b0230
  article-title: Origin of tropical American burrowing reptiles by transatlantic rafting
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2007.0531
– volume: 52
  start-page: 423
  year: 2003
  ident: 10.1016/j.ympev.2015.10.009_b0110
  article-title: Evaluation of the strategy of long branch subdivision to improve accuracy of phylogenetic methods
  publication-title: Syst. Biol.
  doi: 10.1080/10635150390197046
– volume: 27
  start-page: 171
  year: 2011
  ident: 10.1016/j.ympev.2015.10.009_b0225
  article-title: SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information
  publication-title: Cladistics
  doi: 10.1111/j.1096-0031.2010.00329.x
– volume: 47
  start-page: 9
  year: 1998
  ident: 10.1016/j.ympev.2015.10.009_b0045
  article-title: Is it better to add taxa or characters to a difficult phylogenetic problem?
  publication-title: Syst. Biol.
  doi: 10.1080/106351598260996
– ident: 10.1016/j.ympev.2015.10.009_b0210
  doi: 10.1093/sysbio/syv058
– volume: 65
  start-page: 974
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0100
  article-title: Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2012.08.018
– volume: 4
  start-page: e88
  year: 2006
  ident: 10.1016/j.ympev.2015.10.009_b0025
  article-title: Relaxed phylogenetics and dating with confidence
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0040088
– volume: 31
  start-page: 1391
  year: 2014
  ident: 10.1016/j.ympev.2015.10.009_b0235
  article-title: Illuminating the base of the annelid tree using transcriptomics
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu080
– volume: 54
  start-page: 719
  year: 2005
  ident: 10.1016/j.ympev.2015.10.009_b0260
  article-title: Hylid frog phylogeny and sampling strategies for speciose clades
  publication-title: Syst. Biol.
  doi: 10.1080/10635150500234625
– volume: 85
  start-page: 41
  year: 2015
  ident: 10.1016/j.ympev.2015.10.009_b0270
  article-title: Do missing data influence the accuracy of divergence-time estimation with BEAST?
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2015.02.002
– volume: 31
  start-page: 2542
  year: 2014
  ident: 10.1016/j.ympev.2015.10.009_b0035
  article-title: Prospects for building large timetrees using molecular data with incomplete gene coverage among species
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu200
– ident: 10.1016/j.ympev.2015.10.009_b0220
– volume: 10
  start-page: e0118199
  year: 2015
  ident: 10.1016/j.ympev.2015.10.009_b0145
  article-title: Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118199
– volume: 7
  start-page: 214
  year: 2007
  ident: 10.1016/j.ympev.2015.10.009_b0020
  article-title: BEAST: Bayesian evolutionary analysis by sampling trees
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-7-214
– volume: 29
  start-page: 1695
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0090
  article-title: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mss020
– volume: 471
  start-page: 95
  year: 2011
  ident: 10.1016/j.ympev.2015.10.009_b0215
  article-title: Phylogenomic analyses unravel annelid evolution
  publication-title: Nature
  doi: 10.1038/nature09864
– volume: 8
  start-page: 1043
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0265
  article-title: Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2012.0703
– volume: 480
  start-page: 364
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0180
  article-title: Resolving the evolutionary relationships of molluscs with phylogenomic tools
  publication-title: Nature
  doi: 10.1038/nature10526
– volume: 30
  start-page: 1312
  year: 2014
  ident: 10.1016/j.ympev.2015.10.009_b0195
  article-title: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 58
  start-page: 53
  year: 2011
  ident: 10.1016/j.ympev.2015.10.009_b0205
  article-title: Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizards (Squamata: Cordylidae)
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2010.08.024
– volume: 21
  start-page: 1740
  year: 2004
  ident: 10.1016/j.ympev.2015.10.009_b0115
  article-title: Phylogenomics of eukaryotes: impact of missing data on large alignments
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh182
– volume: 28
  start-page: 2689
  year: 2012
  ident: 10.1016/j.ympev.2015.10.009_b0175
  article-title: TreePL: divergence time estimation using penalized likelihood for large phylogenies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts492
– volume: 98
  start-page: 10751
  year: 2001
  ident: 10.1016/j.ympev.2015.10.009_b0155
  article-title: Incomplete taxon sampling is not a problem for phylogenetic inference
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.191248498
– volume: 57
  start-page: 758
  year: 2008
  ident: 10.1016/j.ympev.2015.10.009_b0190
  article-title: A rapid bootstrap algorithm for the RAxML web servers
  publication-title: Syst. Biol.
  doi: 10.1080/10635150802429642
– volume: 61
  start-page: 543
  year: 2011
  ident: 10.1016/j.ympev.2015.10.009_b0120
  article-title: A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians
  publication-title: Mol. Phylogenet. Evol.
  doi: 10.1016/j.ympev.2011.06.012
– volume: 30
  start-page: 197
  year: 2013
  ident: 10.1016/j.ympev.2015.10.009_b0160
  article-title: Impact of missing data on phylogenies inferred from empirical phylogenomic data sets
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mss208
– volume: 51
  start-page: 588
  year: 2002
  ident: 10.1016/j.ympev.2015.10.009_b0275
  article-title: Increased taxon sampling greatly reduces phylogenetic error
  publication-title: Syst. Biol.
  doi: 10.1080/10635150290102339
– volume: 60
  start-page: 782
  year: 2011
  ident: 10.1016/j.ympev.2015.10.009_b0015
  article-title: Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (Hexapoda: Lepidoptera)?
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/syr079
– volume: 463
  start-page: 1079
  year: 2010
  ident: 10.1016/j.ympev.2015.10.009_b0150
  article-title: Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences
  publication-title: Nature
  doi: 10.1038/nature08742
– volume: 32
  start-page: 1611
  year: 2015
  ident: 10.1016/j.ympev.2015.10.009_b0075
  article-title: The effects of partitioning on phylogenetic inference
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msv026
– volume: 55
  start-page: 539
  year: 2006
  ident: 10.1016/j.ympev.2015.10.009_b0005
  article-title: Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative
  publication-title: Syst. Biol.
  doi: 10.1080/10635150600755453
SSID ssj0011595
Score 2.6317713
Snippet [Display omitted] •Many studies analyze higher-level relationships with many genes but few taxa (e.g. phylogenomic).•Alternately, other studies analyze many...
Two common approaches for estimating phylogenies in species-rich groups are to: (i) sample many loci for few species (e.g. phylogenomic approach), or (ii)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 537
SubjectTerms Animals
data collection
genes
Likelihood Functions
lizards
Lizards - classification
Lizards - genetics
loci
Missing data
Phylogenomic
Phylogeny
Sequence Analysis, DNA
snakes
Snakes - classification
Snakes - genetics
Squamata
Supermatrix
Title Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species
URI https://dx.doi.org/10.1016/j.ympev.2015.10.009
https://www.ncbi.nlm.nih.gov/pubmed/26475614
https://www.proquest.com/docview/1738483196
https://www.proquest.com/docview/1825426243
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWqokpcUKEFAm3lShxA6jbE6689VhFVSqGqgEq9rez1LApUmzSboObCb-Gndsa7G6mH5sApiteOLM945s1mZh5j74IoB7IY-MSiL0ow3oDEukwl1hsf0uC9BCpO_nqhR1fy87W63mDDrhaG0ipb29_Y9Git25F-e5r96Xjc_07UjiYjlgLSTEEV5VIa0vLjv6s0DwQ8kXmFJic0u-s8FHO8lghN_1B-lzqOKV7ZY97pMfQZvdDpNnvWwkd-0uzwOduA6gXbaggllzvsH15vHykfOB4fjkGsOuauCrxeTMkKz2fjO951Eof6KD5znDjmE5QXRc8IQlfLlxxRLa9vFw6XAp9REswN1Pw9pYPNQt38dOV-Q_2Bk0sMfFJxJfhPMqLxKYIxwamiE4PyXXZ1-unHcJS0HAxJIZWdo7H0UMoyc0GDGPgM0Z3XoBTYYIIPWQnGa6LvCCGFIIyxaYDSWW20zqQp0pdss5pU8JrxQmBwR_hG-UJKJ20hPjoVlJepyIwoekx0Z58XbYNy4sm4ybtMtF95FFhOAqNBFFiPHa0WTZv-HOun606o-QM1y9GDrF942KlAjheQ_lVxFUwWdT4wqZWWLNmaORSHCy1k2mOvGv1Z7RYRqaF2rG_-d2tv2VP81r4X2mOb89kC9hEpzf1BvAoH7MnJ8NuXS_o8Ox9d3ANWmBY_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa6FMN6GfZu9tSAHTagbhpZLx-LYkW6trmsBXozJIseshVOGidF82_6U0fKdoAdmsOukmgIIkV-tPhg7EsQ5VAWQ59YtEUJ-huQWJepxHrjQxq8l0DJyedjPbqUP67U1RY76nJhKKyy1f2NTo_auh0ZtKc5mE0mg5_U2tFk1KWAJFOYR2ybqlOpHts-PDkdjdePCWixVXz0VFSd8SDtig_FMK8VotNbCvFS-zHKK3vIQD0EQKMhOn7GnrYIkh82m3zOtqB6wR43PSVXL9k93nAfuz5wPEEcg5h4zF0VeL2ckSJezCd3vCsmDvVenHOc2swnyDJyoBGHrslXHIEtr2-WDkmBzykO5hpq_pUiwuahbj5duT9Qf-NkFQOfVlwJ_ov0aJxFPCY4JXWiX_6KXR5_vzgaJW0bhqSQyi5QX3ooZZm5oEEMfYYAz2tQCmwwwYesBOM1dfAIIYUgjLFpgNJZbbTOpCnS16xXTSvYZbwQ6N8RxFG-kNJJW4gDp4LyMhWZEUWfie7s86KtUU6tMq7zLhjtdx4ZlhPDaBAZ1md7a6JZU6Jj83LdMTX_R9JyNCKbCT93IpDjHaSHFVfBdFnnQ5NaaUmZbVhDrrjQQqZ99qaRn_VuEZQaqsj69n-39ok9GV2cn-VnJ-PTd2wHZ9rfRO9ZbzFfwgcETgv_sb0YfwEUuBdb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+phylogenomic+and+supermatrix+approaches%2C+and+a+time-calibrated+phylogeny+for+squamate+reptiles+%28lizards+and+snakes%29+based+on+52+genes+and+4162+species&rft.jtitle=Molecular+phylogenetics+and+evolution&rft.au=Zheng%2C+Yuchi&rft.au=Wiens%2C+John+J.&rft.date=2016-01-01&rft.issn=1055-7903&rft.volume=94&rft.spage=537&rft.epage=547&rft_id=info:doi/10.1016%2Fj.ympev.2015.10.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ympev_2015_10_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7903&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7903&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7903&client=summon