Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose

3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP...

Full description

Saved in:
Bibliographic Details
Published inMetabolic engineering Vol. 39; pp. 151 - 158
Main Authors Chen, Zhen, Huang, Jinhai, Wu, Yao, Wu, Wenjun, Zhang, Ye, Liu, Dehua
Format Journal Article
LanguageEnglish
Published Belgium Elsevier Inc 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks. •Corynebacterium glutamicum was engineered for the first time to produce 3-hydroxypropionic acid (3-HP) from glucose via glycerol pathway.•62.6g/L of 3-HP was produced from glucose at a yield of 0.51g/g, the highest titer and yield of 3-HP from sugar reported to date.•Downregulation of glyceraldehyde 3-phosphate dehydrogenase and employment of the non-PTS glucose-uptake system are important for increasing the yield of 3-HP.•3-HP overproduction by simultaneous utilization of glucose and xylose was achieved.
AbstractList 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapA ΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAᴬ¹ᴳΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks. •Corynebacterium glutamicum was engineered for the first time to produce 3-hydroxypropionic acid (3-HP) from glucose via glycerol pathway.•62.6g/L of 3-HP was produced from glucose at a yield of 0.51g/g, the highest titer and yield of 3-HP from sugar reported to date.•Downregulation of glyceraldehyde 3-phosphate dehydrogenase and employment of the non-PTS glucose-uptake system are important for increasing the yield of 3-HP.•3-HP overproduction by simultaneous utilization of glucose and xylose was achieved.
Author Wu, Wenjun
Huang, Jinhai
Wu, Yao
Liu, Dehua
Chen, Zhen
Zhang, Ye
Author_xml – sequence: 1
  givenname: Zhen
  surname: Chen
  fullname: Chen, Zhen
  email: zhenchen2013@mail.tsinghua.edu.cn
  organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Jinhai
  surname: Huang
  fullname: Huang, Jinhai
  organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Yao
  surname: Wu
  fullname: Wu, Yao
  organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Wenjun
  surname: Wu
  fullname: Wu, Wenjun
  organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Ye
  surname: Zhang
  fullname: Zhang, Ye
  organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Dehua
  surname: Liu
  fullname: Liu, Dehua
  organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27918882$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wC5BQlmwS7Dz8WLBAI6CVWrFp15ZzczP1KLEH20HNv8fTaVmwaFe-Pjrf1dU55-TEeYeEfGS0YpTxL7tqnXt0VZ0_FWMVpeoNOWNU8VIw2Z78mwU_Jecx7ihlrFPsHTmthWJSyvqMrDeYTO8nCwW6rXWIwbpt4cdi48PqsDeQsrTMxXZakpkt5HH0oUj3WOyDHxZI1rsD0JT36xD8w5rlfdbySgN2KMbgH2nwEQvjhuJhnfL4nrwdzRTxw9N7Qe5-fL_dXJbXv35ebb5dl9B2MpWyBdp3dQ2jxFaNaqhrzrnpKRUD64SQAmTDgSKXtG-6TlDFOAejeuDtqNrmgnw-7s1n_V4wJj3bCDhNxqFfoq4ppU2jeKteteZUecO5kDRbPz1Zl37GQe-DnU1Y9XOy2aCOBgg-xoCjBpvMIasUjJ00o_rQot7pxxb1oUXNmM4tZrb5j31e_zL19UhhTvOPxaAjWHSAgw0ISQ_evsj_Bbi9uF8
CitedBy_id crossref_primary_10_3389_fbioe_2021_746322
crossref_primary_10_1080_07388551_2021_1962241
crossref_primary_10_3389_fbioe_2023_1101232
crossref_primary_10_1016_j_biortech_2018_06_001
crossref_primary_10_3390_fermentation4010013
crossref_primary_10_1038_s41929_018_0212_4
crossref_primary_10_3389_fbioe_2020_622226
crossref_primary_10_1021_acssynbio_0c00486
crossref_primary_10_1007_s11538_020_00714_1
crossref_primary_10_3389_fbioe_2019_00440
crossref_primary_10_3389_fbioe_2021_603832
crossref_primary_10_3389_fmicb_2018_02185
crossref_primary_10_1186_s13068_022_02114_0
crossref_primary_10_1016_j_fuel_2023_130751
crossref_primary_10_1016_S1872_2067_22_64195_0
crossref_primary_10_2139_ssrn_4011164
crossref_primary_10_1002_bit_27344
crossref_primary_10_1186_s13068_017_0920_z
crossref_primary_10_1016_j_biombioe_2024_107399
crossref_primary_10_1186_s13068_023_02367_3
crossref_primary_10_1016_j_cherd_2023_03_034
crossref_primary_10_1007_s11274_021_03091_6
crossref_primary_10_1016_j_biortech_2023_129822
crossref_primary_10_1016_j_biotno_2022_02_002
crossref_primary_10_1016_j_enzmictec_2018_09_002
crossref_primary_10_1016_j_ymben_2022_10_012
crossref_primary_10_1002_jobm_201800640
crossref_primary_10_1007_s00449_021_02567_x
crossref_primary_10_1093_jimb_kuab040
crossref_primary_10_3390_synbio1010002
crossref_primary_10_1016_j_synbio_2025_02_002
crossref_primary_10_1016_j_ymben_2018_11_006
crossref_primary_10_1186_s12934_022_01741_4
crossref_primary_10_1016_j_biotechadv_2022_107935
crossref_primary_10_1007_s00253_018_8988_3
crossref_primary_10_3389_fbioe_2020_606047
crossref_primary_10_3390_molecules28041888
crossref_primary_10_1007_s00253_022_12330_1
crossref_primary_10_3390_catal10020203
crossref_primary_10_1038_s41598_018_36320_4
crossref_primary_10_1021_acs_jafc_0c07902
crossref_primary_10_1016_j_copbio_2018_11_004
crossref_primary_10_1016_j_bcab_2024_103226
crossref_primary_10_3390_microorganisms11092197
crossref_primary_10_1038_s41598_017_01850_w
crossref_primary_10_1021_acs_chemrev_7b00395
crossref_primary_10_1038_s41467_022_28501_7
crossref_primary_10_1016_j_ymben_2018_09_008
crossref_primary_10_1021_acssuschemeng_9b07839
crossref_primary_10_1016_j_synbio_2021_09_005
crossref_primary_10_1002_bit_27082
crossref_primary_10_1039_C9GC02286D
crossref_primary_10_1002_bit_28170
crossref_primary_10_1016_j_ymben_2018_07_008
crossref_primary_10_1007_s00449_017_1754_6
crossref_primary_10_1038_s41467_021_21632_3
crossref_primary_10_1016_j_renene_2022_04_094
crossref_primary_10_1007_s43153_021_00103_8
crossref_primary_10_1021_acssynbio_0c00567
crossref_primary_10_3389_fbioe_2019_00124
crossref_primary_10_1016_j_ymben_2019_07_003
crossref_primary_10_1016_j_ymben_2021_03_001
crossref_primary_10_3389_fbioe_2021_808258
crossref_primary_10_1016_j_biortech_2021_124799
crossref_primary_10_1186_s13068_020_01853_2
crossref_primary_10_1002_bbb_1895
crossref_primary_10_3390_pr10091752
crossref_primary_10_1016_j_ymben_2022_01_006
crossref_primary_10_1093_femsle_fny166
crossref_primary_10_1128_AEM_01314_18
crossref_primary_10_1186_s12934_021_01615_1
crossref_primary_10_1016_j_scitotenv_2021_147024
crossref_primary_10_1038_s41598_020_76120_3
crossref_primary_10_1186_s13068_018_1094_z
crossref_primary_10_1016_j_biortech_2019_03_122
crossref_primary_10_1007_s00253_018_9358_x
crossref_primary_10_1016_j_ymben_2021_01_013
crossref_primary_10_1016_j_esr_2024_101634
crossref_primary_10_1007_s00253_019_09772_5
crossref_primary_10_3389_fbioe_2022_908431
crossref_primary_10_1128_aem_01518_22
crossref_primary_10_1186_s12934_020_1294_7
crossref_primary_10_1007_s00253_018_8896_6
crossref_primary_10_1021_acssynbio_9b00003
crossref_primary_10_1186_s40643_021_00485_0
crossref_primary_10_3390_fermentation7040248
crossref_primary_10_1016_j_biotechadv_2021_107697
crossref_primary_10_1007_s10295_018_2103_8
crossref_primary_10_1080_21655979_2022_2051856
crossref_primary_10_1038_s41564_023_01529_1
crossref_primary_10_1186_s13068_023_02288_1
crossref_primary_10_1007_s00253_019_09640_2
crossref_primary_10_1002_smo_20240019
crossref_primary_10_1021_acssuschemeng_1c05441
crossref_primary_10_1016_j_biotechadv_2020_107668
crossref_primary_10_1007_s12649_024_02783_y
crossref_primary_10_1016_j_bidere_2025_100008
crossref_primary_10_1016_j_ymben_2019_03_008
crossref_primary_10_1186_s13068_017_0992_9
crossref_primary_10_1021_acssuschemeng_3c00410
crossref_primary_10_1016_j_biotechadv_2018_03_020
Cites_doi 10.1016/j.ymben.2016.01.001
10.1007/s00253-012-4062-8
10.1007/s00253-009-2065-x
10.1016/j.copbio.2011.11.012
10.1021/acssynbio.5b00303
10.1007/s00284-002-3728-3
10.1016/j.ymben.2014.06.005
10.1016/j.ymben.2015.10.013
10.1016/j.biortech.2015.08.086
10.1007/s00253-008-1608-x
10.1021/acssynbio.6b00007
10.1007/s00253-011-3210-x
10.1016/j.copbio.2016.07.007
10.1023/A:1008968419217
10.1007/s10295-014-1538-9
10.1128/AEM.02972-10
10.1016/j.ymben.2015.08.002
10.1007/s00253-012-4176-z
10.1007/s00253-014-6170-0
10.1186/1475-2859-13-64
10.1016/j.ymben.2012.09.004
10.1016/j.ymben.2006.09.002
10.1016/j.bej.2011.02.005
10.1016/j.biotechadv.2013.02.008
10.1016/j.biortech.2013.02.053
10.1002/biot.201400235
10.1016/j.ymben.2014.01.005
10.1128/AEM.02806-12
10.1002/bit.24954
10.1128/AEM.01634-13
10.1002/bit.25444
10.1128/AEM.03535-13
10.1186/s13068-016-0625-8
10.1002/biot.201000304
10.1016/j.biortech.2012.10.143
10.2172/15008859
10.1002/biot.201200238
10.1016/j.ymben.2014.10.003
10.1021/sb400133g
10.1002/bit.24726
ContentType Journal Article
Copyright 2016 International Metabolic Engineering Society
Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 International Metabolic Engineering Society
– notice: Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ymben.2016.11.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1096-7184
EndPage 158
ExternalDocumentID 27918882
10_1016_j_ymben_2016_11_009
S1096717616301082
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CJTIS
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LG5
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
UHS
XPP
ZMT
ZU3
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c458t-84c0b522cf8e49f9d22666ab007d157787c836c0e680b355709166ca9bc64f943
IEDL.DBID .~1
ISSN 1096-7176
1096-7184
IngestDate Fri Jul 11 04:13:18 EDT 2025
Fri Jul 11 08:02:58 EDT 2025
Mon Jul 21 06:00:04 EDT 2025
Tue Jul 01 00:51:24 EDT 2025
Thu Apr 24 23:07:10 EDT 2025
Fri Feb 23 02:37:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Glycerol pathway
Metabolic engineering
Lignocellulose
3-Hydroxypropionic acid
Corynebacterium glutamicum
Language English
License Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-84c0b522cf8e49f9d22666ab007d157787c836c0e680b355709166ca9bc64f943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27918882
PQID 1846366780
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000339649
proquest_miscellaneous_1846366780
pubmed_primary_27918882
crossref_citationtrail_10_1016_j_ymben_2016_11_009
crossref_primary_10_1016_j_ymben_2016_11_009
elsevier_sciencedirect_doi_10_1016_j_ymben_2016_11_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
2017-Jan
20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationPlace Belgium
PublicationPlace_xml – name: Belgium
PublicationTitle Metabolic engineering
PublicationTitleAlternate Metab Eng
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chen, Geng, Zeng (bib12) 2015; 10
Lim, Noh, Jeong, Park, Jung (bib31) 2016
Jakoby, Ngouoto-Nkili, Burkovski (bib26) 1999; 13
Chu, Kim, Lee, Lee, Jung, Ahn, Song, Choi, Cho (bib20) 2015; 112
Gibson, Young, Chuang, Venter, Hutchison, Smith (bib22) 2009; 6
Tokuyama, Ohno, Yoshikawa, Hirasawa, Tanaka, Furusawa, Shimizu (bib38) 2014; 13
Meynial Salles, Forchhammer, Croux, Girbal, Soucaille (bib34) 2007; 9
Blombach, Riester, Wieschalka, Ziert, Youn, Wendisch, Eikmanns (bib5) 2011; 77
Yim, An, Kang, Lee, Jeong (bib41) 2013; 110
Baumgart, Unthan, Rückert, Sivalingam, Grünberger, Kalinowski, Bott, Noack, Frunzke (bib3) 2013; 79
Tauch, Kirchner, Löffler, Götker, Pühler, Kalinowski (bib37) 2002; 45
Chen, Liu (bib14) 2016; 9
Chen, Zeng (bib19) 2013; 8
Geng, Chen, Zheng, Sun, Zeng (bib21) 2013; 97
Buschke, Schröder, Wittmann (bib8) 2011; 6
Huang, Li, Shimizu, Ye (bib24) 2013; 128
Chen, Bao, Kim, Siewers, Nielsen (bib10) 2014; 22
Chen, Chen, Zheng, Sun, Zeng (bib9) 2013; 97
Chen, Bommareddy, Frank, Rappert, Zeng (bib11) 2014; 80
Jojima, Igari, Moteki, Suda, Yukawa, Inui (bib28) 2015; 99
Tsuge, Hasunuma, Kondo (bib39) 2015; 42
Ashok, Sankaranarayanan, Ko, Jae, Ainala, Kumar, Park (bib2) 2013; 110
Chen, Zeng (bib18) 2016; 42
Ashok, Mohan Raj, Ko, Sankaranarayanan, Zhou, Kumar, Park (bib1) 2013; 15
Jo, Mohan Raj, Rathnasingh, Selvakumar, Jung, Park (bib27) 2008; 81
Meiswinkel, Rittmann, Lindner, Wendisch (bib33) 2013; 145
Becker, Wittmann (bib4) 2012; 23
Chen, Huang, Wu, Liu (bib13) 2016; 33
Ikeda, Mizuno, Awane, Hayashi, Mitsuhashi, Takeno (bib25) 2011; 90
Chen, Wu, Huang, Liu (bib17) 2015; 197
Lan, Chuang, Shen, Lee, Ro, Liao (bib30) 2015; 31
Chen, Rappert, Zeng (bib16) 2015; 4
Song, Kim, Cho, Lee (bib36) 2016
Bommareddy, Chen, Rappert, Zeng (bib6) 2014; 25
Borodina, Kildegaard, Jensen, Blicher, Maury, Sherstyk, Schneider, Lamosa, Herrgård, Rosenstand, Öberg, Forster, Nielsen (bib7) 2014; 27
Hasegawa, Suda, Uematsu, Natsuma, Hiraga, Jojima, Inui, Yukawa (bib23) 2013; 79
Werpy T, Petersen G, Top value added chemicals from biomass, vol 1: results of screening for potential candidates from sugars and synthesis gas. 2004, US Department of Energy http://www.osti. gov/bridge
Kumar, Ashok, Park (bib29) 2013; 31
Liu, Ding, Zhang, Liu, Xian, Zhao (bib32) 2016; 34
Chen, Liu, Liu (bib15) 2011; 54
Sasaki, Jojima, Kawaguchi, Inui, Yukawa (bib35) 2009; 85
Becker (10.1016/j.ymben.2016.11.009_bib4) 2012; 23
Geng (10.1016/j.ymben.2016.11.009_bib21) 2013; 97
Gibson (10.1016/j.ymben.2016.11.009_bib22) 2009; 6
Buschke (10.1016/j.ymben.2016.11.009_bib8) 2011; 6
Yim (10.1016/j.ymben.2016.11.009_bib41) 2013; 110
Kumar (10.1016/j.ymben.2016.11.009_bib29) 2013; 31
Ashok (10.1016/j.ymben.2016.11.009_bib2) 2013; 110
Tokuyama (10.1016/j.ymben.2016.11.009_bib38) 2014; 13
Baumgart (10.1016/j.ymben.2016.11.009_bib3) 2013; 79
Ashok (10.1016/j.ymben.2016.11.009_bib1) 2013; 15
Jojima (10.1016/j.ymben.2016.11.009_bib28) 2015; 99
Tsuge (10.1016/j.ymben.2016.11.009_bib39) 2015; 42
Chen (10.1016/j.ymben.2016.11.009_bib11) 2014; 80
Jo (10.1016/j.ymben.2016.11.009_bib27) 2008; 81
Borodina (10.1016/j.ymben.2016.11.009_bib7) 2014; 27
Chu (10.1016/j.ymben.2016.11.009_bib20) 2015; 112
Liu (10.1016/j.ymben.2016.11.009_bib32) 2016; 34
Chen (10.1016/j.ymben.2016.11.009_bib9) 2013; 97
Chen (10.1016/j.ymben.2016.11.009_bib13) 2016; 33
Jakoby (10.1016/j.ymben.2016.11.009_bib26) 1999; 13
Hasegawa (10.1016/j.ymben.2016.11.009_bib23) 2013; 79
Chen (10.1016/j.ymben.2016.11.009_bib16) 2015; 4
Blombach (10.1016/j.ymben.2016.11.009_bib5) 2011; 77
Chen (10.1016/j.ymben.2016.11.009_bib19) 2013; 8
Lan (10.1016/j.ymben.2016.11.009_bib30) 2015; 31
Tauch (10.1016/j.ymben.2016.11.009_bib37) 2002; 45
Ikeda (10.1016/j.ymben.2016.11.009_bib25) 2011; 90
Chen (10.1016/j.ymben.2016.11.009_bib15) 2011; 54
Lim (10.1016/j.ymben.2016.11.009_bib31) 2016
Chen (10.1016/j.ymben.2016.11.009_bib14) 2016; 9
Meiswinkel (10.1016/j.ymben.2016.11.009_bib33) 2013; 145
Sasaki (10.1016/j.ymben.2016.11.009_bib35) 2009; 85
Chen (10.1016/j.ymben.2016.11.009_bib12) 2015; 10
Chen (10.1016/j.ymben.2016.11.009_bib17) 2015; 197
Song (10.1016/j.ymben.2016.11.009_bib36) 2016
Chen (10.1016/j.ymben.2016.11.009_bib18) 2016; 42
Huang (10.1016/j.ymben.2016.11.009_bib24) 2013; 128
Bommareddy (10.1016/j.ymben.2016.11.009_bib6) 2014; 25
Chen (10.1016/j.ymben.2016.11.009_bib10) 2014; 22
Meynial Salles (10.1016/j.ymben.2016.11.009_bib34) 2007; 9
10.1016/j.ymben.2016.11.009_bib40
References_xml – year: 2016
  ident: bib31
  article-title: Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Esherichia coli
  publication-title: ACS Synth. Biol.
– volume: 4
  start-page: 126
  year: 2015
  end-page: 131
  ident: bib16
  article-title: Rational design of allosteric regulation of homoserine dehydrogenase by a Nonnatural inhibitor
  publication-title: ACS Synth. Biol.
– volume: 42
  start-page: 375
  year: 2015
  end-page: 389
  ident: bib39
  article-title: Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 80
  start-page: 1388
  year: 2014
  end-page: 1393
  ident: bib11
  article-title: Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum
  publication-title: Appl. Environ. Microbiol.
– volume: 15
  start-page: 10
  year: 2013
  end-page: 24
  ident: bib1
  article-title: Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT
  publication-title: Metab. Eng.
– volume: 6
  start-page: 343
  year: 2009
  end-page: 345
  ident: bib22
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat. Methods
– volume: 128
  start-page: 505
  year: 2013
  end-page: 512
  ident: bib24
  article-title: Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions
  publication-title: Bioresour. Technol.
– volume: 31
  start-page: 945
  year: 2013
  end-page: 961
  ident: bib29
  article-title: Recent advances in biological production of 3-hydroxypropionic acid
  publication-title: Biotechnol. Adv.
– volume: 31
  start-page: 163
  year: 2015
  end-page: 170
  ident: bib30
  article-title: Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO
  publication-title: Metab. Eng.
– volume: 6
  start-page: 306
  year: 2011
  end-page: 317
  ident: bib8
  article-title: Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose
  publication-title: Biotechnol. J.
– volume: 110
  start-page: 2959
  year: 2013
  end-page: 2969
  ident: bib41
  article-title: Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum
  publication-title: Biotechnol. Bioeng.
– volume: 22
  start-page: 104
  year: 2014
  end-page: 109
  ident: bib10
  article-title: Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
– volume: 79
  start-page: 6006
  year: 2013
  end-page: 6015
  ident: bib3
  article-title: Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology
  publication-title: Appl. Environ. Microbiol.
– volume: 27
  start-page: 57
  year: 2014
  end-page: 64
  ident: bib7
  article-title: Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine
  publication-title: Metab. Eng.
– volume: 34
  start-page: 104
  year: 2016
  end-page: 111
  ident: bib32
  article-title: Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis
  publication-title: Metab. Eng.
– volume: 145
  start-page: 254
  year: 2013
  end-page: 258
  ident: bib33
  article-title: Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum
  publication-title: Bioresour. Technol.
– volume: 81
  start-page: 51
  year: 2008
  end-page: 60
  ident: bib27
  article-title: Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 77
  start-page: 3300
  year: 2011
  end-page: 3310
  ident: bib5
  article-title: Corynebacterium glutamicum tailored for efficient isobutanol production
  publication-title: Appl. Environ. Microbiol.
– volume: 10
  start-page: 284
  year: 2015
  end-page: 289
  ident: bib12
  article-title: Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
  publication-title: Biotechnol. J.
– volume: 8
  start-page: 523
  year: 2013
  end-page: 533
  ident: bib19
  article-title: Protein design in systems metabolic engineering for industrial strain development
  publication-title: Biotechnol. J.
– reference: Werpy T, Petersen G, Top value added chemicals from biomass, vol 1: results of screening for potential candidates from sugars and synthesis gas. 2004, US Department of Energy http://www.osti. gov/bridge
– volume: 90
  start-page: 1443
  year: 2011
  end-page: 1451
  ident: bib25
  article-title: Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 110
  start-page: 511
  year: 2013
  end-page: 524
  ident: bib2
  article-title: Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally
  publication-title: Biotechnol. Bioeng.
– volume: 42
  start-page: 198
  year: 2016
  end-page: 205
  ident: bib18
  article-title: Protein engineering approaches to chemical biotechnology
  publication-title: Curr. Opin. Biotechnol.
– volume: 97
  start-page: 1963
  year: 2013
  end-page: 1971
  ident: bib21
  article-title: Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 85
  start-page: 105
  year: 2009
  end-page: 115
  ident: bib35
  article-title: Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 13
  start-page: 437
  year: 1999
  end-page: 441
  ident: bib26
  article-title: Construction and application of new Corynebacterium glutamicum vectors
  publication-title: Biotechnol. Tech.
– volume: 33
  start-page: 12
  year: 2016
  end-page: 18
  ident: bib13
  article-title: Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose
  publication-title: Metab. Eng.
– volume: 79
  start-page: 1250
  year: 2013
  end-page: 1257
  ident: bib23
  article-title: Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions
  publication-title: Appl. Environ. Microbiol.
– volume: 54
  start-page: 151
  year: 2011
  end-page: 157
  ident: bib15
  article-title: Metabolic pathway analysis of 1,3-propanediol production with a genetically modified Klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase
  publication-title: Biochem. Eng. J.
– volume: 112
  start-page: 356
  year: 2015
  end-page: 364
  ident: bib20
  article-title: Metabolic engineering of 3-hydroxypropionic acid biosynthesis in
  publication-title: Biotechnol. Bioeng.
– volume: 99
  start-page: 1427
  year: 2015
  end-page: 1433
  ident: bib28
  article-title: Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 197
  start-page: 260
  year: 2015
  end-page: 265
  ident: bib17
  article-title: Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel
  publication-title: Bioresour. Technol.
– volume: 97
  start-page: 2939
  year: 2013
  end-page: 2949
  ident: bib9
  article-title: Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 9
  start-page: 152
  year: 2007
  end-page: 159
  ident: bib34
  article-title: Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli
  publication-title: Metab. Eng.
– volume: 23
  start-page: 631
  year: 2012
  end-page: 640
  ident: bib4
  article-title: Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory
  publication-title: Curr. Opin. Biotechnol.
– volume: 25
  start-page: 30
  year: 2014
  end-page: 37
  ident: bib6
  article-title: A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme speci fi city of glyceraldehyde 3-phosphate dehydrogenase
  publication-title: Metab. Eng.
– volume: 9
  start-page: 205
  year: 2016
  ident: bib14
  article-title: Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol
  publication-title: Biotechnol. Biofuels
– volume: 13
  start-page: 64
  year: 2014
  ident: bib38
  article-title: Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli
  publication-title: Microb. Cell Fact.
– year: 2016
  ident: bib36
  article-title: Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route
  publication-title: ACS Synth. Biol.
– volume: 45
  start-page: 362
  year: 2002
  end-page: 367
  ident: bib37
  article-title: Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1
  publication-title: Curr. Microbiol.
– volume: 34
  start-page: 104
  year: 2016
  ident: 10.1016/j.ymben.2016.11.009_bib32
  article-title: Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2016.01.001
– volume: 97
  start-page: 1963
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib21
  article-title: Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4062-8
– volume: 85
  start-page: 105
  year: 2009
  ident: 10.1016/j.ymben.2016.11.009_bib35
  article-title: Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2065-x
– volume: 23
  start-page: 631
  year: 2012
  ident: 10.1016/j.ymben.2016.11.009_bib4
  article-title: Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2011.11.012
– year: 2016
  ident: 10.1016/j.ymben.2016.11.009_bib31
  article-title: Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Esherichia coli
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.5b00303
– volume: 45
  start-page: 362
  year: 2002
  ident: 10.1016/j.ymben.2016.11.009_bib37
  article-title: Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-002-3728-3
– volume: 25
  start-page: 30
  year: 2014
  ident: 10.1016/j.ymben.2016.11.009_bib6
  article-title: A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme speci fi city of glyceraldehyde 3-phosphate dehydrogenase
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.06.005
– volume: 33
  start-page: 12
  year: 2016
  ident: 10.1016/j.ymben.2016.11.009_bib13
  article-title: Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.10.013
– volume: 197
  start-page: 260
  year: 2015
  ident: 10.1016/j.ymben.2016.11.009_bib17
  article-title: Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.086
– volume: 81
  start-page: 51
  year: 2008
  ident: 10.1016/j.ymben.2016.11.009_bib27
  article-title: Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-008-1608-x
– year: 2016
  ident: 10.1016/j.ymben.2016.11.009_bib36
  article-title: Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00007
– volume: 90
  start-page: 1443
  year: 2011
  ident: 10.1016/j.ymben.2016.11.009_bib25
  article-title: Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3210-x
– volume: 42
  start-page: 198
  year: 2016
  ident: 10.1016/j.ymben.2016.11.009_bib18
  article-title: Protein engineering approaches to chemical biotechnology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2016.07.007
– volume: 13
  start-page: 437
  year: 1999
  ident: 10.1016/j.ymben.2016.11.009_bib26
  article-title: Construction and application of new Corynebacterium glutamicum vectors
  publication-title: Biotechnol. Tech.
  doi: 10.1023/A:1008968419217
– volume: 42
  start-page: 375
  year: 2015
  ident: 10.1016/j.ymben.2016.11.009_bib39
  article-title: Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-014-1538-9
– volume: 77
  start-page: 3300
  year: 2011
  ident: 10.1016/j.ymben.2016.11.009_bib5
  article-title: Corynebacterium glutamicum tailored for efficient isobutanol production
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02972-10
– volume: 31
  start-page: 163
  year: 2015
  ident: 10.1016/j.ymben.2016.11.009_bib30
  article-title: Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2015.08.002
– volume: 97
  start-page: 2939
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib9
  article-title: Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4176-z
– volume: 99
  start-page: 1427
  year: 2015
  ident: 10.1016/j.ymben.2016.11.009_bib28
  article-title: Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6170-0
– volume: 13
  start-page: 64
  year: 2014
  ident: 10.1016/j.ymben.2016.11.009_bib38
  article-title: Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-13-64
– volume: 15
  start-page: 10
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib1
  article-title: Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2012.09.004
– volume: 9
  start-page: 152
  year: 2007
  ident: 10.1016/j.ymben.2016.11.009_bib34
  article-title: Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2006.09.002
– volume: 54
  start-page: 151
  year: 2011
  ident: 10.1016/j.ymben.2016.11.009_bib15
  article-title: Metabolic pathway analysis of 1,3-propanediol production with a genetically modified Klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2011.02.005
– volume: 31
  start-page: 945
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib29
  article-title: Recent advances in biological production of 3-hydroxypropionic acid
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.02.008
– volume: 145
  start-page: 254
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib33
  article-title: Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.02.053
– volume: 10
  start-page: 284
  year: 2015
  ident: 10.1016/j.ymben.2016.11.009_bib12
  article-title: Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201400235
– volume: 22
  start-page: 104
  year: 2014
  ident: 10.1016/j.ymben.2016.11.009_bib10
  article-title: Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.01.005
– volume: 79
  start-page: 1250
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib23
  article-title: Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02806-12
– volume: 110
  start-page: 2959
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib41
  article-title: Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24954
– volume: 79
  start-page: 6006
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib3
  article-title: Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01634-13
– volume: 112
  start-page: 356
  year: 2015
  ident: 10.1016/j.ymben.2016.11.009_bib20
  article-title: Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25444
– volume: 80
  start-page: 1388
  year: 2014
  ident: 10.1016/j.ymben.2016.11.009_bib11
  article-title: Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03535-13
– volume: 9
  start-page: 205
  year: 2016
  ident: 10.1016/j.ymben.2016.11.009_bib14
  article-title: Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-016-0625-8
– volume: 6
  start-page: 306
  year: 2011
  ident: 10.1016/j.ymben.2016.11.009_bib8
  article-title: Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201000304
– volume: 128
  start-page: 505
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib24
  article-title: Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.143
– ident: 10.1016/j.ymben.2016.11.009_bib40
  doi: 10.2172/15008859
– volume: 8
  start-page: 523
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib19
  article-title: Protein design in systems metabolic engineering for industrial strain development
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201200238
– volume: 27
  start-page: 57
  year: 2014
  ident: 10.1016/j.ymben.2016.11.009_bib7
  article-title: Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2014.10.003
– volume: 4
  start-page: 126
  year: 2015
  ident: 10.1016/j.ymben.2016.11.009_bib16
  article-title: Rational design of allosteric regulation of homoserine dehydrogenase by a Nonnatural inhibitor
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb400133g
– volume: 6
  start-page: 343
  year: 2009
  ident: 10.1016/j.ymben.2016.11.009_bib22
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
– volume: 110
  start-page: 511
  year: 2013
  ident: 10.1016/j.ymben.2016.11.009_bib2
  article-title: Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24726
SSID ssj0011591
Score 2.4864292
Snippet 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151
SubjectTerms 3-Hydroxypropionic acid
aldehydes
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
batch fermentation
Biosynthetic Pathways - physiology
Corynebacterium glutamicum
Corynebacterium glutamicum - physiology
feedstocks
Gene Expression Regulation, Bacterial - genetics
genes
genetic engineering
Genetic Enhancement - methods
glucokinase
glucose
Glucose - metabolism
glycerol
Glycerol - metabolism
Glycerol pathway
Klebsiella pneumoniae
Lactic Acid - analogs & derivatives
Lactic Acid - biosynthesis
Lactic Acid - isolation & purification
Lignocellulose
Metabolic engineering
Metabolic Engineering - methods
Metabolic Networks and Pathways - physiology
pentoses
Saccharomyces cerevisiae
screening
xylose
Xylose - metabolism
Title Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose
URI https://dx.doi.org/10.1016/j.ymben.2016.11.009
https://www.ncbi.nlm.nih.gov/pubmed/27918882
https://www.proquest.com/docview/1846366780
https://www.proquest.com/docview/2000339649
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-iCM-D6D6fz08ivKNx2yZNm-OyKKuiFxW8heajuo-1u-gu2It_uzP9WBXUg7cQkhIyk5nfpJPfEPJPOe5s5hMmlLEM-UqYMVaxTBgXBd5xnldZvpdycCPObuPbBdJv38JgWmVj-2ubXlnrpqfb7GZ3Mhx2r0JA3xCMSEAUEFSkaIeFSFDLj17maR4AeKqqeTiY4eiWeajK8SofjEcS1FAeIZUnZiV-7p2-Qp-VFzpZI6sNfKS9eoXrZMEXHbJcF5QsO2TlHb3gb1Je-CnIeDS01L_103FO--PHsvCmZmqePdA70D8sTA9NALEUQCGd1FSwIDacwNl96TDjBboneIVraWaHjuLrFNqkvdOscPS5HEFzg9ycHF_3B6wptcCsiNMpS4UNDEAxm6deqFw5QGVSZnAmExfGCZxqm3JpAy_TwHCk7QJYKW0GApYiV4L_IYvFuPB_CbVWKqO4EhDJCB7FJgxt7HnunAKwF6ZbJGq3WNuGhxzLYYx0m3D2X1dy0SgXiFA0yGWLHM4nTWoaju-Hy1Z2-oM2aXAU3088aCWt4Zzhz5Os8OPZk4ZIWHIJrj34egw-e-JcSQHf2azVZL7aKFFhCuHM9k-XtkN-RQgpquufXbI4fZz5PQBEU7Nfafw-Weqdng8uXwFwigtX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJRXeRoJbribxI43PvRQFaotfVxopd5M_AgE7WZX7a4gF_5U_2Bn8lhAoj0g9RZZseV4xvY3zudvAN5qL7zLw5BLbR0nvRJurdM8l9YnUfBCFA3L91CNjuWnk_RkBc77uzBEq-zW_nZNb1brrmTQjeZgVpaDzzGibwxGFCIKDCqypGNW7oX6B8ZtZ5u7H9DI75Jk5-PR9oh3qQW4k2k255l0kUXo4YosSF1ojyhEqRx9cOjjdIhe7DKhXBRUFllBMlUIo5TL8YOULLQU2O4NuClxuaC0CRu_lrwSRFhNmj7qHafu9VJHDamsnthAqqux2iDtUKJB_ns7vAzuNtvezn241-FVttUOyQNYCdUa3GozWNZrcPcPPcOHUB-EOTrVuHQs_C5n04JtT0_rKthWGnoxYV_R4fNJ6fARUTNDFMpmrfYs-glVEPxb7Ylig8UzOjN2LHelZ3QdhnU8e5ZXnv2sx_j4CI6vxQCPYbWaVuEpMOeUtlpoiaGTFElq49ilQRTea0SXcbYOST_ExnXC55R_Y2x6htt309jFkF0wJDJol3V4v6w0a3U_rn5d9bYzf7mvwZ3p6opveksbnNj0tyavwnRxZjD0VkIhloguf4fuWQmhlcR2nrRusuxtMtRxhvHTs__t2mu4PTo62Df7u4d7z-FOQnimOXt6Aavz00V4iWhsbl813s_gy3VPtwuxZUUV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+engineering+of+Corynebacterium+glutamicum+for+the+production+of+3-hydroxypropionic+acid+from+glucose+and+xylose&rft.jtitle=Metabolic+engineering&rft.au=Chen%2C+Zhen&rft.au=Huang%2C+Jinhai&rft.au=Wu%2C+Yao&rft.au=Wu%2C+Wenjun&rft.date=2017-01-01&rft.issn=1096-7184&rft.eissn=1096-7184&rft.volume=39&rft.spage=151&rft_id=info:doi/10.1016%2Fj.ymben.2016.11.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon