Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP...
Saved in:
Published in | Metabolic engineering Vol. 39; pp. 151 - 158 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Belgium
Elsevier Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.
•Corynebacterium glutamicum was engineered for the first time to produce 3-hydroxypropionic acid (3-HP) from glucose via glycerol pathway.•62.6g/L of 3-HP was produced from glucose at a yield of 0.51g/g, the highest titer and yield of 3-HP from sugar reported to date.•Downregulation of glyceraldehyde 3-phosphate dehydrogenase and employment of the non-PTS glucose-uptake system are important for increasing the yield of 3-HP.•3-HP overproduction by simultaneous utilization of glucose and xylose was achieved. |
---|---|
AbstractList | 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapA
ΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks. 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAᴬ¹ᴳΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks. 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks. 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6g/L, with the yield of 0.48g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6g/L 3-HP at a yield of 0.51g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks. •Corynebacterium glutamicum was engineered for the first time to produce 3-hydroxypropionic acid (3-HP) from glucose via glycerol pathway.•62.6g/L of 3-HP was produced from glucose at a yield of 0.51g/g, the highest titer and yield of 3-HP from sugar reported to date.•Downregulation of glyceraldehyde 3-phosphate dehydrogenase and employment of the non-PTS glucose-uptake system are important for increasing the yield of 3-HP.•3-HP overproduction by simultaneous utilization of glucose and xylose was achieved. |
Author | Wu, Wenjun Huang, Jinhai Wu, Yao Liu, Dehua Chen, Zhen Zhang, Ye |
Author_xml | – sequence: 1 givenname: Zhen surname: Chen fullname: Chen, Zhen email: zhenchen2013@mail.tsinghua.edu.cn organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Jinhai surname: Huang fullname: Huang, Jinhai organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Yao surname: Wu fullname: Wu, Yao organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Wenjun surname: Wu fullname: Wu, Wenjun organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Ye surname: Zhang fullname: Zhang, Ye organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 6 givenname: Dehua surname: Liu fullname: Liu, Dehua organization: Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27918882$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB_wC5BQlmwS7Dz8WLBAI6CVWrFp15ZzczP1KLEH20HNv8fTaVmwaFe-Pjrf1dU55-TEeYeEfGS0YpTxL7tqnXt0VZ0_FWMVpeoNOWNU8VIw2Z78mwU_Jecx7ihlrFPsHTmthWJSyvqMrDeYTO8nCwW6rXWIwbpt4cdi48PqsDeQsrTMxXZakpkt5HH0oUj3WOyDHxZI1rsD0JT36xD8w5rlfdbySgN2KMbgH2nwEQvjhuJhnfL4nrwdzRTxw9N7Qe5-fL_dXJbXv35ebb5dl9B2MpWyBdp3dQ2jxFaNaqhrzrnpKRUD64SQAmTDgSKXtG-6TlDFOAejeuDtqNrmgnw-7s1n_V4wJj3bCDhNxqFfoq4ppU2jeKteteZUecO5kDRbPz1Zl37GQe-DnU1Y9XOy2aCOBgg-xoCjBpvMIasUjJ00o_rQot7pxxb1oUXNmM4tZrb5j31e_zL19UhhTvOPxaAjWHSAgw0ISQ_evsj_Bbi9uF8 |
CitedBy_id | crossref_primary_10_3389_fbioe_2021_746322 crossref_primary_10_1080_07388551_2021_1962241 crossref_primary_10_3389_fbioe_2023_1101232 crossref_primary_10_1016_j_biortech_2018_06_001 crossref_primary_10_3390_fermentation4010013 crossref_primary_10_1038_s41929_018_0212_4 crossref_primary_10_3389_fbioe_2020_622226 crossref_primary_10_1021_acssynbio_0c00486 crossref_primary_10_1007_s11538_020_00714_1 crossref_primary_10_3389_fbioe_2019_00440 crossref_primary_10_3389_fbioe_2021_603832 crossref_primary_10_3389_fmicb_2018_02185 crossref_primary_10_1186_s13068_022_02114_0 crossref_primary_10_1016_j_fuel_2023_130751 crossref_primary_10_1016_S1872_2067_22_64195_0 crossref_primary_10_2139_ssrn_4011164 crossref_primary_10_1002_bit_27344 crossref_primary_10_1186_s13068_017_0920_z crossref_primary_10_1016_j_biombioe_2024_107399 crossref_primary_10_1186_s13068_023_02367_3 crossref_primary_10_1016_j_cherd_2023_03_034 crossref_primary_10_1007_s11274_021_03091_6 crossref_primary_10_1016_j_biortech_2023_129822 crossref_primary_10_1016_j_biotno_2022_02_002 crossref_primary_10_1016_j_enzmictec_2018_09_002 crossref_primary_10_1016_j_ymben_2022_10_012 crossref_primary_10_1002_jobm_201800640 crossref_primary_10_1007_s00449_021_02567_x crossref_primary_10_1093_jimb_kuab040 crossref_primary_10_3390_synbio1010002 crossref_primary_10_1016_j_synbio_2025_02_002 crossref_primary_10_1016_j_ymben_2018_11_006 crossref_primary_10_1186_s12934_022_01741_4 crossref_primary_10_1016_j_biotechadv_2022_107935 crossref_primary_10_1007_s00253_018_8988_3 crossref_primary_10_3389_fbioe_2020_606047 crossref_primary_10_3390_molecules28041888 crossref_primary_10_1007_s00253_022_12330_1 crossref_primary_10_3390_catal10020203 crossref_primary_10_1038_s41598_018_36320_4 crossref_primary_10_1021_acs_jafc_0c07902 crossref_primary_10_1016_j_copbio_2018_11_004 crossref_primary_10_1016_j_bcab_2024_103226 crossref_primary_10_3390_microorganisms11092197 crossref_primary_10_1038_s41598_017_01850_w crossref_primary_10_1021_acs_chemrev_7b00395 crossref_primary_10_1038_s41467_022_28501_7 crossref_primary_10_1016_j_ymben_2018_09_008 crossref_primary_10_1021_acssuschemeng_9b07839 crossref_primary_10_1016_j_synbio_2021_09_005 crossref_primary_10_1002_bit_27082 crossref_primary_10_1039_C9GC02286D crossref_primary_10_1002_bit_28170 crossref_primary_10_1016_j_ymben_2018_07_008 crossref_primary_10_1007_s00449_017_1754_6 crossref_primary_10_1038_s41467_021_21632_3 crossref_primary_10_1016_j_renene_2022_04_094 crossref_primary_10_1007_s43153_021_00103_8 crossref_primary_10_1021_acssynbio_0c00567 crossref_primary_10_3389_fbioe_2019_00124 crossref_primary_10_1016_j_ymben_2019_07_003 crossref_primary_10_1016_j_ymben_2021_03_001 crossref_primary_10_3389_fbioe_2021_808258 crossref_primary_10_1016_j_biortech_2021_124799 crossref_primary_10_1186_s13068_020_01853_2 crossref_primary_10_1002_bbb_1895 crossref_primary_10_3390_pr10091752 crossref_primary_10_1016_j_ymben_2022_01_006 crossref_primary_10_1093_femsle_fny166 crossref_primary_10_1128_AEM_01314_18 crossref_primary_10_1186_s12934_021_01615_1 crossref_primary_10_1016_j_scitotenv_2021_147024 crossref_primary_10_1038_s41598_020_76120_3 crossref_primary_10_1186_s13068_018_1094_z crossref_primary_10_1016_j_biortech_2019_03_122 crossref_primary_10_1007_s00253_018_9358_x crossref_primary_10_1016_j_ymben_2021_01_013 crossref_primary_10_1016_j_esr_2024_101634 crossref_primary_10_1007_s00253_019_09772_5 crossref_primary_10_3389_fbioe_2022_908431 crossref_primary_10_1128_aem_01518_22 crossref_primary_10_1186_s12934_020_1294_7 crossref_primary_10_1007_s00253_018_8896_6 crossref_primary_10_1021_acssynbio_9b00003 crossref_primary_10_1186_s40643_021_00485_0 crossref_primary_10_3390_fermentation7040248 crossref_primary_10_1016_j_biotechadv_2021_107697 crossref_primary_10_1007_s10295_018_2103_8 crossref_primary_10_1080_21655979_2022_2051856 crossref_primary_10_1038_s41564_023_01529_1 crossref_primary_10_1186_s13068_023_02288_1 crossref_primary_10_1007_s00253_019_09640_2 crossref_primary_10_1002_smo_20240019 crossref_primary_10_1021_acssuschemeng_1c05441 crossref_primary_10_1016_j_biotechadv_2020_107668 crossref_primary_10_1007_s12649_024_02783_y crossref_primary_10_1016_j_bidere_2025_100008 crossref_primary_10_1016_j_ymben_2019_03_008 crossref_primary_10_1186_s13068_017_0992_9 crossref_primary_10_1021_acssuschemeng_3c00410 crossref_primary_10_1016_j_biotechadv_2018_03_020 |
Cites_doi | 10.1016/j.ymben.2016.01.001 10.1007/s00253-012-4062-8 10.1007/s00253-009-2065-x 10.1016/j.copbio.2011.11.012 10.1021/acssynbio.5b00303 10.1007/s00284-002-3728-3 10.1016/j.ymben.2014.06.005 10.1016/j.ymben.2015.10.013 10.1016/j.biortech.2015.08.086 10.1007/s00253-008-1608-x 10.1021/acssynbio.6b00007 10.1007/s00253-011-3210-x 10.1016/j.copbio.2016.07.007 10.1023/A:1008968419217 10.1007/s10295-014-1538-9 10.1128/AEM.02972-10 10.1016/j.ymben.2015.08.002 10.1007/s00253-012-4176-z 10.1007/s00253-014-6170-0 10.1186/1475-2859-13-64 10.1016/j.ymben.2012.09.004 10.1016/j.ymben.2006.09.002 10.1016/j.bej.2011.02.005 10.1016/j.biotechadv.2013.02.008 10.1016/j.biortech.2013.02.053 10.1002/biot.201400235 10.1016/j.ymben.2014.01.005 10.1128/AEM.02806-12 10.1002/bit.24954 10.1128/AEM.01634-13 10.1002/bit.25444 10.1128/AEM.03535-13 10.1186/s13068-016-0625-8 10.1002/biot.201000304 10.1016/j.biortech.2012.10.143 10.2172/15008859 10.1002/biot.201200238 10.1016/j.ymben.2014.10.003 10.1021/sb400133g 10.1002/bit.24726 |
ContentType | Journal Article |
Copyright | 2016 International Metabolic Engineering Society Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 International Metabolic Engineering Society – notice: Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ymben.2016.11.009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1096-7184 |
EndPage | 158 |
ExternalDocumentID | 27918882 10_1016_j_ymben_2016_11_009 S1096717616301082 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADFGL ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CJTIS COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LG5 LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSI SSU SSZ T5K UHS XPP ZMT ZU3 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c458t-84c0b522cf8e49f9d22666ab007d157787c836c0e680b355709166ca9bc64f943 |
IEDL.DBID | .~1 |
ISSN | 1096-7176 1096-7184 |
IngestDate | Fri Jul 11 04:13:18 EDT 2025 Fri Jul 11 08:02:58 EDT 2025 Mon Jul 21 06:00:04 EDT 2025 Tue Jul 01 00:51:24 EDT 2025 Thu Apr 24 23:07:10 EDT 2025 Fri Feb 23 02:37:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glycerol pathway Metabolic engineering Lignocellulose 3-Hydroxypropionic acid Corynebacterium glutamicum |
Language | English |
License | Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-84c0b522cf8e49f9d22666ab007d157787c836c0e680b355709166ca9bc64f943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27918882 |
PQID | 1846366780 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000339649 proquest_miscellaneous_1846366780 pubmed_primary_27918882 crossref_citationtrail_10_1016_j_ymben_2016_11_009 crossref_primary_10_1016_j_ymben_2016_11_009 elsevier_sciencedirect_doi_10_1016_j_ymben_2016_11_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 2017-Jan 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationPlace | Belgium |
PublicationPlace_xml | – name: Belgium |
PublicationTitle | Metabolic engineering |
PublicationTitleAlternate | Metab Eng |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chen, Geng, Zeng (bib12) 2015; 10 Lim, Noh, Jeong, Park, Jung (bib31) 2016 Jakoby, Ngouoto-Nkili, Burkovski (bib26) 1999; 13 Chu, Kim, Lee, Lee, Jung, Ahn, Song, Choi, Cho (bib20) 2015; 112 Gibson, Young, Chuang, Venter, Hutchison, Smith (bib22) 2009; 6 Tokuyama, Ohno, Yoshikawa, Hirasawa, Tanaka, Furusawa, Shimizu (bib38) 2014; 13 Meynial Salles, Forchhammer, Croux, Girbal, Soucaille (bib34) 2007; 9 Blombach, Riester, Wieschalka, Ziert, Youn, Wendisch, Eikmanns (bib5) 2011; 77 Yim, An, Kang, Lee, Jeong (bib41) 2013; 110 Baumgart, Unthan, Rückert, Sivalingam, Grünberger, Kalinowski, Bott, Noack, Frunzke (bib3) 2013; 79 Tauch, Kirchner, Löffler, Götker, Pühler, Kalinowski (bib37) 2002; 45 Chen, Liu (bib14) 2016; 9 Chen, Zeng (bib19) 2013; 8 Geng, Chen, Zheng, Sun, Zeng (bib21) 2013; 97 Buschke, Schröder, Wittmann (bib8) 2011; 6 Huang, Li, Shimizu, Ye (bib24) 2013; 128 Chen, Bao, Kim, Siewers, Nielsen (bib10) 2014; 22 Chen, Chen, Zheng, Sun, Zeng (bib9) 2013; 97 Chen, Bommareddy, Frank, Rappert, Zeng (bib11) 2014; 80 Jojima, Igari, Moteki, Suda, Yukawa, Inui (bib28) 2015; 99 Tsuge, Hasunuma, Kondo (bib39) 2015; 42 Ashok, Sankaranarayanan, Ko, Jae, Ainala, Kumar, Park (bib2) 2013; 110 Chen, Zeng (bib18) 2016; 42 Ashok, Mohan Raj, Ko, Sankaranarayanan, Zhou, Kumar, Park (bib1) 2013; 15 Jo, Mohan Raj, Rathnasingh, Selvakumar, Jung, Park (bib27) 2008; 81 Meiswinkel, Rittmann, Lindner, Wendisch (bib33) 2013; 145 Becker, Wittmann (bib4) 2012; 23 Chen, Huang, Wu, Liu (bib13) 2016; 33 Ikeda, Mizuno, Awane, Hayashi, Mitsuhashi, Takeno (bib25) 2011; 90 Chen, Wu, Huang, Liu (bib17) 2015; 197 Lan, Chuang, Shen, Lee, Ro, Liao (bib30) 2015; 31 Chen, Rappert, Zeng (bib16) 2015; 4 Song, Kim, Cho, Lee (bib36) 2016 Bommareddy, Chen, Rappert, Zeng (bib6) 2014; 25 Borodina, Kildegaard, Jensen, Blicher, Maury, Sherstyk, Schneider, Lamosa, Herrgård, Rosenstand, Öberg, Forster, Nielsen (bib7) 2014; 27 Hasegawa, Suda, Uematsu, Natsuma, Hiraga, Jojima, Inui, Yukawa (bib23) 2013; 79 Werpy T, Petersen G, Top value added chemicals from biomass, vol 1: results of screening for potential candidates from sugars and synthesis gas. 2004, US Department of Energy http://www.osti. gov/bridge Kumar, Ashok, Park (bib29) 2013; 31 Liu, Ding, Zhang, Liu, Xian, Zhao (bib32) 2016; 34 Chen, Liu, Liu (bib15) 2011; 54 Sasaki, Jojima, Kawaguchi, Inui, Yukawa (bib35) 2009; 85 Becker (10.1016/j.ymben.2016.11.009_bib4) 2012; 23 Geng (10.1016/j.ymben.2016.11.009_bib21) 2013; 97 Gibson (10.1016/j.ymben.2016.11.009_bib22) 2009; 6 Buschke (10.1016/j.ymben.2016.11.009_bib8) 2011; 6 Yim (10.1016/j.ymben.2016.11.009_bib41) 2013; 110 Kumar (10.1016/j.ymben.2016.11.009_bib29) 2013; 31 Ashok (10.1016/j.ymben.2016.11.009_bib2) 2013; 110 Tokuyama (10.1016/j.ymben.2016.11.009_bib38) 2014; 13 Baumgart (10.1016/j.ymben.2016.11.009_bib3) 2013; 79 Ashok (10.1016/j.ymben.2016.11.009_bib1) 2013; 15 Jojima (10.1016/j.ymben.2016.11.009_bib28) 2015; 99 Tsuge (10.1016/j.ymben.2016.11.009_bib39) 2015; 42 Chen (10.1016/j.ymben.2016.11.009_bib11) 2014; 80 Jo (10.1016/j.ymben.2016.11.009_bib27) 2008; 81 Borodina (10.1016/j.ymben.2016.11.009_bib7) 2014; 27 Chu (10.1016/j.ymben.2016.11.009_bib20) 2015; 112 Liu (10.1016/j.ymben.2016.11.009_bib32) 2016; 34 Chen (10.1016/j.ymben.2016.11.009_bib9) 2013; 97 Chen (10.1016/j.ymben.2016.11.009_bib13) 2016; 33 Jakoby (10.1016/j.ymben.2016.11.009_bib26) 1999; 13 Hasegawa (10.1016/j.ymben.2016.11.009_bib23) 2013; 79 Chen (10.1016/j.ymben.2016.11.009_bib16) 2015; 4 Blombach (10.1016/j.ymben.2016.11.009_bib5) 2011; 77 Chen (10.1016/j.ymben.2016.11.009_bib19) 2013; 8 Lan (10.1016/j.ymben.2016.11.009_bib30) 2015; 31 Tauch (10.1016/j.ymben.2016.11.009_bib37) 2002; 45 Ikeda (10.1016/j.ymben.2016.11.009_bib25) 2011; 90 Chen (10.1016/j.ymben.2016.11.009_bib15) 2011; 54 Lim (10.1016/j.ymben.2016.11.009_bib31) 2016 Chen (10.1016/j.ymben.2016.11.009_bib14) 2016; 9 Meiswinkel (10.1016/j.ymben.2016.11.009_bib33) 2013; 145 Sasaki (10.1016/j.ymben.2016.11.009_bib35) 2009; 85 Chen (10.1016/j.ymben.2016.11.009_bib12) 2015; 10 Chen (10.1016/j.ymben.2016.11.009_bib17) 2015; 197 Song (10.1016/j.ymben.2016.11.009_bib36) 2016 Chen (10.1016/j.ymben.2016.11.009_bib18) 2016; 42 Huang (10.1016/j.ymben.2016.11.009_bib24) 2013; 128 Bommareddy (10.1016/j.ymben.2016.11.009_bib6) 2014; 25 Chen (10.1016/j.ymben.2016.11.009_bib10) 2014; 22 Meynial Salles (10.1016/j.ymben.2016.11.009_bib34) 2007; 9 10.1016/j.ymben.2016.11.009_bib40 |
References_xml | – year: 2016 ident: bib31 article-title: Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Esherichia coli publication-title: ACS Synth. Biol. – volume: 4 start-page: 126 year: 2015 end-page: 131 ident: bib16 article-title: Rational design of allosteric regulation of homoserine dehydrogenase by a Nonnatural inhibitor publication-title: ACS Synth. Biol. – volume: 42 start-page: 375 year: 2015 end-page: 389 ident: bib39 article-title: Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources publication-title: J. Ind. Microbiol. Biotechnol. – volume: 80 start-page: 1388 year: 2014 end-page: 1393 ident: bib11 article-title: Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum publication-title: Appl. Environ. Microbiol. – volume: 15 start-page: 10 year: 2013 end-page: 24 ident: bib1 article-title: Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT publication-title: Metab. Eng. – volume: 6 start-page: 343 year: 2009 end-page: 345 ident: bib22 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat. Methods – volume: 128 start-page: 505 year: 2013 end-page: 512 ident: bib24 article-title: Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions publication-title: Bioresour. Technol. – volume: 31 start-page: 945 year: 2013 end-page: 961 ident: bib29 article-title: Recent advances in biological production of 3-hydroxypropionic acid publication-title: Biotechnol. Adv. – volume: 31 start-page: 163 year: 2015 end-page: 170 ident: bib30 article-title: Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO publication-title: Metab. Eng. – volume: 6 start-page: 306 year: 2011 end-page: 317 ident: bib8 article-title: Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose publication-title: Biotechnol. J. – volume: 110 start-page: 2959 year: 2013 end-page: 2969 ident: bib41 article-title: Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum publication-title: Biotechnol. Bioeng. – volume: 22 start-page: 104 year: 2014 end-page: 109 ident: bib10 article-title: Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae publication-title: Metab. Eng. – volume: 79 start-page: 6006 year: 2013 end-page: 6015 ident: bib3 article-title: Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology publication-title: Appl. Environ. Microbiol. – volume: 27 start-page: 57 year: 2014 end-page: 64 ident: bib7 article-title: Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine publication-title: Metab. Eng. – volume: 34 start-page: 104 year: 2016 end-page: 111 ident: bib32 article-title: Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis publication-title: Metab. Eng. – volume: 145 start-page: 254 year: 2013 end-page: 258 ident: bib33 article-title: Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum publication-title: Bioresour. Technol. – volume: 81 start-page: 51 year: 2008 end-page: 60 ident: bib27 article-title: Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate publication-title: Appl. Microbiol. Biotechnol. – volume: 77 start-page: 3300 year: 2011 end-page: 3310 ident: bib5 article-title: Corynebacterium glutamicum tailored for efficient isobutanol production publication-title: Appl. Environ. Microbiol. – volume: 10 start-page: 284 year: 2015 end-page: 289 ident: bib12 article-title: Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose publication-title: Biotechnol. J. – volume: 8 start-page: 523 year: 2013 end-page: 533 ident: bib19 article-title: Protein design in systems metabolic engineering for industrial strain development publication-title: Biotechnol. J. – reference: Werpy T, Petersen G, Top value added chemicals from biomass, vol 1: results of screening for potential candidates from sugars and synthesis gas. 2004, US Department of Energy http://www.osti. gov/bridge – volume: 90 start-page: 1443 year: 2011 end-page: 1451 ident: bib25 article-title: Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum publication-title: Appl. Microbiol. Biotechnol. – volume: 110 start-page: 511 year: 2013 end-page: 524 ident: bib2 article-title: Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally publication-title: Biotechnol. Bioeng. – volume: 42 start-page: 198 year: 2016 end-page: 205 ident: bib18 article-title: Protein engineering approaches to chemical biotechnology publication-title: Curr. Opin. Biotechnol. – volume: 97 start-page: 1963 year: 2013 end-page: 1971 ident: bib21 article-title: Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production publication-title: Appl. Microbiol. Biotechnol. – volume: 85 start-page: 105 year: 2009 end-page: 115 ident: bib35 article-title: Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars publication-title: Appl. Microbiol. Biotechnol. – volume: 13 start-page: 437 year: 1999 end-page: 441 ident: bib26 article-title: Construction and application of new Corynebacterium glutamicum vectors publication-title: Biotechnol. Tech. – volume: 33 start-page: 12 year: 2016 end-page: 18 ident: bib13 article-title: Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose publication-title: Metab. Eng. – volume: 79 start-page: 1250 year: 2013 end-page: 1257 ident: bib23 article-title: Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions publication-title: Appl. Environ. Microbiol. – volume: 54 start-page: 151 year: 2011 end-page: 157 ident: bib15 article-title: Metabolic pathway analysis of 1,3-propanediol production with a genetically modified Klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase publication-title: Biochem. Eng. J. – volume: 112 start-page: 356 year: 2015 end-page: 364 ident: bib20 article-title: Metabolic engineering of 3-hydroxypropionic acid biosynthesis in publication-title: Biotechnol. Bioeng. – volume: 99 start-page: 1427 year: 2015 end-page: 1433 ident: bib28 article-title: Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions publication-title: Appl. Microbiol. Biotechnol. – volume: 197 start-page: 260 year: 2015 end-page: 265 ident: bib17 article-title: Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel publication-title: Bioresour. Technol. – volume: 97 start-page: 2939 year: 2013 end-page: 2949 ident: bib9 article-title: Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli publication-title: Appl. Microbiol. Biotechnol. – volume: 9 start-page: 152 year: 2007 end-page: 159 ident: bib34 article-title: Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli publication-title: Metab. Eng. – volume: 23 start-page: 631 year: 2012 end-page: 640 ident: bib4 article-title: Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory publication-title: Curr. Opin. Biotechnol. – volume: 25 start-page: 30 year: 2014 end-page: 37 ident: bib6 article-title: A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme speci fi city of glyceraldehyde 3-phosphate dehydrogenase publication-title: Metab. Eng. – volume: 9 start-page: 205 year: 2016 ident: bib14 article-title: Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol publication-title: Biotechnol. Biofuels – volume: 13 start-page: 64 year: 2014 ident: bib38 article-title: Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli publication-title: Microb. Cell Fact. – year: 2016 ident: bib36 article-title: Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route publication-title: ACS Synth. Biol. – volume: 45 start-page: 362 year: 2002 end-page: 367 ident: bib37 article-title: Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1 publication-title: Curr. Microbiol. – volume: 34 start-page: 104 year: 2016 ident: 10.1016/j.ymben.2016.11.009_bib32 article-title: Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis publication-title: Metab. Eng. doi: 10.1016/j.ymben.2016.01.001 – volume: 97 start-page: 1963 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib21 article-title: Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4062-8 – volume: 85 start-page: 105 year: 2009 ident: 10.1016/j.ymben.2016.11.009_bib35 article-title: Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2065-x – volume: 23 start-page: 631 year: 2012 ident: 10.1016/j.ymben.2016.11.009_bib4 article-title: Bio-based production of chemicals, materials and fuels -Corynebacterium glutamicum as versatile cell factory publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2011.11.012 – year: 2016 ident: 10.1016/j.ymben.2016.11.009_bib31 article-title: Optimum rebalancing of the 3-hydroxypropionic acid production pathway from glycerol in Esherichia coli publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.5b00303 – volume: 45 start-page: 362 year: 2002 ident: 10.1016/j.ymben.2016.11.009_bib37 article-title: Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1 publication-title: Curr. Microbiol. doi: 10.1007/s00284-002-3728-3 – volume: 25 start-page: 30 year: 2014 ident: 10.1016/j.ymben.2016.11.009_bib6 article-title: A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme speci fi city of glyceraldehyde 3-phosphate dehydrogenase publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.06.005 – volume: 33 start-page: 12 year: 2016 ident: 10.1016/j.ymben.2016.11.009_bib13 article-title: Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.10.013 – volume: 197 start-page: 260 year: 2015 ident: 10.1016/j.ymben.2016.11.009_bib17 article-title: Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.086 – volume: 81 start-page: 51 year: 2008 ident: 10.1016/j.ymben.2016.11.009_bib27 article-title: Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-Hydroxypropionaldehyde as a substrate publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1608-x – year: 2016 ident: 10.1016/j.ymben.2016.11.009_bib36 article-title: Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00007 – volume: 90 start-page: 1443 year: 2011 ident: 10.1016/j.ymben.2016.11.009_bib25 article-title: Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3210-x – volume: 42 start-page: 198 year: 2016 ident: 10.1016/j.ymben.2016.11.009_bib18 article-title: Protein engineering approaches to chemical biotechnology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2016.07.007 – volume: 13 start-page: 437 year: 1999 ident: 10.1016/j.ymben.2016.11.009_bib26 article-title: Construction and application of new Corynebacterium glutamicum vectors publication-title: Biotechnol. Tech. doi: 10.1023/A:1008968419217 – volume: 42 start-page: 375 year: 2015 ident: 10.1016/j.ymben.2016.11.009_bib39 article-title: Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-014-1538-9 – volume: 77 start-page: 3300 year: 2011 ident: 10.1016/j.ymben.2016.11.009_bib5 article-title: Corynebacterium glutamicum tailored for efficient isobutanol production publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02972-10 – volume: 31 start-page: 163 year: 2015 ident: 10.1016/j.ymben.2016.11.009_bib30 article-title: Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2015.08.002 – volume: 97 start-page: 2939 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib9 article-title: Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4176-z – volume: 99 start-page: 1427 year: 2015 ident: 10.1016/j.ymben.2016.11.009_bib28 article-title: Promiscuous activity of (S,S)-butanediol dehydrogenase is responsible for glycerol production from 1,3-dihydroxyacetone in Corynebacterium glutamicum under oxygen-deprived conditions publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6170-0 – volume: 13 start-page: 64 year: 2014 ident: 10.1016/j.ymben.2016.11.009_bib38 article-title: Increased 3-hydroxypropionic acid production from glycerol, by modification of central metabolism in Escherichia coli publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-13-64 – volume: 15 start-page: 10 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib1 article-title: Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT publication-title: Metab. Eng. doi: 10.1016/j.ymben.2012.09.004 – volume: 9 start-page: 152 year: 2007 ident: 10.1016/j.ymben.2016.11.009_bib34 article-title: Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli publication-title: Metab. Eng. doi: 10.1016/j.ymben.2006.09.002 – volume: 54 start-page: 151 year: 2011 ident: 10.1016/j.ymben.2016.11.009_bib15 article-title: Metabolic pathway analysis of 1,3-propanediol production with a genetically modified Klebsiella pneumoniae by overexpressing an endogenous NADPH-dependent alcohol dehydrogenase publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2011.02.005 – volume: 31 start-page: 945 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib29 article-title: Recent advances in biological production of 3-hydroxypropionic acid publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.02.008 – volume: 145 start-page: 254 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib33 article-title: Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.02.053 – volume: 10 start-page: 284 year: 2015 ident: 10.1016/j.ymben.2016.11.009_bib12 article-title: Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose publication-title: Biotechnol. J. doi: 10.1002/biot.201400235 – volume: 22 start-page: 104 year: 2014 ident: 10.1016/j.ymben.2016.11.009_bib10 article-title: Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.01.005 – volume: 79 start-page: 1250 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib23 article-title: Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02806-12 – volume: 110 start-page: 2959 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib41 article-title: Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24954 – volume: 79 start-page: 6006 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib3 article-title: Construction of a prophage-free variant of Corynebacterium glutamicum ATCC 13032 for use as a platform strain for basic research and industrial biotechnology publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01634-13 – volume: 112 start-page: 356 year: 2015 ident: 10.1016/j.ymben.2016.11.009_bib20 article-title: Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25444 – volume: 80 start-page: 1388 year: 2014 ident: 10.1016/j.ymben.2016.11.009_bib11 article-title: Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03535-13 – volume: 9 start-page: 205 year: 2016 ident: 10.1016/j.ymben.2016.11.009_bib14 article-title: Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-016-0625-8 – volume: 6 start-page: 306 year: 2011 ident: 10.1016/j.ymben.2016.11.009_bib8 article-title: Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose publication-title: Biotechnol. J. doi: 10.1002/biot.201000304 – volume: 128 start-page: 505 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib24 article-title: Co-production of 3-hydroxypropionic acid and 1,3-propanediol by Klebseilla pneumoniae expressing aldH under microaerobic conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.143 – ident: 10.1016/j.ymben.2016.11.009_bib40 doi: 10.2172/15008859 – volume: 8 start-page: 523 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib19 article-title: Protein design in systems metabolic engineering for industrial strain development publication-title: Biotechnol. J. doi: 10.1002/biot.201200238 – volume: 27 start-page: 57 year: 2014 ident: 10.1016/j.ymben.2016.11.009_bib7 article-title: Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine publication-title: Metab. Eng. doi: 10.1016/j.ymben.2014.10.003 – volume: 4 start-page: 126 year: 2015 ident: 10.1016/j.ymben.2016.11.009_bib16 article-title: Rational design of allosteric regulation of homoserine dehydrogenase by a Nonnatural inhibitor publication-title: ACS Synth. Biol. doi: 10.1021/sb400133g – volume: 6 start-page: 343 year: 2009 ident: 10.1016/j.ymben.2016.11.009_bib22 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases – volume: 110 start-page: 511 year: 2013 ident: 10.1016/j.ymben.2016.11.009_bib2 article-title: Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae ΔdhaTΔyqhD which can produce vitamin B12 naturally publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24726 |
SSID | ssj0011591 |
Score | 2.4864292 |
Snippet | 3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 151 |
SubjectTerms | 3-Hydroxypropionic acid aldehydes Bacterial Proteins - genetics Bacterial Proteins - metabolism batch fermentation Biosynthetic Pathways - physiology Corynebacterium glutamicum Corynebacterium glutamicum - physiology feedstocks Gene Expression Regulation, Bacterial - genetics genes genetic engineering Genetic Enhancement - methods glucokinase glucose Glucose - metabolism glycerol Glycerol - metabolism Glycerol pathway Klebsiella pneumoniae Lactic Acid - analogs & derivatives Lactic Acid - biosynthesis Lactic Acid - isolation & purification Lignocellulose Metabolic engineering Metabolic Engineering - methods Metabolic Networks and Pathways - physiology pentoses Saccharomyces cerevisiae screening xylose Xylose - metabolism |
Title | Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose |
URI | https://dx.doi.org/10.1016/j.ymben.2016.11.009 https://www.ncbi.nlm.nih.gov/pubmed/27918882 https://www.proquest.com/docview/1846366780 https://www.proquest.com/docview/2000339649 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-iCM-D6D6fz08ivKNx2yZNm-OyKKuiFxW8heajuo-1u-gu2It_uzP9WBXUg7cQkhIyk5nfpJPfEPJPOe5s5hMmlLEM-UqYMVaxTBgXBd5xnldZvpdycCPObuPbBdJv38JgWmVj-2ubXlnrpqfb7GZ3Mhx2r0JA3xCMSEAUEFSkaIeFSFDLj17maR4AeKqqeTiY4eiWeajK8SofjEcS1FAeIZUnZiV-7p2-Qp-VFzpZI6sNfKS9eoXrZMEXHbJcF5QsO2TlHb3gb1Je-CnIeDS01L_103FO--PHsvCmZmqePdA70D8sTA9NALEUQCGd1FSwIDacwNl96TDjBboneIVraWaHjuLrFNqkvdOscPS5HEFzg9ycHF_3B6wptcCsiNMpS4UNDEAxm6deqFw5QGVSZnAmExfGCZxqm3JpAy_TwHCk7QJYKW0GApYiV4L_IYvFuPB_CbVWKqO4EhDJCB7FJgxt7HnunAKwF6ZbJGq3WNuGhxzLYYx0m3D2X1dy0SgXiFA0yGWLHM4nTWoaju-Hy1Z2-oM2aXAU3088aCWt4Zzhz5Os8OPZk4ZIWHIJrj34egw-e-JcSQHf2azVZL7aKFFhCuHM9k-XtkN-RQgpquufXbI4fZz5PQBEU7Nfafw-Weqdng8uXwFwigtX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJRXeRoJbribxI43PvRQFaotfVxopd5M_AgE7WZX7a4gF_5U_2Bn8lhAoj0g9RZZseV4xvY3zudvAN5qL7zLw5BLbR0nvRJurdM8l9YnUfBCFA3L91CNjuWnk_RkBc77uzBEq-zW_nZNb1brrmTQjeZgVpaDzzGibwxGFCIKDCqypGNW7oX6B8ZtZ5u7H9DI75Jk5-PR9oh3qQW4k2k255l0kUXo4YosSF1ojyhEqRx9cOjjdIhe7DKhXBRUFllBMlUIo5TL8YOULLQU2O4NuClxuaC0CRu_lrwSRFhNmj7qHafu9VJHDamsnthAqqux2iDtUKJB_ns7vAzuNtvezn241-FVttUOyQNYCdUa3GozWNZrcPcPPcOHUB-EOTrVuHQs_C5n04JtT0_rKthWGnoxYV_R4fNJ6fARUTNDFMpmrfYs-glVEPxb7Ylig8UzOjN2LHelZ3QdhnU8e5ZXnv2sx_j4CI6vxQCPYbWaVuEpMOeUtlpoiaGTFElq49ilQRTea0SXcbYOST_ExnXC55R_Y2x6htt309jFkF0wJDJol3V4v6w0a3U_rn5d9bYzf7mvwZ3p6opveksbnNj0tyavwnRxZjD0VkIhloguf4fuWQmhlcR2nrRusuxtMtRxhvHTs__t2mu4PTo62Df7u4d7z-FOQnimOXt6Aavz00V4iWhsbl813s_gy3VPtwuxZUUV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+engineering+of+Corynebacterium+glutamicum+for+the+production+of+3-hydroxypropionic+acid+from+glucose+and+xylose&rft.jtitle=Metabolic+engineering&rft.au=Chen%2C+Zhen&rft.au=Huang%2C+Jinhai&rft.au=Wu%2C+Yao&rft.au=Wu%2C+Wenjun&rft.date=2017-01-01&rft.issn=1096-7184&rft.eissn=1096-7184&rft.volume=39&rft.spage=151&rft_id=info:doi/10.1016%2Fj.ymben.2016.11.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-7176&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-7176&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-7176&client=summon |